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Abstract i

The cache coherence mechanisms are a key component towards achieving the goal of continu-
ing exponential performance growth through widespread thread-level parallelism. This disserta-

tion makes several contributions in the space of cache coherence for multicore chips.

First, we recognize that rings are emerging as a preferred on-chip interconnect. Unfortunately
a ring does not preserve the total order provided by a bus. We contribute a new cache coherence
protocol that exploits a ring’s natural round-robin order. In doing so, we show how our new proto-
col achieves both fast performance and performance stability—a combination not found in prior

designs.

Second, we explore cache coherence protocols for systems constructed with several multicore
chips. In these Multiple-CMP systems, coherence must occur both within a multicore chip and
among multicore chips. Applying hierarchical coherence protocols greatly increases complexity,
especially when a bus is not relied upon for the first-level of coherence. We first contribute a hier-
archical coherence protocol, DirectoryCMP, that uses two directory-based protocols bridged
together to create a highly scalable system. We then contribute TokenCMP, which extends token
coherence, to create a Multiple-CMP system that is flat for correctness yet hierarchical for perfor-
mance. We qualitatively argue how TokenCMP reduces complexity and our simulation results

demonstrate comparable or better performance than DirectoryCMP.

Third, we contribute the idea of virtual hierarchies for designing memory systems optimized
for space sharing. With future chips containing abundant cores, the opportunities for space shar-

ing the vast resources will only increase. Our contribution targets consolidated server workloads



ii
on a tiled multicore chip. We first show how existing flat coherence protocols fail to accomplish

the memory system goals we identify. Then, we impose a two-level virtual coherence and caching
hierarchy on a physically flat multicore that harmonizes with workload assignment. In doing so,
we improve performance by exploiting the locality of space sharing, we provide performance iso-
lation between workloads, and we maintain globally shared memory to support advanced virtual-

ization features such as dynamic partitioning and content-based page sharing.
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Chapter 1

Introduction

Computing has revolutionized society and serves as an engine of the world’s economy. Much
of this revolution can be attributed to the advent and incredible progress of the low-cost micropro-
cessor. Advancement of microprocessors is largely driven by Moore’s Law, which predicts that
the number of transistors per silicon area doubles every eighteen months [103]. While Moore’s
Law is expected to continue at least into the next decade, computer architects are embarking on a

fundamental shift in how the transistor bounty is used to increase performance.

Performance improvements of microprocessors historically came from both increasing the
speed (frequency) at which the processors run, and by increasing the amount of work performed
in each cycle (e.g., by increasing the amount of parallelism). The increasing transistor bounty has
led to different ways of increasing parallelism. Early advancement of microprocessors increased
parallelism by widening the basic word length of machines from 4-bits currently to 64-bits. Archi-
tects then sought to increase parallelism by executing multiple instructions simultaneously
(instruction-level parallelism or ILP) through pipelining techniques and superscalar architectures
and to reduce the latency of accessing memory with ever larger on-chip caches. Microprocessors
further increased ILP by implementing out-of-order execution engines that completed useful work

instead of stalling on data and control dependencies.

It now appears that existing techniques for increasing ILP can no longer deliver performance

improvements that track Moore’s Law due to energy, heat, and wire delay issues [5]. Therefore,
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mainstream microprocessor vendors have turned their attention to thread-level parallelism (TLP)

by designing chips with multiple processors, otherwise known as Multicore or Chip Multiproces-
sors (CMPs). By extracting higher-level TLP on multicores, performance can continue to improve
while managing the technology issues faced by increasing the performance of conventional sin-

gle-core designs (uniprocessors).

Industry is embracing multicore by rapidly increasing the number of processing cores per
chip. In 2005, AMD and Intel both offered dual-core x86 products [66], and AMD shipped its first
quad-core product in 2007 [12]. Meanwhile Sun shipped an 8-core, 32-threaded CMP in 2005
[75] and plans a 16-core version in 2008. It is conceivable that the number of cores per chip will
increase exponentially, at the rate of Moore’s Law, over the next decade. In fact an Intel research
project explores CMPs with eighty identical processor/cache cores integrated onto a single die

[64], and Berkeley researchers suggest future CMPs could contain thousands of cores [15]!

1.1 Cache Coherence and Multicore

The shift towards multicore will rely on parallel software to achieve continuing exponential
performance gains. Most parallel software in the commercial market relies on the shared-memory
programming model in which all processors access the same physical address space. Although
processors logically access the same memory, on-chip cache hierarchies are crucial to achieving
fast performance for the majority of memory references made by processors. Thus a key problem
of shared-memory multiprocessors is providing a consistent view of memory with various cache
hierarchies. This cache coherence problem is a critical correctness and performance-sensitive
design point for supporting the shared-memory model. The cache coherence mechanisms not only

govern communication in a shared-memory multiprocessor, but also typically determine how the
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memory system transfers data between processors, caches, and memory. Assuming the shared-

memory programming model remains prominent, future workloads will depend upon the perfor-
mance of the cache coherent memory system and continuing innovation in this realm is para-

mount to progress in computer design.

Cache coherence has received much attention in the research community, but the prior work
targeted multiprocessor machines (MPs) comprised of multiple single-core processors. Perhaps
the most important difference in the design of CMPs, compared with prior MPs, is the opportunity
to take a holistic approach to design. Prior machines were usually constructed of commodity uni-
processors where the design focus was on single-core performance. The cache coherent memory
system is now a first-order design issue at the chip level. We identify some concrete CMP-specific

trends and opportunities below.

1.1.1 Interconnect Engineering Constraints

Many cache coherence schemes are tightly coupled to the interconnect ordering properties.
The interconnect of future multicores will face different engineering constraints than prior multi-
processors [81]. Not only do the electrical characteristics of on-chip networks differ from their
off-chip counterparts, there now exists a complex trade-off between interconnect resources, cache
capacity, processor capability, and power usage [79] that did not exist when uniprocessors were

designed indepedently from the multiprocessor interconnect.

Most of the commercially successful multiprocessors used buses to interconnect the unipro-
cessors and memory. With the increasing numbers of cores within a CMP, a bus will suffer scal-
ability limits. Prior solutions for more scalable multiprocessors implement packet-switched

interconnects in topologies such as grids or tori. Multicores likely will eventually integrate
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packet-switched interconnects on-chip, but intermediate solutions may be preferable until tech-

nology scaling further reduces the cost of packet-switching. Furthermore, as we will see in Chap-
ter 2, implementing coherence on such an unordered interconnect requires additional techniques
such as using additional levels of indirection. CMPs may implement an interconnect that is sim-
pler than a packet-switched interconnect yet offers better properties than a bus. A ring is one such

alternative explored in Chapter 4 of this dissertation.

1.1.2 Building Larger Systems with Multicore Building Blocks

Vendors have long showed an interest in leveraging commodity hardware to build larger, more
capable systems. The majority of these prior systems integrated several commodity uniprocessors
to create a larger shared-memory machine. In this new era, the basic commodity building block is
now a multiprocessor itself instead of a uniprocessor. Therefore hierarchical systems, requiring

hierarchical cache coherence techniques, will become much more widespread.

Memory systems are complex and difficult to implement correctly, as evident by the number
of bugs in shipped products [113]. A considerable portion of memory system complexity comes
from the coherence protocol. While model checking techniques [36, 109] have successfully found
subtle bugs during the design phase [69, 100], hierarchical coherence makes the state-space of the
protocols explode. In Chapter 5, we explore hierarchical coherence in a M-CMP system and dem-
onstrate a new framework for making coherence flat for correctness, yet hierarchical for perfor-

mance.



1.1.3 Workload Consolidation and Space-sharing

Server consolidation is becoming an increasingly popular way to manage systems. For exam-
ple, web and database programs running on separate servers will consolidate onto a single server
running under virtual machines. Server consolidation, and more generally workload consolida-
tion, can increase utilization of machines and reduce administrative costs. Opportunities for con-
solidation may also increase as the number of threads per CMP rise faster than the ability of
programmers to exploit them for single programs. Rather than just time sharing jobs on one or a
few cores, we expect abundant cores will encourage a greater use of space sharing [42]. With
space sharing, single- or multi-threaded jobs are simultaneously assigned to separate groups of
cores for long time intervals. Currently proposed CMP memory systems do not appear to target
consolidated workloads with space sharing of resources. Chapter 6 presents techniques motivated

by workload consolidation and space sharing.

1.1.4 Bandwidth and Latency Trends

Two primary technology trends driving CMP design and research is increasing on-chip wire
delay and the increasing gap between processor and memory speed. In conventional processors of
the 80s and early 90s, the entire chip could be reached in a single cycle. Technology scaling in the
coming decade may require dozens of cycles for a signal to traverse from one edge of the die to
the other [44]. Moreover, with the rising gap between processor and memory speed, maximizing

on-chip cache capacity is crucial to attaining good performance.

Memory system designers employ hierarchies of caches to manage latency and bandwidth.
Many of today’s CMPs (including research designs) assume private L1 caches and a shared L2

cache. At some point, however, the limited bandwidth and latency of a single shared L2 cache will
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require additional levels in the hierarchy. One option designers can consider is implementing a

physical hierarchy that consists of multiple clusters, where each cluster consists of a group of pro-
cessor cores that share an L2 cache. The effectiveness of such a physical hierarchy, however, may
depend on how well the applications map to the hierarchy. In Chapter 6, we develop a mechanism

to create a virtual hierarchy to match the workload’s characteristics.

1.2 Thesis Contributions

This section describes the research contributions of the dissertation. Although each contribu-
tion targets a different CMP design point, the concepts readily adapt to other designs as discussed

throughout the dissertation.

1.2.1 RING-ORDER: novel coherence ordering for ring-based CMPs.

Chapter 4 develops a new method of coherence for ring-based interconnects. Rings are emerg-
ing as a viable interconnect for future CMPs. Compared to buses, crossbars, and packet-switched
interconnects, rings may offer a preferred compromise between speed, scalability, complexity,
and resource usage. Rings are currently used by the IBM Cell [71, 61] and are under consideration
by Intel for future CMPs [63]. Figure 1-1 illustrates the base CMP design, with eight cores and

shared L3 caches, targeted in Chapter 4.

Unfortunately the order of a ring is not the same as the order of a bus. Therefore coherence
protocols for rings must specifically consider the ordering of a ring. An existing ring-based proto-
col uses a greedy order (GREEDY-ORDER) where a request may require an unbounded number of

retries to resolve races. Another approach re-establishes the order of a bus by using an ordering
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FIGURE 1-1. Base CMP design for ring-based coherence in Chapter 4

point. Alternatively a protocol that relies on no interconnect ordering, such as a directory-based

scheme, can deploy on a ring with considerable protocol overhead.

The primary contribution of Chapter 4 develops a new coherence protocol called RING-
ORDER. This scheme exploits the ordering properties of a ring by completing requests in the natu-
ral round-robin order. A secondary contribution demonstrates the use of an ordering point
(ORDERING-POINT) to re-establish a total bus order on a ring and compares it with RING-ORDER
and GREEDY-ORDER. We show that RING-ORDER performs up to 86% faster than ORDERING-

POINT and offers stable performance by never using retries.

1.2.2 Multiple-CMP Coherence: DirectoryCMP and TokenCMP

Chapter 5 considers coherence for systems comprised of multiple CMPs (Multiple-CMPs or
M-CMPs). M-CMP systems will require cache coherence both within a CMP and between CMPs.
One approach uses hierarchical coherence by combining an intra-CMP protocol for on-chip

coherence with an inter-CMP protocol for off-chip coherence. Unfortunately coupling two proto-
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cols together greatly increases complexity. Another approach completely ignores the hierarchy of
an M-CMP system by using a protocol that makes no distinction between an on- and off-chip
cache. Although applying existing, flat protocols to an M-CMP can offer correct function, perfor-

mance will suffer because the physical hierarchy is not exploited for lower latency and bandwidth.

The primary contribution of Chapter 5 develops the TokenCMP framework for M-CMP
coherence. TokenCMP extends token coherence [93] to make the system flat for correctness. The
flat correctness substrate greatly eases complexity and allows the successful model-checking of
the system. We then develop simple broadcast-based performance policies to exploit the physical

hierarchy in the common case.

A secondary contribution develops a detailed specification of a protocol, DirectoryCMP, that
uses directories for both intra-CMP and inter-CMP coherence. This two-level directory approach
gives considerable scalability to the system, but comes with a high level of complexity due to var-

ious races possible between the protocols. We solve the problem of races by using blocking direc-
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tories with an algorithm for avoiding deadlock between dependent directories. Both

DirectoryCMP and TokenCMP operate on completely unordered interconnects.

Chapter 5 primarily evaluates TokenCMP and DirectoryCMP in an M-CMP configuration
shown in Figure 1-2. Although the number of cores in this target design is modest, the techniques
we propose in Chapter 5 will generalize to slightly larger systems. We assume no interconnect
ordering for either the on-chip and off-chip interconnection networks to ensure our schemes scale
to increasing cores-per-CMP and CMPs. In addition to reducing complexity, we also show that

TokenCMP can perform up to 32% faster than DirectoryCMP.

1.2.3 Virtual Hierarchies

Chapter 6 proposes the virtual hierarchy framework as a new way to build CMP memory sys-
tems. In a virtual hierarchy (VH), we overlay a coherence and cache hierarchy onto a fixed physi-
cal system. Unlike a physical hierarchy, a virtual hierarchy can adapt to fit how workloads are

space-shared for improved performance and performance isolation.

Chapter 6 applies a virtual hierarchy to a case study of a many-core CMP running several con-
solidated multithreaded workloads with space-sharing of on-chip resources. With the large num-
ber of threads available in future CMPs, consolidating workloads onto a single machine will
become more prevalent. Yet proposed memory systems for future CMPs do not target space-

shared workload consolidation.

The primary contribution we make develops a two-level virtual hierarchy on a physically-flat
CMP that harmonizes with workload assignment. A virtual hierarchy fulfills our goals of perfor-

mance, performance stability, and globally-shared memory to support dynamic reconfiguration
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FIGURE 1-3. CMP Design for the Virtual Hierarchies work of Chapter 6
and content-based page sharing. To implement a virtual hierarchy, we develop two protocols:
VHp;,.pir and VHp;: geast: VHpir-pir 1S an extension of DirectoryCMP, using fully mapped direc-
tories at both levels, to create a virtual hierarchy. VHp;, gcast Uses the same first-level protocol as
VHp;,.pir» but reduces global memory state by instead using a token-based broadcast protocol at
the second level. Compared to flat directory schemes, we show that VH protocols offer superior
performance and performance isolation when running consolidated workloads. In particular,
VHp;,.pi;r improves performance by up to 45% compared to the best-performing baseline proto-

col.

The long-term CMP we consider in Chapter 6 is a tiled architecture consisting of 64 tiles as
shown in Figure 1-3. Each tile contains an in-order processor core, private L1 instruction and data
caches, and an L2 cache bank. The CMP implements a packet-switched interconnect in an 8x8
grid topology. While a tiled architecture offers no physical hierarchy, the virtual hierarchy offers

the latency and bandwidth advantages of a hierarchy without actually building one.
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1.2.4 Relationship to My Previously Published Work

This dissertation encompasses work that previously appeared in three conference publica-
tions. The work on ring-based cache coherence appears in the proceedings of the 39th Interna-
tional Symposium on Microarchitecture [96], co-authored with Mark Hill. Chapter 4 describes the
work in more detail and considers additional issues not addressed in the paper. The evaluation in
this dissertation also assumes better cache snooping capabilities and performs additional sensitiv-

ity analysis to ring and CMP parameters.

The work on TokenCMP work was previously published in the proceedings of the 11th annual
High-Performance Computer Architecture conference [95], with co-authors include Jesse D.
Bingham, Alan J. Hu, Milo M. Martin, Mark D. Hill and David A. Wood. Chapter 5 includes
more description and specification of DirectoryCMP, more qualitative complexity arguments for
TokenCMP, an additional TokenCMP performance protocol, and an updated evaluation with more
sensitivity analysis. However Chapter 5 does not include the paper’s model checking results

because it was performed by other co-authors.

The work on Virtual Hierarchies is published, with co-author Mark Hill, in the proceedings of
the 34th International Symposium on Computer Architecture [97] as well as the 2008 edition of
IEEE Micro’s Top Picks [98]. Chapter 6 changes some naming conventions, adds detail to proto-

col descriptions, and contains some minor evaluation differences.

1.3 Dissertation Structure

Chapter 2 presents a background on the cache coherence problem and an overview of prior

solutions for SMPs. We also discuss differences when considering coherence for CMPs. Chapter
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3 discusses the tools, methodology, and workloads used for evaluation. Chapter 4 presents our

work on ring-based cache coherence protocols. Chapter 5 develops hierarchical coherence for M-
CMP systems. Chapter 6 presents the work on virtual hierarchies. Finally, Chapter 7 concludes

and offers reflections on the research.
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Chapter 2

Background: Cache Coherence

This chapter presents an overview of the cache coherence problem and some related work on
existing techniques. The scope and the amount of related work is large, so we focus on the aspects
most fundamental and related to the research in this dissertation. Section 2.1 develops the cache
coherence problem in terms of multiprocessor memory consistency. Section 2.2 presents back-
ground on existing coherence techniques developed for prior multiprocessors. Section 2.3 consid-
ers some existing hierarchical systems. In Section 2.4, we discuss some of the impacts that

emerging CMP-based multiprocessors have on the cache coherence problem.

2.1 Multiprocessor Memory Consistency

2.1.1 Overview

Serial programs running on von Neumann machines present a simple intuitive model to the
programmer. Instructions appear to execute in the order specified by the programmer or compiler
regardless if the implementation of the machine actually executes them in a different order.
Importantly, a program’s load returns the last value written to the memory location. Likewise a
store to a memory location determines the value of the next load. This definition leads to straight-

forward implementations and semantics for programs running on a single uniprocessor.
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Multithreaded programs running on multiprocessor machines complicate both the program-

ming model and the implementation to enforce a given model. In particular, the value returned by
a given load is not clear because the most recent store may have occurred on a different processor
core!. Thus architects define memory consistency models [3] to specify how a processor core can

observe memory accesses from other processor cores in the system.

Sequential consistency is a model defined such that the result of any execution is the same as
if the operations of all processors were executed in some sequential order, and the operations of
each individual processor appear in this sequence in the order specified by its program [83].
Other, more relaxed consistency models [3] can give the system builder more flexibility in imple-
menting optimizations to reduce memory latency. For example, a relaxed memory model makes it

straightforward to implement write buffers with bypassing.

While relaxed models can improve performance by retiring memory instructions before they
have been observed by other processors in the system, proper synchronization of multithreaded
programs 1is still required. Systems using a relaxed memory consistency model either include
additional instructions that allow a programmer to enforce orderings between loads and stores
[49], or define semantics such that a programmer can synchronize using carefully constructed

sequences of loads and stores.

Regardless of sequential or relaxed consistency, the addition of cache memories impacts how

consistency is implemented.

1. This chapter on background material will use the term “processor” to refer to a single processing element and its private cache
hierarchy. Terminology in the multicore era is evolving to use the term “processor” to refer to an entire chip that consists of
multiple “processor cores” or just “cores”. Future chapters will adhere to this new terminology by using the term “core” instead
of “processor” when referring to a single processing element. “Multiprocessors” will refer to systems that contain several cores,

including multicore and prior systems constructed of single-core chips.
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2.1.2 Impact of Caches on Memory Consistency

Cache memories have been paramount in facilitating the rapid performance progress of
microprocessors over the past twenty years. They allow processor speeds to increase at a greater
rate than DRAM speeds by exploiting locality in memory accesses. The beauty of caches is their
effective operation with very little impact on the programmer or compiler. In other words, details
of the cache hierarchy do not affect the instruction set architecture and their operation is all hard-

ware-based and automatic from a programmer’s point-of-view.

While implementing a cache hierarchy had little ramification on a uniprocessor’s memory
consistency, caches complicate multiprocessor memory consistency. The root of the problem lies
in store propagation. While two processors in a system, P1 and P2, may both load the same mem-
ory block into their respective private caches, a subsequent store by either of the processors would
cause the values in the caches to differ Thus if P1 stores to a memory block present in both the
caches of P1 and P2, P2’s cache holds a potentially stale value because of P1’s default operation
of storing to its own cache. This cache incoherence would not be problematic if P2 never again
loads to the block while still cached or if the multiprocessor did not support the transparent
shared-memory abstraction. But since the point of multiprocessor memory models is to support
shared-memory programming, at some point future loads of the block by P2 must receive the new
valued stored by P1, as defined by the model. That is, P1’s store must potentially affect the status
of the cache line in P2’s cache to maintain consistency, and the mechanisms for doing so are

defined as cache coherence.

A system is cache coherent if the execution results in a valid ordering of reads and writes to a

memory location. One valid ordering is a total order of all reads and writes to a location such that
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the value returned by each read operation is the value written by the last write to that location.

More formally, a read of address A by processor P1 (Readp; A) is ordered after a write of address
A by processor P2 (Writep, A) if the value received by (Readp; A) is the value written by
(Writep, A) or some other write to A ordered between (Writep, A) and (Readp; A). In a cache
coherent memory system, any write must be totally ordered with respect to other writes and reads
to the same location. However a common optimization allows a partial ordering of reads to a loca-
tion such that at any time in the system, either a single writer may exist or multiple readers (but
not both). An important implication of this definition, known as write serialization, is that all

writes to a location are seen in the same order to all processors.

Cache coherence is an important, but incomplete piece of multiprocessor memory consis-
tency. The mechanisms and protocols to implement cache coherence typically do so at a block (or
line) granularity such that interactions between different cache blocks are mostly independent.
Further mechanisms, usually implemented in the processor’s load and store unit, complete the
consistency model implementation by enforcing when various loads and stores to different blocks
can retire. Nonetheless, to enforce ordering requirements of a given consistency model, it is the
responsibility of the coherence protocol to indicate when a load or store operation to a block com-
pletes. Thus the strategy of this dissertation treats cache coherence as an independent issue of
memory consistency that is necessary but not sufficient to implement a given model. All the pro-
tocols we discuss can support any memory consistency model, but our descriptions will assume

sequential consistency.
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2.1.3 Cache Coherence Invariant and Permissions

A commonly used approach to cache coherence encodes a permission to each block stored in
a processor’s cache. Before a processor completes a load or a store, it must hit in the cache and the
cache must hold the appropriate permission for that block. If a processor stores to a block that is
cached by other processors, it must acquire store permission by revoking read permission from
other caches. This type of protocol is called an invalidation-based approach which maintains the

following invariant for a given cache block:

At any point in logical time, the permissions for a cache block can allow either a single writer

or multiple readers.

Permissions in a cache are reflected by a coherence state stored in the cache tag for a block.
States used by most existing cache coherence protocols are typically a subset of those in Table 2-
1 [128]. The coherence protocol ensures the invariants of the states are maintained. For example,
a processor can write to a block if the state is M or E because the coherence protocol ensures that
all other copies of the block in other caches are in state I. A processor can read the block when the
cache state is one of {M, E, O, S}. The cache coherence protocol enforces the coherence invariant

through state machines at each cache controller and by exchanging messages between controllers.

States M, S, and I represent the minimum set that allow multiple processors to simultaneously
hold read permission for a block (in State S), or to denote that a single processor holds write per-
mission (State M). State O and E are used to implement coherence protocol optimizations. For
example, State O helps the protocol satisfy a read request by accessing the cache of another pro-
cessor (the owner) instead of accessing slower DRAM. State E optimizes for unshared data by

giving a processor implicit write permission on a read miss.
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TABLE 2-1. Cache Coherence States

permission | invariant

Modified (M) read, write | all other caches in I or NP

Exclusive (E) read, write | all other caches in I or NP
Owned (O) read all other caches in S, I, or NP
Shared (S) read no other cache in M or E
Invalid (I) none none

Not Present (NP) | none none

If a processor’s read misses in its cache, or the block is in the Invalid state, the processor
issues a GETS (or GET INSTR for an instruction read miss) coherence request to obtain data for
read permission. The coherence protocol must obtain the most recently stored data to that block
and ensures that write permission is revoked from other processors. This means that any processor
in one of states {M, O, E} must supply the data and can remain in a state with read-only permis-
sion (O or S). However if no cache exists in state M, O, or E, then memory should supply the data.
The requesting processor must ultimately end up in a state with read permission (M, O, E, or S) to

finish its request.

If a processor misses in its cache for a write, or the block is not in state M or E, the processor
issues a GETM coherence request. The coherence protocol must obtain the most recently stored
data to that block, like a GETS, but also ensures read permission in all other caches is revoked. If
a processor already holds the data in read-only permission, a possible optimization implements an
UPGRADE message that only invalidates other caches instead of obtaining the data. This disser-
tation does not discuss or implement the UPGRADE message because we seek to maintain con-

ceptual simplicity and because our empirical data shows they would rarely be used.
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Satistfying a processor’s GETS or GETM request requires several mechanisms of the cache

coherence protocol to obtain the appropriate data and coherence permission. Many of these mech-

anisms are listed below:

* GETS messages must reach the processor in state M, E, or O, if one exists, to obtain the most-

recently written value.
* GETM message must reach all processors in state M, O, E, S.

* The protocol must provide indication to the processor when its GETM request can assume all

other processors have invalidated their caches.

» A processor must eventually succeed in completing its GETS or GETM operation. This prop-
erty is also referred to as the /iveness of the processor, or as a system that prevents starvation

of a processor.

* The protocol must determine when memory responds. While cache tags can be augmented to

indicate a coherence state, doing so for standard DRAM chips is a significant compromise.

* The protocol must ensure the coherence invariant in the face of other concurrent requests for
the same block. This problem is exacerbated by unordered interconnects that can induce many
race conditions (or races). A coherence race occurs when the timing of one request can inter-

act with another concurrent request.
* The protocol must correctly replace dirty data to DRAM.

Before we further discuss invalidate-based coherence protocols, we briefly touch upon an
alternative approach to coherence. An alternative to revoking coherence permission from caches
is to update the values of other caches on any store if they hold the block. Examples of update

protocols include the Xerox Dragon [16] and DEC Firefly [133]. While update protocols immedi-
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ately propagate the most recent store value to all other caches holding the block, the main disad-

vantages are the amount of bandwidth consumed and the difficulty in preserving write
serialization. In particular, when a processor stores to a block multiple times before another pro-
cessor reads the block, all updates except for the most recent were unnecessary. And when two
processors attempt to update a value simultaneously, achieving atomicity of a single write with
respect to another can become challenging. For these reasons, most systems implement invali-

date-based coherence.

2.2 Cache Coherence Techniques for SMP and ccNUMA Machines

This section presents background work on cache coherence protocols for a large class of prior
shared-memory multiprocessor machines. Prior multiprocessors were generally classified as sym-
metric multiprocessors (SMPs) or cache-coherent non-uniform memory access multiprocessors
(ccNUMA). SMP machines generally offered the same memory access latency to all processors
across the entire address space. On the other hand, ccNUMA machines exhibited different access

latencies depending on memory region and the physical location of a processor.

Sections 2.2.1 through 2.2.4 present snooping protocols. We consider snooping protocols as
those that broadcast a coherence request to all nodes such that distributed algorithms and state
machines can implement the cache coherence protocol. In these systems, a node is considered a
uniprocessor with its private cache hierarchy. In Section 2.2.5, we present the background on
directory-based systems. Finally in Section 2.2.6, we review an approach to coherence called

token coherence proposed in 2003.
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FIGURE 2-1. Bus-based symmetric multiprocessor

2.2.1 Snooping on a Bus

The first widely-adopted approach to cache coherence is snooping on a bus. A bus connects
all components to an electrical, or logical, set of wires. A bus provides key ordering and atomicity
properties that enable straightforward coherence operations. First, all endpoints on a bus observe
transmitted messages in the same fotal order. Second, buses provide atomicity such that only one
message can appear on the bus at a time and that all endpoints observe the message. Third, buses
implement shared lines that allow any endpoint to manipulate a signal or condition that is globally
visible to all other endpoints during a bus transaction. Shared lines facilitate both bus arbitration
and cache coherence operations. For example, a shared owner line can indicate if any processor is

in State O, and a shared sharer line can indicate if any processor is in State S.

A bus-based SMP is shown in Figure 2-1 where each processor and memory node in the sys-
tem connects to the bus. With all coherence messages broadcast on a bus and with message arriv-
als ordered the same way for all nodes, coherence controllers at each node implement a state
machine to maintain proper coherence permissions and to potentially respond to a request with

data. For example, when a GETM request appears on the bus, all nodes snoop their caches and the
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memory controller prepares to fetch the data from DRAM. If the tag exists in a processor’s cache

in State S, the coherence state is changed to I in order to revoke read permission. If the processor’s
cache contains a tag in state {M, E, or O}, it asserts the shared owned line to inhibit a memory
response and then places data on the bus before invalidating its cache tag. The shared owned line
provides an important function in a bus-based protocol by signalling when the memory controller
should not respond with data that is modified in a processor’s cache. Once a processor is able to
transmit its request on the bus, its transaction will complete. Therefore the liveness (and fairness)

of a bus-based snooping protocol only depends on the method of bus arbitration employed.

To implement sequential consistency (or a memory ordering instruction in a relaxed consis-
tency model), the processor must know when it can retire the load or store instruction. For a store
instruction that required a GETM coherence request, enforcing strict ordering requires notifica-
tion when the GETM appears to have completed invalidating all other caches. For a load instruc-
tion that required a GETS coherence request, any prior stores must appear to have completed. But
since a bus serializes all requests, the bus can indicate completion before caches have actually
completed snooping the message. Therefore, for a GETM, a processor can assume all other
caches have invalidated their caches as soon as its own GETM message appears on the bus. This
assumption may require other actions to maintain sequential consistency, such as requiring a

cache controller to complete buffered snooping operations before transmitting a new message on

the bus [114].

Replacements in a bus-based snooping protocol are straightforward. Unmodified copies (E
and S state) can silently replace by taking no action. To write back modified data to memory, the

node must initiate a WRITEBACK bus transaction that contains the data and is accepted by mem-
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ory. The atomic nature of the bus ensures that racing coherence requests are ordered with respect

to the writeback operation.

Snooping coherence on a bus was first described by Goodman [50]. Early bus implementa-
tions used electrically shared wires that held the bus for an entire coherence transaction. Higher-
performing buses used split transactions to allow other processors to acquire the bus while wait-
ing for a response. More modern snooping systems implement a logical bus using additional
switches, state, and logic rather than shared electrical wires. Furthermore, they can also imple-
ment the ordering of a bus only for coherence control messages. For example, the Sun Starfire
[30] system implements a logical bus only for coherence request messages, but data responses
travel on a different switched interconnect. Even higher-performing buses use pipelining tech-
niques to achieve more concurrency. While these more aggressive buses may relax the atomicity
property, they still provide a total order of coherence requests that enables a straightforward

implementation of snooping like described in this section.

2.2.2 Greedy Snooping on a Ring

While buses offer a total order that enable simple coherence protocols, it is difficult to imple-
ment a bus that keeps pace with increasing core frequencies. Implementing a faster interconnect
requires designers to use point-to-point links instead of electrically or logically shared wires. One
option uses a ring topology where each node is connected to two other nodes such that they form
a closed loop. All messages nominally travel through the ring in the same direction, and messages

between nodes are never reordered.
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A ring-based SMP is shown in Figure 2-2. A ring offers fast point-to-point links but avoids
some of the complexity of general purpose, packet-switched interconnects in arbitrary topologies.
Routers and switches on a ring can be fast and simple. The router at each node consists of a single
input port and a single output port. Nodes have the opportunity to insert and remove messages

from the ring using distributed arbitration [122].

Unfortunately the order of a ring interconnect is not the same as the order provided by a bus
because the order a node observes messages can depend on ring position. Furthermore a ring does
not offer shared lines used by the bus-based snooping protocols described in the prior section.
Therefore snooping coherence protocols for rings must adapt to the lack of total bus ordering and

the lack of atomic shared lines.

Barroso et al. [17] examined snooping on a ring and proposed an approach that we generalize
and call greedy snooping. The primary commercial systems using ring-based coherence, the IBM
Power4/5, also uses a greedy-like snooping protocol for coherence on a ring [82]. What follows in
this section is a high-level description of greedy snooping before it is examined in lower-level

detail in Chapter 4.
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A greedy snooping protocol broadcasts coherence requests to all other nodes in the system. A

GETS request seeks to find the owner of the cache line to obtain data, which is the cache in state
O, E, or M. A GETM request additionally seeks to invalidate all other sharers. While a ring natu-
rally accomplishes the broadcast operation, there is no total ordering or atomicity. Therefore
unlike the bus protocol of the previous section, a requestor cannot be assured that its coherence
request is ordered once the message is transmitted and racing (or conflicting) coherence requests

must be handled differently.

First, all processors in a greedy protocol send the result of the snoop operation to the requestor
to indicate when a request successfully completes. This snoop response message indicates if the
processor cached the block, invalidated its cache on a GETM request, and if it was the owner and
will respond with data. The snoop response itself does not contain data and instead indicates
acknowledgement (ACK) of processing a coherence request. Fortunately a ring can reduce the
cost of a snoop response from every processor by combining responses into a single message (or

field) as a message traverses the ring.

Second, the lack of bus ordering means the greedy protocol must handle racing requests to
ensure correct coherence. With no total ordering, racing coherence requests for the same block
address greedily order based on which request reaches the owning processor first. The owning
processor acknowledges the winning request and proceeds to handle it by sending data and/or
transferring ownership. Other racing (or conflicting) requests for the same block address are
forced to retry their request by re-issuing the request message on the interconnect. Processors
retry their request when the snoop response messages indicate that the request message was not

acknowledged by the owner. Because of this greedy order, some requestors may issue an
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unbounded number of retries due to pathological behavior that may continually cause a request to

lose the race to the owner. Therefore, a greedy protocol may exhibit liveness issues without addi-

tional mechanisms.

A greedy protocol on a ring also requires additional mechanisms to interface with memory. In
a bus-based system, the memory controller responds to a GETS or GETM request if not inhibited
by the shared owner line. Without shared lines, either memory must contain additional state to
determine if it should source the data, or the requestor must explicitly request data from memory

if it discovers there is no other cache that owns the block.

Like bus-based snooping protocols, replacement operations with a greedily-ordered snooping
protocol are straightforward. Unmodified shared copies can silently replace whereas modified
data is simply placed on the ring for writeback to memory. Races between a replacing node and a

requesting node will result in the requestor issuing a retry.

Additional details of how a greedy protocol operates in a ring topology are deferred to Chap-

ter 4, where we consider ring-based coherence in more detail.

2.2.3 Greedy Snooping on Arbitrary Topologies
Building faster and more scalable systems requires interconnects beyond buses and rings.
Figure 2-3 shows the topology of a 4-processor system using point-to-point links in a 2x2 grid

topology. Like rings, a 2x2 grid has no total ordering of messages and is considered unordered.

The greedy snooping protocol described in the last section, for ring-based interconnects, can
also operate on completely unordered topology like shown in Figure 2-3. However we are not

aware of any prior commercial system that does greedy snooping on an unordered interconnect.
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Nonetheless, we describe this approach because of the increasing popularity of broadcast-based

protocols on unordered interconnects.

To greedily snoop on an arbitrary topology, processors directly broadcast coherence messages
to all other processors in the system. The messages seek to locate the owner of a cache block and
to invalidate shared copies on a GETM request. As described in the prior section, if multiple pro-
cessors simultaneously broadcast request messages for the same block address, the message that
reaches the owning processor succeeds whereas other racing requests must retry. A processor
issues a retry when it receives a snoop response from every processor in the system and none of
the responses indicate the owning processor acknowledged the request. Instead of collecting com-
bined snoop responses on a ring, every processor responds with an explicit snoop response mes-
sage to indicate snoop completion and to indicate that the owner was found. To prevent incorrect
coherence when GETS and GETM requests race, the owner status of a block is always transferred

with the data response to any requestor.

Another approach to snooping coherence on an unordered interconnect is token coherence, to

be discussed in Section 2.2.6. Moreover, emerging details [72] about Intel’s upcoming CSI speci-



28
fication indicate that unordered broadcast coherence is also used along with a Forwarding (F)

state that appears similar to greedy snooping’s required owner (O) state. However they suggest
conflict is explicitly detected and resolved by an ordering point instead of using retries. At this
time and to our knowledge, no additional details are published about their protocol. The following

section discusses a protocol that always uses an ordering point to avoid races and conflict.

2.2.4 Ordered Snooping on Arbitrary Topologies

It is often said that all problems in computer science can be solved with a level of indirection.
We now describe a protocol, based on the AMD Opteron [7], that adds a level of indirection to
achieve coherence ordering on an unordered interconnect without the use of retries. A processor
first sends its coherence request message to an ordering point to establish the total order. In the
Opteron system, the memory controller functions as the ordering point. The ordering point then
broadcasts the request message to all other processors in the system. The ordering point also
blocks on that address to prevent subsequent coherence requests for the same cache line to race

with a request in progress.

To indicate completion of a read or write, the requestor must wait for an explicit acknowl-
edgement (ACK) message from every other processor in the system after they complete their
snoops. Once the requestor has received all acknowledgements and data, it unblocks the memory
controller by sending a completion message. The memory controller can then initiate a broadcast
for the next waiting request for that block. Since the memory controller fully buffers and orders

requests, there are no inherent liveness or starvation issues with the protocol itself.

Once again, the lack of shared lines requires a mechanism to fetch data from DRAM when no

other processor caches the block. One option is for memory to respond with data on any GETS
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and GETM request. However if a cache holds a dirty copy of the line, then it too responds to the

requestor with the more recent data. Thus this approach results in two data responses on any shar-
ing between processors. Another option is for the requesting processor to re-request the data from
the memory controller once it receives a snoop response from every processor indicating no other
sharers. The memory controller can reduce the latency overhead of this approach by prefetching
the data from DRAM when it receives the initial GETS or GETM message. A third option, imple-
mented by Martin et al.’s adaptation of this protocol [90], adds an owner-bit to memory to indicate

that memory owns the block and should respond with data.

Unlike bus-based and greedy snooping protocols, replacing dirty data to memory requires
additional messaging to ensure coherence. For example, consider a processor P1 replacing dirty
data to memory. If a race occurs where P2 issues a request to the memory controller while the
dirty data from P1 is in-flight to memory, P2 could receive stale data from memory instead of P1°s
most-recently modified data. To solve this race, one solution requires P1 to enter a transient state
upon sending dirty data to memory. P1 also maintains a copy of data, while in the writeback tran-
sient state, to respond to subsequent requests until it receives an ACK message from the memory
controller. We refer to this type of replacement operation as a two-phase writeback. Another type
of writeback first requests permission with the memory controller to replace the block and then

sends data after receiving an acknowledgement. This is known as a three-phase writeback [54].

The primary disadvantage of the Opteron-like protocol is its excessive use of bandwidth for
broadcasts and snoop responses as the system size increases. The following section considers

another approach that uses an ordering point but that uses additional state to reduce bandwidth.
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2.2.5 Directory Coherence

This section presents an overview of directory-based coherence. Directory coherence offers
increased scalability by reducing the amount of messages required for coherence requests [4].
Like the Opteron approach of Section 2.2.4, a level of indirection enables coherence on an unor-
dered interconnect. Unlike the Opteron approach, directory protocols include additional state at
the ordering point to reduce the bandwidth of broadcasts and system-wide snoop acknowledge-

ment messages.

A directory contains state about the sharing status of a given block to determine the actions
needed when a coherence request is received. A typical directory includes a list of sharers for each
block, and a field that points to the current owner. A directory can also take other forms, such as a
linked list of sharers [53], or sharing lists at a coarser granularity than single processor-cache
nodes [52]. Directory-based cache coherence was first suggested by Tang [129] and Censier et al.
[28]. Examples of commercial machines using directories include the SGI Origin [84] and the

Alpha 21364 [104].
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A directory system, like the Alpha 21364 [104], is shown in Figure 2-4. Each uniprocessor

node contains a router to interface with the interconnect, as well as a directory controller that
implements the coherence protocol for the portion of memory directly accessible by its memory
controller. Thus every cache line address maps to an interleaved home node that contains the
appropriate directory and memory controller for the line. The directory state for each line is usu-
ally stored in DRAM either in a reserved portion of DRAM, on separate chips, or by exploiting

ECC re-encoding techniques [115, 48].

If a processor misses in its private cache hierarchy on a read request, it issues a GETS coher-
ence request to the home node for the memory line. The directory controller at the home node
accesses the directory state for the line in question. If the entry for the line indicates no sharers,
the block is idle. In this case, the directory fetches data from DRAM, returns the data to the
requestor, and updates the directory state to indicate that the requestor now owns the block. On
the other hand, if the directory entry for the GETS request indicates another node owns the block,
then the directory controller generates a forward message to the owning node and adds the
requestor identification to the sharing list. The owning node responds with data directly to the

requestor.

If a GETM request reaches the directory with a non-zero sharers list, then the directory con-
troller generates invalidation (INV) messages to every sharing node. Upon invalidating its cache,
the recipient of an invalidation message sends an acknowledgement (ACK) message to the
requestor. The GETM requestor completes its write when it has received data and has received an

acknowledgement message for every invalidated sharer.
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To maintain the coherence invariant in unordered interconnects, directories use transient or

busy states while forward and invalidate messages reach their destined caches. Subsequent
requests reaching a busy directory are either buffered [2] or negatively acknowledged (NACKed)
[84]. Requests that are NACKed must be retried by the requestor. Such a NACKing protocol may
use an unbounded number of retries for the request, which can lead to starvation under pathologi-
cal situations. In Chapter 4, we observe a similar starvation scenario with a ring-based protocol

that uses unbounded retries.

2.2.6 Token Coherence

The previous techniques to coherence, snooping and directory, both require the careful coordi-
nation of message exchanges and of state-machine transitions to ensure the coherence invariant.
The properties of the interconnect also further complicate the design of the protocol to ensure the
invariant. A technique proposed in 2003, token coherence, directly enforces the coherence invari-

ant through a simple technique of counting and exchanging tokens.

Token coherence [93] associates a fixed number of tokens with each block. In order to write a
block, a processor must acquire all the tokens. To read a block, only a single token is needed. In
this way, the coherence invariant is directly enforced by counting and exchanging tokens. Cache
tags and messages encode the number of tokens using Log,N bits, where N is the fixed number of

tokens for each block.

Token coherence allows processors to aggressively seek tokens without regard to order. A
performance policy is used to acquire tokens in the common case. For example, a processor in a
multiprocessor could predict which processor possesses the tokens and only send a message

directly to it. However prediction can be incorrect and a processor’s request may fail to acquire
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the needed tokens. Thus while a performance policy seeks to maximize performance, token

coherence also provides a correctness substrate to ensure coherence and liveness.

There are two parts to the correctness substrate: safety and liveness. Coherence safety ensures
the coherence invariant at all times by counting tokens. Ensuring liveness means that a processor
must eventually satisfy its coherence request. Since the requests used by the performance policy,
transient requests, may fail, the correctness substrate provides a stronger type of request that
always succeeds once invoked. These persistent requests, when invoked, ensure liveness by leav-
ing state at all processors so that in-flight tokens forward to the starving processor. Different
mechanisms ensure that only one persistent request for a given block is active, and that starving

processors eventually get to issue a persistent request.

With a correctness substrate in place, a performance policy uses transient requests to locate
tokens and data in the common case. The TokenB performance policy targets small-scale glueless
multiprocessors. TokenB broadcasts a requestor’s GETM and GETS message to every node in the
system. Nodes respond to GETS and GETM requests with tokens and possibly data. An owner
token designates which sharer should send data to the requestor. Since TokenB operates on an
unordered interconnect and does not establish an ordering point, races may cause requests to fail.
For example, P1 and P5 may both issue GETM requests for a cache line. Sharer P2 might respond
to P1’s request with a subset of tokens and sharer P6 might respond to P5’s request with another
subset of tokens. Since both requests require all tokens, both requests fail to acquire the needed
permission. TokenB detects the possible failure of a request by using a timeout. After the timer
expires, TokenB may issue a fixed number of retries before it activates a persistent request (to

establish the order of racing requests).
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Replacements in token coherence are straightforward. The replacing processor simply sends a

message with the tokens to the memory controller without additional control messages. Token
counting ensures coherence safety regardless of requests that race with writeback messages. How-
ever, completely silent replacement of unmodified shared data is not possible and tokens must

replace to memory.

Token coherence enables a broadcast protocol on an unordered interconnect as well as others
described in Martin’s thesis [90]. The TokenB broadcast protocol has some similarities to the
greedy snooping approach we described in Section 2.2.3. We briefly comment on a few key dif-
ferences. In TokenB, coherence requests are broadcast directly from the requesting processor to
all other processors like greedy snooping. Unlike greedy snooping, only processors sharing the
block must respond with an acknowledgement message. However in TokenB, conflict is not
explicitly detected because a snoop response is not received from every processor. Therefore,
TokenB uses a per-request timer that is used to issue retries or to invoke a persistent request upon
timeout. Moreover, in a greedy snooping approach, one requestor is guaranteed to win a race
whereas in token coherence, pathological scenarios could result in system-wide starvation without

the additional persistent request mechanism.

We leverage the token counting idea from token coherence in protocols we propose in Chap-
ters 4, 5, and 6. In Chapter 4, we develop a novel ring-based protocol that uses token counting. In
Chapter 5, we extend token coherence and TokenB to a Multiple-CMP system. In Chapter 6, one

of our proposed virtual hierarchy implementations uses token counting for a level of coherence.
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FIGURE 2-5. Multiprocessor built with bus-based SMP nodes

2.3 Hierarchical Coherence

While we discussed several cache coherence techniques in Section 2.2, the majority of prior
multiprocessors were smaller, bus-based systems built with commodity uniprocessors. Intel’s
Pentium Pro family of processors even allowed system builders to create a 4-processor “quad-
pack” SMP without any additional chips. To build even larger multiprocessor, designers leveraged
commodity hardware by using an entire commodity bus-based system, like the Pentium quad-
pack, as a single node in a larger directory-based multiprocessor. Examples include the Stanford
Dash [86], the SGI Origin2000 [84], Sequent STiNG [89], and the Sun Wildfire [54]. These sys-
tems used hierarchical coherence where the first level used the bus-based snooping protocol of the

commodity hardware, and the second level used a scalable directory approach.

Figure 2-5 illustrates a system based on the Sun Wildfire. Each bus-based node contained an
interface that bridges the bus-based first-level coherence protocol to the directory-based second-
level protocol. The interface acts as a proxy in the node’s bus-based snooping protocol. If a bus
transaction requires coherence actions from the second-level directory protocol, the interface

asserts an “ignore” signal to remove the transaction from the bus order at all nodes. The interface
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then handles coherence actions at the second level. Once global coherence actions complete, the

interface replays the request on the bus.

The shared “ignore” signal greatly simplifies the interface between a bus-based and directory-
based protocol. While most existing hierarchical systems used snooping bus-based coherence at
the first level, Chapters 5 and 6 consider hierarchical coherence in CMP environments that do not
offer the ordering properties of a bus. As we will see, the complexity at the interface between pro-

tocol levels can become significant, especially when the first-level protocol is not a bus.

2.4 Multicore Considerations

While the design space for SMPs and ccNUMA machines is large, it only increases for the
next generation of multiprocessors consisting of several processor cores per chip and possibly
several multicore chips. In this section, we discuss some of the differences in future CMP systems

that impact the design of cache hierarchies and coherence protocols.

The cache hierarchy of CMPs will contain more diversity than prior SMPs. Most SMP nodes
consisted of a single processing core with a private cache hierarchy. CMPs could naively imple-
ment an “SMP on a chip” where each processor has a private cache hierarchy just like a SMP
node. But the increasing cost of off-chip memory misses means that CMPs should maximize the
capacity of the on-chip cache hierarchy by limiting the number of times a block is stored. That is,
a CMP should limit the level of replication to maximize the effective capacity of the CMP cache
hierarchy. Thus many CMP designs and proposals use a cache hierarchy such that one of the lev-
els of caches is shared amongst multiple processors. Figure 2-6 depicts CMPs with one or more

shared caches.



37

I
Shared L2 ﬂ Shared L2 : I Shared L2 ‘:

—— o — —— —— o ———

interconnect l‘

1
s I I
1
e e e e e e e ] crs v o s )
1
| P P P 1
(2) IR

FIGURE 2-6. CMPs with one or more shared L2 caches

A shared cache affects the design of the coherence protocol as it likely integrates with other
private caches or possibly other shared caches. For example, in Figure 2-6(a), coherence must be
maintained amongst the private L1 caches of all processor cores. In Figure 2-6(b), coherence must
be maintained amongst private L1 caches and amongst the multiple shared L2 caches. Another
option for maximizing on-chip cache capacity implements per-core private cache hierarchies like
a SMP, but then selectively chooses whether or not to allocate a cache block into a core’s private
L2 cache [29, 22]. On a subsequent miss, the core can instead obtain the block from a neighboring

on-chip cache by leveraging the coherence protocol.

More generally, as CMPs implement a myriad of cache banks and policies for placing, migrat-
ing, and replicating data [73, 60, 23], mechanisms for implementing these policies will become
intertwined and integrated with the coherence protocol. For example, a D-NUCA approach [73]
applied to a CMP would contain a tiled array of small cache banks [23]. Cache blocks would
dynamically migrate towards the processor cores on demand. However locating these blocks for
satisfying a demand miss and for keeping caches coherent is a challenging and unsolved problem

for D-NUCA, with many implications for the coherence protocol. While D-NUCA represents a
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complex design, even simpler approaches will need coherence optimizations that recognize the

latency gap between on- and off-chip communication, and that respect distance locality by acquir-

ing data from the closest possible source.

Finally, the structure of CMPs, with their multiple private caches, provides new opportunities
to implement known techniques. For example, a directory protocol for on-chip coherence may
implement the directory state in SRAM instead of DRAM. Techniques for implementing on-chip

directory coherence will be discussed in Chapter 6.
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Chapter 3

Evaluation Methodology

This chapter presents the common evaluation methodology used for the dissertation.

3.1 Full-System Simulation Tools

We use full-system simulation to evaluate our proposed systems. Full-system simulation
enables us to evaluate proposed systems running realistic commercial workloads on top of actual
operating systems. It also captures the subtle timing affects not possible with trace-based evalua-
tion. For example, different coherence protocols might cause the execution to take different code

paths that would not be reflected in a trace.

We use the Wisconsin GEMS simulation environment [94], which is based on Virtutech
Simics [137]. Simics is a commercial product from Virtutech AB that provides a full-system func-
tional simulation of multiprocessor systems. GEMS is a set of modules that extends Simics with
timing fidelity for our modeled system. GEMS consists of two primary modules: Ruby and Opal.
Ruby models memory hierarchies and uses the SLICC domain-specific language to specify proto-

cols. Opal models the timing of an out-of-order SPARC processor.

3.2 Methods

Evaluating the performance of a proposed system requires meaningful metrics. While

researchers of microarchitectures often use instructions-per-cycle (IPC) as a metric to judge per-
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formance improvements, IPC is not a good metric for evaluating the coherence protocols and sys-

tems in this dissertation [10]. The reason is that the components studied are sensitive to
synchronization, where the rate of instructions completed is not a good indicator of system perfor-
mance. For example, spending more time on spin-based synchronization, common in OS kernels,
would lead to a higher and better IPC (because of excessive spinning) even though overall runt-
ime would increase. Instead, we evaluate overall performance by measuring the amount of work

completed by the system.

We use a transaction-counting methodology [8] to measure the performance of a system. Each
workload is broken into transactions (e.g., an Apache transaction completes the fetch and transfer
of a single static web page), and then we measure the number of cycles required to complete a
fixed number of transactions. Thus we use a workload-dependent unit of work to evaluate perfor-
mance and expressed the number of cycles as runtime. For running consolidated workloads in
Chapter 6, we alternatively count the number of transactions (for each workload) completed after

running for a fixed number of memory system cycles.

Since full-system simulation incurs slowdowns of several orders of magnitude, we are limited
to running a limited number of transactions for each workload. To avoid cold-start effects, each
workload checkpoint is at a point where the application has been loaded and running in steady-

state. Furthermore, we ensure the caches are reasonably warm when staring data-collection runs.

In addition to using a transaction-counting methodology, pseudo-random variations are added
to each simulation run because of non-determinism in real systems [9]. To add this variation, the
fixed memory latency parameter includes a small randomized component. Then we perform sev-

eral simulations and compute the average runtime for each workload with an arithmetic mean.
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Error bars in our runtime results approximate a 95% confidence interval. To display the runtime

results across multiple workloads, we show normalized runtime rather than raw cycles.

In addition to runtime, we also report the traffic required of each protocol. We add up the total
number of bytes transmitted on every link of the interconnect and then normalize them. For all
protocols, each control message is assumed to use 8 bytes whereas data-carrying messages con-

sume 72 bytes.

Other metrics specific to each chapter will be discussed where appropriate.

3.3 Workload Descriptions

Here we describe the commercial workloads used for evaluation in all chapters. All of the fol-

lowing operate on the Solaris 9 operating system.

* Online Transaction Processing (OLTP): The OLTP workload is based on a TPC-C v3.0 bench-
mark with 16 users/processor and no think time. IBM’s DB2 v7.2 EEE database management
system serves as the back-end and accounts for nearly all activity in this workload. The users
query a 5GB database with 25,000 warehouses stored on eight raw fiber-channel disks. A disk
is also dedicated to store the database log. The system is warmed with 100,000 transactions

and the hardware caches are warmed with an additional 500 transactions.

* Java Server Workload: SPECjbb. SPECjbb2000 is a server-side Java benchmark that models a
3-tier system, but its main focus is on the middleware server business logic. Sun’s HotSpot
1.4.0 Server JVM drives the benchmark. The experiments use 1.5 threads and 1.5 warehouses
per processor. We use over a million transactions to warm the system and 100,000 transactions

to warm simulated hardware caches.
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« Static Web Content Serving: Apache. The first of our two web server workloads is based on

Apache. We use Apache 2.0.43 configured to use a hybrid multi-process multi-threaded server
model with 64 POSIX threads per server process. The web server is driven by SURGE with
3200 simulated clients each with a 25ms think time between requests. Apache logging is dis-
abled to maximize server performance. We use 800,000 requests to warm the system and 1000

requests to warm simulated hardware caches.

+ Static Web Content Serving: Zeus. The second of our two web server workloads uses Zeus,
which uses a different event-driven framework. Each processor in the system is bound to a
Zeus process which waits for web serving events (e.g., open socket, read file, send file, close
socket, etc.). The rest of the configuration, including SURGE, is identical to the Apache work-

load.

In addition to the commercial workloads above, specific chapters will use additional work-

loads and micro-benchmarks to further enhance evaluation where appropriate.

3.4 Modeling a CMP with GEMS

This section describes how the CMP memory systems in this dissertation are modeled using
GEMS. Like most simulation, we realistically model some components of the system but idealize
others. The goal of our evaluation is not to simulate realistic or absolute runtimes for all future
CMPs. Instead the goal is to validate designs and to provide insights into the relative merits of a

subsystem studied.

Our simulations attempt to capture the first-order affects of coherence protocols, including all

messages required to implement the protocol on a given interconnect. We expect most of the ide-
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alized components of the simulator either affect all protocols in the same way, or that designers

would compensate the design of dependent subsystems such that they match the given protocol.
For example, if a protocol requires that a cache snoop X tags/cycle, then the designers would
engineer this ability into the implementation. However where appropriate, we will measure and

report the counts of these events even if they do not affect the simulated runtime.

To first order, the CMP memory model consists of various controllers connected via network
links in a specified topology. Processor models interface with an L1 cache controller. L1 cache
controllers then interact with other controllers (i.e., directory/memory controller) and interconnect
links to model the timing of an L1 miss. Most timing is modeled by a controller specifying the
delay of when a message is injected into the network, and the delay incurred through modeling the
delivery of the message. Details of how the major components of the system are modeled are as

follows:

Processors. We model both simple, in-order and more aggressive, out-of-order SPARC process-
ing cores. The in-order model assumes every instruction executes in a single cycle barring any
stall time in the memory system. The out-of-order model is loosely based on the MIPS R10000

[144] and further described in Mauer et al. [99].

Caches. All evaluations in this thesis use 64 KB, 4-way associative L1 instruction and data
caches. The sizes of other caches are unique to each chapter’s evaluation. L2 and L3 caches are
split into banks as specified by the target design. All caches implement perfect LRU cache
replacement. Unless otherwise specified, we do not constrain the lookup bandwidth and instead

model a fixed access latency.



44
Cache Controllers. Controllers implement most of the logic of a CMP. The ring-based CMPs of

Chapter 4 implement a combined L1/L2 controller, and a combined L3/directory/memory control-
ler. The CMPs of Chapters 5 and 6 implement L1 cache controllers, L2 cache controllers, and
directory/memory controllers. The behavior of controllers is specified using SLICC [121, 90].
Events trigger transitions, which consist of a set of atomic actions. Actions can update state in the
controller and also inject messages into the network. The actual implementation of cache control-
lers is a detailed design in itself, often employing techniques to increase throughput such as pipe-
lining. While we do limit the number of outstanding transactions a controller can handle, we do

not model the detailed pipeline of the controller logic.

Directory Controllers and Memory. We model idealized memory controllers such that every
access incurs a fixed delay, specified in each chapter, plus a random component added to account
for workload variability. The random component is a uniform random number between zero and

six cycles. All other aspects of DRAM, including bandwidth, are idealized.

Interconnect. We use the same GEMS’ networking model to approximate all of the target inter-
connection networks. For each target CMP, we specify the network topology using a configura-
tion file. The file specifies the endpoints of the interconnect as well as the links between network
switches. While GEMS does not model the characteristics of links at the lower network levels,
each link is specified with fixed latency and bandwidth parameters. A message always incurs the

latency specified plus any additional queuing delay due to insufficient bandwidth.

Where appropriate, each of the evaluations in the subsequent chapters will elaborate on more

specified details of the above components.
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Chapter 4

Cache Coherence for Rings

The on-chip interconnect is paramount to the design of future CMPs. While the design of the
multiprocessor interconnect in prior machines usually occurred independently from the processor
itself, the CMP interconnect competes for the same resources as both cores and caches. This chap-

ter explores cache coherence for ring-based multiprocessors.

Rings offer a promising interconnect because of their simplicity, speed, and efficiency of on-
chip resources. Existing products like the IBM Power4 [132], Power5 [119], and Cell [71] already
use ring-based interconnects. Intel also indicates their consideration for next-generation CMPs
consisting of 8 to 16 cores [63]. The purpose of this research does not argue for a ring intercon-

nect. Instead, we present coherence ordering strategies assuming a ring.

4.1 Rings: Motivation and Background

A ring is generally a network topology where each node is connected to two other nodes, with
point-to-point links, such that a closed loop is formed. In a unidirectional ring, all messages travel
in the same direction with point-to-point ordering between nodes. In a cache-coherent system,
multiple unidirectional rings can be interleaved by address. Alternatively, systems may also

implement unidirectional rings in opposing directions to form a bidirectional ring.
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FIGURE 4-1. Example CMPs with a Ring Interconnect.

Figure 4-1 shows some example ring-based CMPs. In Figure 4-1(a), a ring connects four
cores and four banks of a shared L2 cache. In Figure 4-1(b), the private L2 cache of each core
connects to the ring along with shared L3 banks. Figure 4-1(c) shows a 16-core system comprised

of dual-core “clusters” that each share an L2 bank connecting to the ring.

A ring offers an attractive alternative to buses, crossbars, and packet-switched interconnects.
Many proposed or existing CMPs implement either a logical bus or a crossbar as the on-chip
interconnect [56, 20, 76]. Implementing a logical bus in a many-core CMP will likely necessitate
a pipelined design with centralized arbitration and ordering points. Consider a logical bus design

described by Kumar et al. [79]: To initiate a request, a core must first access a centralized arbiter
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and then send its request to a queue. The queue creates the total order of requests, and resends the

request on a separate set of snoop links. Caches snoop the requests and send the results on another
set of links where the snoop results are collected at another queue. Finally the snoop queue
resends the final snoop results to all cores. This type of logical bus will result in significant perfor-
mance loss to recreate the ordering of an atomic bus. Crossbar interconnects, used in the Sun Nia-
gara [76] and Compaq Piranha [20], will also suffer scalability limits in terms of on-chip
resources because the number of wires grows with the square of endpoints. In fact the designers of
the IBM Cell interconnect chose a ring topology over a crossbar because of the efficiency of wires

[62].

Microarchitects can move to a packet-switched network using a general topology, like a grid
or torus, to create a scalable on-chip interconnect. However this “route packets, not wires”
approach [38] also comes with significant costs. First, implementing the interconnect itself
requires the correct design and verification of all queues, routers, and algorithms for routing with
deadlock avoidance. Second, significant state and area overhead may be devoted to buffers and
logic required for packet-switching. Third, a directory coherence protocol designed to operate
with an unordered network is usually needed for most topologies, requiring costly indirections
and acknowledgement messages. Fourth, proposed routers for CMPs require several pipeline
stages [80, 78], thus increasing the latency of communication and motivating additional research
on mechanisms, with their added complexity, to bypass router pipelines under certain conditions

[40, 78].

Rings offer many advantages including fast point-to-point links. The routers of a ring are very

simple and can be implemented with minimal (or no) buffering. Rings can also operate without
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back-pressure mechanisms. If the destination of a message lacks sufficient resources to handle it,

the message can remain traversing the ring until resources become available. In this way, a ring is
analogous to a “traffic roundabout”. In a traffic roundabout, once a car is able to enter the round-
about (ring), it continues to circulate until it is able to exit (acquire a buffer). A similar technique

uses a ring to implement the internal logic of a router in a general-purpose interconnect [1].

Rings offer simple, distributed arbitration and access methods [122]. The simplest method of
access is called a token ring (also known as a Newhall ring). In a token passing ring, only a single
node can transmit data at any time governed by a special token passed fairly around the ring. A
slotted ring allows multiple simultaneous transmitters, but the ring is segmented into fixed-sized
slots of different types (e.g., request and response slots). Nodes must wait until the header of an
available slot appears at the ring interface before transmission. In a register-insertion ring, nodes
can begin transmission immediately, but may be required to buffer incoming data during trans-
mission. To prevent loss of data during buffering, a node must cease transmission of data when

the buffer fills.

A ring can also aid in reliability. Reliability is projected to become a major obstacle in future
CMP designs [25] as both permanent and transient faults threaten to disrupt the progress of tech-
nology scaling. Aggarwal et al. [6] propose an architecture to facilitate configurable isolation
within a CMP by partitioning a single ring-based interconnect into multiple, isolated rings. A ring
architecture can also tolerate transient faults by using a source-based check of message integrity.
That is, the sender of a message can retain a copy while the message traverses the entire ring back
to the sender. If the message became corrupted along the way, the sender can then re-send the

message. As discussed in Section 4.5.1, this can have ramifications on the coherence protocol.
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Finally a ring may simplify the design of other related structures, such as cache banks, by con-

trolling the rate of message arrivals. For example, in a crossbar system, multiple cores can simul-
taneously issue requests to a cache bank. The cache bank would then have to arbitrate and select a
request to service from those waiting. On the other hand, cache banks attached to a ring service

requests from a single point of arrival with a maximum rate controlled by the speed of the ring.

In this chapter, we explore cache coherence techniques for ring architectures. Our approaches
apply to physical rings described in this section as well as logical rings on a general-purpose
packet-switched interconnect [124]. The primary issue we address is the ordering of coherence
requests on a ring. A topology of a ring suggests a natural round-robin ordering of requests. How-
ever existing snooping protocols rely on an atomic bus, and existing directory protocols suffer too
much overhead when operating on a ring. We first examine existing approaches that either recre-
ate a total order with an ordering point or use a greedy approach with unbounded retries. We then
offer a new approach to ring-based coherence that offers both fast performance by not relying on

ordering points, and stability by not using retries.

4.2 Ring-based Cache Coherence

The primary challenge toward implementing cache coherence on a ring is that the ordering
properties are not the same as a globally ordered bus. Figure illustrates how nodes on a ring may
see a different order of message arrivals depending on ring position. With a lack of total order, the

bus-based snooping protocol described in Section 2.2.1 would result in incorrect coherence.
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FIGURE 4-2. Ring Reordering. For unidirectional rings that allow simultaneous
transmitters, the order of received messages may depend on ring position. Here, P12
receives messages in {A,B} order whereas P6 sees them in {B,A} order.

Therefore cache coherence protocols for rings must create their own ordering of requests. Rings
also lack shared lines typical of physical or logical buses. The lack of shared lines will require

additional mechanisms for inhibiting a memory response and implementing certain coherence

states and optimizations.

The ordering problem illustrated in Figure could be entirely avoided if the ring only allows a
single transmitter on the ring at any given time. For instance, a token ring local-area network
[122] governed transmission by passing a token round-robin on a ring. A ring node could not
transmit a message on the ring until it received the token. Upon finishing transmission, a node
would pass the token to the next node. Using this approach would ensure that all nodes on the ring
see the same order of messages. We dismiss this approach for several reasons. First, many mes-
sages used for coherence are very short. Therefore the overhead of waiting for a token before
transmitting a small control message may severely impact the ability to utilize ring resources.
Second, even if multiple tokens interleaved by block address were used to increase utilization, a
node could not transmit its request until the appropriate token arrived, thus impacting latency
even in an otherwise idle ring. Therefore we only consider ring implementations that allow multi-

ple simultaneous transmitters.
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In addition to allowing multiple simultaneous transmitters, deploying a ring in a modern CMP

requires additional aggressive implementation techniques. In particular, to minimize latency a
ring-based system should immediately forward request messages to the next node (i.e., eager for-
warding [124]) instead of first performing a snoop and then forwarding the message (i.e., lazy for-

warding).

One option for coherence on a ring-based interconnect is to employ a protocol that has no reli-
ance on the ordering properties of the underlying interconnect [91], such as a directory-based pro-
tocol. The Scalable Coherence Interconnect (SCI) [53] is an example of a system that used a
directory-based protocol on ring interconnects. Unfortunately directory-based coherence is espe-
cially inefficient on a unidirectional ring because the sometimes numerous control messages must
make multiple ring traversals. The SCI protocol required four traversals alone to add a reader to
its linked directory structure of sharers (although other non-linked directory structures may per-
form better). We do not consider directory-based schemes in this chapter because they do not take
advantage of ring properties. Furthermore, to deal with racing requests, directory protocols either

entail additional complexity and logic overhead or employ starvation-prone Nacking schemes.

In the rest of this section, we develop ordering strategies for snooping protocols that do not
require directory state. We first assume a unidirectional ring for all messages for the same block

address. Bidirectional rings for data transfer will be discussed in Section 4.3.4.

4.2.1 ORDERING-POINT
The first class of protocols recreates the global ordering of an atomic bus by establishing a
point on the ring where all requests are ordered. The disadvantage of this approach is that requests

are not active until they reach the ordering point, thus increasing both latency and bandwidth. As
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Glossary: getM = get modified, O = owned, | = invalid, IM = issued request for modify
*final ack message can be omitted with additional assumptions discussed in Section 4.2.1.2

The example depicts two exclusive requestors in the ORDERING-POINT protocol (some actions not labeled in
figure):

(1) P9 and P3 issue get modified requests to a block owned by P6.

(2a) P9’s request reaches the ordering point and is made active. The active request will invalidate caches and
locate the owner.

(2b) P3’s inactive request is ignored by P6 and P9.
(3) P6 receives P9’s active request, performs a snoop, sends data to P9.

(4) P9 forwards its own active request to potentially invalidate other processors. P9 sets a bit indicating its
own active request is received.

(5a) P3’s request reaches P9 (already seen own request). P9 commits to service it upon completion.

(5b) The ordering point removes P9’s active request, sends final ack message indicating all caches are invali-
dated.

(6) P9 receives data from P6.
(7) P9 receives final ack message and sends data to P3.

FIGURE 4-3. Example of ORDERING-POINT.

described in Chapter 2, ordering points are commonly used to deal with unordered interconnects.
However, ORDERING-POINT exploits the order of a ring so that requests, even for the same block

address, are pipelined and never stall at the ordering point.

4.2.1.1 ORDERING-POINT: Overview

Figure 4-3 shows an example of how ORDERING-POINT works. The full specification of
ORDERING-POINT is available in Table A-2 of Appendix A. A node’s request message is initially

inactive and ignored by other nodes until it reaches the ordering point. The ordering point acti-
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vates the request by setting a bit in the header of the message. In this manner, the ordering point

creates a consistent order of active request messages seen by other processors. The owning node
will eventually complete a snoop and send data to the requesting core. After the active request
message traverses the entire ring, the ordering point removes the message from the ring and, for a
GETM request, sends a final acknowledgement message to the requestor indicating that all

snoops (invalidations) have completed.

To prevent the ordering point from blocking subsequent requests while a request is already in-
progress for the same block address, a requestor must record the first active request message
received after observing and forwarding its own active request. By doing so, it commits to satisfy
one subsequent request, thereby forming a linked chain of coherence service. If any of the subse-
quent requests are for exclusive access (GETM), the requestor will also invalidate itself upon
completing its own request and servicing the next. Therefore the Miss Status Holding Registers

(MSHR) [77] include a { r equest or i d} field and a{observed GETM bit.

Replacements of owned or dirty data must be ordered with requests to ensure the linked chain
of coherence requests does not break down. A cache can, however, silently replace shared (non-
owned) data. Our replacement algorithm assumes the memory controller functions as the ordering
point for the appropriate interleaved cache lines. The replacing cache controller places a PUT
message on the ring which is ordered with other potential requests at the memory controller
(ordering point). The memory controller also allocates an entry in a MSHR-like table, and enters
state WP to indicate that a writeback operation is pending. When the cache controller receives its
own PUT request, it then sends data to the memory controller to complete the replacement. If,

however, the memory controller receives another GETM or GETS request while in state WP, it
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enters WPR and records the ID of the requestor so that when it receives the writeback data, it can

then service the marked request.

Further discussion of how memory controllers interact with the ORDERING-POINT protocol are

deferred to Section 4.3.1.

4.2.1.2 ORDERING-POINT: Discussion

In this section, we discuss an optimization to ORDERING-POINT, its implications on memory

consistency, and the overheads of the protocol.

The final acknowledgement message (shown as step 5b in Figure 4-3) is required to imple-
ment sequential consistency in a system that uses multiple rings interleaved by address and that
may buffer or delay request messages on the ring. However if a single ring is used or if request
messages never delay, then the final acknowledgement message can be elided. In this case, a core
can commit its load or store instruction as soon as it receives required data and processes all buft-

ered snoops at the point it observes its own active request message.

To understand this issue of memory consistency when not using a final acknowledgement
message, consider the example shown in Figure 4-4. Sequential consistency is violated if P9 is
able to read the new value of B (B=1) before reading the old value of A (A=0). However if P6
commits its store to A once it observes its own valid GETM and the {P6 getM A} message gets
delayed on its way to P9, then this violation could in fact occur. For instance, messages for block
B could traverse a different ring without delays, and P6 could commit its store to B and supply
new data to P9 before the original {P6 getM A} invalidates P9’s shared copy of A. Final acknowl-

edgement messages would prevent this scenario by forcing P6 to delay its committment of A until
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Glossary: getM = get modified, O = owned, | = invalid, IM = issued request for modify

FIGURE 4-4. ORDERING-POINT Consistency Example. eliding the final acknowledge-
ment message can result in a violation of sequential consistency in a ring-based system
with multiple rings that allow message delays. Here, messages for block A traverse a sepa-
rate ring from block B. Because of a message delay, P9 is able to observe the new value of
B before the new value of A.

all other nodes have invalidated their cache. This scenario would also never occur in a single ring

or in multiple unidirectional rings that operate in synchrony.

On average, a request in ORDERING-POINT must traverse half the ring (N/2 hops) to reach the
ordering point, then traverse the entire ring (N) while active for a total of N+N/2 hops. Assuming
a final acknowledgement message is used, the total control traffic is 2N. Although the protocol
creates a total order of requests with a bounded latency, strictly ordering requests at the ordering
point imposes additional latency compared to a protocol that could make active requests immedi-

ately.

4.2.2 GREEDY-ORDER
In a greedily ordered protocol, requests are immediately active and ordered by which request
reaches the current owner first. In the common case, this improves latency and reduces bandwidth

because a request does not incur extra hops to reach an ordering point. However, when conflicts
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Glossary: getM = get modified, M = modified, O = owned, S = shared, | = invalid, IM = issued request for modify

The example depicts two exclusive requestors in the GREEDY-ORDER protocol (some actions not labeled in fig-
ure):

(1) P9 and P3 issue get modified requests to a block owned by P6.

(2) P12 snoops P9’s request and invalidates its shared copy.

(3) P3 snoops P6’s request and acknowledges it in a combined response. P3 commits to send data to P6.
(4a) P9’s request passes P3 and P6 without being acknowledged.

(4b) P3 removes its request from ring. In the response following, P3 recognizes its request was acknowledged,
expects data.

(5) P3 receives data from P6, completes request.

(6) P9 removes its request from ring and issues a retry because it was not acknowledged in the combined
response.

FIGURE 4-5. Example of GREEDY-ORDER.

(races) occur, a node may be required to issue an unbounded number of retries. GREEDY-ORDER is
derived from Barroso et al.’s Express Ring [17] protocol and the IBM Power4/5 protocols [82,

119, 131].

4.2.2.3 GREEDY-ORDER: Overview

Figure 4-5 illustrates GREEDY-ORDER with an example. A core’s request message is active
immediately and acknowledged by the owning node in a combined response that follows the

request (not illustrated). If multiple requests issue near-simultaneously, the first request that
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reaches the owner is acknowledged and wins the race. Otherwise, the request is not acknowledged

and the losing requestor issues a retry after inspecting the combined response.

The example in Figure 4-5 shows a conflict situation with multiple exclusive requestors. If an
exclusive request reaches any node with a shared request outstanding, we adopt Barroso’s policy
[17] in which the shared requestor must abort the request and issue a retry, even though a data
response to the shared requestor may already be in flight. The shared request aborts because the
owner may respond to an exclusive request while data travels to a shared request resulting in a
coherence violation. Essentially this policy always prioritizes the writer when racing with a reader
even if the read request reaches the owner first. An alternate approach prevents this case of possi-
ble incoherence by transferring ownership on any read request so that racing writes would fail and
retry. However, we found this policy resulted in more pathological starvation because of the
increased likelihood of a shared request missing the in-flight owner. GREEDY-ORDER’s cache con-
troller is specified in Table A-3 of Appendix A, with shaded cells to indicate the state-transitions

resulting in a retry.

Replacement of owned or exclusive data requires no special action in GREEDY-ORDER. The
replacing cache controller simply sends the data to the memory controller. Requests racing with a
replacement operation will simply issue retries. Further discussion of how memory controllers

interact with the GREEDY-ORDER protocol is deferred to Section 4.3.1.

4.2.2.4 GREEDY-ORDER: Discussion

A system that uses retries to handle contention avoids starvation only if future system condi-
tions eventually allow a core’s retry to succeed in all cases. Probabilistic systems are acceptable in

other domains of computing, such as Ethernet [102]. But feedback from industry indicates chip
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designers prefer stronger, non-probabilistic guarantees of liveness for a coherence protocol. Fur-

thermore, a system like Ethernet exploits the carrier sense property to prove its liveness [118]
whereas we are not aware of a general proof, for a greedily ordered protocol, that shows the sys-

tem will always avoid a pathological retry scenario.

We considered other techniques to address retries in GREEDY-ORDER. Exponential backoff or
adding randomness to retries can increase the probability of success, but does not guarantee live-
ness. Attaching a priority (such as the age of the request) does not solve the problem because it
would require the core to either remember starving requests, or to wait until multiple requests are
received in order to prioritize the set of requestors. We also considered an approach that carefully
constructs a distributed linked chain of requests such that a node hands off the block to the next
requestor, like done in ORDERING-POINT. But correctly constructing this list without an ordering
point adds significant complexity and constraints, especially when considering the effects of bank

contention and interfacing with memory (discussed in Section 3).

Another disadvantage of GREEDY-ORDER is that it relies on a snoop response from every
cache for every request. Implementing this efficiently on a ring (i.e., without an entire trailing
response message) can use a combined response with synchrony such that response bits trail a
request message by a fixed number of cycles. This fixed timing increases the complexity and con-
straints of the system. For example, the architected fixed timing must account for bank contention
and the various snoop times of different-sized caches. If a request cannot be snooped within the
architected fixed time, it must be negatively acknowledged (Nacked) and subsequently retried by

the requestor. Increasing the delay in the fixed timing decreases the probability of a Nack, how-
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ever this will negatively impact many non-delayed requests. Making the timing too aggressive

will result in extra Nacks and retries, increasing the probability of pathological starvation.

We seek a better mechanism that bounds every node’s coherence operation for performance
stability, but does not use an ordering point. Furthermore, we seek a coherence protocol that does
not rely on a synchronous snoop response for message efficiency. We now present a new class of

ring protocols that orders completion of requests by the position on the ring.

4.2.3 RING-ORDER

Ideally, a request in a ring protocol is active immediately, does not require retries to handle
contention, and incurs minimal latency and bandwidth. We develop a new class of protocols that
achieve these goals by completing requests in ring order. In RING-ORDER, a request is immedi-
ately active and seeks to find the current owner. The response from the owner can subsequently
then be removed from the ring by other requestors on the path, thereby ordering requests by ring

position.

4.2.3.5 RING-ORDER: Overview

RING-ORDER uses a token-counting approach, inspired by token coherence [93], that passes
tokens to ring nodes in order to ensure coherence safety. Recall from Section 2.2.6 that counting
tokens can directly enforce the coherence invariant by allowing either one writer or multiple read-
ers at any point in time. That is, a set of T tokens can be associated with each memory block in the
system. To write a block, a core must possess all the tokens and to read a block, a core must pos-
sess a single token. Coherence requests in RING-ORDER cause tokens to flow unidirectionally on

the ring. Requestors needing tokens collect the tokens until the request is satisfied.
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Glossary: getM = get modified, IM = issued request for modify, FD = furthest-destination field
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The example depicts two exclusive requestors in the RING-ORDER protocol (some actions not labeled in figure):
(1) P3 and P9 issue get modified requests to a block. P12 holds a single token, P6 holds the rest including the pri-
ority token.

(2a) P12 receives P9’s request, initiates snoop.

(2b) P6 receives P3’s request, initiates snoop.

(3) P6 receives P9’s request while snooping, records furthest relative requestor in its snoop-tracking table.

(4a) P12 completes snoop and sends single token on ring. P3 does not remove the single token because it does not
hold the priority token.

(4b) P6 completes snoop and sends data and all tokens, including the priority token, on the ring. The response is
tagged with a furthest-destination field set to P3.

(5) P9 removes data and tokens from ring and is able to complete its request because it acquires all tokens.
(6) P9 honors the furthest-destination field and places data and tokens back on the ring.

FIGURE 4-6. Example of RING-ORDER.

An example of RING-ORDER is shown in Figure 4-6, and the cache controller is specified in
Table A-4 of Appendix A. The key insight is that token counting allows a requestor to remove
tokens off the ring to complete its request safely and potentially immediately. A token response
message is not strictly sent to a particular requestor and can instead be used by other requestors on
the way. Each response message includes a f ur t hest - dest i nat i on field to indicate the fur-
thest relative node on the ring that desires the tokens for a coherence request. A requestor also
tracks this field in its MSHR so that it may hold the tokens temporarily to complete its request,

but can determine if it needs to (eventually) put tokens back on the ring.
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To ensure starvation avoidance, a policy must be in place to prevent multiple exclusive

requestors from holding a subset of the tokens. We distinguish one of the tokens as the priority
token. Similar to the owner token used by token coherence, the priority token denotes which
responder sends data. More importantly, it allows requests to complete in ring order by prioritiz-
ing the requestors as it moves around the ring. The priority token breaks the symmetry by distin-
guishing which requestor should hold tokens. A requesting node must remove the incoming
priority token from the ring and hold onto it until its request completes. Other non-priority tokens,
in flight due to a writeback or exclusive request, must coalesce with the priority token. Thus a
requestor does not acquire non-priority tokens until it holds the priority token. If an exclusive
requestor is holding the priority token, it updates the furthest-destination field in its MSHR when
it receives other requests while waiting for tokens. The furthest destination field also includes a

single bit to indicate if any requestor seeks all the tokens.

4.2.3.6 RING-ORDER: Cache Replacement and Token Coalescing

RING-ORDER coalesces tokens on the ring before replacing them to memory. In doing so,
memory can use a 1-bit token count per memory block. RING-ORDER’s coalescement process
works as follows: a cache either replacing all tokens or non-priority tokens take no special action
and simply place them on the ring. If a cache observes an incoming message containing non-pri-
ority tokens less than the maximum, then a snoop is initiated to determine if the cache bank holds
the priority token. If the bank holds the priority token, it accepts the tokens by adding them to the
token count in the cache tag. Otherwise the message forwards to the next node on the ring until
the bank holding the priority token is located. The memory controller accepts only replacement

messages that contain all the tokens.
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Replacing the priority token requires special action to prevent deadlock. Instead of immedi-

ately placing the priority token on the ring, the cache bank must instead place a PUT message on
the ring and enter the transient state COA. The PUT message locates another cache bank with
non-priority tokens. Upon locating this cache bank with non-priority tokens, the bank temporarily
pins the block by entering state P and sends a PUT-ACK to acknowledge the requestor of the
PUT. Once the PUT-ACK is received in state COA, the cache sends the priority token to complete
its replacement process. Finally while in state COA, if the cache snoops a request message, it also
completes the replacement process by responding to the request with the priority token, but it also

sends a PUT-CANCEL message to ensure no other cache bank remains pinned.

RING-ORDER also allows the clean replacement of data to reduce interconnect bandwidth.
Recall that the priority token normally carries the data in response to requests. A replacement
message carrying the priority token can omit the data if it is not dirty. However if a subsequent
requestor removes the replacement message containing a data-less priority token, then it must
send an explicit MEMORY-FETCH message to obtain the data from the memory controller. In

practice, this replacement-request race should rarely occur.

4.2.3.7 RING-ORDER: Discussion

RING-ORDER minimizes data transfer, because all requesting nodes complete their requests as
data moves around the ring once. One suspected negative aspect of our protocol is that a writer
may need to collect tokens from multiple sharers, with a message for each. We could further opti-
mize this by using a combined response that collects tokens. We choose not to because our obser-
vations corroborate other studies showing most invalidations are for few caches (most commonly

only one cache) [51, 92]. We do implement a simple optimization that allows a requestor to
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remove and hold non-priority tokens before receiving the in-flight priority token, but only if there

are no other concurrent requests. To detect other concurrent requests, a bit is set in the MSHR on
observing another request message, and the controller examines the furthest destination of each
incoming response message to determine if the response was sent on behalf of another concurrent

request.

RING-ORDER applies to rings with relaxed timing, or even asynchronous circuit designs [136]
because it avoids a synchronous combined snoop response. The same property will also be bene-
ficial when applied to hierarchical systems (e.g., a ring-of-rings) because a system-wide snoop

response is unnecessary.

4.2.3.8 RING-ORDER: Comparisons to Token Coherence

RING-ORDER was inspired by token coherence. Token coherence was originally developed for
glueless multiprocessor systems where tokens were passed to single-core nodes. While single-
core nodes typically contained several caches, it was assumed that coherence within a node was
handled by mechanisms other than the token coherence protocol because the hierarchy was pri-
vate. What actually comprises a node in RING-ORDER depends on the target system. In Figure 4-
1(a), each node consists of a core and its L1 caches. In Figure 4-1(b), the private L2 cache of each
core connects to the ring. In Figure 4-1(c), the dual-core clusters are considered ring nodes and

other mechanisms must be used to maintain coherence within a cluster.

Unlike token coherence, RING-ORDER does not use retries or persistent requests [95] to ensure
forward progress. Instead, we exploit ring order to guarantee that initial requests always succeed

and we use the priority token to break the symmetry of multiple requestors holding tokens. In
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addition, RING-ORDER memory stores only a single bit per memory block to track whether it con-

tains all or none of the tokens.

4.3 Implementation Issues

This section describes some implementation issues and details for deploying ORDERING-

POINT, GREEDY-ORDER, and RING-ORDER in actual CMPs.

4.3.1 Interface to DRAM

Ring-based CMPs must interact with off-chip DRAM via on-chip memory controllers'. In
prior bus-based snooping systems, the memory controller would always respond to a coherence
request unless inhibited by a shared intervention line asserted by a cache bank. Such shared lines
do not exist in a ring interconnect thus requiring other strategies to access the data from DRAM

when the data is not available on the ring.

One option collects a snoop response from every cache on every request to determine if a sep-
arate request should issue to memory. This scheme is used by the IBM Power4 and Power5 proto-
cols [82]. In these machines, the memory controller attaches to the ring and speculatively
prefetches a memory block when observing a request on the ring. On collecting the combined
snoop response, the requestor determines if it requires the data from memory, and then explicitly
sends a separate message on the ring to the memory controller to fetch the data (already
prefetched from DRAM by the memory controller). This scheme is possible on a CMP-based

ring, however it incurs costly bandwidth overhead and may hurt memory latency if the extra

1. Industry trends point towards memory controllers integrated on-chip. We use this assumption for the solutions in this disserta-

tion.



65
memory request message is not overlapped with the DRAM access. Moreover, this approach

wastes precious off-chip bandwidth on unused lines prefetched from DRAM and increases power
usage. Instead, our strategy for ORDERING-POINT, GREEDY-ORDER, and RING-ORDER associates
one bit with every block in memory to allow the memory controller to participate like a processor

node.

For each block of data in memory, an extra bit is stored to determine if the memory controller
should source the data on a request. These owner bits [46] can either use a reserved portion of
DRAM to store all bits in a contiguous portion of the address space, employ ECC re-encoding
techniques [48], or use memory modules that implement the extra metabit. A set owner bit indi-
cates that memory should respond to a GETM or GETS request with data. A GETM request will
always clear the owner bit because the requestor now owns the block. To support clean cache-to-
cache transfers, a GETS request should also clear the owner bit such that the on-chip requestor

owns the block and responds to future on-chip GETS requests.

For RING-ORDER, the owner bit represents whether or not memory contains all of the tokens,
or none of the tokens. Thus unlike token coherence as previously published, we reduce the token
count at memory down to a single-bit per block. We do so by adding an invariant that memory
only sources and sinks messages containing all of the tokens for a given block. To enforce this
invariant, RING-ORDER coalesces tokens during cache replacement as described in

Section 4.2.3.6.

The owner bits allow a memory controller to participate in the coherence protocol by respond-
ing to GETS and GETM requests with data. Accessing these bits also requires a costly off-chip

DRAM access. Furthermore, for a protocol that may use a synchronous snoop response, like
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GREEDY-ORDER, accessing the owner bit in off-chip DRAM cannot occur within a reasonable

architected snoop time.

To reduce unnecessary DRAM accesses, we therefore cache the owner bits in a memory inter-
face cache (MIC) located at each on-chip memory controller. This will eliminate the off-chip
access, thereby saving pin bandwidth, on most requests that can obtain the data from an on-chip
source. However associating a single owner-bit with an entire tag leads to an inefficient structure.
We therefore use a coarse-grained structure to associate N bits with each tag. If the owner bits in
DRAM are arranged in a way amenable to fetching M at a time (such as using a reserved portion
of address space) and M == N, then every miss in the MIC fetches all M bits. [f M !=N, then each
tag in the MIC must also contain N/M sector bits indicating the validity of each M-bit sector. We

expect spatial locality will make this approach effective.

A miss to the MIC in ORDERING-POINT and RING-ORDER only results in an off-chip DRAM
access to fetch the owner-bit for the block in question. The controller could optionally fetch the
data block in parallel with the owner bit in case the bit is set. If a request in GREEDY-ORDER
misses in the MIC, then the memory controller must Nack the request if the protocol uses a syn-

chronous SNoop response.

An alternative implementation of a memory interface cache summarizes all on-chip caches
with a duplicate tag structure. We did not evaluate this approach because our coarse-grained MIC
performs quite well (Section 4.4.2), and avoids the very wide aggregate associativity and signifi-

cant area overhead of duplicate tags.
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4.3.2 Exclusive State

Alternative ordering strategies present challenges for implementing the exclusive cache state
(E-state). GREEDY-ORDER achieves the E-state with an added bit to the combined response that
indicates if any sharer exists (logically similar to a shared intervention signal). RING-ORDER has
the equivalent of an exclusive state because any response from memory logically contains all the
tokens, and clean data is omitted from token replacement messages. In ORDERING-POINT, how-
ever, an exclusive state is difficult because a requestor does not receive a combined snoop
response from every cache and because memory cannot determine if other sharers exist even if its
owner bit is set. One solution might associate an additional exclusive bit with each memory block
(and MIC). But the memory controller cannot determine when to reset the exclusive bit without

tracking a count of sharers. Hence our ORDERING-POINT protocol lacks an E-state.

4.3.3 Ring Interface
In this section, we consider any protocol-dependent capabilities required of the ring protocols

at the ring interface.

For all protocols, the ring interface must deliver coherence requests to the cache controller
while eagerly forwarding the message to the next node. For ORDERING-POINT and GREEDY-
ORDER, the ring interface must also remove response messages destined for the node as well as
request messages originating from the node. Response messages in RING-ORDER are treated
slightly differently because the ring interface must have knowledge of outstanding requests in
order to determine if a token-carrying message should be removed. Such functionality should

have minimal impact on the ring interface design and performance.
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FIGURE 4-7. Example of RING-ORDER’s possible use of a content-addressable snoop
queue. It ensures that P9’s response reflects P3 as the furthest destination.

One key issue with protocol operation is the handling, and potential buffering, of coherence
request messages. Architects may design every cache bank such that the rate of request arrival
never exceeds the rate of service (i.e., no queue ever forms). That is, coherence requests can
always be snooped as fast as requests arrive on the ring. But if an arriving request can encounter a
cache bank too busy to snoop, then the request must either buffer in a (snoop) queue or take some

other action (such as sending the request around the ring again).

Handling a full snoop queue depends on the protocol. GREEDY-ORDER must Nack and retry a
request that cannot buffer and meet a synchronous snoop requirement. On the other hand, RING-
ORDER and ORDERING-POINT can use deep buffers because of no reliance on a synchronous snoop

response.

RING-ORDER can easily handle a full snoop queue by simply sending the request message
around the ring again until buffer space becomes available. Although somewhat similar to Nack-
ing and retrying the request, starvation is always avoided because requests only need to cause

tokens to eventually move on the ring and RING-ORDER orders requests by ring position. A full
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buffer with ORDERING-POINT, however, is especially problematic because of the reliance on a

linked chain of requests. We not aware of an obvious solution for a request that encounters a full

snoop queue with ORDERING-POINT.

RING-ORDER may also require a content-addressable snoop queue to check for the existence
of a queued request for the same block address as the current incoming request. The protocol
makes a key assumption that a request message cannot bypass the priority token on the ring, and
eager request forwarding in the presence of buffered requests could violate this assumption with-
out additional logic. For example, consider a scenario illustrated in Figure 4-7 where P9 holds the
priority token and then queues two requests, a first request by P12 and then another request by P3.
Recall that both requests eagerly forward on the ring to the next node. When the cache bank pro-
cesses P12’s request, it sends the priority token on the ring with the furthest-destination set to P12.
However P3’s request was eagerly forwarded while buffered behind P12’s request. For correct
operation, the furthest-destination field should have been set to P3. Thus if requests ever queue,
correct operation requires that requests for the same block address combine to reflect the furthest
destination of both requests. To combine the requests, the snoop queue may require content-
addressable access to search for other queued requests. Such a CAM snoop queue may increase
overhead and power, but optimizations can greatly reduce the frequency of a CAM access. For
example, a simple Bloom filter [24] (or even a single bit denoting if any request is queued) can

quickly determine if the snoop queue must be searched for a given request.

4.3.4 Bidirectional Rings
CMP designers may choose to implement bidirectional rings by combining multiple unidirec-

tional rings in opposing directions. An obvious benefit of this approach is a reduction in the aver-
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age number of hops, from N/2 to N/4, required to transfer a message between nodes. This

approach is used by the IBM Cell [71] to reduce the latency of data transfer.

ORDERING-POINT, GREEDY-ORDER, and RING-ORDER as described thus far assume unidirec-
tional rings. Nonetheless, all three protocols can send data responses on any path as long as con-
trol messages travel unidirectionally. Sending data on the shortest path can reduce ring bandwidth
and power consumption. It can also improve performance by allowing the core to continue specu-
lative execution using the values obtained in the data response received early [59]. ORDERING-
POINT and GREEDY-ORDER require no protocol changes to utilize a bidirectional ring for data

transfer, because a data message is always sent to a specific destination.

RING-ORDER requires some protocol additions to allow for data responses to traverse a differ-
ent path. Recall that the original RING-ORDER protocol requires data to travel with the priority
token. We still require all tokens to traverse unidirectionally on the ring, but we can extend RING-
ORDER to send data on a different path while the tokens traverse unidirectionally. We do so by
replacing the data field that accompanies the priority token with a pointer to where data is sent via
a different message. In the common case, the requestor signals completion of the request when it
both receives that data message and all the tokens. In the event of a race where a different
requestor removes the priority token carrying a pointer to data sent elsewhere, it must send a new

message to fetch the data from the node denoted in the pointer.

Although coherence races are an important design point in any protocol, they are rare in prac-
tice. Thus we expect this approach for utilizing a bidirectional ring in a RING-ORDER protocol to

maintain performance expectations. Moreover, additional steps can be taken to ensure perfor-



71

memory controller |
L1 o |
DS| £ ~3 |Ds
PO 2 - N § — P7
Lty £ S L1
1$ 1'$
L1 Shared L3 L1
ps| £ _3 |os
P1 z - vS [ P6
Lty £ o L1
1$ 1'$
L1 L1
s| £ . _3 |os
P2 /1 2= NS PS
5| & Shared L3 ® s
L1 L1
s| & _3 |os
P3 23 55 [ P4
Ll E o L1
'$ | memory controller | '$

FIGURE 4-8. Target 8-core CMP with on-chip memory controllers.

mance robustness. For example, data that is prone to races, such as synchronization words, can

still be sent on the unidirectional ring.

4.4 Evaluation

We evaluate the performance of our three presented ring protocols: ORDERING-POINT (Section
4.2.1), GREEDY-ORDER (Section 4.2.2), and RING-ORDER (Section 4.2.3). In addition, we also
show runtime results for ORDERING-POINT-NOACK which does not use a final acknowledgement

message (discussed in Section 4.2.1.2).

4.4.1 Target System and Parameters
The target 8-core system for evaluation is shown in Figure 4-8. Each processing core has pri-
vate 64 KB L1 1&D caches and a private 1 MB L2 cache. We initially model 2-way superscalar,

single-threaded SPARC cores. The two shared L3 caches are 8 MB each for a total on-chip L2/L3
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TABLE 4-1. Baseline Memory System Parameters for Ring-based CMPs

Private L1 Caches Split I&D, 64 KB 4-way set associative, 64-byte line

Private L2 Caches Unified 1 MB 4-way set associative, 15-cycle data access, 64-byte line

Shared L3 Caches Two 8 MB shared banks, 16-way set associative, 25-cycle data access, 64-byte line
Ring Interconnect 80-byte unidirectional links, 6-cycle delay per link, 2-cycle switch delay

Memory 4 GB of DRAM, 275-cycle access

Memory Interface Cache | Two 128 KB, 16-way set associative, 256 bits per tag

capacity of 24 MB. Each of the two shared L3 caches are backed by an on-chip memory control-

ler. Table 4-1 summarizes the memory system parameters used for the target CMP.

The technology assumptions model a link delay of 300 picoseconds per millimeter, and each
of the rink links in the target CMP measure Smm. We clock the ring at half the core frequency,
consistent with the IBM Cell [71]. Thus the modeled delay per rink link is six processor core
cycles (assuming 4 GHz cores) plus two cycles for the switch, making the total round-trip latency

80 processor core cycles.

We assume each node on the ring can immediately snoop a coherence request without buffer-
ing. Therefore, GREEDY-ORDER never Nacks a request due to busy cache banks. This assumption
differs from the version of this work published in MICRO-39 [96] where we implemented a pessi-
mistic L2 snoop latency of 8 cycles, 16 sub-banks, and finite buffering. Such finite buffering
slightly impacted the performance of GREEDY-ORDER, but for the evaluation in this dissertation,

we assume designers would engineer more aggressive snooping capabilities.

All protocols implement a memory interface cache (MIC) at each memory controller. They
are both 128 KB and each tag entry holds 256 owner bits (summarizing 16 KB of memory for

each bit). For RING-ORDER, the logical number of tokens for each block is 16 to allow all caches
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FIGURE 4-9. Normalized runtime, in-order cores.

to hold a shared copy of data. Thus response messages and cache tags encode the token count with

4 bits, plus an additional bit to denote the priority token.

4.4.2 Performance

Figure 4-9 shows the normalized runtime for all four protocols in the baseline CMP with in-
order cores. Table A-1 in Appendix A shows the raw cycle and instruction counts. Runtime is nor-
malized to ORDERING-POINT. To first order, we observe that GREEDY-ORDER and RING-ORDER
outperform the ORDERING-POINT and ORDERING-POINT-NOACK protocols. RING-ORDER is 7-
86% faster than ORDERING-POINT and 5-47% faster than ORDERING-POINT-NOACK. The omis-
sion of ORDERING-POINT’s final acknowledgement message clearly reduces the runtime of this
protocol, however there is still significant overhead from activating messages at the ordering

point. RING-ORDER also manages to outperform GREEDY-ORDER by 10% for Apache. Although



TABLE 4-2. Breakdown of L2 Misses

average cycles of L2 sharing misses
L2 misses / 1000 instructions % sharing
(load, store/atomic)
ORDERING- (load, ORDERING-
GREEDY- RING- GREEDY- |RING-
POINT- . . | POINT -
ORDER ORDER | Store/atomic) ORDER ORDER
NOAcK NOACK
Apache |28.7 26.4 26.0 33.1,15.5 149, 149 80.6, 102.8 | 80.2, 78.2
OLTP 13.1 12.5 12.6 47.6,24.2 153.5,153.7|80.5,99.3 |80.0, 78.7
SpecIBB |3.9 3.0 3.0 21.6,2.5 155.2,153.6|81.5,84.9 |81.1,79.8
Zeus 19.8 18.7 18.0 29.4,15.1 156.3, 156.2|81.6, 104.9 | 80.3, 78.5
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we expected RING-ORDER to offer similar average runtime as GREEDY-ORDER, RING-ORDER’s
superior handling of highly contended OS blocks for Apache makes a difference. The perfor-
mance stability advantages of RING-ORDER compared to GREEDY-ORDER will be examined in

Section 4.4.3.

To gain further insight into the performance differences, Table 4-2 shows L2 misses-per-1000
instructions, the percentage of sharing misses, and the average latency of sharing misses. The pro-
tocols exhibit similar L2 misses-per-1000-instructions for most workloads, but differences arise
due to protocol-specific feedback on the workload’s execution (like synchronization effects). Per-
formance differences are mostly due to sharing behavior. For example, 48.6% of Apache’s L2

misses are sharing and the protocols behave differently for these misses.

Apache sharing read misses average 149 cycles with ORDERING-POINT-NOACK, 80.6 cycles
with GREEDY-ORDER, and 80.2 cycles with RING-ORDER. Likewise the OLTP and Zeus work-
loads exhibit significant sharing misses and see similar latencies. These average sharing miss
latencies match the expected behavior of the protocols. ORDERING-POINT protocols must traverse

half the ring, on average, to activate a request. In the common case, requests in GREEDY-ORDER
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FIGURE 4-10. Normalized ring traffic.

take just as long as RING-ORDER. However significant retries for some requests increase GREEDY-

ORDER’s average latencies compared to RING-ORDER, especially for store and atomic operations.

Figure 4-10 shows the normalized ring traffic for all protocols with the base CMP and in-
order cores. RING-ORDER uses the least amount of ring traffic. It utilizes 14-41% less ring
resources than ORDERING-POINT, 0-30% less than ORDERING-POINT-NOACK, and up to 11% less
than GREEDY-ORDER. Nonetheless, with only eight non-multithreaded cores, large private L2
caches, and 80-byte ring links, we did not see a link utilization higher than 4% for any simulation

run of the baseline CMP.

Table 4-3 shows the average number and rate of total snoops required of the protocols. To first
order, none of the protocols require significant snooping bandwidth with in-order cores and pri-
vate L2 caches. GREEDY-ORDER requires the most snoops for OLTP, SpecJBB, and Zeus due to

retries caused by races and MIC misses. Snoops for RING-ORDER are broken down into those used
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TABLE 4-3. Total processor snoops per cycle

ORDERING-POINT | GREEDY- RING-ORDER
-NOACK ORDER RING-ORDER no coalesce
Apache 0.29 0.37 0.36 0.34
OLTP 0.24 0.31 0.34 0.31
SpecJBB | 0.15 0.18 0.15 0.14
Zeus 0.22 0.30 0.28 0.26

TABLE 4-4. MIC hit rate for RING-ORDER

Apache 0.91
OLTP 0.97
JBB 0.89
Zeus 0.91

for normal protocol operation, and those used for token coalescing. As shown, the token coalesce-
ment algorithm accounts for 5-9% of the total snoops. Given the low overall rate of snooping, the

overall impact on power should be minimal.

Table 4-4 shows the MIC hit rate for RING-ORDER. As shown the two 128 KB MIC caches
performs quite well for these workloads with hit rates ranging from 89% to 97%. Hit rates for

other protocols were similar.

4.4.3 Performance Stability

We now consider performance stability by examining the worst-case behavior observed in
simulation. In particular, we seek to determine if pathological starvation can occur during simula-
tions of GREEDY-ORDER, thereby strengthening the rationale for choosing RING-ORDER which

provides freedom of starvation by design.
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FIGURE 4-11. Excerpt of a GREEDY-ORDER trace running OMPmgrid for a single
cache block. . Processor 6’s request is pathologically starved for over 75,000 cycles.

Since the commercial workloads evaluated in this dissertation are all well-tuned multi-
threaded programs, we broaden the scope of workloads in this section by evaluating three addi-
tional benchmarks from the SpecOMP suite: OMPmgrid, OMPart, and OMPfma3d. In all three

benchmarks, a barrier is used for fine-grained synchronization.

We found that starvation situations did occasionally arise in our simulations with the GREEDY-
ORDER protocol. Figure 4-11 shows an excerpt from a trace of GREEDY-ORDER running the OMP-
mgrid workload. Core P6 continually issued a retry for the block because, due to the timing condi-
tions encountered, its request continually missed the owner in flight to a different requestor. We

could further engineer GREEDY-ORDER to complete all our simulations by reducing the chances of
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TABLE 4-5. Observed L1 Miss Latencies in Cycles (MAX, AVG)

Apache | OLTP SpecJBB | Zeus OMPmgrid | OMPart | OMPfma3d
ORDERING-POINT 708, 711, 891,
757, 68.5 862, 165 820, 106 792,217
-NOACK 93.7 54.2 78.9
657, 822, 744, 80000+,
GREEDY-ORDER 730, 63.9 872,87.0 | 80000+, 193
71.9 422 75.8 193
330, 309, 285,
RING-ORDER 283, 63.0 286, 163 345,84.0 | 288,192
68.3 39.9 74.2

TABLE 4-6. Maximum Observed # Retries for GREEDY-ORDER

Apache OLTP SpecJBB | Zeus OMPmgrid | OMPart OMPfma3d

MAX 8 10 9 9 1400+ 12 1400+

TABLE 4-7. Distribution of Retries for GREEDY-ORDER

# retries Apache OLTP SpecJBB | Zeus OMPmgrid | OMPart OMPfma3d
0 2752820 | 2534700 | 2518582 | 2741394 | 2029744 26134011 | 2851926
1-3 262752 109225 | 363724 325327 | 62756 1510776 236241

4-6 27 52 33 129 54 55495 75

7-9 2 1 5 18 9 29 11

10+ 0 1 0 0 9 1 10

starvation through techniques previously discussed. However, we would not be convinced that
our efforts would result in starvation-free execution for months and years on a real system, given

that our simulation target runs for only a few seconds.

We now examine the performance stability of our protocols by considering the maximum
latencies and retries encountered for all misses (not just sharing misses). Table 4-5 shows the
average and maximum latency of any L1 miss. RING-ORDER has the lowest maximum observed
request latency of 345 cycles. Some requests in GREEDY-ORDER take thousands of cycles and
even exceed the per-request watchdog timer of 80,000 cycles we use in the simulator. Table 4-6

shows the average number of retries used for each coherence request and the maximum observed.
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TABLE 4-8. Out-of-Order Core Parameters
Reorder buffer/scheduler 128/64 entries
Pipeline width 3-wide fetch & issue

Pipeline stages 15
Direct branch predictor 1 KB YAGS
Indirect branch predictor | 64 entry (cascaded)

Return address stack 64 entry
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FIGURE 4-12. Normalized runtime, out-of-order cores.

Table 4-7 also shows a coarse distribution of these retries. The maximum observed number of
retries issued for any individual request is quite high and correlates well with Table 4-5. Generally
SpecOMP workloads, with their use of a barrier for fine-grained loop synchronization, encounter

the most severe situations requiring numerous retries due to coherence races.

4.4.4 Sensitivity Study

This section performs some sensitivity analysis to parameters including core type, number of

cores, cache size, and ring latency. Figure 4-12 shows the normalized runtime when the baseline



80

T T 1 -

1047 J—J_ T
En

()

E

€

2

k=l

[

50.5——

£

o

c

0.0———="= = == ==
E ¢ & § £ 6 &L 3 £ & & 3 £ © & 3
$385 8388 2388 s35¢

Q@ o Q@ o Q@ o Q@ o

Loz X Lz T LZ T L Z 1
D T o> L D T A D T o> A D T o> L
£ %982 £ 2% 2 £ %2 £ 5% 2
L O v O v O L O
En_grx _En_gn: .Eﬂ_ga: E'3_80:
©c 2 c 2 c 2 c 2
@ @ @ @
2 2 B B
o o (@] (@]
Apache OLTP SpecJBB Zeus

FIGURE 4-13. Normalized runtime, in-order cores, 128KB L2 caches.

CMP uses Out-of-Order SPARC cores parameterized in Table 4-8. RING-ORDER performs 10-
33% faster than ORDERING-POINT and 7-24% faster than ORDERING-POINT-NOACK. Compared
with in-order cores, RING-ORDER’s performance gain relative to ORDERING-POINT is diminished
with out-of-order cores because some of ORDERING-POINT’s overhead in sharing miss latency is

tolerated.

Figure 4-13 shows the normalized runtime where the baseline CMP is modified with smaller
128 KB L2 caches. The reduction in per-core cache size increases the activity on the ring due to
additional misses. However this has little affect on runtime improvements over the baseline CMP

with in-order cores. RING-ORDER still offers 12-71% better performance than ORDERING-POINT.
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Apache

Figures 4-14 and 4-15 change the baseline CMP to four-cores (with one memory controller)

and sixteen cores (with two memory controllers) respectively. Thus the total round-trip latency of
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FIGURE 4-16. Normalized runtime, 8 in-order cores, 5-cycle link latency.

the ring is 40 cycles for the 4-core CMP and 144 cycles for the 16-core CMP. In the 4-core CMP,
RING-ORDER outperforms the baseline ORDERING-POINT protocol by 3-25%. In the 16-core CMP,
RING-ORDER is 11-99% faster. Longer round-trip ring latencies make the overhead of ORDERING-

POINT’s activation of request messages even more severe.

Finally, Figure 4-16 shows the normalized runtime of the baseline CMP where the traversal of
a message between adjacent points on the ring takes 5 cycles instead of 8 cycles. This reduces the
round-trip ring latency of the 8-core CMP to 50 cycles instead of 80. As shown, RING-ORDER out-
performs ORDERING-POINT by 6-63%. Unfortunately the GEMS interconnect model is not flexi-
ble enough to reduce the ring link latency below five cycles. We also do not vary the width of the
ring because GEMS assumes critical-word delivery of messages and our baseline system with pri-

vate caches makes utilization low. That is, a narrower ring would not increase the latency of data
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messages and our observed utilizations for 80-byte links (2-4%) would not result in significant

queuing delay with 40-byte or narrower links.

4.4.5 Summary of Evaluation

The following list summarizes some of the key findings from our evaluation of ORDERING-

POINT, GREEDY-ORDER, and RING-ORDER:

* RING-ORDER performs the fastest of all the evaluated protocols. In the baseline CMP with
eight in-order cores, it performed up to 47% faster than even the optimized ORDERING-POINT-
NOACK. However RING-ORDER either performs the same as GREEDY-ORDER or only offers

modest improvement.

* RING-ORDER offered stable performance by avoiding liveness issues that stem from protocols
using Nacks or retries. On the other hand, we demonstrated clear situations where pathologi-

cal retry scenarios occurred in our simulations of GREEDY-ORDER.

* Sensitivity studies show that out-of-order cores diminish the performance advantage of RING-
ORDER. However, increasing ring latency widens the performance gap between the stable

ORDERING-POINT and RING-ORDER protocols.

4.5 Future Work

This section discusses some areas of future work for the ring-based coherence techniques dis-

cussed in this chapter.
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4.5.1 Reliability

Reliability is projected to become a serious architectural design issue as devices continue to
scale. One avenue of future work extends RING-ORDER to handle lost or corrupt messages at the
ring level. Coherence protocols typically assume that the underlying interconnect reliably delivers
messages. With both permanent and transient faults increasing with technology scaling [25], reli-
ability becomes a greater concern. Packet-switched interconnects may implement reliable mes-
sage delivery by a utilizing a combination of strong error-detection (such as a CRC code) and
link-level retransmission [39]. A physical ring, on the other hand, may implement very simple
routers with no link-level handshaking to detect and correct from errors through retransmission.
Prior SCI implementations of ring systems [53] handled transient message errors by checking
every transmission at the sender of the message. This scheme requires all messages to traverse the
entire ring. In our three protocols, all request messages indeed traverse the ring and can be
checked by the sender. Moreover, response messages in ORDERING-POINT and GREEDY-ORDER
have a specific destination. Thus in these protocols, the ring can deliver response messages to
their intended destination but also return the message to the sender to check the message’s integ-
rity (and resend if necessary). However, in RING-ORDER, checking the token-carrying response
messages at the sender may be problematic and warrants further investigation. Response mes-
sages do not have a specific destination and can be used by any node until the furthest destination
is reached. In essence, each hop of a message is sent from a node to the next adjacent node. As
such, source-based message checking would not only result in traffic and latency overhead, but
correctness could be compromised if extra tokens were unintentionally injected into the system.
Fortunately token counting has been shown to offer favorable properties in implementing a sys-

tem that is resilient to lost of corrupted messages at the protocol level instead of the link-level



85
[101, 43]. Adapting RING-ORDER to handle lost coherence messages could help create a system

more tolerant of certain errors.

4.5.2 Embedding Ring Protocols in Hierarchy

The protocols discussed and developed in this chapter assume no hierarchy. However deploy-
ing a ring-based CMP may require interacting with an existing system-level interconnect to create
larger, hierarchical systems such as a Multiple-CMP. Multiple-CMP coherence is addressed in

Chapter 5, however it does not use ring-based protocols.

Embedding a ring-based protocol into a hierarchy would require an interface between the ring
coherence protocol, and the system-level coherence protocol. Like prior hierarchical systems such
as the Sun Wildfire [54], the interface would interact on the ring protocol like another processing
element. Nonetheless, we identify several unique challenges in adapting ring protocols to operate

in a higher-level, non-ring protocol.

The system-level protocol may either require a snoop response or an invalidate acknowledge-
ment on behalf of the entire CMP. GREEDY-ORDER can generate such a response under the
assumption that the system-level interconnect does not have a synchronous response requirement.
If, however, the system-level interconnect does require a snoop response within a fixed time, then
unbounded retries in GREEDY-ORDER violate this requirement. Fortunately, ORDERING-POINT and
RING-ORDER have upper-bounds on the time of a request. Acknowledging a system-level invali-
date message also presents difficulties for RING-ORDER and ORDERING-POINT. In particular,
RING-ORDER currently offers no snoop response if the CMP contains no tokens. One possible

extension to this protocol would indeed collect snoop responses such that the interface can deter-
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mine if the CMP contains zero tokens. Finally, the interface between the protocols must determine

when a system-level request is required.

4.5.3 Hierarchical Ring Protocols

Designing a hierarchy of rings is an attractive option towards increasing scalability to larger
numbers of cores. A Multiple-CMP system, for example, can connect CMPs in a ring topology
where each CMP itself also implements a ring. Another option being considered by Intel is build-

ing a hierarchy of rings within a single, many-core CMP [64].

Extending ring protocols to a hierarchy of rings is not straightforward. For example, GREEDY-
ORDER must collect a combined snoop response from the entire system when requesting a block
for exclusive access. Furthermore, a hierarchy may increase performance stability problems
because pathological requests within one ring level may starve out requests from a different ring
level. ORDERING-POINT can potentially extend to a hierarchy of rings by using a separate ordering
point at each ring level. Doing so will only increase the overheads of accessing the various order-

ing points.

RING-ORDER may offer an attractive approach to implementing non-directory coherence in a
hierarchy of rings. Token counting guarantees correctness and the global state of the system can
be inferred from the token count (i.e., all tokens existing within a ring level ensures no sharer
exists in a different level). One intriguing possibility in extending RING-ORDER treats the hierar-
chical of rings as a single, logical ring. Then, small filters placed at the interfaces between ring
levels can create shortcuts to increase performance in the common case by exploiting the hierar-
chy. For example, request messages can fan out when advantageous, and response messages can

bypass inner rings where there is not request outstanding.
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4.6 Related Work

Barroso et al. [17, 18] developed a snooping protocol for SMP systems using a slotted ring,
which served as the basis of our greedily ordered protocol. They compared their snooping imple-
mentation against a directory-based ring protocol and a split-transaction bus, finding the snoop-
ing-on-rings approach preferable. We build upon the work of Barroso et al. by extending and
applying the protocol to a CMP, classifying snooping ring protocols based on ordering, comparing
it to a ring protocol that uses an ordering point, and comparing it to our newly developed RING-

ORDER protocol.

IBM’s Power4 [131] and Power5 [119] both use a protocol similar to GREEDY-ORDER [82].
One difference between GREEDY-ORDER and the IBM protocols is that memory in the IBM sys-
tems do not contain owner bits and do not participate in the combined response. Instead, the
requestor resends the combined snoop response on the ring. If no other cache acknowledged the
request in the combined response, the memory controller sends the data (which it prefetched when
observing the initial request). If the combined response indicates a coherence conflict, the node
instead issues a retry. To explicitly detect a conflict, whenever a node acknowledges a request and
sends data, it remembers the address in a table until cleared by the combined response that the
winning requestor resends. In contrast, our GREEDY-ORDER protocol uses owner bits and a mem-
ory interface cache to reduce memory latency and bandwidth in a CMP.