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ABSTRACT 

As CPU performance plateaus, many communities are turning to highly-parallel accelerators such 

as graphics processing units (GPUs) to obtain their desired level of processing power. 

Unfortunately, the GPU’s massive parallelism and data-parallel execution model make it difficult 

to synchronize GPU threads. To resolve this, we introduce aggregation buffers, which are 

producer/consumer queues that act as an interface from the GPU to a system-level resource. To 

amortize the high cost of producer/consumer synchronization, we introduce leader-level 

synchronization, where a GPU thread is elected to synchronize on behalf of its data-parallel cohort.  

One challenge is to coordinate threads in the same data-parallel cohort accessing different 

aggregation buffers. We explore two schemes to resolve this. In the first, called SIMT-direct 

aggregation, a data-parallel cohort invokes leader-level synchronization once for each aggregation 

buffer being accessed. In the second, called indirect aggregation, a data-parallel cohort uses 

leader-level synchronization to export its operations to a hardware aggregator, which repacks the 

operations into their respective aggregation buffers. 

We investigate two use cases for aggregation buffers. The first is the channel abstraction, 

which was proposed by Gaster and Howes to dynamically aggregate asynchronously produced 

fine-grain work into coarser-grain tasks. However, no practical implementation has been proposed. 

We investigate implementing channels as aggregation buffers managed by SIMD-direct 

aggregation. We then present a case study that maps the fine-grain, recursive task spawning in the 

Cilk programming language to channels by representing it as a flow graph. We implement four 

Cilk benchmarks and show that Cilk can scale with the GPU architecture, achieving speedups of 

as much as 4.3x on eight GPU cores. 



xii 

 

The second use case for aggregation buffers is to enable PGAS-style communication between 

threads executing on different GPUs. To explore this, we wrote a software runtime called Gravel, 

which incorporates aggregation buffers managed by indirect aggregation. Using Gravel, we 

distribute six applications, each with frequent small messages, across a cluster of eight AMD 

accelerated processing units (APUs) connected by InfiniBand. Compared to one node, these 

applications run 5.3x faster, on average. Furthermore, we show that Gravel is more programmable 

and usually more performant than prior GPU networking models.  
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1. INTRODUCTION 

For over four decades, the number of transistors on a chip (forecasted by Moore’s law [1]) and the 

frequency that those transistors were clocked (forecasted by Dennard scaling [2]) increased 

exponentially. Specifically, Dennard scaling forecasted that a chip’s power density remains 

constant as MOSFET feature sizes and switching delay become smaller. 2005 brought the end of 

Dennard scaling as we know it. Dennard scaling stopped because leakage currents, which had been 

negligible when transistors were larger, made up a non-trivial fraction of the power consumption 

[3]. Today, at a given power density, smaller transistors are only slightly faster than transistors at 

the previous feature size because of leakage currents. Frequency scaling ended at the same time 

that micro-architectural innovations, which also played an important role in improving single-

thread performance into the 2000s, began to provide diminishing returns [4]. 

These dual crises have pushed parallelism to the forefront. Initially, this parallelism was 

realized with multicore processors. Later, architects embraced parallelism with more zeal by 

building highly-parallel accelerators, like GPUs and the many integrated cores (MIC) architecture. 

For instance, consider the Green500 list, which tracks the most energy-efficient supercomputers—

all of the top ten systems incorporate highly-parallel accelerators [5]. At the commodity end, cloud 

infrastructures like Amazon’s elastic compute cloud (EC2) provide GPU-compute resources [6] 

and these GPUs are being used to accelerate applications in a number of domains, ranging from 

high-performance computing [7] to machine learning [8][9][10][11]. 

Two attributes typically characterize highly-parallel accelerators. First, they prefer a large 

number of simple, low-performance threads over a small number of complex, high-performance 

threads. Thus, given more transistors, a highly-parallel accelerator can be built with more hardware 
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threads. Importantly, this approach does not require increasing the accelerator’s clock frequency 

or designing new, complex, and power-hungry speculation logic. 

The second attribute that characterizes most highly-parallel accelerators is a significant 

number of data-parallel execution units, which apply a single instruction stream to multiple threads 

simultaneously. Data-parallel hardware amortizes the power consumed by the accelerator’s front-

end (i.e., the pipeline’s fetch and decode stages), but limits the parallel codes that can fully leverage 

a highly-parallel accelerator. 

1.1 GPUs: An Important Sub-class of Highly-parallel Accelerators 

In this thesis, we focus on GPUs, which are an important sub-class of highly-parallel accelerators. 

For example, earlier we cited the fact that all of the systems on the Green500 list incorporate 

highly-parallel accelerators. Of note, nine of these systems use GPUs! Unlike other highly-parallel 

accelerators, GPUs are manufactured by multiple companies and are in high-demand in non-

compute markets (i.e., graphics). These market factors make GPUs a more cost-effective solution 

than other highly-parallel accelerators. 

The second reason that we focus on GPUs is because their high thread count and abundant 

data-parallel hardware epitomize the highly-parallel architecture. For example, consider 

NVIDIA’s Fermi architecture—a GPU architecture that comprises thousands of simple threads 

and data-parallel hardware to execute them. Notably, Fermi’s design is eight times more energy 

efficient than Intel’s Westmere architecture (a comparable CPU) [12]. 

While it is true that compared to CPUs, GPUs have the potential to execute parallel 

applications faster and more efficiently, they are also more difficult to program. In addition to 

well-known parallel programming challenges (e.g., dynamic load balancing, concurrency bugs, 

non-determinism), their highly-parallel architecture exposes several new challenges. First, their 
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high thread count can cause increased cache and register pressure, severe thread contention (e.g., 

when all threads contend for the same lock), and high memory bandwidth demand. Second, data-

parallel hardware can introduce performance and correctness issues. Specifically, data-parallel 

hardware becomes underutilized when adjacent threads, which are threads executing the same 

instruction stream, have different control flow. Furthermore, in GPUs, memory operations become 

more expensive when adjacent threads access non-adjacent adjacent memory locations. 

In recent years, the research community has made progress in identifying and improving many 

of the difficulties in programming GPUs. Specifically, recent work has explored how to correctly 

use general purpose synchronization primitives on GPUs [13][14]. At the same time, researchers 

have been exploring how to mitigate the utilization [15][16] and memory system [17] issues that 

plague GPUs. In this thesis, we focus on a third programming issue that has received less attention 

up to now—system-level operations. 

1.2 Defining and Understanding System-level Operations 

Fundamentally, a system-level operation is an operation that requires system-level coordination. 

Here are some concrete examples: 

 network access: threads access the network through a centralized network interface, 

 dynamic memory allocation: threads allocate memory through a process-level heap, 

 system calls: threads rely on the OS to execute a system call on their behalf. 

Similarly, launching a new task on the current GPU can be viewed as a system-level operation 

because it involves coordinating through the GPU’s centralized control processor (introduced in 

Chapter 2). System-level operations are commonplace in CPU applications. In contrast, GPUs 

have historically provided little to no support for system-level operations. 
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Executing a system-level operation on the GPU poses two challenges. The first is correctly 

and efficiently coordinating GPU thread access to the underlying resource. The GPU’s data-

parallel hardware can make it difficult to correctly synchronize. For example, introducing a 

dependency between two threads in the same data-parallel cohort can cause deadlock. At the same 

time, the GPU’s massive parallelism can make it difficult to synchronize efficiently. 

The second challenge is executing the operation itself. For example, the operation could be 

executed from the GPU directly. Prior work on accessing the network from the GPU-ported pieces 

of the InfiniBand library onto the GPU and found that the resulting code performed poorly [18]. 

An alternative approach is to execute a system-level operation outside of the GPU’s data-

parallel hardware. Specifically, the operation can be executed on a scalar core inside the host CPU, 

the network interface controller (NIC), or even on an embedded core inside of the GPU (e.g., the 

GPU’s control processor, discussed in Chapter 2). In this dissertation, we choose to export 

operations to be executed outside of the GPU’s data-parallel hardware because we are primarily 

concerned with system-level coordination. 

1.3 Executing a System-level Operations from a GPU 

The key challenge in executing a system-level operation is to route it from the GPU’s data-parallel 

hardware to the target device (e.g., the host CPU, another GPU, the NIC). There are two aspects 

to this challenge. First, how can we provide application programming interfaces (APIs) that expose 

system-level operations to programmers and are easy to use? Second, how are operations routed 

from a GPU thread to their target device in an efficient manner? 

Importantly, the APIs influence how operations are routed. In particular, some programming 

abstractions naturally correspond to coarse-grain GPU-to-device interactions, at GPU kernel 

granularity, while others correspond to fine-grain interactions, at GPU thread granularity. In 
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general, coarse-grain interactions are more performant because they amortize redundant overhead, 

but less flexible. In contrast, fine-grain interactions tend to be less performant but provide 

programmers greater flexibility. 

Several approaches to routing system-level operations and exposing them to programmers 

have been proposed in prior work. Specifically, we consider three prior proposals that dominate 

the literature. In each case, we encounter difficulties in the programming model or, even worse, 

fundamental performance limitations. The first proposal, called the coprocessor model [19][20], 

does not provide GPU threads with the capability to execute a system-level operation directly. 

Instead, programmers write CPU code to handle system-level operations before and after 

offloading computation to a GPU. This model’s poor programmability is partially offset by its bulk 

synchronous behavior, which encourages coarse-grain exchanges that amortize the overhead of 

routing a system-level operation to its target. 

In the second proposal, called the operation-per-lane model [18][21][22][23], GPU threads 

execute system-level operations directly and independently. This model follows the CPU 

paradigm. Compared to the coprocessor model, this model simplifies programming, but it can lead 

to high-overhead producer/consumer interactions. Finally, in the third proposal, called coalesced 

APIs [24][25][26], GPU threads execute system-level operations directly after coordinating with 

their neighbors. Compared to the operation-per-lane model, this model is harder to program, but it 

does a better job of amortizing overheads. However, interactions are still small and high-overhead 

compared to the coprocessor model. 

1.4 Efficiently Enabling Fine-grain System-level Operations for GPUs 

The goal of this thesis is to provide the programmability of the operation-per-lane model at a level 

of performance that equals or exceeds the coprocessor model. There are two high-level ways to 
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approach this problem. The first is to build special hardware structures (or specialized coherence 

mechanisms) to route a system-level operation to its target device. For example, one might look to 

the hardware task queues proposed by Kim and Batten for inspiration [27]. The problem with this 

approach is that often GPU vendors have been reluctant to dedicate silicon to large non-graphics 

features (smaller features are less controversial). 

The second approach is to leverage the memory system’s built-in coherence mechanisms to 

route an operation to its target. Specifically, producer/consumer synchronization can be used to 

export a system-level operation to its target device. The problem with this approach is that the 

coherence mechanisms in current GPUs tend to incur a high performance penalty—especially for 

small kernels or kernels that frequently invoke producer/consumer synchronization. 

Nonetheless, to increase the potential for impact, we focus on solutions that leverage the 

coherence mechanisms available in today’s GPUs. Specifically, in this thesis, we propose a simple, 

but crucial mechanism called leader-level synchronization, which operates as follows. Given a 

group of data-parallel threads, a single leader thread is elected to invoke producer/consumer 

synchronization on behalf of its entire group. The key insight is that producer/consumer 

synchronization can be used to export operations from the GPU and that the high-cost of 

producer/consumer synchronization can be amortized across the GPU’s data-parallel lanes. For 

example, in our channels prototype, discussed in Chapter 4, producer/consumer synchronization 

is amortized across a wavefront (up to 64 work-items on current AMD GPUs). Similarly, in our 

Gravel prototype, discussed in Chapter 5, synchronization is amortized across a work-group (up 

to 256 work-items on current AMD GPUs). 

It is trivial to use leader-level synchronization to route system-level operations from a group 

of data-parallel threads to a single target (e.g., the host CPU). Notably, if that single target device 
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is the host CPU then the GPU can execute any operation (e.g., printf, malloc, reading/writing 

files, system calls) by “reverse offloading” it to the CPU! 

Nonetheless, it is less clear how operations originating from the same group of data-parallel 

threads can be routed to multiple targets. For example, one may wish to distribute the operations 

across an array of processors comprising CPUs and GPUs. Furthermore, some of these processors 

may be connected through a network, which requires system-level operations to be routed through 

the NIC. 

Even when every data-parallel thread executes the same system-level operation, it can make 

sense to route the operations to multiple targets. For example, in Chapter 4 we explore dynamically 

aggregating scalar tasks into data-parallel tasks. In this work, we aim to support one system-level 

operation—launching a new task—but we explore dynamically organizing those tasks into 

multiple task queues that correspond to the function being spawned. Similarly, in Chapter 5 we 

explore GPU-initiated network messages and find that it is desirable to dynamically organize 

messages into multiple message queues that correspond to the node where a message is being sent. 

1.5 Contributions 

Our first and most broadly applicable contribution is to show how system-level operations can be 

exposed to GPU programmers through the operation-per-lane model at a level of performance that 

approaches or even exceeds the coprocessor model. As discussed earlier (Section 1.3) and 

reinforced by the first section of Chapter 3, the operation-per-lane model provides the best 

programmability. This fact, coupled with the reality that a performant implementation of the 

operation-per-lane model has remained elusive, makes our first contribution significant.  

Recall that leader-level synchronization, introduced in Section 1.4, is sufficient when system-

level operations have a single target (e.g., the host CPU), but things become more complicated 
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when there are multiple targets. To solve this problem, we introduce aggregation buffers, which 

are producer/consumer queues that act as an interface from the GPU to a system-level resource. 

For example, Figure 1-1 shows how aggregation buffers might be used to route system-level 

operations to a CPU, a NIC, and a GPU. Aggregation buffers can be used to sort operations by 

other attributes as well (e.g., a network message’s destination). 

In Chapter 3, we propose two aggregation schemes to group system-level operations into 

aggregation buffers. Both strategies build off of leader-level synchronization. In the first scheme, 

called SIMT-direct aggregation, data-parallel groups route operations directly to their respective 

aggregation buffer. In the second scheme, called indirect aggregation, data-parallel groups offload 

operations to a dedicated aggregator, which repacks them into their respective aggregation buffer. 

We found that SIMT-direct aggregation is more efficient when there are a small number of 

aggregation buffers, but indirect aggregation is better at exploiting the GPU’s underlying data-

parallel hardware and is more scalable with respect to the number of aggregation buffers. 

The second contribution of this thesis is to explore two novel use cases for fine-grain system-

level operations, which are enabled by the operation-per-lane model. The following subsections 

summarize these two efforts. 

 

Figure 1-1. Routing system-level operations to multiple targets. 
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1.5.1 Fine-grain Task Aggregation and Coordination on GPUs 

Chapter 4 explores how to dynamically aggregate scalar tasks, initiated by GPU threads, into data-

parallel tasks (e.g., a GPU kernel). Specifically, in general-purpose GPU (GPGPU) computing, 

data are processed by concurrent threads executing the same function. This model, dubbed single-

instruction/multiple-thread (SIMT), requires programmers to coordinate the synchronous 

execution of similar operations across thousands of data elements. To alleviate this programmer 

burden, Gaster and Howes outlined the channel abstraction, which facilitates dynamically 

aggregating asynchronously produced fine-grain work into coarser-grain tasks [28]. However, no 

practical implementation had been previously proposed. 

To this end, we propose implementing channels as aggregation buffers that are managed by 

SIMD-direct aggregation. To demonstrate the utility of channels, we present a case study that maps 

the fine-grain, recursive task spawning in the Cilk programming language to channels by 

representing it as a flow graph. To support data-parallel recursion in bounded memory, we propose 

a hardware mechanism that allows wavefronts to yield their execution resources. Through channels 

and wavefront yield, we implement four Cilk benchmarks. We show that Cilk can scale with the 

GPU architecture, achieving speedups of as much as 4.3x on eight compute units. 

1.5.2 Gravel: Fine-grain GPU-initiated Network Messages 

Chapter 5 explores how to dynamically aggregate network messages initiated by GPU threads into 

large buffers that are more suitable for network transmission. Specifically, GPUs are prevalent in 

distributed systems because they provide massive parallelism in an energy-efficient manner. 

Unfortunately, existing programming models (summarized earlier in Section 1.3) make it difficult 

to efficiently route a GPU-initiated message through the network. For example, the coprocessor 
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model forces programmers to manually route messages through the host CPU. Other models allow 

GPU-initiated communication, but are inefficient for small messages (e.g., less than a kilobyte). 

To better enable the GPU to efficiently initiate small messages, we introduce Gravel, which 

draws inspiration from the GPU’s memory coalescer. The coalescer operates across a data-parallel 

instruction to combine accesses to the same cache line, which increases bandwidth by amortizing 

memory system overhead. Similarly, Gravel uses aggregation buffers, managed by indirect 

aggregation, to combine GPU-initiated messages being sent to the same network destination. A 

key optimization is to amortize shared-memory synchronization across as many data-parallel lanes 

as possible, but branch divergence can limit the number of lanes that execute together. Thus, we 

explore diverged work-group-level semantics to enable optimal synchronization from divergent 

code. 

Using Gravel, we distribute six applications, each with frequent small messages, across a 

cluster of eight AMD APUs connected by InfiniBand. Compared to one node, these applications 

run 5.3x faster, on average. Furthermore, we show that Gravel is more programmable and usually 

more performant than prior GPU networking models. 

Next, Chapter 2 provides a brief primer on the GPU’s programming model, architecture, and 

execution model. Chapter 2 is also useful in that it introduces OpenCL’s terminology for GPU 

concepts, which is used for the remainder of this document. Those familiar with GPU architecture 

and OpenCL terminology may wish to skip ahead to Chapter 3. 

  



11 

 

2. GPU PRIMER 

This section gives an overview of today’s GPU programming abstractions and how they help 

programmers coordinate structured parallelism so that it executes efficiently on the GPU’s data-

parallel hardware. 

2.1 GPU Programming Model 

The GPU’s underlying execution resource is the single-instruction/multiple-data (SIMD) unit, 

which is a number of functional units, or lanes, that execute in lockstep (64 on AMD GPUs and 

32 on NVIDIA GPUs [29]). GPGPU languages, like OpenCL™ and CUDA, are called single-

instruction/multiple-thread (SIMT) because they map the programmer’s view of a thread to a 

SIMD lane. Threads executing on the same SIMD unit in lockstep are called a wavefront (warp in 

CUDA). In SIMT languages, a task is defined by three components: 

1. A function (called a kernel). 

2. Data (the kernel’s parameters). 

3. A dense 1- to 3-dimensional index space of threads called an NDRange (grid in CUDA). 

Figure 2-1 shows an OpenCL NDRange. The smallest unit is a work-item (thread in CUDA), 

which is a SIMT thread that maps to a SIMD lane. Work-items are grouped into 1- to 3-

 

Figure 2-1. OpenCL NDRange. 
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dimensional arrays called work-groups (thread blocks in CUDA). Multiple work-groups are 

combined to form the NDRange. The NDRange helps programmers schedule structured 

parallelism to the GPU’s data-parallel hardware, but makes mapping unstructured parallelism 

difficult. 

Work-items in a work-group communicate using work-group-level barriers and hardware 

caches—including a programmer-managed scratchpad cache. These primitives enable work-

group-level operations, which use the work-items in a work-group to index and process a data 

array. An important work-group-level operation is reduction, which reduces an array to a single 

result (e.g., sum, maximum). For example, given the array, A=[2,1,0,5], reduce-to-sum returns 

2+1+0+5=8. Another important operation is prefix-sum, which calculates an array’s running total. 

For example, the prefix sum of A is [0, 0+2=2, 0+2+1=3, 0+2+1+0=3]. 

2.2 GPU Architecture 

Figure 2-2 highlights important architectural features of a generic GPU. Compute units (CUs, 

called streaming multiprocessors in CUDA), are defined by a set of SIMD units, a pool of 

 

Figure 2-2. Generic GPU architecture. 
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wavefront contexts (CTX), a register file, and a programmer-managed cache called local data store 

(LDS, or shared memory in CUDA). A CTX maintains state for an executing wavefront. Each 

wavefront owns a slice of the register file that partially defines its state. Each CU has a private L1 

cache that feeds into a shared L2 cache. 

The control processor, also shown in the generic GPU architecture picture (Figure 2-2), 

obtains SIMT tasks from a set of task queues that it manages. To schedule a task, the control 

processor assigns its work-groups to available CUs. The control processor also coordinates 

simultaneous graphics and compute, virtualizes GPU resources, and performs power management. 

To carry out its many roles, this front-end hardware has evolved from fixed function logic into a 

set of scalar processors managed by firmware. 

Figure 2-3 shows an HSA-compatible AMD APU, which integrates the GPU (depicted earlier 

in Figure 2-2) onto the same die as the CPU. While all of today’s discrete GPUs and many of 

today’s integrated GPUs provide some combination of coherent and incoherent caches, integrated 

GPUs that adhere to heterogeneous system architecture (HSA) [30] or Intel’s Graphics Gen9 GPU 

architecture [31] both provide a fully coherent cache hierarchy. For example, the GPU and CPU 

in Figure 2-3 could be kept coherent through a memory-side directory (not shown). HSA also 

provides a virtual address space that spans the CPU and the GPU. Finally, it is feasible to allow 

 

Figure 2-3. CPU-GPU integration. 
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the GPU to access the APU’s I/O controller. Nonetheless, most GPU drivers and programming 

languages lack APIs to access I/O because it is not clear how to do so efficiently and correctly. 

2.3 Single-instruction/multiple-thread (SIMT) Effects 

GPU programming languages, like CUDA [29] and OpenCL [32], are SIMT because they present 

a work-item as the unit of execution. But GPUs execute wavefronts, which exposes two 

performance effects. Branch divergence, depicted in Figure 2-4a, occurs when work-items in a 

wavefront encounter different control paths. GPUs use hardware predication to execute branches, 

which causes some execution units to be idle. 

Each CU has a coalescer, which operates across the CU’s single wavefront-level cache port 

to combine memory operations that target the same cache line. Memory divergence, depicted in 

Figure 2-4b, occurs when work-items in a wavefront access different cache lines and is bad because 

wavefronts stall until all of their cache lines are accessed. 

  

 
 

(a) Branch divergence. (b) Memory divergence. 
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3. MODELS FOR GPU-INITIATED SYSTEM-LEVEL OPERATIONS 

In Chapter 1, we introduced three programming models to execute a system-level operation from 

the GPU. We briefly review each model and its associated pros and cons below. 

1. Coprocessor model: Disallows a GPU work-item to directly execute a system-level 

operation [19][20]. Instead, programmers are forced to refactor their programs so that 

system-level operations are executed by the host CPU either before or after a GPU kernel 

executes. To obtain peak performance, programmers must explicitly software pipeline 

network communication and GPU computation. This can be tedious as it requires breaking 

the computation into sub-computations that can execute independent of each other. 

2. Operation-per-lane model: Enables work-items to directly execute system-level operations 

at any point in a GPU kernel. While this is the ideal programming model and it naturally 

overlaps communication with computation, previous implementations of the operation-per-

lane model are either inefficient [23], require eccentric hardware [18][22], or burden 

programmers to manage SIMT effects related to exporting a system-level operation [21][23]. 

3. Coalesced APIs: Enables a system-level operation to be executed from the GPU, but 

requires every work-item in the same work-group to participate in a coalesced API call with 

identical arguments [24][25][26]. This constraint can be awkward when adjacent work-items 

execute incompatible system-level operations (e.g., send network messages to different 

destinations). Similar to the operation-per-lane model, this model implicitly overlaps 

communication and computation. 

In Section 3.1, we use an example to demonstrate that the coprocessor model and coalesced 

APIs can be awkward programming interfaces for irregular applications, which are applications 

that use system-level operations frequently, unpredictably, and in a fine-grain manner. The 
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example is inspired from our work on fine-grain GPU-initiated network messages (Chapter 5), but 

many of the issues apply more broadly to executing a system-level operation from the GPU. 

In Section 3.2, we describe how the operation-per-lane model can be supported efficiently on 

a modern GPU. Our key insight is to use aggregation buffers as a producer/consumer medium to 

coordinate system-level operations and to amortize the high-cost of producer/consumer 

synchronization across the GPU’s data-parallel lanes. 

3.1 Case Study: Distributing GUPS in each Model 

This section explores the programmability and operation of each model for executing system-level 

operations from the GPU. In particular, the three previously proposed models—coprocessor, 

operation-per-lane, and coalesced APIs—were not designed to handle the fine-grain and 

unpredictable system-level operations that frequently occur in irregular applications. Thus, we first 

try to understand how these prior models can accommodate such operations, which incur very high 

overhead with a naïve implementation. Specifically, we study how to distribute the giga-updates 

per second (GUPS) micro-benchmark, which requires system-level operations to send network 

messages. Sending messages is achieved by routing them through the network interface (NI), 

which is external to the GPU. 

In GUPS, a distributed array, A, is incremented at random offsets obtained from a second local 

data structure [33]. Table 3-1 shows pseudo-code for each model and Table 3-2 shows line counts 

for real code. A recurring theme is to amortize per-message overhead by combining messages that 

share the same destination into aggregation buffers, which act as large per-node queues that are 

suitable for network transmission. Thus, from the GPU’s perspective, system-level operations (i.e., 

outgoing network messages) have multiple targets (i.e., messages target the per-node queue that 

corresponds to their destination). 
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Table 3-1. GUPS pseudo-code. 

A is the array being updated. There is a slice of A, at the same virtual address, on each 

node. B is a local array of offsets into A. C is a local array of destinations. GRID_ID is a per-

work-item identifier used to index data. 

--- GPU kernel --- 
 1: gups(B, C, Qs): 
 2:   for each node targeted by my work-group: 
 3:     if node == C[GRID_ID]: 
 4:       MyOff = leader_level_reserve(&Qs[node]) 
 5:       Qs[node][MyOff] = B[GRID_ID] 
 
--- host code --- 
 6: for (idx = 0; idx < len(B), idx += Q_SZ): 
 7:   gups(&B[idx], C, Qs) # on GPU, GRID_WIDTH=Q_SZ 
 8:   for each node: 
 9:     send Qs[node] to node 
10:   for each node: 
11:     receive Q from node 
12:     for each offset in Q: 
13:       A[offset]++ 
 

(a) Coprocessor model. 
 

--- GPU kernel --- 
14: gups(A, B, C): 
15:   shmem_inc(A + B[GRID_ID], C[GRID_ID]) 
 
--- host code --- 
16: gups(A, B, C) # on GPU, GRID_WIDTH=len(B) 
 

(b) Message-per-lane model & Gravel. 
 

--- GPU kernel --- 
17: gups(A, B, C): 
18:   # allocate data-structures in GPU’s scratchpad 
19:   int64_t ptrs[WG_SIZE] 
20:   int dests[NODE_COUNT] 
21:   int cnts[NODE_COUNT] 
22:   # After sort: ptrs -> list of per-node Qs; dests 
23:   # -> destination list and cnts -> list of 
24:   # per-node Q sizes. dcnt = # of destinations. 
25:   dcnt = sort(ptrs, dests, cnts, A, B, C) 
26:   off = 0 
27:   for (d = 0; d < dcnt; d++): 
28:     sync_inc_list(&ptrs[off], dests[d], cnts[d]) 
29:     off += cnts[d] 
 
--- host code --- 
30: gups(A, B, C) # on GPU, GRID_WIDTH=len(B) 
 

(c) Coalesced APIs. 
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We use four criteria to summarize the benefits and limitations of each model: (1) SIMT 

utilization, described in Section 2.3; (2) large messages, meaning that messages are large enough 

to amortize network overhead; (3) efficient synchronization, meaning that work-items coordinate 

to use the NI efficiently; and (4) programmability, meaning that applications are simpler (e.g., 

fewer lines of code). Table 3-3 summarizes how each model ranks across these four criteria. 

3.1.1 Coprocessor Model 

In the coprocessor model, programmers write CPU code to handle network communication before 

and after each GPU kernel. GPUDirect RDMA [19] and CUDA-aware MPI [20] are two examples 

focused on GPU networking that follow this model. To implement an irregular application, a 

 

Figure 3-1. Using the coprocessor model to distribute GUPS. 
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Table 3-2. Lines of code for GUPS for each model. 

 Coprocessor Msg-per-lane & Gravel Coalesced APIs 

host 296 174 187 

GPU 46 19 131 

total 342 193 318 
 

Table 3-3. Ranking different GPU networking models. 

 coprocessor  msg-per-lane coalesced APIs Gravel 

SIMT utilization *  *  

large messages  * *  

efficient sync     

programmability   *  

* Good for prior workloads studied; bad for small unpredictable messages. 
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programmer might manually organize messages into per-node queues (Figure 3-1), which exposes 

several low-level issues. Specifically, the programmer must avoid overflowing a queue, manually 

send and receive the queues, and overlap the sends/receives with GPU execution. The GPU code 

must efficiently insert messages into the per-node queues. 

The pseudo-code (Table 3-1a) avoids overflowing a queue by chunking the updates (lines 6-

7). Specifically, each chunk is sized to match the per-node queue size. This enables each queue to 

handle the worst case, where all work-items send messages to the same node. Chunking also helps 

to overlap communication (lines 8-11) and computation. On the GPU, work-groups use leader-

level synchronization to efficiently reserve space in the queues (line 4). Note, work-group-level 

synchronization occurs once per destination (lines 2-3), which causes branch and memory 

divergence. 

3.1.2 Operation-per-lane Model 

In prior work, the message-per-lane model (Figure 3-2) burdens programmers with managing 

GPU-initiated system-level operations in a SIMT-efficient way (e.g., DCGN [23] and CUDA’s 

dynamic parallelism [21]) or requires special hardware (e.g., GGAS [18] and NVSHMEM [22]) 

to route a wavefront’s messages between the GPU’s SIMT lanes and the NI. Here, we assume the 

 

Figure 3-2. Using the operation-per-lane model to distribute GUPS. 
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latter approach, where SIMT issues are hidden from the programmer. We also note that 

aggregation buffers, discussed in Section 3.2, can achieve this effect without special hardware. 

Table 3-1b shows pseudo-code for the message-per-lane model. After launching the GPU 

kernel (line 16), work-items update slices of A (line 15). Table 3-2 shows that this model (i.e., 193 

lines) is more programmable than the coprocessor model (i.e., 342 lines). Unfortunately, the 

messages generated by work-items are too small for efficient network transmission. 

3.1.3 Coalesced APIs 

Coalesced APIs, shown in Figure 3-3, are designed to be executed by all work-items in a work-

group at the same time and with identical arguments (e.g., destination, command, payload). 

GPUnet [24] and GPUrdma [25] are examples of prior work on GPU networking that provide 

coalesced APIs. GPUfs, which focuses on enabling GPUs to directly operate on files, also provides 

coalesced APIs [26]. At first glance, this model seems to degenerate to the message-per-lane model 

for small random messages. However, the pseudo-code in Table 3-1c shows that a tenacious 

programmer can use the GPU’s scratchpad (lines 18-21) to sort a work-group’s messages by 

destination (lines 22-25). A counting sort, where the keys are the destination IDs, works well [34]. 

 

Figure 3-3. Using coalesced APIs to distribute GUPS. 
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The sort outputs a contiguous list of messages for each destination targeted by a work-group. The 

pseudo-code then uses a coalesced API, sync_inc_list, to send each list. 

Our coalesced APIs version (318 lines) is 1.6x more code than the message-per-lane model 

(193 lines). One issue is the amount of scratchpad used (i.e., a work-group with 256 work-items 

uses 4 kB of scratchpad). A second problem is that aggregating across a work-group (instead of 

the entire GPU) generates small per-node queues. Finally, a third issue is that coalesced APIs are 

invoked for each destination, which degrades SIMT utilization. 

3.2 Coordinating GPU Thread Access to the Aggregation Buffers 

In the previous section, we showed that the operation-per-lane model provides the best 

programmability. We also observed that it can perform poorly when system-level coordination is 

required for each system-level operation executed from the GPU. 

In this section, we explore using aggregation buffers to amortize the cost of system-level 

coordination. Specifically, our goal is to route system-level operations, initiated by work-items on 

the GPU according to the operation-per-lane model, to their respective aggregation buffers. 

Packing system-level operations into aggregation buffers limits system-level coordination to occur 

once per aggregation buffer instead of once per system-level operation. 

The key challenge is to efficiently deposit system-level operations into their respective 

aggregation buffer. Depositing a system-level operation means writing all of its attributes into the 

buffer so that the operation can be consumed where the system-level resource resides. To 

efficiently deposit operations, we leverage leader-level synchronization (Section 3.2.1), which 

occurs at SIMT granularity (instead of work-item granularity). Thus, each aggregation buffer can 

be viewed as a producer/consumer queue where producers are SIMT groups that use leader-level 

synchronization to coordinate. 
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Using leader-level synchronization, we develop two schemes to route system-level operations 

from the GPU’s data-parallel lanes to the correct aggregation buffer—SIMT-direct aggregation 

and indirect aggregation (Section 3.2.2). We also present a quantitative comparison of SIMT-direct 

aggregation and indirect aggregation (Section 3.2.3). Finally, we conclude this section with a 

discussion on use cases for aggregation buffers (Section 3.2.4). 

3.2.1 Leader-level Synchronization 

Leader-level synchronization is a crucial building block used to efficiently reserve space in an 

aggregation buffer for a SIMT group’s system-level operations. This concept is demonstrated in 

Figure 3-4. In the figure, data-parallel threads executing in the same SIMT group coordinate to 

route their system-level operations to the host CPU through a shared-memory producer/consumer 

queue. Specifically, at time ❶, the threads in SIMT group 1 coordinate to elect a leader thread, t3, 

which reserves four slots in the queue on behalf of its entire SIMT group. Importantly, the leader 

thread is chosen without invoking the memory system’s expensive coherence mechanisms. For 

example, SIMT constructs (introduced in Chapter 2) such as data-parallel operations (e.g., 

reduction or prefix sum), scratchpad memory, work-group-level barriers, and lockstep execution 

can all be leveraged to elect a leader thread, instead of using shared-memory synchronization. 

Referring back to the figure, after t3 has reserved four slots, the threads in SIMT group 1, t0-

t3, deposit their operations into the queue (time ❷). Specifically, depositing an operation entails 

 

Figure 3-4. Leader-level synchronization. 
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writing all of its attributes (e.g., command, arguments) into the queue. Similarly, at time ❸ a 

leader thread, t7, is elected to reserve four queue slots for the threads in SIMT group 2, t4-t7, which 

deposit their operations (time ❹) after the slots have been reserved. In this example, threads on 

the host CPU retrieve operations from the queue and execute them (time ❺). A subtle detail, not 

shown in the figure, is that a CPU thread dequeues several operations at once to amortize the high-

cost of producer/consumer synchronization. 

3.2.2 Aggregation Schemes 

In this section, we explore how to use leader-level synchronization to route operations to their 

respective aggregation buffer. The discussion is organized around two questions, discussed below 

and summarized by Figure 3-5. 

1. How do we define a SIMT group? 

A SIMT group can be defined to be a wavefront or a work-group. A wavefront is convenient 

because it corresponds to the GPU’s execution granularity, which means that work-items in a 

 

Figure 3-5. Aggregation taxonomy. 
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wavefront can synchronize in a well-defined way from divergent code (this concept is labeled 

divergent exec in Figure 3-5). In contrast, a work-group can comprise more than one wavefront 

and when those wavefronts have non-overlapping control flow it is not clear how to synchronize 

across them. 

The advantage of a work-group is that it can provide more work-items to amortize the cost of 

leader-level synchronization. This concept is labeled efficient sync in Figure 3-5. In Chapter 4, we 

describe our channels prototype, which makes the SIMT group a wavefront. The channels 

prototype was our first effort to implement leader-level synchronization and making the SIMT 

group a wavefront seemed like the only plausible option. In Chapter 5, we describe Gravel, which 

makes a SIMT group a work-group. To enable leader-level synchronization from divergent control 

flow we explore a diverged work-group-level semantic, which guarantees that all of a work-

group’s wavefronts are present during leader-level synchronization. 

2. How do we route system-level operations originating from the same SIMT group to 

different aggregation buffers?  

We consider two ways to export operations to the correct aggregation buffer: SIMT-direct 

aggregation (prototyped in Chapter 4) and indirect aggregation (prototyped in Chapter 5). In 

 

Figure 3-6. SIMT-driven aggregation. 
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SIMT-direct aggregation, which is shown being used to combine network messages in Figure 3-6, 

work-items write their operations into their respective aggregation buffer directly. Specifically, 

work-items within a work-group coordinate to identify which work-items can invoke leader-level 

synchronization together (time ❶). For example, in Figure 3-6 leader-level synchronization can 

be applied to wi0 and wi2, because they execute compatible operations and belong to the same 

SIMT group. In this example, threads associated with the NIC monitor the aggregation buffers 

(labeled per-node buffers in the figure) and send them through the network after they reach their 

maximum occupancy or exceed a timeout (time ❷). 

The second aggregation scheme that we consider is indirect aggregation, which is shown being 

used to aggregate network messages in Figure 3-7. In the figure, messages initiated by work-items 

in the same SIMT group are collected in per-SIMT-group buffers (time ❶). The per-SIMT-group 

buffers are then transferred to a dedicated aggregator, which copies the messages into their 

respective aggregation buffers (time ❷). The aggregator can be implemented in hardware or as a 

scalar thread. In the example, the aggregator is realized through the scalar threads residing inside 

of the NIC. Finally, the aggregation buffers are sent through the network after they accumulate 

enough messages or exceed a timeout (time ❸). 

 

Figure 3-7. Indirect aggregation. 
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Algorithmically, SIMT-direct aggregation moves less bytes than CPU-side aggregation. This 

concept is labeled processing efficiency in Figure 3-5. Specifically, indirect aggregation has to 

process each message twice, whereas messages are processed once by SIMT-direct aggregation. 

Furthermore, indirect aggregation requires work-items to communicate each operation’s attributes 

to the aggregator so that an operation can be directed to the correct aggregation buffer. SIMT-

direct aggregation encodes this information once for each aggregation buffer. 

In practice, SIMT-direct aggregation is hard to implement efficiently. In particular, it is hard 

to avoid branch divergence when operations originating from the same SIMT group target different 

aggregation buffers. It is also hard to minimize memory divergence because work-items write the 

aggregation buffers in an unpredictable manner. Finally, SIMT-direct aggregation invokes leader-

level synchronization once per aggregation buffer targeted by a SIMT group. In contrast, indirect 

aggregation invokes leader-level synchronization once per work-group. These concepts are labeled 

scalable/SIMT efficiency in Figure 3-5. 

3.2.3 Sensitivity Study 

We wanted to evaluate GUPS with both SIMT-direct aggregation and indirect aggregation on 

clusters of different sizes to confirm the qualitative analysis in the previous section (larger clusters 

demand more aggregation buffers). Unfortunately, we were unable to access a large enough 

 

Figure 3-8. Using one node to project GUPS at N nodes. 
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cluster. Instead, we developed a GUPS-inspired micro-benchmark, depicted in Figure 3-8, to 

project the performance of GUPS on a cluster with N nodes using one node. 

To understand the experiment, consider some concrete examples. First, the left-most scene in 

the figure shows a GUPS execution of M updates on one node. All updates occur on that node with 

100% probability (i.e., P=1). 

Now, consider executing the same M updates across four nodes (shown in the middle scene). 

Node 0 is responsible for 1/4th (i.e., M/4) of those updates. Furthermore, because the array is evenly 

distributed across the four nodes, 1/4th of node 0’s M/4 updates execute locally and the rest are 

equally distributed across the other three nodes. The key observation is that the amount of traffic 

leaving a node (e.g., 3/4th of node 0’s M/4 updates) is the same as the amount of traffic coming in 

(e.g., each other node sends node 0 1/4th of its M/4 updates). 

With this understanding, we employ the experiment shown in the right-most scene of Figure 

3-8. Specifically, given a GUPS computation of M updates across N nodes, we execute M/N 

 

Figure 3-9. GUPS projected scalability. 
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updates on one node. We neglect the remaining M – M/N updates. We allocate the entire array on 

the one node (instead of distributing it). Finally, we loop all outgoing traffic back into the node. 

Figure 3-9 shows how the two aggregation schemes perform at different cluster sizes. The 

results are normalized to SIMT-direct aggregation at two nodes. As predicted, SIMT-direct 

aggregation is more efficient on smaller clusters (despite the fact that it experiences branch and 

memory divergence). As the number of nodes in a cluster increases beyond eight nodes, indirect 

aggregation does better. This is because in SIMT-direct aggregation a SIMT group invokes leader-

level synchronization once per aggregation buffer whereas indirect aggregation invokes leader-

level synchronization once per SIMT group (irrespective of the number of aggregation buffers). 

3.2.4 Aggregation Buffer Use Cases 

We conclude this chapter with a discussion of different situations that can benefit from aggregation 

buffers. First, as previously discussed, aggregation buffers enable system-level operations such as 

dynamic memory allocation, file I/O, network I/O, printf, and system calls to be offloaded to a 

device outside of the GPU’s data-parallel hardware. That device can be the host CPU, the NIC, or 

an embedded controller inside of the GPU. 

In certain cases, aggregation buffers can be used to batch system-level operations. For 

example, tasks can be coalesced into larger data-parallel tasks that are more likely to saturate data-

parallel hardware. This idea is explored in detail in Chapter 4. Similarly, aggregation buffers can 

be used to batch network messages. This idea is explored in detail in Chapter 5. One can also 

imagine batching systems calls to amortize the overhead of calling into the OS kernel. 

A third use case for aggregation buffers is to improve the coupling of discrete cards with their 

host CPU. Specifically, discrete cards are typically connected over PCIe and companies often 

provide mechanisms for CPUs and discrete GPUs to access each other’s memories. Thus, 
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aggregation buffers could be used to amortize PCIe overheads associated with a distant memory 

connected over PCIe. 

Finally, aggregation buffers can also be used to mitigate branch divergence. Specifically, they 

could be used to dynamically regroup wavefronts based on the control flow of their underlying 

work-items. This idea is similar to dynamic micro-kernels, which were previously proposed by 

Steffen and Zambreno [35]. 
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4. FINE-GRAIN TASK AGGREGATION AND COORDINATION ON GPUS 

In this chapter, we explore a new tasking abstraction called channels—originally proposed by 

Gaster and Howes [28]. Specifically, channels are multi-producer/multi-consumer data queues that 

reside in virtual memory and act as a medium through which producers and consumers 

communicate in a data-flow manner. A given channel holds fine-grain data items—which we call 

channel elements (CEs)—that are processed by the same function. Constraining each channel to 

be processed by exactly one function facilitates efficient aggregation of work that then can be 

scheduled onto the GPU’s data-parallel hardware. 

Note, channels are aggregation buffers and enqueueing a CE onto a channel is a system-level 

operation. Furthermore, our goal is to enable programmers to inject a CE into a channel using 

operation-per-lane semantics. Channels are interesting to explore for two reasons. First, as we 

show later, they have potential to expand GPGPU programming by enabling new programming 

abstractions such as Cilk. Second, they epitomize the typical system-level operation, which means 

that many of the insights developed here can be applied to other system-level operations. 

Furthermore, while Gaster and Howes defined channels, they did not propose an 

implementation, leaving designers to question their practicality. To this end, we propose and 

evaluate the first implementation of channels. Notably, the channel implementation proposed in 

this chapter is SIMT-direct (as described in Section 3.2.2). To obtain acceptable performance, our 

implementation is lock-free, non-blocking, and optimized for SIMT accesses. 

The finer-grain parallelism enabled by channels requires more frequent and complex 

scheduling decisions. To manage this behavior, we leverage the GPU’s CP, which typically is 

implemented as a small, in-order, programmable processor. We use this tightly integrated 

processor to monitor the channels, manage algorithmic dependencies among them, and dispatch 
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ready work to the GPU. Our analysis suggests that replacing the existing in-order processor with 

a modest out-of-order processor can mitigate the scheduling overheads imposed by dynamic 

aggregation. 

Because no existing programs are written specifically for channels, we evaluate our 

implementation by mapping flow graph-based programs to channels. A flow graph is a data-driven 

graph representation of a parallel application. It is a popular abstraction used by many modern 

parallel programming languages, including Intel’s Threading Building Blocks (TBB) [36]. Flow-

graph nodes represent the program’s computation, while messages flowing over directed edges 

represent communication and coordination. We use channels to aggregate individual messages 

into coarser-grain units that can be scheduled efficiently onto the GPU. Channel-flow graphs 

increase the diversity of applications that map well to GPUs by enabling higher-level programming 

languages with less rigid task abstractions than today’s GPGPU languages. 

We specifically explore mapping programs written in Cilk to channels. Cilk is a parallel 

extension to C/C++ for expressing recursive parallelism. We define a set of transformations to 

map a subset of Cilk to a channel-flow graph so that it can execute on a GPU. This presented two 

important challenges. First, GPUs do not provide a call stack, which CPUs normally use to handle 

recursion. Our solution is to map Cilk’s task tree to “stacks of channels”. Second, previous Cilk 

runtimes use depth-first recursion to bound memory usage. However, although breadth-first 

scheduling is more effective at populating a GPU’s thousands of hardware thread contexts, it 

requires exponential memory resources [37]. To solve this problem, we propose a bounded 

breadth-first traversal, relying on a novel yield mechanism that allows wavefronts to release their 

execution resources. Through channels and wavefront yield, we implement four Cilk workloads 

and use them to demonstrate the scalability of Cilk in our simulated prototype. 
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4.1 Channel Definition and Implementation 

Gaster and Howes suggested channels to improve on today’s coarse-grain GPU task abstractions. 

In this section, we summarize their vision and propose the first channel implementation, which 

executes on forward-looking APUs. Our implementation is SIMT-direct in that work-items 

directly reserve space and enqueue their CEs into a channel. In contrast, the per-node buffers, 

which are discussed in Chapter 5 and are analogous to channels, are indirect. 

4.1.1 Prior Work on Channels 

A channel is a finite queue in virtual memory, through which fine-grain data (channel elements, 

or CEs) are produced and consumed in a data-flow manner. Channels resemble conventional task 

queues, but differ in three ways: 

1. Data in a channel are processed by exactly one function permanently associated with that 

channel. 

2. CEs are aggregated dynamically into structured, coarse-grain tasks that execute efficiently 

on GPUs. 

3. Each channel has a “predicate” function for making dynamic scheduling decisions. 

Figure 4-1 shows data moving through channels in an APU-like system that includes a CPU 

and a GPU connected to a coherent shared memory. The GPU’s control processor is extended to 

 

Figure 4-1. Channel flow. 
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monitor and manage channels. Because we are concerned primarily with this new capability, we 

call the control processor the aggregator (labeled Agg in Figure 4-1) for the remainder of this paper. 

At time 0 (t0) in Figure 4-1, the host initializes two channels and populates them with CEs. At 

time 1 (t1), the aggregator, controlled through a user-defined scheduler, probes the channels; it 

detects enough CEs to justify a dispatch to GPU hardware. The GPU consumes the CEs at t2 and 

produces new CEs in a different channel at t3. 

Restricting each channel to processing by exactly one function avoids burdening the 

aggregator with inspecting individual CEs. This constraint does not limit fine-grain task-

parallelism because channels are mapped to shared virtual memory and therefore are visible to all 

producers. 

The predicate is a Boolean function that assists the aggregator in making scheduling decisions. 

The simplest predicate is one that returns false unless enough CEs are available to populate all of 

a SIMD unit’s lanes. This is what we assume for this paper. 

4.1.2 Lock-free Channel Implementation 

To realize finer-grain task abstractions on GPUs, we introduce a SIMT-direct multi-

producer/multi-consumer queue that is lock-free, non-blocking, and array-based. Lock-free queues 

have a rich history in the context of CPUs. Early work considered array-based designs 

[38][39][40], but linked lists are preferred [41][42]. Linked lists are not well suited for GPUs 

because different work-items in a wavefront consuming adjacent CEs are susceptible to memory 

divergence, which occurs when the work-items access different cache blocks; if the requests had 

been to the same cache block, the GPU’s coalescing hardware could have merged them. We find 

that our queue implementation accommodates the high levels of contention that are typical on a 

massively threaded GPU. 



34 

 

SIMT-direct Channel Implementation 

Our array-based channel is implemented as three structures: 

1. Data array: Buffer for produced CEs. 

2. Control array: Buffer of data-array offsets, populated by producers and monitored by the 

aggregator. 

3. Done-count array: Adjacent data-array elements can share a done-count element. The 

aggregator monitors the done-count array to free data-array elements in the order they were 

allocated. 

The size of the done-count array is the size of the data array divided by the number of data-

array elements that share a done count. The control array is twice the size of the data array. Array 

elements can be in one of five states: 

1. Available: Vacant and available for reservation. 

2. Reserved: Producer is filling, hidden from aggregator. 

3. Ready: Visible to aggregator, set for consumption. 

4. Dispatched: Consumer is processing. 

5. Done: Waiting to be deallocated by aggregator. 

Figure 4-2 illustrates two wavefronts, each four work-items wide, operating on a single 

channel in system memory. For space, the control array is the same size as the data array in the 

figure, but in practice it is twice the size of the data array. In the text that follows, producers operate 

on the tail end of an array and consumers operate on the head end. 

At time 0 (t0), the data array’s head and tail pointers are initialized to the same element. 

Similarly, the control array’s head and tail pointers are initialized to the same element. The 

control array maintains two tail pointers (tail and reserveTail) because producers cannot 
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instantaneously reserve space in the control array and write the data-array offset. All done counts 

are initialized to 0. 

At t1, each work-item in wavefront 0 reserves space for a CE. Four data-array elements are 

transitioned to the reserved state by updating the data array’s tail pointer via compare-and-swap 

(CAS). At t2, each work-item in wavefront 1 reserves space for a CE and at t3 those work-items 

finish writing their data-array elements. 

Data-array elements are made visible to the aggregator by writing their offsets into the control 

array. Specifically, at t4, wavefront 1 updates reserveTail via CAS to reserve space in the control 

array for its data-array offsets. At t5, the offsets are written and at t6 the control array’s tail, which 

is monitored by the aggregator, is updated to match reserveTail. The array elements related to 

wavefront 1 are now in the ready state. The design is non-blocking because wavefront 1 can make 

its CEs visible to the aggregator before wavefront 0 even though it reserved space after wavefront 

0. 

At t7, the data-array elements generated by wavefront 1 are transitioned to the dispatched state 

when the aggregator points consumers at their respective control-array elements. Those control-

array elements also transition to the dispatched state; they cannot be overwritten until their 

 

Figure 4-2. SIMT-direct, lock-free, non-blocking channel implementation. 
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corresponding data-array elements are deallocated because the control array is twice the size of 

the data array. 

At t8, wavefront 0 finishes writing its data-array elements and makes its CEs visible to the 

aggregator. At t9, wavefront 0’s CEs are dispatched. Also at t9, the consumers of wavefront 1’s 

CEs signal that they no longer need to reference the data-array elements by updating their 

respective done counts atomically; these data-array elements cannot be deallocated before 

wavefront 0’s data-array elements. At t10, the consumers of wavefront 0’s CEs update their 

respective done counts. Finally, at t11, the aggregator deallocates space. 

Discussion and Optimization 

The array-based channel maps well to the GPU’s coalescing hardware. The CUs are responsible 

for allocation and consumption while the aggregator handles deallocation, which is off the critical 

path of execution. The aggregator manages the channels without inspecting their individual CEs.  

 1: int gpuReserveNElements(int numEl, int *tail) { 
 2:   int wfTail = 0; 
 3:   // 1. Choose one work-item to operate on tail 
 4:   bool update = most_sig_work_item(); 
 5:   // 2. Intra-wavefront prefix sum 
 6:   int offset = prefix_sum(numEl); 
 7:   int numElToRes = offset + numEl; 
 8:   // 3. Intra-wavefront synchronization 
 9:   join_wfbarrier(); 
10:   while(update) { 
11:     int oldTail = *tail; 
12:     int nextTail = oldTail + numElToRes; 
13:     int curTail = CAS(tail, oldTail, nextTail); 
14:     if(oldTail == curTail) { 
15:       wfTail = oldTail; 
16:       update = false; 
17:     } 
18:   } 
19:   wait_at_wfbarrier(); 
20:   // 4. Broadcast tail to entire wavefront 
21:   wfTail = reduction(wfTail); 
22:   return (wfTail + offset); 
23: } 

Figure 4-3. GPU fetch-and-update. 

(ignores wrapping/overflow) 
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Space is reserved in the data and control arrays through conditional fetch-and-update (via 

CAS). By leveraging intra-wavefront communication instructions [43], this operation can be 

amortized across a wavefront, greatly reducing memory traffic. Figure 4-3 depicts pseudo-code 

with these optimizations that updates a channel array’s tail pointer. 

4.2 Programming with Channels 

This section proposes a low-level API to interface channels and describes utilizing channels 

through flow graphs. 

4.2.1 Channel API 

Table 4-1 shows the channel API. Producers call talloc to allocate CEs. An allocated CE is made 

visible to the aggregator via the enq function. A CE must be enqueued to the channel that was 

specified during its allocation. A consumer obtains work with the deq function; the specific 

channel and offset within that channel are managed by the aggregator. After data is consumed, the 

aggregator is signaled that deallocation can occur via the tfree API. 

The talloc API enables minimum data movement between producers and consumers 

because the destination channel is written directly through the pointer that talloc returns. Figure 

4-5, lines 3-19, demonstrate the API in Table 4-1. 

4.2.2 Channel-flow Graphs 

Flow graphs comprise a set of nodes that produce and consume messages through directed edges; 

the flow of messages is managed through conditions. Several popular parallel programming 

Table 4-1. Channel API. 

API Function Description 

void *talloc(int id, int cnt) allocate cnt CEs in channel id. 

void enq(int id, void *ptr) place CEs at ptr in channel id. 

void *deq(int id, int off) get CE in channel id at off. 

void tfree(int id, int off) free CE in channel id at off. 
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languages and runtimes support flow graphs. For example, Intel’s TBB provides a sophisticated 

flow-graph abstraction [36]. MapReduce [44] and StreamIt [45] provide more constrained flow-

graph frameworks. GRAMPS, which had a strong influence on the original proposal for channels, 

explores scheduling flow graphs onto graphics pipelines [46]. 

Channels facilitate flow graphs with fine-grain messages. A channel-flow graph is specified 

as a directed graph composed of kernel nodes and channel nodes. A kernel node resembles a 

GPGPU kernel that consumes and produces data. Kernel nodes are analogous to function nodes in 

TBB. A channel node is a buffer that accumulates messages produced by kernel nodes and routes 

them to be consumed by other kernel nodes. Channel nodes are similar to queue nodes in TBB, 

but bounded. 

 

Figure 4-4. Channel-flow graph for naïve Fibonacci. 
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Figure 4-4 shows an example flow graph to compute the fourth Fibonacci number. At time 0 

(t0), the graph, made of one kernel node and one channel node, is initialized on the host; the CE is 

uniquely defined for that channel. At t1, an init node (the host) puts source CEs in the channel 

node. At t2, the kernel node consumes CEs from the channel node and produces new CEs. At t3, 

the kernel node consumes the remaining CEs and the computation is done. 

 1: #define LEN 32768 
 2: 
 3: typedef struct { 
 4:   int val; 
 5: } FibObj; 
 6: 
 7: void FibKernel(int srcID, int srcOff, 
 8:                int destID, int *result) { 
 9:   FibObj *src = (FibObj *)deq(srcID, srcOff); 
10:   if(src->val <= 2) { 
11:     atomic_add(result, 1); 
12:   } else { 
13:     FibObj *ob = (FibObj *)talloc(destID, 2); 
14:     ob[0].val = src->val - 1; 
15:     ob[1].val = src->val - 2; 
16:     enq(destID, ob); 
17:   } 
18:   tfree(srcID, srcOff); 

19: } 

20: 
21: void main(int argc, char * argv[]) { 
22:   int n = atoi(argv[1]); 
23:   int res = 0; 
24: 
25:   Graph g; 
26:   ChanNode *ch = g.ChanNode(sizeof(FibObj), LEN); 
27:   KernelNode *kern = g.KernelNode(FibKernel); 
28:   kern->setConstArg(2, sizeof(int), ch->chID); 
29:   kern->setConstArg(3, sizeof(int *), &res); 
30:   ch->connectToKernelNode(kern); 
31: 
32:   FibObj *ob = (FibObj *)ch->talloc(1); 
33:   ob->val = n; 
34:   ch->enq(ob); 
35: 
36:   g.execute(); 
37:   g.waitForDone(); 
38:   printf(“fib(%d) = %d\n”, n, res); 
39: } 

Figure 4-5. Fibonacci example. 
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A simple graph API was prototyped for this research. Figure 4-5 demonstrates how to build 

the channel-flow graph shown in Figure 4-4. A sophisticated flow-graph framework is beyond the 

scope of this work. The remainder of this chapter focuses on other aspects of our design. 

4.3 Case Study: Mapping Cilk to Channels 

Channels facilitate mapping higher-level abstractions to GPUs. As an example, we discuss 

translating a subset of the Cilk programming language to a channel representation. 

4.3.1 Cilk Background 

Cilk extends C/C++ for divide-and-conquer parallelism [47]. Cilk programs use the keyword 

spawn before a function to schedule it as a task. The keyword sync forces its caller to block until 

all of its spawned tasks are complete. Figure 4-6 demonstrates how these keywords are used to 

calculate the nth Fibonacci number. These two Cilk primitives form the basis of the language and 

are what we explore mapping to channels. Other primitives are left for future work. 

1: int fib(int n) { 
2:   if(n <= 2) return 1; 
3:   else { 
4:     int x = spawn fib(n - 1); 
5:     int y = spawn fib(n - 2); 
6:     sync; 
7:     return (x + y); 
8:   } 
9: } 

Figure 4-6. Fibonacci in Cilk. 

 

Figure 4-7. Cilk tree for Fibonacci. 
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4.3.2 Cilk as a Channel-flow Graph 

One strategy to implement Cilk on channels is to divide kernels into sub-kernels that are scheduled 

respecting dependencies. Specifically, a sub-kernel is created whenever sync is encountered. Each 

spawn is translated into a talloc/enq sequence that reserves space in the correct channel, writes 

the task parameters, and schedules the work. Each sync is translated into a talloc/enq sequence 

that schedules work to a channel connected to the “post-sync” sub-kernel. It may be possible to 

automate these translations, but they are done manually for this research.  

Figure 4-7 shows the Cilk tree to calculate the fifth Fibonacci number. Shaded circles are “pre-

sync” tasks (lines 2-5 in Figure 4-6). White circles are “post-sync” tasks (line 7 in Figure 4-6). 

Solid lines depict task spawns and dotted lines are dependencies. Each circle is labeled with a letter 

specifying the order in which it can be scheduled. 

Shaded circles, or pre-sync tasks, have no dependencies. They are labeled “A” and are 

scheduled first. White circles, or post-sync tasks, depend on shaded circles and other white circles. 

Dependencies on shaded circles are respected by scheduling white circles after all shaded circles 

are complete. White circles are labeled “B” or lexicographically larger. Dependencies among 

white circles are inferred conservatively from the level of recursion from which they derive. For 

example, the white circle representing the continuation for the fourth Fibonacci number and 

 

Figure 4-8. Managing dependencies with channels. 

channel stack:5A

4A 3A

3A 2A 2A 1A

2A 1A

3C4C

5D

top of
stack3B



42 

 

labeled “C” derives from the second level of the Cilk tree and depends on a continuation that 

derives from the third level. 

Continuations that derive from deeper levels of the Cilk tree can be scheduled first. This is 

achieved by maintaining “stacks of channels” for continuations and scheduling each continuation 

at the correct offset within the stack. Virtual memory is allocated up front for channel stacks, 

similar to how CPU threads are allocated private stacks. Tasks determine the correct offset within 

the stack by accepting their recursion depth as a parameter. The scheduler drains the channel at the 

top of the stack before scheduling channels below it. This strategy is called levelization [48]. 

Figure 4-8 shows the tasks from Figure 4-7 organized into a main channel for pre-sync tasks 

and a stack of channels for post-spawn tasks. Figure 4-9 shows the channel-flow graph for the Cilk 

version of Fibonacci. Channel stack nodes (e.g., the dashed box in Figure 4-9) are added to the 

channel-flow-graph framework. Instead of atomically updating a global result, as is done by the 

flow graph in Figure 4-4, each thread updates a private result in the channel stack. Intermediate 

results are merged into a final result by a second continuation kernel node. 

 

Figure 4-9. Channel-flow graph for Cilk version of Fibonacci. 

fib
kernel

fib channel
init

fib.cont stack:

fib.cont
kernel



43 

 

Finally, it should be noted that the translations described for the Cilk version of Fibonacci 

generalize to other Cilk programs because they all have one logical recursion tree. 

4.3.3 Bounding Cilk’s Memory Footprint 

For CPUs, Cilk runtimes use a work-first scheduling policy to bound the memory footprint to the 

depth of the Cilk tree. In work-first scheduling, threads traverse the Cilk tree in a depth-first 

manner by scheduling the continuation for a task that calls spawn and executing the spawned task 

[47]. This does not generate work fast enough for GPUs. 

The scheduling policy described in Section 4.3.2 is called help-first. It generates work quickly 

by doing a breadth-first traversal of the Cilk tree, but consumes exponential memory relative to a 

workload’s input size [37]. To make this policy feasible, the memory footprint must be bounded. 

This is possible if hardware supports yielding a CTX. 

If a hardware context yields its execution resources when it is unable to obtain space in a 

channel, the scheduler can drain the channels by prioritizing work deeper in the recursion. When 

a base-case task is scheduled, it executes without spawning new tasks, freeing space in its channel. 

When a task near the base case executes, it spawns work deeper in the recursion. Because base-

 

Figure 4-10. Bounding memory for the Cilk version of Fibonacci. 
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case tasks are guaranteed to free space, forward progress is guaranteed for the recursion prior to 

the base case. Inductively, forward progress is guaranteed for all channels. 

The scheduler can differentiate work from different recursion levels if both pre- and post-sync 

tasks are organized into channel stacks, as shown in Figure 4-10. An alternative approach is a 

hybrid scheduler that uses help-first scheduling to generate work and then switches to work-first 

scheduling to bound memory [49]. Future work will compare a help-first only scheduler to a hybrid 

scheduler. 

4.4 Wavefront Yield 

To facilitate Cilk and similar recursive models, we propose that future GPUs provide a “wavefront 

yield” instruction. Our yield implementation, depicted in Figure 4-11, relies on the aggregator to 

manage yielded wavefronts. After a wavefront executes yield (❶), the GPU saves all of its state 

to memory (❷) including registers, program counters, execution masks, and NDRange identifiers. 

LDS is not saved because it is associated with the work-group and explicitly managed by the 

 

Figure 4-11. Wavefront yield sequence. 
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programmer; a restarting wavefront must be assigned to the same CU on which it was previously 

executing. Memory space for yield is allocated for each CTX before dispatch and deallocated as 

wavefronts complete. This is the same strategy used for spill memory in HSA. 

In addition to the wavefront’s state, a restart context, used to restart the wavefront, is saved to 

a data structure in memory (❸). This data structure can be a finite size because the aggregator 

will consume whatever is inserted into it; in our implementation, we use a channel. The restart 

context comprises a pointer to the wavefront’s saved state and the resource that the wavefront 

blocked on. The aggregator retrieves the restart context and inserts it into a software-defined data 

structure that tracks blocked wavefronts (❹). The aggregator then schedules a new wavefront to 

occupy the yielded context (❺). The aggregator monitors resources and restarts wavefronts as 

appropriate. 

4.5 Methodology and Workloads 

We prototyped our channel implementation in the simulated system depicted in Figure 4-12. We 

used gem5 [50] enhanced with a proprietary GPU model. The GPU’s control processor is 

implemented as a programmable core that serves as the aggregator. It is enhanced with private L1 

caches that feed into the GPU’s unified L2 cache. Each CU has a private L1 data cache that also 

feeds into the GPU’s L2 cache. All CUs are serviced by a single L1 instruction cache connected 

to the GPU’s L2 cache. More details can be found in Table 4-2. 

To isolate the features required for channels, all caches are kept coherent through a read-for-

ownership MOESI directory protocol [51] similar to the GPU coherence protocol proposed by 

Hechtman et al. [52]. Future work will evaluate channels with write-combining caches [53]. 
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We implemented wavefront yield as described in Section 4.4. CTXs require, at a minimum, 

856 bytes for program counters, execution masks, NDRange identifiers, etc. Additional bytes are 

required for registers. There are three kinds of registers: 64 x 4 byte (s), 64 x 8 byte (d), and 64 x 

1-bit (c). The number of registers varies across kernels. We save all registers (live and dead). A 

more sophisticated implementation would avoid saving dead registers. The numbers of registers 

for our workloads are shown in Table 4-3. In the worst case (Queens), 9,072 bytes are 

saved/restored. 

4.5.1 Workloads 

We wrote four Cilk workloads derived manually from Cilk source according to the transformations 

discussed in Section 4.3. They are characterized in Table 4-3. 

1. Fibonacci: Compute the nth Fibonacci number. Partial results are stored in continuation 

channels and merged by a continuation kernel. 

 

Figure 4-12. Simulated system. 
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2. Queens: Count the number of solutions to the NxN queens puzzle. In our implementation, 

derived from code distributed with the MIT Cilk runtime [47], the base case is a 4x4 sub-

section of the chessboard. 

3. Sort: Recursively split an array into four smaller sub-arrays until reaching a base case (64 

elements), sort all of the base-case sub-arrays, and merge them. This workload also was 

derived from a version distributed with the MIT Cilk runtime [47]. 

4. Strassen: Repeatedly divide a matrix into four sub-matrices down to a base case (16x16 

elements), multiply each pair of base-case matrices, and combine the results through atomic 

addition [54]. 

Table 4-2. Simulation configuration. 

†See Section 4.6.3 

Compute Unit 

Clock 1GHz, 4 SIMD units 

Wavefronts (#/scheduler) 40 (each 64 lanes)/round-robin 

Data cache 
16kB, 64B line, 16-way, 4 cycles, delivers one line 

every cycle 

Instr. cache (1 for all CUs) 32kB, 64B line, 8-way, 2 cycles 

Aggregator 

Clock 2GHz, 2-way out-of-order core† 

Data cache 16kB, 64B line, 16-way, 4 cycles 

Instr. cache 32kB, 64B line, 8-way, 2 cycles 

Memory Hierarchy 

GPU L2/directory 1MB, 64B line, 16-way, 16 cycles 

DRAM 1GB, 30ns, 20GB/s 

Coherence protocol MOESI directory 

Host CPU (not active in region of interest) 

Clock 1GHz, gem5 TimingSimpleCPU 

L1D, L1I, L2 (size/assoc/latency) 
64B lines across all caches 

(64kB/2/2), (32kB/2/2), (2MB/2/2) 

Channel 

Done count 64 
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4.5.2 Scheduler 

A scheduling algorithm, which executes on the aggregator, was written for the Cilk workloads. It 

respects Cilk’s dependencies by tracking the current level in the recursion, as described in Section 

4.3.2. It also checks for wavefronts that have yielded and restarts them as resources (i.e., channels 

deeper in the recursion) become available. Because levelization enforces dependencies, the GPU 

can block on the scheduler. We explore workload sensitivity to the aggregator in Section 4.6.3. 

4.6 Results 

We find that three of our four Cilk workloads scale with the GPU architecture, and show details 

in Figure 4-13. The average task size (average cycles/wavefront) for each workload, shown in 

Table 4-3, and cache behavior, depicted in Figure 4-14, help explain the trends. 

First, we examine the workload that does not scale up to eight CUs: Fibonacci. Given the 

small amount of work in its kernel nodes, we would not expect Fibonacci to scale. Even so, it is 

useful for measuring the overheads of the channel APIs because it almost exclusively moves CEs 

through channels. A consequence of Fibonacci’s small task size is that it incurs more GPU stalls 

waiting on the aggregator than workloads with larger task sizes. Larger task sizes allow the 

aggregator to make progress while the GPU is doing compute. At eight CUs, Fibonacci’s cache-

Table 4-3. Workloads. 

†Section 4.6.2 ††Measured from a one-wavefront execution (channel width=64, 

input=largest with no yields) 

Workload Data set Kernel 

nodes 

Registers/kernel Channel 

width† 

# of 

wavefronts 

Average 

cycles/wavefront†† 

Fibonacci 24 2 16s/8d/2c, 

3s/4d/1c 

32,768 2,192 7,046 

Queens 13x13 2 16s/8d/3c, 

5s/5d/1c 

16,384 1,114 35,407 

Sort 1,000,000 4 16s/8d/2c (all 4 

kernels) 

32,768 4,238 30,673 

Strassen 512x512 1 16s/6d/8c 8,192 587 259,299 
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to-cache transfers degrade performance; these occur because consumer threads execute on 

different CUs than their respective producer. 

The other three Cilk workloads scale well from one CU to eight CUs, with speedups ranging 

from 2.6x for Sort to 4.3x for Strassen. This is because the workloads perform non-trivial amounts 

of processing on each CE, which is reflected in the average task size. Strassen’s wavefronts are 

approximately 37 times larger than Fibonacci’s. In contrast, Sort’s wavefronts are a little more 

than four times larger than Fibonacci’s, indicating that relatively small tasks can be coordinated 

through channels to take advantage of the GPU. 

While few memory accesses hit in the L1 cache, many hit in the shared L2, facilitating 

efficient communication between producers and consumers. L2 cache misses degrade scalability 

because main memory bandwidth is much lower than cache bandwidth. As illustrated in Figure 

4-13, the aggregator overhead is constant with respect to the number of CUs, so we would not 

expect it to be a bottleneck for larger inputs. 

 

Figure 4-13. Scalability of Cilk workloads. 
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To help put these results in context, we compare channel workloads to non-channel workloads 

when possible. Specifically, we compare Strassen to matrix multiply from the AMD SDK [55] and 

Queens to a version of the algorithm distributed with GPGPU-Sim [56]. We would expect channels 

to be slower than conventional GPGPU code because their fine-grain nature leads to more tasks, 

which imposes extra coordination overhead; both channel codes trigger more than 10 times the 

number of dispatches than their non-channel counterparts. Surprisingly, we find that channels are 

on par with conventional GPGPU code because they facilitate more efficient algorithms. 

Specifically, Strassen has a lower theoretical complexity than AMD SDK’s matrix multiply. 

Meanwhile, for Queens the GPGPU-Sim version pays large overheads to flatten a recursive 

algorithm that is expressed naturally through channels. Both Strassen and Queens have fewer lines 

of code (LOC) than the non-channel versions. These results are summarized in Table 4-4. 

Table 4-4. GPU Cilk vs. conventional GPGPU workloads. 

 LOC reduction Dispatch rate Speedup 

Strassen 42% 13x 1.06 

Queens 36% 12.5x 0.98 
 

 

Figure 4-14. CU cache behavior. 
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4.6.1 Array-based Design 

Figure 4-15, which compares the baseline channel to a “GPU-efficient channel” that has the intra-

wavefront optimizations suggested in Section 4.1.2 (i.e., Figure 4-3), shows the effectiveness of 

amortizing synchronization across the wavefront. By reducing the number of CAS operations 

(where talloc and enq spend most of their time) by up to 64x, this optimization reduces the run-

time drastically for all workloads. 

We compared the GPU-efficient channel to a version that is padded such that no two CEs 

share a cache line. Padding emulates a linked list, which is not likely to organize CEs consumed 

by adjacent work-items in the same cache line. In all cases, the padded channel performs worse, 

but the degradation is less than expected because the CEs are organized as an array of structures 

instead of a structure of arrays. Our indirect aggregation design, described in Chapter 5, does not 

have this issue. 

 

Figure 4-15. GPU-efficient array quantified. 
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4.6.2 Channel Granularity 

Done Count 

Channel space is deallocated in order at the granularity of the done count. A done count of 64 

limits deallocation to less than 3% of total stall time on average. 

Channel Width 

Figure 4-16 shows how channel width can affect performance. Narrow channels are unable to 

supply enough CEs to utilize the GPU adequately. Meanwhile, larger channels degrade the 

performance of Strassen because wavefronts are not able to use the L2 cache as effectively. We 

configured each workload with the channel width that resulted in peak performance (shown in 

Table 4-3). Better cache-management policies, like cache-conscious thread scheduling [57], may 

eliminate the cache thrashing caused by wider channels. 

Wavefront Yield 

Figure 4-16 also shows the frequency and impact of yields. Saving and restoring CTXs generally 

has little impact on GPU active time because yields are relatively infrequent. However, at smaller 

 

Figure 4-16. Channel width (CEs). 
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channel widths, frequent yields increase GPU stall time because the aggregator manages yields 

instead of dispatching new work. 

4.6.3 Aggregator Sensitivity Study 

We performed a sensitivity study to determine how complex the aggregator needs to be. The first 

design that we considered is a primitive core, called simple, which is not pipelined and executes 

one instruction at a time; this extremely slow design increases pressure on the aggregator. We also 

considered a complex out-of-order (OoO) core, called 4-way OoO, to capture the other extreme. 

Finally, we looked at two intermediate designs: 2-way OoO and 2-way light OoO. 2-way OoO 

resembles a low-power CPU on the market today. 2-way light OoO is derived by drastically 

slimming 2-way OoO and provides insight into how an even simpler core might perform. Table 

4-5 summarizes our findings. 4-way OoO provides little benefit relative to 2-way OoO. 2-way light 

OoO reduces the performance gap between simple and 2-way OoO, but the aggregator overhead 

can still be as high as 35%. Hence, 2-way OoO strikes a good balance between performance and 

core complexity and was used to generate the results reported in previous sections. 

Table 4-5. Time (%) GPU (8 CUs) is blocked on aggregator. 

 Description Fibonacci Queens Sort Strassen 

Simple 
no pipelining, 

one instruction at a time 
41.5 2.9 8.9 3.4 

2-way light 

OoO 

physical registers: 64, 

IQ size: 2, ROB size: 8, 

ld/st queue size: 8/8 

35.1 2.0 7.2 2.5 

2-way OoO 

physical registers: 64, 

IQ size: 32, ROB size: 64, 

ld/st queue size: 32/32 

30.1 1.6 5.8 1.8 

4-way OoO 

physical registers: 128, 

IQ size: 64 ROB size: 128, 

ld/st queue size: 64/64 

29.8 1.5 5.6 1.9 
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4.6.4 Divergence and Channels 

Figure 4-17 depicts branch divergence. Fibonacci and Queens have many wavefronts with base-

case and non-base-case threads, leading to high divergence. Strassen has little divergence because 

it distributes work very evenly. Sort, which spends most of its time in the base case, suffers severe 

divergence. This is because the base-case code was obtained from a CPU version that uses 

branches liberally. 

4.7 Summary 

Channels aggregate fine-grain work into coarser-grain tasks that run efficiently on GPUs. This 

section summarizes our work on channels, discusses its implications, and anticipates future work. 

We proposed the first channel implementation. While our design scales to eight compute units, 

there are several improvements that future work should consider. Our implementation is a flat 

queue, but a hierarchical design may scale even better. We also used a read-for-ownership 

coherence protocol in our evaluation, but future work should quantify the effects of write-

 

Figure 4-17. Branch divergence. 
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combining caches. Finally, future designs should optimize the layout of CEs in memory for SIMT 

hardware. 

We described a set of transformations to map Cilk to a channel-flow graph. Future work 

should investigate mapping other high-level languages to GPUs through channels. Our 

implementation of Cilk on top of channels hard-codes both Cilk’s dependencies and the subset of 

channels from which to schedule in the aggregator’s firmware. Future work should explore general 

abstractions for managing the channels and their dependencies. For example, it may be possible to 

apply the concept of guarded actions to channels [58]. 

We used the GPU’s control processor, which we called the aggregator, to manage channels 

and restart yielded wavefronts. We found that its architecture had a crucial impact on the 

performance of channels. While the out-of-order design that we used worked well for our 

workloads, a more efficient design might achieve similar results. Future work should explore 

control processor architectures that enable other novel GPGPU programming models and 

abstractions. 
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5. GRAVEL: FINE-GRAIN GPU-INITIATED NETWORK MESSAGES 

Despite the fact that GPUs are becoming increasingly prominent in distributed systems, it is 

surprisingly difficult to route a network message between a work-item on the GPU and the 

network. This is because accessing the network is done through system-level operations. 

Specifically, network operations themselves are system-level operations that must be coordinated 

through the network interface (NI). 

Thus, the goal of this chapter is to apply the operation-per-lane model to GPU-initiated 

network operations. To achieve this goal, we introduce Gravel—an indirect aggregation layer 

implemented entirely in software. In Gravel, GPU-initiated network messages are routed through 

a GPU-efficient producer/consumer queue to an aggregator, which combines messages being sent 

to the same destination. 

Gravel amortizes synchronization across adjacent work-items in a work-group. Note, this is 

different than our channels prototype, which amortizes synchronization across a wavefront (not a 

work-group). As we show later in this chapter, work-groups are better at amortizing the overhead 

of producer/consumer synchronization because they have more work-items than a wavefront. But 

work-group-level synchronization can be ambiguous inside of a branch because GPUs execute 

wavefronts, not work-groups. To solve this challenge, Gravel leverages a diverged work-group-

level semantic to enable the GPU to access the network from divergent code. 

Notably, Gravel works on real hardware. This is in contrast to our channels prototype 

described in Chapter 4, which was confined to a simulator. To make Gravel work on current GPUs, 

the aggregator is implemented with CPU threads and software predication is used to achieve the 

diverged work-group-level semantic. We believe that future GPUs can support these features more 
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efficiently in hardware. For example, we suggest and evaluate two alternatives to software 

predication—a work-group-wide reconvergence stack and fine-grain barriers. 

A second constraint is that Gravel is confined to integrated GPUs. This is because we leverage 

fine-grain shared virtual memory (SVM) [32], which is a feature where the CPU and GPU 

synchronize through atomic memory operations. Several integrated GPUs, such as AMD’s HSA-

compatible GPUs [59] and Intel’s Graphics Gen9 [31], support this feature. In contrast, discrete 

GPUs currently lack this capability. 

We evaluate our prototype Gravel implementation on a cluster of eight AMD APUs. 

Compared to one node, Gravel achieves a 5.3x speedup on average across six irregular 

applications. Furthermore, we show that Gravel is more productive and usually more performant 

than the coprocessor model and coalesced APIs. 

5.1 Gravel Overview 

In Gravel (Figure 5-1), GPU-initiated messages are routed through a GPU-efficient 

producer/consumer queue to an aggregator, which repacks the messages into aggregation buffers, 

which we call per-node queues in this chapter. The aggregator sends a per-node queue to the 

network interface (NI) after it becomes full or exceeds a timeout. The producer/consumer queue 

 

Figure 5-1. GPU-initiated network message flow in Gravel. 
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interface (Section 5.2.2) hides low-level issues like avoiding deadlock between work-items in a 

wavefront or optimizing SIMT utilization. Thus, Gravel adheres to the operation-per-lane model, 

but Gravel performs well for two reasons. 

First, like the coprocessor model, Gravel’s aggregator generates large messages to amortize 

network overhead. Second, Gravel amortizes synchronization across work-groups, which is 

similar to coalesced APIs—but Gravel does not require work-items to operate in a work-group 

synchronous fashion. Instead, we leverage a diverged work-group-level semantic to 

asynchronously offload messages to the NI (Section 5.3). Another alternative is to offload 

messages at wavefont granularity, which is done in prior work like GGAS [18] and is also the 

approach taken in our prototype of channels in Chapter 4. We find that offloading messages at 

work-group granularity is 3.2x faster (Section 5.2.1). A caveat is that it can be difficult to offload 

messages at work-group granularity from divergent code, as we discuss later in this chapter. 

One last subtle point is that Gravel’s indirect strategy scales better than SIMT-direct 

aggregation. Specifically, as the number of destinations (and per-node queues) increase, SIMT-

direct aggregation suffers low SIMT utilization because work-items in the same work-group write 

different queues. In contrast, Gravel ensures that the GPU always writes messages to a single queue 

(i.e., the producer/consumer queue). 

5.2 Gravel’s Producer/consumer Queue 

We now describe Gravel’s producer/consumer queue, which acts as the GPU’s interface to 

Gravel’s aggregator. The queue differs from CPU queues in two important ways. First, it handles 

SIMT correctness and performance issues that occur when exporting messages from the GPU’s 

data-parallel hardware to the NI. Second, the queue limits the frequency of shared-memory 

synchronization, which is required to coordinate work-items initiating messages in parallel. 
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First, Section 5.2.1 explains how work-group-level synchronization enables the GPU to export 

messages at work-group granularity. Next, Section 5.2.2 details the producer-consumer 

synchronization algorithm used to order work-items and aggregator threads accessing the queue. 

Finally, Section 5.2.3 quantifies the queue’s performance. 

5.2.1 Work-group-level Synchronization 

The GPU interacts with the aggregator through in-memory queues. For example, to send a 

message, a work-item reserves space in a queue, writes the message (e.g., command, payload) into 

the queue, and notifies the NI that the message is ready to be sent. Thus, producer/consumer 

synchronization is required to reserve space and again to notify the NI. 

Ignoring (for now) the case where the queue is full, a work-item can reserve space by using a 

fetch-add to atomically increment the queue’s write index. In this approach, depicted in Figure 

5-2 (scenes a and c), shared-memory synchronization occurs at work-item granularity. An 

 1: work_item_level_reserve(Q): 
 2:   return fetch_add(Q.WrIdx, 1); 

sample run: 
ret: [2,3,4,5] 

 

(a) work-item-level synchronization pseudo-code 
 

 3: work_group_level_reserve(Q): 
 4:   lid = LANE_ID; # wi’s WG offset 
 5:   max = reduce_max(lid); 
 6:   MyOff = prefix_sum(1); 
 7:   Qi = 0; 
 8:   if lid == max: 
 9:     Qi=fetch_add(Q.WrIdx,MyOff+1); 
10:   return reduce_sum(Qi)+MyOff; 

sample run: 
lid:  [0,1,2,3] 
max:  [3,3,3,3] 
MyOff:[0,1,2,3] 
Qi:   [0,0,0,0] 
 
Qi:   [0,0,0,2] 
ret:  [2,3,4,5] 

 

(b) work-group-level synchronization pseudo-code 
 

  
(c) work-item-level behavior 

 

 

(d) work-group-level behavior 
 

Figure 5-2. Work-item vs. work-group-level synchronization. 
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alternative, shown in Figure 5-2 (scenes b and d), is to leverage SIMT execution so that a leader 

work-item synchronizes globally on behalf of its work-group. Figure 5-2b shows that this can be 

achieved using a few work-group-level operations. Specifically, the leader work-item is chosen to 

be the work-item with the largest lane ID using a reduce-max operation (lines 4-5). Then, a prefix-

sum operation is used to determine each work-item’s local offset (line 6); inactive work-items can 

cause the local offset to differ from the lane ID. Next, the leader work-item reserves a slot for each 

work-item (lines 7-9). Finally, the leader work-item broadcasts the work-group’s queue offset, 

which is added to each work-item’s local offset (line 10). 

Figure 5-3 shows how work-group size impacts the throughput of Gravel’s 

producer/consumer queue (Section 5.2.2) for 32-byte messages; details about the processor are in 

Section 5.4. Larger work-groups achieve greater throughput by amortizing atomic operations 

across more work-items. For example, a work-group with four wavefronts achieves more than 3x 

throughput than a work-group with a single wavefront by reducing the number of atomic 

 

Figure 5-3. Producer/consumer throughput vs. work-group size. 
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operations by almost 80%. We also measured the throughput of Gravel’s producer/consumer queue 

implemented with work-item-level synchronization and found that it is two orders of magnitude 

slower (0.06 GB/s). 

One issue is that work-group-level synchronization requires all of the work-items in a work-

group to participate. As a result, Gravel requires explicit software predication to leverage work-

group-level synchronization from divergent code. Section 5.3 discusses this issue in detail and 

explores diverged work-group-level operations an alternative for future GPUs. 

5.2.2 Producer/consumer Behavior 

The producer/consumer queue’s design and operation is illustrated in Figure 5-4. Each queue slot 

is arranged as a two dimensional array, where each column holds a work-item’s message. This 

organization enables messages to be written in a non-divergent manner. In our implementation, 

the first row is used to store the command (e.g., PUT, atomic increment), the second row stores the 

destination, and subsequent rows encode arguments (e.g., address, value). 

In addition to the payload, each queue slot has variables to synchronize producers (i.e., work-

items) and consumers (i.e., aggregator threads) and avoid overflowing the queue. To obtain an 

offset into the queue, fetch-add is used to increment WriteIdx (by producers) and ReadIdx (by 

consumers). Three situations require synchronization. The first occurs when two or more 

producers alias to the same array slot. A ticket lock, WriteTick, is used to synchronize producers. 

The second situation occurs when two or more consumers alias to the same array slot. A second 

ticket lock, ReadTick, is used to synchronize consumers. Finally, a full/empty bit, F, is used to 

arbitrate between a producer that has the write ticket and a consumer that has the read ticket. 
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Figure 5-4, which focuses on the messages initiated by wg0, demonstrates the queue’s 

operation. Initially (time ❶), the queue, which has three slots, is empty. At time ❷, wi3 obtains 

a write ticket of 0 after performing a fetch-add operation on WriteTick. Because the write 

ticket equals the current ticket, N, and the full bit, F, is clear, wi3’s work-group owns the slot. All 

four work-items (i.e., wi0-wi3) write their messages into the slot and wi3 sets the full bit, F, at time 

❸. At time ❹, an aggregator thread, t0, takes ownership of the slot because the full bit, F, is set 

and its read ticket equals the slot’s current ticket, N. Finally, after the aggregator has consumed the 

messages, it clears the full bit, F, and increments the current ticket, N, to release the slot (time ❺). 

5.2.3 Producer/consumer Queue Analysis 

Figure 5-5 shows the throughput of Gravel’s producer/consumer queue at different message sizes; 

work-groups have four wavefronts. The left side of the figure corresponds to small messages (e.g., 

 

Figure 5-4. Gravel’s producer/consumer behavior. 

Node 0
GPU
wg0
wi0 wi1 wi2 wi3

wg1
wi4 wi5 wi6 wi7

Aggregator

t0 t1

N=0

WriteTick=0 ReadTick=0

F=0

N=0

WriteTick=0 ReadTick=0

F=0

N=0

WriteTick=0 ReadTick=0

F=0

❶

Memory

ReadIdx,WriteIdx

N=0

WriteTick=1 ReadTick=0

F=0

❷

ReadIdx

N=0

WriteTick=1 ReadTick=0

n1 n3 n1 n2 F=1

❸

N=0

WriteTick=1 ReadTick=1

n1 n3 n1 n2 F=1

❹

N=1

WriteTick=1 ReadTick=1

F=0

❺

WriteIdx ReadIdx WriteIdx

ReadIdx,WriteIdx ReadIdx,WriteIdx



63 

 

smaller than a cache line), which incur large overhead. The right side corresponds to larger 

messages that can be managed using traditional synchronization approaches. The plot 

demonstrates that Gravel’s producer/consumer queue achieves high throughput for small 

messages. For example, 32-byte messages are processed at 7 GB/s, which matches the network 

bandwidth in our system (Section 5.4). 

To put Gravel’s performance into perspective, the plot shows two additional 

producer/consumer queues, where all producers and consumers are CPU threads. The first is a 

simple single-producer/single-consumer (SPSC) queue [60]. The second is a multi-producer/multi-

consumer (MPMC) queue, which uses the same synchronization algorithm as Gravel. The only 

difference is that each queue slot is organized to be written by a single CPU thread instead of a 

GPU work-group. 

Two factors enable Gravel to offload small messages faster than the CPU-only queues. The 

first is work-group-level synchronization, which amortizes producer/consumer synchronization 

across a work-group—up to 256 messages in our system. In contrast, the other queues require 

 

Figure 5-5. Producer/consumer queue throughput. 
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producer/consumer synchronization for each message. The second factor is the payload 

organization, which allows the work-items in a work-group to write messages into the same cache 

lines. This is possible because work-items in the same work-group execute on the same CU. 

Conversely, extra bytes are appended to the payload in the CPU-only designs to avoid false sharing 

and this padding adds significant overhead for small messages. For example, in the SPSC queue, 

three cache lines are read/written to send an eight-byte message—a padded read index, a padded 

write index, and the padded payload. Things are worse for the MPMC queue. In contrast, Gravel’s 

queue incurs a half-byte of overhead to send the same eight-byte message. 

The performance of large messages, which is not the focus of this paper, is explained by how 

each queue uses the evaluated CPU, which is four-way threaded. The MPMC queue is configured 

with two producer threads and two consumer threads. Gravel’s queue uses all four CPU threads as 

consumers. Thus, in the limit, Gravel is limited by the throughput of its four consumer threads, the 

MPMC approaches the throughput of two threads, and the SPSC approaches the throughput of a 

single thread. 

5.3 Diverged Work-group-level Semantic 

Earlier, we described work-group-level synchronization (Section 5.2.1) and showed that it helps 

to amortize synchronization (Figure 5-3). We also noted that software predication is required to 

leverage work-group-level synchronization from divergent code because work-group-level 

operations must occur within converged control flow [32]. 

In this section, we first provide an example that requires network access from diverged control 

flow, then show how software predication enables the example to work on current GPUs (Section 

5.3.1). Next, we define useful behavior for work-group-level operations that occur in diverged 
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control flow (Section 5.3.2). Finally, we describe how future GPUs can provide this behavior 

(Section 5.3.3). 

5.3.1 Software Predication 

To understand how the current behavior of work-group-level operations limits Gravel’s 

networking capability (and the operation-per-lane model more generally), consider the example in 

Figure 5-6, which counts the number of incoming edges for each vertex in a directed graph. For 

instance, in Figure 5-6a, v0 has two incoming edges—one from v1 and a second from v3. In general, 

this problem can be solved by traversing each vertex’s outgoing edge list and incrementing a 

counter once for each neighbor encountered. Figure 5-6b shows the final counters for the graph in 

Figure 5-6a. 

Figure 5-6c shows one way to distribute this problem using Gravel. Each GPU work-item 

traverses a vertex’s outgoing edge list. Table 5-1a shows pseudo-code; each work-item loops 

through its edge list and uses a network operation, shmem_inc, to update a distributed array of 

counters. Figure 5-6c shows that all of the work-items are active during the first two loops. In the 

third loop, wi1 and wi2 become inactive, which prevents wi0 and wi3 from leveraging work-group-

level synchronization to access the network. 

Table 5-1b shows how software predication solves this problem. In the code, inactive work-

items keep executing with their work-group. Specifically, before entering the loop, work-items 

 

 

 

(a) Directed graph. 

 

 
(b) Desired output. 

 

(c) Work-group execution. 

 

Figure 5-6. Using WG-level operations in diverged control flow. 
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coordinate to determine the number of loop iterations to execute (line 5). Inside the loop, work-

items determine whether they are active (line 7) and if so they construct a network message (lines 

9-11). Finally, the network API is extended with an extra argument to differentiate active and 

inactive work-items (line 12). 

Software predication enables work-group-level synchronization in divergent code, but it 

requires a non-trivial code transformation and introduces software overhead. Next, we articulate 

software predication’s behavior and then consider alternatives to achieve that behavior. 

5.3.2 Defining Useful Behavior 

This section proposes that work-group-level operations occurring in diverged code execute across 

the active work-items in a work-group. Specifically, a work-item is active if it is predicated on 

when its work-group executes a basic block. Note, our proposal requires a way for the GPU to 

view the application’s control flow at work-group granularity (instead of wavefront granularity) 

Table 5-1. Diverged work-group-level operation pseudo-code. 

 1: count_in_edges(edge_list, visitors): 
 2:   for each edge in edge_list: 
 3:     shmem_inc(&visitors[edge.idx], edge.node) 

(a) Ideal pseudo-code to count each vertex’s in edges. 

 4: count_in_edges(edge_list, visitors): 
 5:   loop_cnt = reduce_max(edge_list.size) 
 6:   for i in range(loop_cnt): 
 7:     active = i < edge_list.size 
 8:     idx = 0, node = 0 
 9:     if active: 
10:       idx = edge_list[i].idx 
11:       node = edge_list[i].node 
12:     shmem_inc(&visitors[idx], node, active) 

(b) Pseudo-code modified to use software predication. 

13: count_in_edges(edge_list, visitors): 
14:   if LANE_ID == 0: 
15:     initfbar fb # create fine-grain barrier object 
16:   joinfbar fb # start with all work-items 
17:   for each edge in edge_list:      
18:     shmem_inc(&visitors[edge.idx], edge.node, fb) 
19:     if edge + 1 == edge_list.end: 
20:       leavefbar fb 

(c) Pseudo-code modified to use fine-grain barriers. 
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so that it is clear which work-items participate in a given work-group-level operation. Below, we 

describe two useful diverged work-group-level operations. 

1. Reduction: Active work-items submit a value. Inactive work-items submit a non-interfering 

value (e.g., 0 for reduce-to-sum, INT_MAX for reduce-to-minimum). The reduction of these 

values is returned to active work-items. 

2. Prefix Sum: Active work-items submit a value. Inactive work-items submit the non-

interfering value 0. The prefix sum of these values is returned to active work-items. 

More generally, non-interfering values are used to implement data-parallel operations. For 

example, a work-group-level sort might be defined such that inactive work-items submit INT_MAX, 

which will be placed at the end of the sorted list, where it can be ignored by the active work-items. 

5.3.3 Supporting Diverged Work-group-level Operations 

Work-group-level operations use a work-group’s work-items to index an array and route the 

respective elements through a data-parallel network. For example, Figure 5-7a shows a reduce-to-

sum network with four elements and Figure 5-7b shows an ideal execution with four work-items. 

Note that all work-items must be present to submit their values. Subsequent levels of the network, 

which are executed by the work-items that submitted values, are separated by a barrier. 

In a diverged work-group-level operation the GPU must determine which wavefronts have 

active work-items and wait for those wavefronts to arrive. This is non-trivial because wavefronts 

in the same work-group progress through the control flow graph at different rates. Next, we discuss 

three ways to determine the wavefronts with active work-items. 

First, it may be possible to automate the code translation for software predication. One issue 

with software predication is that it can cause a completely inactive wavefront to continue 

executing, as depicted in Figure 5-7c because it builds off of work-group-level operations. Another 
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approach is to build GPUs that track control flow at work-group granularity instead of wavefront 

granularity. For example, thread block compaction, proposed to mitigate branch divergence, 

suggests a work-group-level reconvergence stack [16]. Compared to software predication, this 

approach does not add software overhead, but it does allow inactive wavefronts, as depicted in 

Figure 5-7c because it essentially expands the GPU’s execution granularity to the width of a work-

group. 

Finally, fine-grain barriers (fbar), introduced by HSA, can be used to identify active work-

items [59]. An fbar enables barrier synchronization across a subset of a work-group’s work-items. 

Specifically, HSA provides primitives to create/destroy an fbar, register/unregister work-items 

with an fbar, and synchronize the registered work-items. However, HSA’s current fbar 

instruction is not able to distinguish work-items in a wavefront, which is required by our proposal. 

Thus, we make the case that future GPUs should allow an arbitrary set of work-items to be 

registered/unregistered with an fbar. This would allow a compiler to instrument control flow 

 

 
(a) Reduce-to-sum network. 

 

(b) Ideal execution. 
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Figure 5-7. Diverged reduce-to-sum operation.  
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containing work-group-level operations with fbar operations. This idea is demonstrated in Table 

5-1c. Unlike the other solutions, this approach does not cause completely inactive wavefronts to 

continue executing (Figure 5-7d). 

A second aspect to implementing diverged work-group-level operations is submitting non-

interfering values for inactive work-items. Each inactive work-item causes an execution unit on 

the GPU to become idle. Hence, those idle execution resources can be temporarily predicated on 

to submit the non-interfering values. 

5.4 Methodology and Workloads 

We prototyped Gravel on an eight-node cluster. Each node has an AMD APU with four CPU 

threads and an HSA-enabled integrated GPU. The nodes are connected by a 56 Gb InfiniBand link. 

More details can be found in Table 5-2. 

Gravel’s aggregator is realized by using the integrated CPU to consume GPU-initiated 

messages and repack them into per-node queues. We use MPI to send/receive the queues and 

allocate three queues per node (over allocation helps hide network latency). Each per-node queue 

is 64 kB, which we found is large enough to obtain most of the benefit of large messages on our 

system and does not consume an excessive amount of memory. 

To obtain the necessary thread support, all network requests are funneled through a dedicated 

network thread [61]. Upon receiving a per-node queue, the network thread iterates through each 

message and resolves it as a local memory operation (e.g., load, store). The aggregator performs 

best with one CPU thread because there are several background threads in the system (i.e., Gravel’s 

network thread, an HSA background thread, and an MPI progress thread). 
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Currently, Gravel supports the following non-blocking network operations: PUT, atomic 

increment, and a primitive active message API. PUT and atomic increment operate on a partitioned 

global address space (PGAS). Atomic operations (i.e., atomic increment and active messages) are 

serialized by routing them through Gravel’s network thread. Thus, some operations that can 

execute locally are still routed through the NI. On our system, this approach is faster than using 

concurrent read-modify-write operations. Furthermore, it simplifies writing active messages. 

Six applications are evaluated with the inputs in Table 5-3. Our implementations of the graph 

algorithms (i.e., PR, SSSP, and color) are based on GasCL, which is a single-node graph 

processing system for GPUs [62]. The following text summarizes each application. 

 Giga-updates-per Second (GUPS): Described in Section 3.1 [33]. 

 PageRank (PR): Ranks web pages by iteratively sending each vertex’s rank through its 

links. 

Table 5-2. Node architecture. 

Processor 

(AMD A10-7850K) 

CPU: 2 cores (4 threads); 3.7 GHz; 

16 kB L1D; 2 MB L2 

GPU: 8 CUs; 720 MHz; 16 kB L1D; 2 MB L2 

Memory 32 GB; DDR3-1600; 2 channels 

NIC 56 Gb/s InfiniBand card 

Software 
Ubuntu 14.04; Open MPI 1.10.1; GCC 4.9.3; 

HSA runtime 1.0.3 

Gravel’s 

configuration 

24 per-node queues (each 64 kB; 125 µs timeout); 

1 MB producer/consumer queue; 1 aggregator thread 

Table 5-3. Application inputs. 

benchmark(s) inputs 

GUPS ~180 million updates 

PR-1; SSSP-1; color-1 
hugebubbles-00020 [63] 

(~21 million vertices, ~64 million edges) 

PR-2; SSSP-2; color-2 
cage15 [63] 

(~5 million vertices, ~99 million edges) 

kmeans 8 clusters, 16 million points 

mer human-chr14 [64] (3.6 GB) 
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 Single-source/shortest-path (SSSP): Calculates the shortest distance from a source vertex 

to every other vertex. 

 Graph coloring (color): Labels each vertex in a graph such that no two neighbors have the 

same color. 

 Kmeans clustering (kmeans): Iteratively groups a set of Cartesian coordinates into a fixed 

number of clusters. 

 Meraculous graph construction (mer): Two phases of a genome sequencing pipeline [65]. 

The first phase constructs and populates a distributed hash table and the second phase 

traverses the hash table. We accelerated and measured the first phase. The second phase has 

significant branch divergence and is left for future work. 

5.5 Results and Analysis 

In this section, we analyze Gravel’s scalability (Section 5.5.1) and then compare Gravel to prior 

models for enabling system-level operations on GPUs (Section 5.5.2). 

5.5.1 Scalability Analysis 

Gravel’s scalability is depicted in Figure 5-8. Two factors that impact scalability are the frequency 

of remote data access (i.e., an access through the network), and the cost of a remote access relative 

to a local access. For each input, Table 5-4 summarizes the frequency of remote data access and 

the average message size, which influences the cost of a remote access. 
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Recall that our implementation serializes atomic operations (i.e., fetch-add and active 

messages) by routing all of them—including local operations—through the NI. Thus, the 

throughput for atomics is similar for local and remote access. GUPS, kmeans, and mer, use atomics 

exclusively. Thus, even though these applications are dominated by remote accesses, as shown in 

Table 5-4, they approach the ideal speedup of 8x. 

PR and color use non-atomic operations (i.e., PUT operations) exclusively. A local PUT is 

executed by the GPU directly as a store. Thus, for PR and color, local operations achieve more 

concurrency than remote operations because they execute across the GPU’s massively parallel 

architecture. In contrast, remote operations are executed by CPU threads (i.e., Gravel’s network 

thread) across the seven receiving machines. We experimented with helper threads at the receiver 

to recover some of the lost concurrency, but the CPU is already saturated. Thus, we observe little 

benefit from helper threads. 

 

Figure 5-8. Gravel’s scalability. 
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Finally, SSSP uses atomic operations (i.e., active messages) and PUT operations. Specifically, 

SSSP-2 approaches the ideal speedup because remote access is infrequent and Gravel is able to 

combine remote accesses into large messages (i.e., ~58 kB as shown in Table 5-4). In contrast, 

remote access occurs more frequently in SSSP-1 and the cost of those accesses is higher because 

Gravel’s aggregator is not effective for this input (i.e., messages are ~1.6 kB on average). As a 

result, SSSP-1 does not scale as well as other inputs. 

Table 5-4. Network statistics for Gravel at eight nodes. 

 Remote access frequency Average message size (bytes) 

GUPS 87.5% 65,440 

PR-1 37.7% 64,611 

PR-2 16.5% 15,700 

SSSP-1 30.0% 1,563 

SSSP-2 16.2% 57,916 

color-1 36.7% 27,258 

color-2 16.5% 9,463 

kmeans 87.5% 5,656 

mer 87.5% 64,822 
 

 

Figure 5-9. Gravel vs. CPU-based distributed systems. 
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To put these results into perspective, we compared Gravel to CPU-based distributed systems, 

which fail to leverage the GPU. Specifically, Figure 5-9 shows how Gravel compares to Grappa 

[66] for GUPS and PR and to UPC [65] for mer. Notice that Gravel is significantly faster on one 

node, where aggregation and networking are irrelevant. Fundamentally, the GPU’s massively 

parallel architecture is better suited to the underlying data-parallel behavior of these workloads 

and this advantage translates to eight nodes, where Gravel continues to outperform CPU-based 

systems. 

Finally, Figure 5-10 shows how the per-node queue size, which determines the maximum size 

of a network message, effects GUPS. In general, larger queues provide better multi-node 

performance, but the benefit diminishes beyond 32 kB. Thus, to obtain good performance without 

using an excessive amount of memory, we use 64 kB per-node queues. 

 

Figure 5-10. Gravel’s aggregation sensitivity. 
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5.5.2 Style Comparison 

We wrote versions of each application for each GPU system-level operation model using the 

methodology described in Section 3.1. Figure 5-11 demonstrates that Gravel performs equal to or 

better than other models in all cases. Note, in this section, we treat prior implementations of the 

operations-per-lane model, which forego aggregation, as a separate data point from Gravel to 

emphasize the performance impact of aggregation. 

The first set of bars, labeled coprocessor, were generated by configuring the coprocessor 

model to use the same amount of buffering as Gravel. Recall, the number of work-items executing 

concurrently is limited to avoid overflowing a per-node queue. Such small per-node queues, which 

are sufficient for Gravel, limit the amount of parallelism on the GPU, causing this version of the 

coprocessor model to perform worse than Gravel in all cases. This effect is pronounced for PR and 

color, where work-items access the network many times. 

In the second set of bars, labeled coprocessor + extra buffering, we allocate 1 MB for each 

per-node queue, which is an order of magnitude more space for per-node queues than Gravel. 

While this enables GUPS and SSSP-2 to perform as well as Gravel, most applications still perform 

worse. This is because Gravel is more effective at overlapping communication and computation. 

 

Figure 5-11. Style comparison at eight nodes. 
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Specifically, in Gravel, per-node queues are sent through the network as soon as they become full 

or exceed a timeout, while the coprocessor model delays sending a message until the GPU kernel 

completes. This effect is pronounced for kmeans, which actually performs worse in the 

coprocessor model with larger per-node queues. 

The third set of bars, labeled op-per-lane, no agg, bypasses the aggregator. Figure 5-11 shows 

that sending small messages directly degrades performance. Similarly, the fourth set of bars, 

labeled coalesced APIs, shows that combining messages across a work-group is not sufficient in 

most cases. Other than SSSP-1, SSSP-2, and kmeans, coalesced APIs leads to messages that are 

too small. 

Finally, the second-to-last set of bars, labeled coalesced APIs + GPU-wide aggregation, 

routes messages initiated in the coalesced APIs model through Gravel’s aggregator, which helps 

to decouple the impact of the small messages from the overhead of sorting on the GPU. Figure 

5-11 shows that Gravel’s aggregator helps coalesced APIs to perform nearly as well as Gravel. 

One interesting case is mer, which uses more scratchpad than other benchmarks. This scratchpad 

usage, in combination with the amount of scratchpad used by the coalesced APIs model, limits the 

number of work-items that execute on the GPU concurrently. 

5.6 GPU Networking on Future GPUs 

In this section, we explore how future GPUs can provide better support for small messages. 

Specifically, Section 5.6.1 suggests replacing Gravel’s CPU-based aggregator with dedicated 

hardware and Section 5.6.2 evaluates alternatives to software predication. 

5.6.1 Hardware Aggregator 

Currently, Gravel leverages the integrated CPU to aggregate messages, which enables us to use 

current hardware—but this approach is inefficient. Specifically, we found that, even at eight nodes, 
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the CPU’s out-of-order, multi-GHz core spends 65% of its time polling for GPU-initiated 

messages. Furthermore, these hardware threads cannot be used for other tasks. 

Dedicated hardware could do aggregation in a more energy- and latency-efficient manner. A 

hardware aggregator could be fixed-function logic, but a small programmable core would provide 

more flexibility. For example, modern GPUs and NICs both incorporate control processors that 

could be used for aggregation. Placing the aggregator in the GPU would allow it be used for other 

purposes (e.g., task aggregation, memory allocation) and enable data-parallel optimization (e.g., a 

GPU-wide memory coalescer). 

5.6.2 Diverged Work-group-level Operation Analysis 

Gravel uses software predication to achieve the diverged work-group-level semantic on current 

hardware, but this approach introduces software overhead that could be avoided in a GPU with 

native support. To test this hypothesis we emulate the behavior of the alternatives proposed in 

Section 5.3.3. 

To emulate a GPU that tracks control flow at work-group granularity we perform 

synchronization at wavefront granularity. Specifically, code without predication (e.g., Table 5-1a) 

works on current GPUs when the work-group size is limited to one wavefront. Using this 

methodology, we observed a 1.28x speedup over software predication for a modified version of 

GUPS, called GUPS-mod, where each work-item performs a random number of updates and 95% 

of work-items perform no updates (otherwise, the benchmark is too memory bound to observe 

interesting performance effects). 

Next, we evaluate fine-grain barriers by emulating the desired behavior in software. In our 

implementation, a software-based fbar comprises three scratchpad variables: MemberCnt, 

ArriveCnt, and sense. Work-items join (leave) a barrier by atomically incrementing 
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(decrementing) MemberCnt. When a work-item arrives at a barrier it atomically increments 

(decrements) ArriveCnt if sense is positive (negative) and waits for sense to invert. The last 

work-item to arrive inverts sense. Finally, work-items in one wavefront can use an fbar before 

work-items in a second wavefront leave. Thus, a second fbar is used to coordinate work-items 

leaving the primary fbar. We found that our software-based fbar operations (e.g., Table 5-1c) 

provide a 1.06x speedup over software predication for GUPS-mod. Unfortunately, implementing 

an fbar in software incurs significant overhead. Thus, this result should be viewed as a lower 

bound. 

5.7 Summary 

Gravel enables GPUs to initiate small network messages and we showed that it is more 

programmable and performant than prior GPU networking models. Our main contributions were 

to: (1) show that data-parallel hardware can be exploited to amortize synchronization; (2) use this 

insight to efficiently offload GPU-initiated network messages to Gravel’s aggregator; and (3) 

explore diverged work-group-level semantics to offload messages from divergent code. 

Furthermore, we believe that these ideas are applicable beyond networking. 

To prototype Gravel, we leveraged an integrated GPU, which allowed us to use the CPU for 

aggregation. Fundamentally, Gravel could work with discrete GPUs as well, with the GPU writing 

to a producer/consumer queue in main memory over PCIe, and using PCIe atomic operations to 

synchronize. Current PCIe implementations may limit performance, but future versions of PCIe or 

more advanced interfaces such as CCIX [67] should improve this situation. 
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6. RELATED WORK 

In this chapter, we survey four categories of related work. First, in Section 6.1, we examine prior 

work on multi-producer/multi-consumer queues, which encompasses the underlying 

producer/consumer data structures and algorithms that we have developed in this thesis to enable 

the GPU to execute system-level operations according to the operation-per-lane model as 

envisioned in Chapter 3. Notably, we observe that a lot of the prior work has focused on linked-

list-based queues, but the GPU’s memory coalescing hardware makes it better suited to operate on 

array-based queues. We then delve into related work on dynamic aggregation of fine-grain work 

on data-parallel hardware in Section 6.2, which more directly relates to our prototypes of the 

aggregation layer described in Chapters 4 and 5. 

Next, Section 6.3 examines prior work on GPU tasking, which helps to put our work on 

implementing and utilizing channels in Chapter 4 into perspective. Finally, we conclude this 

chapter with a summary of the related work on GPU networking and I/O, which relates our work 

in Chapter 5 on Gravel. 

6.1 Multi-producer/multi-consumer Queues 

Prior work on lock-free, multi-producer/multi-consumer queues is skewed towards CPUs; it 

includes linked list- and array-based designs. Linked lists often are preferred because they are not 

fixed-length and are easier to manage [41][42]. Unfortunately, linked lists are a poor fit for the 

GPU’s memory-coalescing hardware. 

Array-based queues often require special atomic operations, limit the size of an element to a 

machine word, and usually are not as scalable [38][39]. Gottlieb et al. described an array-based 

algorithm without these limitations, but their design is blocking [40]. Channels use conventional 

CAS, encapsulate user-defined data (of any size), are non-blocking, and scale well on GPUs. 
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6.2 Dynamic Aggregation for Data-parallel Hardware 

GRAMPS, which inspired Gaster and Howes to propose channels (explored in Chapter 4), maps 

flow graphs to graphics pipelines and provides packet queues to aggregate fine-grain work into 

data-parallel tasks [46]. Channels and Gravel apply these concepts to more general computation. 

Our work gives a fresh perspective on how to implement aggregation queues and use them to 

realize higher-level languages on GPUs. 

Dynamic micro-kernels allow programmers to regroup threads using the keyword spawn [35]. 

To support this semantic, a fully associative look-up table (LUT), indexed on the program counter 

of the branch destination, is proposed. While micro-kernels target mitigating branch divergence, 

they could be used for dynamic work aggregation. Compared to channels and Gravel, one 

limitation is that the number of tasks is limited to the number of entries in the LUT. 

Stream compaction uses global scan and scatter operations to regroup pixels by their 

consumption kernels [68]. Channels avoid regrouping by limiting each channel to one 

consumption function. Gravel leverages a scalar thread to achieve the desired regrouping. 

The Softshell GPU task runtime uses persistent GPU work-groups to schedule and aggregate 

work from a monolithic task queue [69]. Channels instantiate a separate queue for each 

consumption function and leverage the GPU’s control processor to manage those queues. Gravel 

uses scalar threads on the integrated CPU in place of Softshell’s persistent work-groups. 

Dynamic thread block launch [70] introduces special hardware to enable GPU-wide task 

aggregation. In contrast, our work leverages existing mechanisms. Specifically, our channels 

prototype leverages the GPU’s control processor and Gravel make’s use of shared-memory 

synchronization. 
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Gravel’s diverged work-group-level semantic is similar to HSA’s fbar object in that it 

enables a subset of data-parallel lanes to coordinate [59]. It also resembles unconditional 

operations as described by Hillis and Steele [71], which provide the ability to temporarily activate 

inactive data-parallel lanes so that they can participate in a data-parallel computation. 

6.3 GPU-directed Dynamic Tasking 

Aila and Laine proposed a scheme that they call persistent threads, which bypasses the GPU 

scheduler and places the scheduling burden directly on the programmer [72]. Exactly enough 

threads are launched to fill the machine and poll a global work queue. In contrast, channels fill the 

machine in a data-flow manner and only launch consumers that will dequeue the same work, which 

encourages higher SIMT utilization. 

Tzeng et al. also explored task queues within the confines of today’s GPUs [73]. Their 

approach was to operate on a queue at wavefront granularity. They allocated a queue per SIMD 

unit and achieved load-balance through work stealing/sharing. Channels use dynamic aggregation 

to provide a more conventional task abstraction. 

HSA supports dependencies among kernels [30]. Similarly, dynamic parallelism in CUDA 

enables coarse-grain work coordination [29]. These approaches require programmers to reason 

about parallelism at a coarse granularity. We found that specifying dependencies at a coarse 

granularity, while scheduling work at a fine granularity, worked well for Cilk. 

Fung et al. proposed that a wavefront’s state be checkpointed to global memory for the 

purposes of recovering from a failed transaction [74]. We propose a wavefront yield instruction to 

facilitate Cilk on GPUs. While similar, we go a step further by allowing the wavefront to relinquish 

its execution resources. In contrast, CUDA and HSA only support context switches at kernel 

granularity. 



82 

 

6.4 GPU Networking and I/O 

GPUs typically lack native support for work-items to initiate I/O. DCGN [23], GPUfs [26], and 

MemcachedGPU [75], all rely on the CPU to orchestrate I/O. GPUDirect RDMA optimizes 

network I/O by allowing the CPU to initiate direct data transfers between a discrete Nvidia GPU 

and the NIC [19] . 

GPUnet builds off of GPUDirect RDMA to provide a coalesced socket API for GPUs [24]. 

Specifically, work-items read and write sockets by sending a request, over PCIe, to a CPU with 

GPUDirect capabilities. Compared to Gravel, GPUnet does not combine messages and its 

coalesced APIs are synchronous, as described earlier. In contrast, Gravel enables asynchronous 

network access, but routes all GPU-initiated messages (i.e., both control and data) through the 

CPU. Compared to discrete GPUs, routing messages through an integrated CPU incurs less 

overhead, but future work should aim to incorporate GPUnet’s ability to bypass the CPU for data 

and Gravel’s small message support. 

NVSHMEM is similar to Gravel in that it enables PGAS-style distributed memory for GPUs 

[22]. NVSHMEM leverages hardware (i.e., NVLink), which limits it to GPUs on the same PCIe 

bus. In contrast, Gravel leverages software (i.e., producer/consumer synchronization), which 

makes it more portable, but forces messages through the CPU. Furthermore, Gravel does GPU-

wide aggregation. NVSHMEM probably experiences some natural aggregation (e.g., memory 

coalescing), but it does not seem to incorporate explicit aggregation. We hypothesize that 

NVSHMEM would benefit from Gravel-style aggregation on a lower-performance interconnect 

and when communication is more random (e.g., GUPS). 

In particular, GGAS [18] and GPUrdma [25] enable GPU-initiated messages without CPU 

involvement. Specifically, the GPU driver is modified to expose the network interface controller’s 
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(NIC) doorbell register and GPU code is written to interact directly with the NIC. This contribution 

is orthogonal to Gravel’s, which focuses on providing an efficient and programmable interface to 

the network. For example, GGAS interacts with the network at wavefront granularity, which we 

showed is not efficient and GPUrdma uses coalesced APIs. 

Several CPU-based systems, including Grappa [66], GraphLab [76], and GMT [77], focused 

on maximizing small network message performance through aggregation. Gravel, which draws 

inspiration from these CPU-based systems, employs a GPU-compatible aggregation scheme to 

enable the GPU to efficiently initiate small messages. 
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7. CONCLUSIONS AND FUTURE WORK 

In this chapter, we first summarize the main contributions of this work (Section 7.1) and then we 

discuss how future work can build on these contributions (Section 7.2). 

7.1 Summary of Contributions 

At the highest level, we made two contributions. First, we described how to efficiently coordinate 

and synchronize system-level operations being executed by GPU threads across the entire GPU. 

Second, we explored two classes of system-level operations in details: task spawning and 

networking. 

To efficiently coordinate and synchronize system-level operations, we identified leader-level 

synchronization as a key building block. In short, leader-level synchronization invokes 

synchronization once per SIMT group, where a SIMT group can be a wavefront or a work-group, 

rather than once per thread. We then identified two ways to use leader-level synchronization to 

regroup system-level operations. In the first, called SIMT-direct aggregation, a SIMT group 

invokes leader-level synchronization once for each of its sub-groups of system-level operations. 

In the second, called indirect aggregation, a SIMT group offloads its system-level operations to a 

dedicated aggregator that is better suited to regroup system-level operations. 

Using the implementation concepts above, we investigated channels, which is an abstraction 

for regrouping small tasks into larger tasks that can saturate the GPU’s underlying data-parallel 

hardware. Specifically, we first used SIMT-driven aggregation to implement channels. We then 

used channels themselves to organize Cilk programs so that they can execute efficiently on GPUs. 

We also used the implementation concepts outlined above to combine small network messages 

being sent to the same destination into larger messages that are more suitable for network 

transmission. To prototype this idea, we built a software runtime called Gravel and used it to 
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distributed several applications dominated by small and unpredictable messages across a cluster 

of eight AMD APUs connected by InfiniBand. We found that Gravel’s GPU-initiated network 

message capability enables these applications to run faster than prior approaches. 

7.2 Future Work 

There are several promising ways to extend the ideas that we have presented. First, with respect to 

system-level coordination, there are at least three worthwhile directions to pursue. The first is to 

improve SIMT-direct aggregation so that it can be invoked once per SIMT group instead of once 

per aggregation buffer. Similarly, indirect aggregation can be improved by placing a dedicated 

hardware aggregator next to the GPU. Finally, a third implementation issue is to extend these ideas 

to work with discrete GPUs. 

Next, we discuss extending our research on fine-grain task aggregation and coordination 

(Chapter 4). There are many directions to take this work. The most obvious is to provide more 

generalized mechanisms for programming the control processor to schedule channel-flow graphs. 

It would also be useful to investigate other programming languages that can be mapped to GPUs 

with channel-flow graphs. Finally, these ideas should be tested and refined on larger GPUs. 

Finally, there are several ways to extend our work on Gravel: fine-grain GPU-initiated 

network messages (Chapter 5). First, we focused on non-blocking operations (e.g., PUT, atomic 

increment). Thus, it would be useful to study blocking operations. The primary difficulty with 

blocking operations is that work-items consume GPU execution resources until they complete their 

GPU kernel. Thus, executing a blocking operation from a GPU kernel could be quite expensive. 

Nonetheless, blocking operations are an important primitive that should be supported by Gravel. 

Another worthwhile research direction would be to extend Gravel to support discrete GPUs. One 

challenge is that leader-level synchronization might not produce enough messages to amortize 
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PCIe overhead, but placing a dedicated hardware aggregator inside of the GPU can help to resolve 

this issue. Finally, Gravel may not scale to very large systems (e.g., tens of thousands of nodes). 

One idea that we would like to explore to address this issue is to perform hierarchical aggregation, 

where a per-destination buffer is mapped to multiple destinations (to reduce the number of per-

destination buffers in the system). Note that this approach requires extra messages to be sent by 

the disaggregator. 
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A.  More Details on Gravel’s Implementation 

This appendix covers some of Gravel’s lower-level implementation details. Specifically, the first 

section (A.1) shows how network messages flow from the GPU to the network. The message flow 

is presented as a software pipeline, where each stage is connected by a producer/consumer queue. 

The second section (A.2) explains the operation of the various producer/consumer queues used in 

Gravel. The section is designed as progression. Specifically, it begins by explaining how Gravel’s 

CPU-only single-producer/single-consumer (SPSC) and multi-producer/multi-consumer (MPMC) 

queues operate and concludes by showing how Gravel’s GPU-to-CPU producer/consumer queue 

(often referred to as Gravel’s producer/consumer queue) is derived from these simpler queues. 

A.1 GPU-initiated Network Message Flow 

It is useful to view Gravel’s message aggregation approach as a three-stage software pipeline, 

shown in Figure A-1. Stage 1 consolidates small network messages, initiated by work-items on the 

GPU, into a common data structure called a work-group-level package. In stage 2, CPU threads 

consume work-group-level packages and route their network messages into per-node buffers—

arrays of packed messages being sent to the same node. Finally, in stage 3, a dedicated network 

thread sends per-node buffers through the network. The network thread is also responsible for 

receiving, disaggregating, and processing per-node buffers. 

Producer/consumer queues are used to exchange work-group-level packages and per-node 

buffers between the pipeline stages. Specifically, the interface between stage 1 and stage 2 is 

Gravel’s producer/consumer queue where the producers are work-groups on the GPU, the 

consumers are threads on the CPU and the queue elements are work-group-level packages. 

Similarly, conventional CPU-only producer/consumer queues are used to exchange per-node 
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buffers between stage 2 and stage 3. The following sub-sections describe the three pipeline stages 

and their producer/consumer queue interfaces in more detail. 

A.1.1 Pipeline Stage 1: Message Consolidation 

The role of stage 1 is to consolidate network messages, initiated by work-items across the GPU, 

into a single data structure, called a work-group-level package. The primary challenge is to do this 

without excessive global synchronization. Stage 1 exploits work-groups to amortize global 

synchronization across a large number of messages. Note that stage 1 consolidates all messages, 

regardless of their destination. This means that they must be processed a second time (in stage 2), 

to group them by their destination. Fortunately, once messages are in a work-group-level package, 

they can be processed without synchronization. Furthermore, processing work-group-level 

packages in stage 2 is overlapped with consolidating messages into work-group-level packages in 

stage 1. 

Figure A-1 shows how stage 1 consolidates messages into work-group-level packages that can 

be processed by stage 2. Specifically, work-items in a work-group jointly reserve a work-group-

level package (described in Section A.2.3) and populate it with their network messages (time ❶). 

On a CPU, synchronizing every time a network message is initiated would trigger unacceptable 

coherence overheads. Two phenomena explain why GPU work-items incur modest 

 

Figure A-1. Gravel’s message transit pipeline. 
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synchronization overheads when updating a work-group-level package. First, global 

synchronization is amortized across the entire work-group, which comprises a number of work-

items (e.g., up to 256 work-items on current AMD GPUs). Second, the work-group-level package 

is organized such that work-items in the same work-group write their operations to the same cache 

lines at the same time. The work-group-level package is passed to stage 2, through Gravel’s 

producer/consumer queue, after all of the work-items in the work-group have populated it with 

their network messages. 

A.1.2 Pipeline Stage 2: Message Aggregation 

The primary goal of stage 2 is to extract messages from a work-group-level package (time ❷ in 

Figure A-1) and repack them into per-node buffers (time ❸), which are arrays packed with 

messages being sent to the same machine node. This is achieved by aggregator threads on the 

CPU. CPU threads are better suited to the control-intensive nature of message binning than GPU 

work-items, which are susceptible to costly branch and memory divergence. To avoid excessive 

synchronization, different CPU aggregation threads process different work-group-level packages 

in parallel. Furthermore, each aggregation thread maintains its own private set of per-node buffers 

to further reduce synchronization. Figure A-2 demonstrates how three messages, targeted at node 

1, are packed to minimize per-message overheads. Per-node buffers are sent to the network for 

processing after reaching their maximum occupancy or exceeding a timeout (time ❹). 

 

Figure A-2. Per-node buffer format example. 
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A.1.3 Pipeline Stage 3: Network Interface 

To send and receive per-node buffers over the network, we follow prior work [66][77] and use 

MPI. Each node maintains a polling network thread on the CPU that receives per-node buffers and 

processes their messages. Popular MPI implementations, like OpenMPI, currently have limited 

thread support [61]. In our system, network requests are initiated by different consumers (e.g., 

MPI_Send), the network thread (e.g., MPI_Irecv), and host CPU threads (e.g., MPI_Barrier). 

To obtain the required level of thread support, all network requests are funneled through a multi-

producer/single-consumer (MPSC) queue to stage 3 of the pipeline, and processed by the network 

thread (time ❺). The MPSC implementation is the MPMC queue described in Section A.2.2 

instantiated with one consumer thread. To avoid deadlock, the network thread converts blocking 

operations, like MPI_Barrier, to multiple non-blocking operations [78]. 

Per-node buffers cannot be reused until the network thread marks them as available. Our 

solution is to instantiate an SPSC queue between each aggregator thread and the network thread. 

The network thread recycles a per-node buffer by pushing its pointer into the per-node buffer’s 

SPSC queue (time ❻ and time ❼). The SPSC queues are implemented as described in Section 

A.2.1. 

A.2 Gravel’s Producer/consumer Queue Design 

This section discusses the design of Gravel’s various producer/consumer queues, which are used 

to connect the pipeline stages described in the previous section (A.1). Specifically, Gravel uses 

there queues: an SPSC queue, an MPMC queue, and a GPU-to-CPU producer/consumer queue, 

which is referred to as “Gravel’s producer/consumer.” 

All three queues are array-based. Compared to a linked-list-based queue, arrays are more 

amenable to the GPU’s memory coalescer and help to avoid expensive dynamic memory 
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allocation. Each array slot encodes a payload and its synchronization variables. In all cases, a write 

index (wrIdx) and a read index (rdIdx) are used to order producers and consumers, respectively. 

To avoid false sharing, the read and write indices each occupy their own cache line. Array slots 

are managed through four producer/consumer actions depicted in Figure A-3 (a): 

 reserve(): producer obtains queue slot for payload 

 publish(): producer marks queue slot as populated 

 peek(): consumer checks if queue slot is full 

 release(): consumer marks queue slot as available 

The sections that follow describe how the producer/consumer actions are handled for the three 

queue variations. 

A.2.1 Single-producer/Single-consumer Queue 

The SPSC queue uses its read and write indices to synchronize the producer and consumer, which 

is sufficient because the producer and consumer never conflict if they check that the queue is 

available (i.e., not empty or full) [79]. Thus, an array slot in the SPSC queue is an opaque set of 
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bytes used to encode the payload. This is depicted in in Figure A-3 (b). To avoid false sharing, 

extra bytes are allocated to pad the payload. 

Pseudo-code for the producer/consumer actions can be found in Table A-1’s SPSC column. 

To reserve a slot, the producer checks that the queue is not full (line 1) and then retrieves a 

pointer to the payload at wrIdx (line 2). If the queue is full, the producer waits for the consumer 

to create space. After the producer obtains a slot, it populates the payload. To publish its slot, the 

producer increments wrIdx (lines 3-4). 

The consumer peeks for items to consume. If the queue is not empty (lines 5-6), then the 

consumer retrieves the payload at rdIdx (lines 7-8). To release the array slot, the consumer 

increments rdIdx (lines 9-10). 

A.2.2 Multi-producer/Multi-consumer Queue 

The structure of the MPMC queue is derived directly from the SPSC queue. Notably, the global 

read and write indices are not sufficient to order producers and consumers. Instead, the following 

Table A-1. Pseudo-code for the producer/consumer actions. 

 SPSC MPMC Gravel 

reserve 
() 

 1:while (wrIdx + 1 == rdIdx) ; 
 2:return array[wrIdx].payload; 

 1:I = wrIdx.fetch_add(1) %  
 2:    array.size; 
 3:T =  
 4:array[I].wrTicket.fetch_add(1); 
 5:while (T != array[I].numServed) ; 
 6:while (array[I].full) ; 
 7:return array[I].payload; 

 1:L = get_local_id(0); 
 2:leader = reduce_max(L); 
 3:I = 0; 
 4:if (L == leader) 
 5:  MPMC::reserve() lines 1-4 
 6:I = reduce_add(I); 
 7:return  
 8:  &array[I].payload[0][L]; 

publish 
() 

 3:wrIdx = (wrIdx + 1) %  
 4:        array.size; 

 8:array[I].full = true;  9:L = get_local_id(0); 
10:leader = reduce_max(L); 
11:if (L == leader) 
12:  array[myIdx].full = true; 

peek() 

 5:if (wrIdx == rdIdx) 
 6:  return NULL; 
 7:return 
 8:  array[rdIdx].payload; 

 9:I = rdIdx.fetch_add(1) %  
10:    array.size; 
11:T =  
12:array[I].rdTicket.fetch_add(1); 
13:while (T != array[I].numServed) ; 
14:while (!array[I].full) ; 
15:return array[I].payload; 

/* same as MPMC::peek() */ 

release
() 

 9:rdIdx = (rdIdx + 1) %  
10:        array.size 

16:array[I].full = false; 
17:array[I].numServed.fetch_add(1); 

/* same as MPMC::release() */ 
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invariant drives the producer/consumer actions: at most, one agent (i.e., a producer or a consumer) 

can access an array slot at a time. 

Three conflicts warrant enforcing the invariant. The first occurs when two or more producers 

alias to the same array slot. To maintain the invariant, exactly one producer is chosen to proceed. 

Other producers must wait or try again. The second conflict arises when two or more consumers 

alias to the same array slot. This scenario is handled like the first—one consumer is chosen to 

proceed. After resolving the first two conflicts, a third occurs between the chosen producer and the 

chosen consumer. The conflict is resolved by choosing at most one to proceed. 

Figure A-3 (c) depicts an array slot in the MPMC queue. In addition to the padded payload, 

there are variables to enforce the invariant as described in the prior paragraph. Tickets (i.e., 

numServed, writeTicket, and readTicket) are used to order producers (conflict 1) and 

consumers (conflict 2). A full bit (i.e., full) is used to order a producer and consumer that both 

have a valid ticket (conflict 3). Table A-1’s MPMC column has pseudo-code for the 

producer/consumer actions. Initially, all array slots are empty, their full bits are clear, both tickets 

(i.e., writeTicket and readTicket) are zero, and the number of tickets served (i.e., numServed) 

is zero. 

To reserve a slot, a producer does a fetch-add on wrIdx, which returns an offset, I, into 

the array (lines 1-2). The producer then obtains a unique write ticket, T, by doing a fetch-and-add 

on the slot’s writeTicket (lines 3-4). Conflict 1 is resolved by waiting for the producer’s write 

ticket, T, to equal numServed (line 5). Conflict 3 is resolved by waiting for the slot’s full bit to be 

clear (line 6). Finally, a pointer to the slot’s payload is returned (line 7) and populated. To publish 

the slot, the producer sets the slot’s full bit1 (line 8). 

                                                 
1 The full bit at offset I is located from the payload pointer. 
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The peek action is similar to the reserve action. It involves obtaining a queue slot and waiting 

for that slot to be populated2. Consumers obtain a ticket (used to resolve conflict 2) by performing 

a fetch-add on the slot’s rdTicket (lines 11-12). Conflict 3 is resolved by waiting for the slot’s 

full bit to be set (line 14). To release its slot, the consumer clears its slot’s full bit (line 16) and 

increments numServed (line 17), which allows other producers and consumers to make progress. 

A.2.3 Gravel’s Producer/consumer Queue 

Gravel’s producer/consumer queue follows directly from the MPMC queue. Because producers 

are work-groups—groups of work-items executing on the same CU—Gravel’s producer/consumer 

queue differs in two ways. First, to facilitate optimal memory coalescing, the payload is organized 

as a column-major array—shown in Figure A-3 (d). Thus, words written by adjacent work-items 

are adjacent in memory. Because adjacent work-items write adjacent locations in memory, the 

payload does not need to be padded. 

The second difference is that work-groups choose a leader work-item to synchronize with 

other producers and consumers. This leader uses the MPMC actions to adhere to the MPMC 

invariant (at most one agent can access an array slot at a time) and to obtain a payload pointer. 

After obtaining a payload pointer, the leader broadcasts the pointer to the other work-items in its 

work-group. 

Table A-1’s Gravel column has pseudo-code for the producer actions. To reserve a slot, the 

producer work-group elects a leader work-item by comparing each work-item’s unique lane ID, L 

(line 1). Specifically, each work-item participates in a data-parallel reduction to determine the 

maximum lane ID (line 2). If a work-item’s lane ID equals the maximum lane ID then that work-

item is the leader (line 4). The leader lane mimics the MPMC reserve action (line 5). Finally, 

                                                 
2 The pseudo-code resolves conflicts 2 and 3 by blocking the consumer. A reentrant call to a non-blocking version must retrieve the consumer’s 

offset. 



95 

 

the leader lane uses a reduction to broadcast the work-group’s offset to other work-items in the 

work-group. 

To publish the slot, the work-group elects a leader work-item (lines 9-11) to set the full bit 

(line 12). A data parallel reduction is collective across the work-group, which means that all work-

items are guaranteed to reach it before the leader sets the full bit. The peek and release actions, 

which are executed by consumer threads on the integrated CPU, are identical to the MPMC peek 

and release actions. 
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