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ABSTRACT

Database management systems (DBMSs) are currently used as the supporting back-end for a large num-

ber of internet applications, and the dominant commercial software running on high-end enterprise servers.

Modern database servers rely on powerful processors that are able to execute instructions in parallel and

out of the program’s logical order, and of performing computations at tremendously high speeds. Although

during the past two decades database performance research has primarily focused on optimizing I/O per-

formance, today’s database applications are becoming increasingly computation and memory intensive.

Recent studies show that the hardware behavior of database workloads is suboptimal when compared to

scientific workloads, and the results indicate that further analysis is required to identify the real perfor-

mance bottlenecks.

My thesis is that we can understand the bottlenecks of the interaction between the database system and

the hardware by studying (a) the behavior of more than one commercial DBMS on the same hardware plat-

form, and (b) the behavior of the same DBMS on different hardware platforms. The former is important in

order to identify general trends that hold true across database systems and to determine what problems we

must work on to make database systems run faster. The latter is important in order to compare competing

processor and memory system design philosophies, and to determine which of the architectural design

parameters are most crucial to database performance.

The primary contributions of this dissertation are (a) to introduce a novel approach towards identifying

performance bottlenecks in database workloads by studying their hardware behavior, (b) to improve data-

base performance by redesigning data placement in an architecture-conscious fashion, and (c) to identify

the hardware design details that most influence database performance. The first part of this thesis intro-

duces an execution model for database workloads, and studies the execution time breakdown of four com-
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mercial DBMSs on the same hardware platform. The model breaks elapsed execution time into two

components: the time during which the processor performs useful computation and the time during which

the processor is stalled. The results show that (a) on the average, half the execution time is spent in stalls

(implying database designers can improve DBMS performance significantly by attacking stalls), (b) 90%

of the memory stalls are due to second-level cache misses when accessing data, and first-level cache

misses when accessing instructions, and (c) about 20% of the stalls are caused by subtle implementation

details (implying that there is no “silver bullet” for mitigating stalls). In addition, using simple queries

rather than full decision-support workloads provides a methodological advantage, because results are sim-

pler to analyze and yet are substantially similar to the results obtained using full benchmarks.

One of the most significant conclusions from the first part of this thesis is that data accesses to the sec-

ond-level cache are a major bottleneck on a processor with a two-level cache hierarchy. The traditional

page layout scheme in database management systems is the N-ary Storage Model (NSM, a.k.a., slotted

pages), and is used by all of today’s commercial database systems. NSM, however, exhibits suboptimal

cache behavior. The second part of this thesis introduces and evaluates Partition Attributes Across

(PAX), a new layout for data records. For a given relation R, PAX stores the same data on each page as

NSM. Within each page, however, PAX groups all the values of a particular attribute together on a

minipage. Therefore, when applying a predicate to an attribute, the cache performance of PAX is signifi-

cantly better than NSM's. At the same time, all parts of the record are in a single page, so the reconstruction

cost is minimal (because PAX performs “vertical partitioning within the page”). When compared to NSM,

PAX incurs 50-75% fewer second-level cache misses due to data accesses, and executes TPC-H queries in

11%-40% less time than NSM. 

The analysis across four commercial database systems from the first part of this thesis indicates that

design decisions in both the processor’s execution engine and the memory subsystem significantly affect
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database performance. The third part of this thesis studies the impact of processor design on the perfor-

mance of database workloads on a variety of hardware platforms. From the study comes evidence that (a)

an out-of-order processor would overlap stalls more aggressively, especially if combined with an execution

engine that can execute more than one load/store operations per processor cycle, (b) a high-accuracy

branch-prediction mechanism is critical to eliminate stall time due to branch mispredictions that, as shown

in the first part, increase the instruction cache misses as well and (c) a high-associativity, non-inclusive

cache hierarchy with large data blocks will exploit spatial locality of data provided by placement tech-

niques like PAX.
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Chapter 1

Introduction

"Databases are the bricks of cyberspace."

Jim Gray

Database management systems (DBMSs) are currently used as the supporting back-end for a large num-

ber of internet applications, such as e-commerce, banking systems, and digital libraries. Database applica-

tions, as projected by the Dataquest server market studies [53], today are the dominant commercial

software running on high-end enterprise servers. A recent survey [56] performed on a variety of organiza-

tions (manufacturing, government, health care, education, etc.), showed that 48% of the servers were used

to run database applications.

During the past two decades, database performance research has primarily focused on optimizing I/O

performance. The results from this research are being used inside all modern commercial database man-

agement systems. In order to hide I/O latencies, today’s storage servers (the DBMS modules responsible

for communication with the disks) employ techniques such as coalescing write requests, grouping read

requests, and aggressive prefetching. In addition, query processing algorithms such as hash-join and

merge-sort employ special schemes that exploit the available amount of memory as much as possible and

minimize the disk accesses.
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On the other hand, database applications are becoming increasingly computation and memory intensive.

A VAX 11/780 [20] in 1980 typically had 1MB of main memory, which was too small to hold a client

application’s working set. Therefore, the performance bottleneck was the communication between the

memory and the disk. The memory in a typical medium to high-end server today is onthe order of

gigabytes, and is projected to grow to a terabyte in the next decade. Due to the memory size increase, in the

past ten years, much of the data in an application’s working set has migrated into memory, and the perfor-

mance bottleneck has shifted from the I/O to the communication between the processor and the memory.

Even when the critical mass of data for the application resides on the disk, the I/O overlaps successfully

with computation; therefore, a needed data page is often found in main memory [8][46]. The decision-sup-

port systems database vendors ship today are mostly computation and memory-bound [36].

Modern database servers rely on powerful processors, which are able of executing instructions in parallel

and out of the program’s logical order and of performing computations at tremendously high speeds;

almost in accordance with Moore’s Law [40], processor speed doubles every two years. On the other hand,

memory latency does not follow the same curve [28]. In 1980, the time to fetch a datum from memory was

comparable to the time to execute one instruction. Due to the increase in memory size and in processor

speed, the memory access times in processor cycles are by three orders of magnitude higher than the aver-

age number of cycles a processor needs to execute an instruction. Therefore, the penalty associated with

bringing one datum from memory is equivalent to hundreds of lost instruction opportunities (because the

processor has become faster, and the memory has become relatively slower).

Research in computer architecture has traditionally used much simpler programs than DBMSs (e.g.,

SPEC, LINPACK), in order to evaluate new designs and implementations. Nevertheless, one would hope

that database applications would fully exploit the architectural innovations, especially since the perfor-

mance bottleneck has shifted away from the I/O subsystem. Unfortunately, recent studies [33][38][37] on
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several commercial DBMSs have shown that the hardware behavior of database workloads is suboptimal

when compared to scientific workloads, and the results indicate that further analysis is required to identify

the real performance bottlenecks.

Ideally, one could analyze database behavior by acquiring the source code of a representative database

system, running it with a representative workload on a representative computer, and use an accurate model

of the processor and memory system to perform precise measurements and discover the performance bot-

tlenecks. Unfortunately, commercial database systems differ in design and implementation, their source

code is not public, and their behavior varies depending on the workload. Similarly, there is no “representa-

tive” processor and memory subsystem, and the accurate hardware models are vendor proprietary informa-

tion. Finally, there are two ways to monitor the behavior: simulation and measurement (explained further

in Section 1.4). Simulation does not represent a real system, and measurement methods are not always

straightforward.

My thesis is that — despite the above restrictions — we can understand the bottlenecks of the interaction

between the database system and the hardware by studying 

• the behavior of more than one commercial DBMS on the same hardware platform, and 

• the behavior of the same DBMS on different hardware platforms. 

The former is important in order to identify general trends that hold true across database systems and to

determine what problems we must work on to make database systems run faster. The latter is important in

order to compare competing processor and memory system design philosophies, and to determine which of

the architectural design parameters are most crucial to database performance.
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The primary contributions of this dissertation are (a) to introduce a novel approach towards identifying

performance bottlenecks in database workloads by studying their hardware behavior, (b) to improve data-

base performance by redesigning data placement in an architecture-conscious fashion, and (c) to identify

the hardware design details that most influence database performance. 

The rest of this section motivates and describes the contributions of this thesis. Section 1.1 describes the

model we used to analyze the hardware behavior of commercial database systems on a modern processor,

and outlines the major results. Section 1.2 outlines a novel, cache-conscious data page layout for storing

relations on the disk. Section 1.3 briefly presents the motivation and major insights drawn from analyzing

the behavior of a prototype database system on multiple processors. Section 1.4 discusses the measurement

vs. simulation trade-off and justifies our choice to use the processor performance counters to conduct all

the experiments presented in this thesis. Finally, Section 1.5 describes the overall thesis organization.

1.1   A Model for Commercial Database Execution Time

The first part of this thesis introduces an execution model for database workloads, and uses it to generate

and study the execution time breakdown of four commercial DBMSs (whose names are withheld to meet

licence restrictions) on the same hardware platform (a 6400 PII Xeon/MT Workstation running Windows

NT v4.0). The model is based on the observation that the elapsed time from query submission until the

DBMS returns results consists of two components: the time that the processor performs useful computation

and the time that the processor is stalled because it is waiting for an event to occur. Assuming there is no I/

O involved, the stall time is further divided into three components: 

• Memory-related stall time, during which the processor is waiting for data or instructions to arrive from

the memory subsystem.
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• Branch misprediction stall time that is due to branch misprediction related penalties.

• Stall time due to data dependencies and unavailability of execution resources.

We apply this model on a workload that consists of range selections and joins running on a memory resi-

dent database. We chose a workload composed of simple queries, because (a) they isolate basic query pro-

cessing functions (such as sequential scans, indexed scans, and joins) that are used during processing of

more complex queries, and (b) when executing such queries, we expect minimal variation in the algorithms

invoked across different DBMSs. Therefore, the workload is ideal to isolate basic operations and identify

common trends across the DBMSs. 

The conclusion is that, even when executing simple queries, almost half of the execution time is spent in

stalls. Analysis of the stall time components provides more insight about the operation of the cache as the

record size and the selectivity are varied. The nature of the workload helped to partially overcome the lack

of access to the DBMS source code, because database operations are more predictable when running sim-

ple queries than when using complex benchmarks. The results show that:

• On the average, half the execution time is spent in stalls (implying database designers can improve

DBMS performance significantly by attacking stalls).

• In all cases, 90% of the memory stalls are due to second-level cache misses when accessing data, and

first-level cache misses when accessing instructions.

• About 20% of the stalls are caused by subtle implementation details (e.g., branch mispredictions),

implying that there is no “silver bullet” for mitigating stalls.
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In addition, we conclude that using simple queries rather than full decision-support workloads provides a

methodological advantage, because results are simpler to analyze and yet are substantially similar to the

results obtained using full benchmarks. To verify this, we implemented and ran a decision-support bench-

mark on three of the four systems, and the results are similar to those obtained using simpler queries.

1.2   PAX: A Cache-Conscious Data Page Layout

One of the most significant conclusions from the first part of this thesis is that data accesses to the sec-

ond-level cache are a major database performance bottleneck when executing on a processor with a two-

level cache hierarchy. The reason is that a miss to the second-level cache always results in a request to

main memory, and the time needed to fetch data from main memory is one to two orders of magnitude

higher than the time needed to access in-cache data. However, the processor must fetch data from main

memory upon a cache miss, i.e., if it fails to find the data in the cache; therefore, the use of the cache

should be maximized. 

Spatial data locality is an important factor when dealing with cache performance [28]. Cache-conscious

data layout increases spatial data locality and effectively reduces cache misses. Upon a request for an item,

a cache will transfer a fixed-length aligned block (or line) from main memory. Depending on the cache

design, the length of the cache block typically varies from 16 to 128 bytes. However, the application may

only need a small fraction of the data in the block. Loading the cache with useless data (a) wastes band-

width and (b) pollutes the cache with useless data, while possibly forcing replacement of other data that

may be needed in the future. 

The traditional page layout scheme in database management systems is the N-ary Storage Model (NSM,

a.k.a., slotted pages). NSM stores records contiguously starting from the beginning of each disk page, and
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uses an offset (slot) table at the end of a page to find where each record starts [47]. However, most query

operators access only part of the record, i.e., a fraction of each NSM page brought into the buffer pool is

really used. To minimize unnecessary I/O, the decomposition storage model (DSM) [15] partitions an n-

attribute relation vertically into n sub-relations, each of which is only used when the attribute is needed.

Although DSM saves I/O and increases main memory utilization, it is not the dominant page layout

scheme, mainly because in order to reconstruct a record, one must perform expensive joins on the partici-

pating sub-relations. All of today’s commercial database systems still use the traditional NSM algorithm

for data placement [36][52][61].

NSM exhibits suboptimal cache behavior. For instance, if the record size is greater than the cache block

size, it is likely that a sequential scan for a certain attribute will miss the cache and access main memory

once for every record in the relation. On today’s processors, each cache miss is equivalent to hundreds of

lost instruction opportunities. In addition, each ‘read’ will bring into the cache several useless values along

with the one requested. The challenge is to improve NSM’s cache behavior, without compromising its

advantages over DSM.

The second part of this thesis introduces and evaluates Partition Attributes Across (PAX), a new layout

for data records that injects into NSM a cache performance improvement at the page level. For a given

relation R, PAX stores the same data on each page as NSM (or more, because PAX incurs less storage pen-

alty). The difference is that within each page, PAX groups all the values of a particular attribute together on

a minipage. Therefore, when applying a predicate to an attribute, the cache performance of PAX is signifi-

cantly better than NSM's. At the same time, all parts of the record are in a single page, so the reconstruction

cost is minimal (because PAX performs “vertical partitioning within the page”).
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We evaluated PAX against NSM and DSM using (a) predicate selection queries on numeric data and (b)

a variety of decision-support queries on top of the Shore storage manager [10]. Query parameters varied

include selectivity, projectivity, number of predicates, distance between the projected attribute and the

attribute in the predicate, and degree of the relation. The results show that, when compared to NSM, PAX

(a) incurs 50-75% fewer second-level cache misses due to data accesses, (b) executes queries in 17%-25%

less elapsed time, and (c) executes TPC-H queries involving I/O in 11%-40% less time than NSM. When

compared to DSM, PAX (a) exhibits better cache performance, (b) executes queries consistently faster

because it incurs no record reconstruction cost, and (c) exhibits stable execution time as selectivity, projec-

tivity, and the number of attributes in predicate vary, where the execution time of DSM increases linearly

to these parameters.

In addition to these improvements, PAX has several other advantages as well. Research [22] has shown

that compression algorithms work better with vertically partitioned relations and on a per-page basis. In

addition, PAX is orthogonal to other storage decisions such as affinity graph based partitioning [16]. Fur-

thermore, it is transparent to the rest of the database system. The storage manager can decide to use PAX or

not when storing a relation, based solely on the number of attributes. As a disadvantage, PAX requires

more complicated memory and space manipulation algorithms for record insertion, deletion, and update.

1.3   Porting Shore on Four Systems: Where Is My Dream Machine?

Although today’s processors follow the same sequence of logical operations when executing a program,

there are internal implementation details that critically affect the processor’s performance. Different hard-

ware platforms exhibit variations in the internal design and implementation of the execution engine and the

memory subsystem (microarchitecture) as well as in the instruction set implemented inside the processor
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for interaction with the software (architecture). The third part of this thesis studies the impact of processor

design on the performance of database workloads on a variety of hardware platforms, using range selection

and decision-support queries on top of the Shore storage manager.

The analysis across four commercial database systems from the first part of this thesis indicates that

design decisions in both the processor’s execution engine and the memory subsystem significantly affect

performance when running database queries. For this study, we had access to four platforms that exhibit

different designs in both areas:

• The Sun UltraSparc-II and UltraSparc-IIi execute instructions in logical program order, and feature a

two-level cache hierarchy in which all first-level cache contents are guaranteed to be included into the

second-level cache as well (i.e., it maintains “inclusion” for both instructions and data). The two pro-

cessors belong to the same basic RISC architecture and microarchitecture, but their memory sub-

systems exhibit interesting design variations that are exposed when executing the same workload.

• The Intel Pentium II Xeon processor is the same as the one used in the previous two parts of this thesis.

It is a CISC, out-of-order processor with an aggressive branch prediction mechanism, and a two-level

cache hierarchy that does not maintain inclusion.

• The Compaq Alpha 21164 is a RISC processor with an in-order execution engine and a three-level

cache hierarchy that maintains inclusion only for data.

The results from the study indicate that several processor and memory system characteristics are likely to

significantly improve performance. In particular, (a) an out-of-order processor would overlap stalls more

aggressively, especially if combined with an execution engine that can execute more than one load/store

operation per processor cycle, (b) a high-accuracy branch-prediction mechanism is critical to eliminate
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stall time due to branch mispredictions that, as shown in the first part, increase the instruction cache misses

as well and (c) a high-associativity, non-inclusive cache hierarchy with large data blocks will exploit spa-

tial locality of data provided by placement techniques like PAX.

1.4   A Note on Methodology: Measurement Vs. Simulation

As computer systems become increasingly complex, it becomes important to fully evaluate them with a

broad variety of workloads. To evaluate computer architectures and characterize workloads, researchers

have traditionally employed simulation techniques. Simulation offers an arbitrary level of detail, and one

can tweak virtually any parameter in order to study the implications of alternative architectural designs.

Simulation, however, cannot effectively characterize database workloads on modern platforms for two rea-

sons:

1. Recent architectural designs are too complex to simulate reliably, especially when their execution

engines are out-of-order. In addition, detailed processor models are typically withheld by the compa-

nies as proprietary information. Consequently, the few simulators publicly available model a hypothet-

ical architecture that does not exactly correspond to any of the existing platforms.

2. In the best case, executing a program on a simulator typically takes at least three orders of magnitude

longer than executing the same program on the real machine. Increasing the number of processors,

executing in out-of-order mode, and running workloads that stress the system resources further

increases the simulation time. Database systems have long initialization times and the workloads

heavily use the system’s resources (e.g., CPU, memory, disks). Previous research results on database

workloads running on simulated machines rely on scaled-down datasets, or on parts of workload exe-
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cution, or both. Typically queries run through several phases of execution, while may not be captured

when simulating a fraction of the instruction trace or a scaled-down workload [32].

Despite these problems, researchers still use simulation techniques to evaluate alternative architectures,

because simulation is the only way to study the effect of varying one architectural parameter while keeping

the rest of the configuration unchanged. The best way, on the other hand, to characterize a workload with-

out modifying any architectural parameters is to take measurements on the real platform.

Modern processors include hardware performance counters, which are counting registers that placed on

strategic positions on the hardware execution path. A counter that is associated with a certain event type

(for example, a first-level cache miss) counts occurrences of that event type. Counters are being used

extensively by performance groups for evaluation of new architectural designs, and recently there has been

public-domain software available to access the counter values. The insights drawn in this thesis are based

on experiments that employ the hardware counters available on all the processors we studied. 

1.5   Thesis Organization

Chapter 2 presents the model for evaluating database workload by studying the hardware behavior on a

modern processor platform, and discusses the behavior of four commercial database management systems

when running a set of basic queries. Chapter 3 discusses PAX, a new data placement technique that opti-

mizes memory accesses and improves query performance. Chapter 4 evaluates database software behavior

on top of various microarchitectural designs across four different systems using a decision-support work-

load on top of a prototype database system, and elaborates on the impact of the different designs on data-

base performance. Finally, Chapter 5 concludes the thesis with a summary of results.
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Chapter 2

DBMSs On A Modern Processor:

Where Does Time Go?

Recent high-performance processors employ sophisticated techniques to overlap and simultaneously

execute multiple computation and memory operations. Intuitively, these techniques should help database

applications, which are becoming increasingly compute and memory bound. Unfortunately, recent studies

report that faster processors do not improve database system performance to the same extent as scientific

workloads. Recent work on database systems focusing on minimizing memory latencies, such as cache-

conscious algorithms for sorting and data placement, is one step toward addressing this problem. However,

to best design high performance DBMSs we must carefully evaluate and understand the processor and

memory behavior of commercial DBMSs on today’s hardware platforms. 

In this chapter we answer the question “Where does time go when a database system is executed on a

modern computer platform?” We examine four commercial DBMSs running on an Intel Xeon and NT 4.0.

We introduce a framework for analyzing query execution time on a DBMS running on a server with a mod-

ern processor and memory architecture. To focus on processor and memory interactions and exclude

effects from the I/O subsystem, we use a memory resident database. Using simple queries we find that

database developers should (a) optimize data placement for the second level of data cache, and not the first,

(b) optimize instruction placement to reduce first-level instruction cache stalls, but (c) not expect the over-
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all execution time to decrease significantly without addressing stalls related to subtle implementation

issues (e.g., branch prediction).

The rest of this chapter is organized as follows: Section 2.1 presents a summary of recent database work-

load characterization studies and an overview of the cache performance improvements proposed. Section

2.2 describes the vendor-independent part of this study: an analytic framework for characterizing the

breakdown of the execution time and the database workload. Section 2.3 describes the experimental setup,

Section 2.4 presents our results, and finally, Section 2.5 concludes.

2.1   Previous work

Much of the related research has focused on improving the query execution time, mainly by minimizing

the stalls due to memory hierarchy when executing an isolated task. There are a variety of algorithms for

fast sorting techniques [5][35][45] that propose optimal data placement into memory and sorting algo-

rithms that minimize cache misses and overlap memory-related delays. In addition, several cache-con-

scious techniques such as blocking, data partitioning, loop fusion, and data clustering were evaluated [35]]

and found to improve join and aggregate queries. Each of these studies is targeted to a specific task and

concentrate on ways to make it faster. 

The first hardware evaluation of a relational DBMS running an on-line transaction processing (OLTP)

workload [57] concentrated on multiprocessor system issues, such as assigning processes to different pro-

cessors to avoid bandwidth bottlenecks. Contrasting scientific and commercial workloads [38] using TPC-

A and TPC-C on another relational DBMS showed that commercial workloads exhibit large instruction

footprints with distinctive branch behavior, typically not found in scientific workloads, and that they bene-
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fit more from large first-level caches. Another study [49] showed that, although I/O can be a major bottle-

neck, the processor is stalled 50% of the time due to cache misses when running OLTP workloads.

In the past two years, several interesting studies evaluated database workloads, mostly on multiprocessor

platforms. Most of these studies evaluate OLTP workloads [19][37][33], a few evaluate decision support

(DSS) workloads [58]] and there are some studies that use both [6][48]. All of the studies agree that the

DBMS behavior depends upon the nature of the workload (DSS or OLTP), that DSS workloads benefit

more from out-of-order processors with increased instruction-level parallelism than OLTP, and that mem-

ory stalls are a major bottleneck. Although the list of references presented here is not exhaustive, it is rep-

resentative of the work done in evaluating database workloads. Each of these studies presents results from

a single DBMS running a TPC benchmark on a single platform, which makes contrasting the DBMSs and

identifying common characteristics difficult. 

2.2   Query Execution on Modern Processors

In this section, we describe a framework that describes how major hardware components determine exe-

cution time. The framework analyzes the hardware behavior of the DBMS from the moment it receives a

query until the moment it returns the results. Then, we describe a workload that allows us to focus on the

basic operations of the DBMSs in order to identify the hardware components that cause execution bottle-

necks.

2.2.1   Query Execution Time: A Processor Model

To determine where the time goes during execution of a query, we must understand how a processor

works. The pipeline is the basic module that receives an instruction, executes it and stores its results into
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memory. The pipeline works in a number of sequential stages, each of which involves a number of func-

tional components. An operation at one stage can overlap with operations at other stages. 

Figure 2.1 shows a simplified diagram of the major pipeline stages of a processor similar to the Pentium

II [19][31]. First, the FETCH/DECODE unit reads the user program instructions from the instruction cache

(L1 I-cache), decodes them and puts them into an instruction pool. The DISPATCH/EXECUTE unit sched-

ules execution of the instructions in the pool subject to data dependencies and resource availability, and

temporarily stores their results. Finally, the RETIRE unit knows how and when to commit (retire) the tem-

porary results into the data cache (L1 D-cache).

In some cases, an operation may not be able to complete immediately and delay (“stall”) the pipeline.

The processor tries to cover the stall time by doing useful work, using the following techniques:

• Non-blocking caches: Caches do not block when servicing requests. For example, if a read request to

one of the first-level caches fails (misses), the request is forwarded to the second-level cache (L2

cache), which is usually unified (used for both data and instructions). If the request misses in L2 as

well, it is forwarded to main memory. During the time the retrieval is pending, the caches at both levels

can process other requests.

• Out-of-order execution: If instruction X stalls, another instruction Y that follows X in the program can

execute before X, provided that Y’s input operands do not depend on X’s results. The dispatch/execute

unit contains multiple functional units to perform out-of-order execution of instructions.

• Speculative execution with branch prediction: Instead of waiting until a branch instruction’s predicate

is resolved, an algorithm “guesses” the predicate and fetches the appropriate instruction stream. If the

guess is correct, the execution continues normally; if it is wrong, the pipeline is flushed, the retire unit
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deletes the wrong results and the fetch/decode unit fetches the correct instruction stream. Branch

mispredictions incur both computation overhead (time spent in computing the wrong instructions), and

stall time.

Even with these techniques, the stalls cannot be fully overlapped with useful computation. Thus, the time

to execute a query (TQ) includes a useful computation time (TC), a stall time because of memory stalls

(TM), a branch misprediction overhead (TB), and resource-related stalls (TR). The latter are due to execu-

tion resources not being available, such as functional units, buffer space in the instruction pool, or regis-

ters. As discussed above, some of the stall time can be overlapped (TOVL). Thus, the following equation

holds:

TQ = TC + TM + TB + TR - TOVL

Table 2.1 shows the time breakdown into smaller components. The DTLB and ITLB (Data or Instruction

Translation Lookaside Buffer) are page table caches used for translation of data and instruction virtual

addresses into physical ones. The next section briefly discusses the importance of each stall type and how

FIGURE 2.1. Simplified block diagram of processor operation.
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easily it can be overlapped using the aforementioned techniques. A detailed discussion on hiding stall

times can be found elsewhere [19].

2.2.2   Significance of the stall components

Previous work has focused on improving DBMS performance by reducing TM, the memory hierarchy

stall component. In order to be able to use the experimental results effectively, it is important to determine

the contribution each of the different types of stalls makes to the overall execution time. Although out-of-

order and speculative execution help hide some of the stalls, there are some stalls that are difficult to over-

lap, and thus are the most critical for performance. 

It is possible to overlap TL1D if the number of L1 D-cache misses is not too high. Then the processor can

fetch and execute other instructions until the data is available from the second-level cache. The more L1 D-

TABLE 2.1: Execution time components

Component Name Component Description

TC computation time

TM stall time related to memory hierarchy

TL1D stall time due to L1 D-cache misses (with hit in L2)

TL1I stall time due to L1 I-cache misses (with hit in L2)

TL2 TL2D stall time due to L2 data misses

TL2I stall time due to L2 instruction misses

TDTLB stall time due to DTLB misses

TITLB stall time due to ITLB misses

TB branch misprediction penalty

TR resource stall time

TFU stall time due to functional unit unavailability

TDEP stall time due to dependencies among instructions

TMISC stall time due to platform-specific characteristics
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cache misses that occur, the more instructions the processor must execute to hide the stalls. Stalls related to

L2 cache data misses can overlap with each other, when there are sufficient parallel requests to main mem-

ory. TDTLB can be overlapped with useful computation as well, but a DTLB miss penalty depends on the

page table implementation for each processor. Processors successfully use sophisticated techniques to

overlap data stalls with useful computation. 

Instruction-related cache stalls, on the other hand, are difficult to hide because they cause a serial bottle-

neck to the pipeline. If there are no instructions available, the processor must wait. Branch mispredictions

also create serial bottlenecks; the processor again must wait until the correct instruction stream is fetched

into the pipeline. The Xeon processor exploits spatial locality in the instruction stream with special instruc-

tion-prefetching hardware. Instruction prefetching effectively reduces the number of I-cache stalls, but

occasionally it can increase the branch misprediction penalty. 

Although related to instruction execution, TR (the resource stall time) is easier to overlap than TITLB and

instruction cache misses. The processor can hide TDEP depending on the degree of instruction-level paral-

lelism of the program, and can overlap TFU with instructions that use functional units with less contention.

2.2.3   Database workload

The workload used in this study consists of single-table range selections and two table equijoins over a

memory resident database, running a single command stream. Such a workload eliminates dynamic and

random parameters, such as concurrency control among multiple transactions, and isolates basic opera-

tions, such as sequential access and index selection. In addition, it allows examination of the processor and

memory behavior without I/O interference. Thus, it is possible to explain the behavior of the system with

reasonable assumptions and identify common trends across different DBMSs. 
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The database contains one basic table, R, defined as follows: 

create table R(a1 integer not null,

a2 integernot null,

a3integernot null,

<rest of fields> ) 

In this definition, <rest of fields> stands for a list of integers that is not used by any of the queries. The

relation is populated with 1.2 million 100-byte records. The values of the field a2 are uniformly distributed

between 1 and 40,000. The experiments run three basic queries on R:

1. Sequential range selection: 

select avg(a3)

from R 

where a2 < Hi and a2 > Lo (1) 

The purpose of this query is to study the behavior of the DBMS when it executes a sequential scan, and

examine the effects of record size and query selectivity. Hi and Lo define the interval of the qualifica-

tion attribute, a2. The reason for using an aggregate, as opposed to just selecting the rows, was two-

fold. First, it makes the DBMS return a minimal number of rows, so that the measurements are not

affected by client/server communication overhead. Storing the results into a temporary relation would

affect the measurements because of the extra insertion operations. Second, the average aggregate is a

common operation in the TPC-D benchmark. The selectivity used was varied from 0% to 100%.

Unless otherwise indicated, the query selectivity used is 10%.

2. Indexed range selection: The range selection (1) was resubmitted after constructing a non-clustered

index on R.a2. The same variations on selectivity were used. 
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3. Sequential join: To examine the behavior when executing an equijoin with no indexes, the database

schema was augmented by one more relation, S, defined the same way as R. The field a1 is a primary

key in S. The query is as follows:

select avg(R.a3)

from R, S

where R.a2 = S.a1  (2) 

There are 40,000 100-byte records in S, each of which joins with 30 records in R.

2.3   Experimental Setup

We used a 6400 PII Xeon/MT Workstation to conduct all of the experiments. We use the hardware

counters of the Pentium II Xeon processor to run the experiments at full speed, to avoid any approxima-

tions that simulation would impose, and to conduct a comparative evaluation of the four DBMSs. This sec-

tion describes the platform-specific hardware and software details, and presents the experimental

methodology.

2.3.1   The hardware platform

The system contains one Pentium II Xeon processor running at 400 MHz, with 512 MB of main memory

connected to the processor chip through a 100 MHz system bus. The Pentium II is a powerful server pro-

cessor with an out-of-order engine and speculative instruction execution [18]. The X86 instruction set is

composed by CISC instructions, and they are translated into a stream of micro-operations (µops) each at

the decode phase of the pipeline. 
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There are two levels of non-blocking cache in the system. There are separate first-level caches for

instructions and data, whereas at the second level the cache is unified. The cache characteristics are sum-

marized in Table 2.2.

2.3.2   The software

Experiments were conducted on four commercial DBMSs, the names of which cannot be disclosed here

due to legal restrictions. Instead, we will refer to them as System A, System B, System C, and System D.

They were installed on Windows NT 4.0 Service Pack 4.

The DBMSs were configured the same way in order to achieve as much consistency as possible. The

buffer pool size was large enough to fit the datasets for all the queries. We used the NT performance-mon-

itoring tool to ensure that there was no significant I/O activity during query execution, because the objec-

tive is to measure pure processor and memory performance. In addition, we wanted to avoid measuring the

I/O subsystem of the OS. To define the schema and execute the queries, the exact same commands and

datasets were used for all the DBMSs, with no vendor-specific SQL extensions.

TABLE 2.2: Pentium II Xeon cache characteristics

Characteristic L1 (split) L2 (Unified)

Cache size 16KB Data
16KB Instruction

512KB

Cache line size 32 bytes 32 bytes

Associativity 4-way 4-way

Miss Penalty 4 cycles (w/ L2 hit) Main memory latency

Non-blocking Yes Yes

Misses outstanding 4 4

Write Policy L1-D: Write-back
L1-I:   Read-only

Write-back
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2.3.3   Measurement tools and methodology

The Pentium II processor provides two counters for event measurement [31]. We used emon, a tool pro-

vided by Intel, to control these counters. Emon can set the counters to zero, assign event codes to them and

read their values either after a pre-specified amount of time, or after a program has completed execution.

For example, the following command measures the number of retired instructions during execution of the

program prog.exe, at the user and the kernel level:

emon –C ( INST_RETIRED:USER,

INST_RETIRED:SUP )   prog.exe

Emon was used to measure 74 event types for the results presented in this report. We measured each

event type in both user and kernel mode.

Before taking measurements for a query, the main memory and caches were warmed up with multiple

runs of this query. In order to distribute and minimize the effects of the client/server startup overhead, the

unit of execution consisted of 10 different queries on the same database, with the same selectivity. Each

time emon executed one such unit, it measured a pair of events. In order to increase the confidence inter-

vals, the experiments were repeated several times and the final sets of numbers exhibit a standard deviation

of less than 5 percent. Finally, using a set of formulae1, these numbers were transformed into meaningful

performance metrics.

Using the counters, we measured each of the stall times described in Section 3.1 by measuring each of

their individual components separately. The application of the framework to the experimental setup suffers

the following caveats:

1.  Seckin Unlu and Andy Glew provided us with invaluable help in figuring out the correct formulae, and Kim
Keeton shared with us the ones used in [33].
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• We were not able to measure TDTLB, because the event code is not available.

• The Pentium II event codes allow measuring the number of occurrences for each event type (e.g., num-

ber of L1 instruction cache misses) during query execution. In addition, we can measure the actual stall

time due to certain event types (after any overlaps). For the rest, we multiplied the number of occur-

rences by an estimated penalty [21][59]. Table 2.3 shows a detailed list of stall time components and

the way they were measured. Measurements of the memory subsystem strongly indicate that the work-

load is latency-bound, rather than bandwidth-bound (it rarely uses more than a third of the available

memory bandwidth). In addition, past experience [21][59] with database applications has shown little

queuing of requests in memory. Consequently, we expect the results that use penalty approximations to

be fairly accurate. 

• No contention conditions were taken into account.

TABLE 2.3: Method of measuring each of the stall time components

Stall time component Description Measurement method

TC computation time Estimated minimum based on µops retired

TM TL1D L1 D-cache stalls #misses * 4 cycles

TL1I L1 I-cache stalls actual stall time

TL2 TL2D L2 data stalls #misses * measured memory latency

TL2I L2 instruction stalls #misses * measured memory latency

TDTLB DTLB stalls Not measured

TITLB ITLB stalls #misses * 32 cycles

TB branch misprediction penalty # branch mispredictions retired * 17 cycles

TR TFU functional unit stalls actual stall time

TDEP dependency stalls actual stall time

TILD Instruction-length decoder stalls actual stall time

TOVL overlap time Not measured
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TMISC from Table 2.1 (stall time due to platform-specific characteristics) has been replaced with TILD

(instruction-length decoder stalls) in Table 2.3. Instruction-length decoding is one stage in the process of

translating X86 instructions into µops.

2.4   Results

We executed the workload described in Section 3 on four commercial database management systems. In

this section, we first present an overview of the execution time breakdown and discuss some general

trends. Then, we focus on each of the important stall time components and analyze it further to determine

the implications from its behavior. Finally, we compare the time breakdown of our microbenchmarks

against a TPC-D and a TPC-C workload. Since almost all of the experiments executed in user mode more

than 85% of the time, all of the measurements shown in this section reflect user mode execution, unless

stated otherwise.

2.4.1   Execution time breakdown

Figure 2.2 shows three graphs, each summarizing the average execution time breakdown for one of the

queries. Each bar shows the contribution of the four components (TC, TM, TB, and TR) as a percentage of

the total query execution time. The middle graph showing the indexed range selection only includes sys-

tems B, C and D, because System A did not use the index to execute this query. Although the workload is

much simpler than TPC benchmarks [18], the computation time is usually less than half the execution

time; thus, the processor spends most of the time stalled. Similar results have been presented for OLTP

[22][49] and DSS [48] workloads, although none of the studies measured more than one DBMS. The high

processor stall time indicates the importance of further analyzing the query execution time. Even as pro-
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cessor clocks become faster, stall times are not expected to become much smaller because memory access

times do not decrease as fast. Thus, the computation component will become an even smaller fraction of

the overall execution time. 

The memory stall time contribution varies more across different queries and less across different data-

base systems. For example, Figure 2.2 shows that when System B executes the sequential range selection,

it spends 20% of the time in memory stalls. When the same system executes the indexed range selection,

the memory stall time contribution becomes 50%. Although the indexed range selection accesses fewer

records, its memory stall component is larger than in the sequential selection, probably because the index

traversal has less spatial locality than the sequential scan. The variation in TM’s contribution across

DBMSs suggests different levels of platform-specific optimizations. However, as discussed in Section 5.2,

analysis of the memory behavior yields that 90% of TM is due to L1 I-cache and L2 data misses in all of

the systems measured. Thus, despite the variation, there is common ground for research on improving

memory stalls without necessarily having to analyze all of the DBMSs in detail.
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FIGURE 2.2. Query execution time breakdown into the four time components.
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Minimizing memory stalls has been a major focus of database research on performance improvement.

Although in most cases the memory stall time (TM) accounts for most of the overall stall time, the other

two components are always significant. Even if the memory stall time is entirely hidden, the bottleneck

will eventually shift to the other stalls. In systems B, C, and D, branch misprediction stalls account for 10-

20% of the execution time, and the resource stall time contribution ranges from 15-30%. System A exhibits

the smallest TM and TB of all the DBMSs in most queries; however, it has the highest percentage of

resource stalls (20-40% of the execution time). This indicates that optimizing for two kinds of stalls may

shift the bottleneck to the third kind. Research on improving DBMS performance should focus on mini-

mizing all three kinds of stalls to effectively decrease the execution time. 

2.4.2   Memory stalls

In order to optimize performance, a major target of database research has been to minimize the stall time

due to memory hierarchy and disk I/O latencies [5][58][45][51]. Several techniques for cache-conscious

data placement have been proposed [12] to reduce cache misses and miss penalties. Although these tech-

niques are successful within the context in which they were proposed, a closer look at the execution time

breakdown shows that there is significant room for improvement. This section discusses the significance of

the memory stall components to the query execution time, according to the framework discussed in Section

3.2.

Figure 2.3 shows the breakdown of TM into the following stall time components: TL1D (L1 D-cache miss

stalls), TL1I (L1 I-cache miss stalls), TL2D (L2 cache data miss stalls), TL2I (L2 cache instruction miss

stalls), and TITLB (ITLB miss stalls) for each of the four DBMSs. There is one graph for each type of

query. Each graph shows the memory stall time breakdown for the four systems. The selectivity for range

selections shown is set to 10% and the record size is kept constant at 100 bytes.
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From Figure 2.3, it is clear that L1 D-cache stall time is insignificant. In reality its contribution is even

lower, because our measurements for the L1 D-cache stalls do not take into account the overlap factor, i.e.,

they are upper bounds. An L1 D-cache miss that hits on the L2 cache incurs low latency, which can usually

be overlapped with other computation. Throughout the experiments, the L1 D-cache miss rate (number of

misses divided by the number of memory references) usually is around 2%, and never exceeds 4%. A study

on Postgres95 [58] running TPC-D also reports low L1 D-cache miss rates. Further analysis indicates that

during query execution the DBMS accesses private data structures more often than it accesses data in the

relations. This often-accessed portion of data fits into the L1 D-cache, and the only misses are due to less

often accessed data. The L1 D-cache is not a bottleneck for any of the commercial DBMSs we evaluated. 

The stall time caused by L2 cache instruction misses (TL2I) and ITLB misses (TITLB) is also insignificant

in all the experiments. TL2I contributes little to the overall execution time because the second-level cache

misses are two to three orders of magnitude less than the first-level instruction cache misses. The low

TITLB indicates that the systems use few instruction pages, and the ITLB is enough to store the translations

for their addresses.

FIGURE 2.3. Contributions of the five memory components to the memory stall time (TM).
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The rest of this section discusses the two major memory-related stall components, TL2D and TL1I.

2.4.3   Second-level cache data stalls

For all of the queries run across the four systems, TL2D (the time spent on L2 data stalls) is one of the

most significant components of the execution time. In three out of four DBMSs, the L2 cache data miss

rate (number of data misses in L2 divided by number of data accesses in L2) is typically between 40% and

90%, therefore much higher than the L1 D-cache miss rate. The only exception is System B, which exhib-

its optimized data access performance at the second cache level as well. In the case of the sequential range

query, System B exhibits far fewer L2 data misses per record than all the other systems (B has an L2 data

miss rate of only 2%), consequently its TL2D is insignificant.

The stall time due to L2 cache data misses directly relates to the position of the accessed data in the

records and the record size. As the record size increases, TL2D increases as well for all four systems

(results are not shown graphically due to space restrictions). The two fields involved in the query, a2 and

a3, are always in the beginning of each record, and records are stored sequentially. For larger record sizes,

the fields a2 and a3 of two subsequent records are located further apart and the spatial locality of data in L2

decreases.

Second-level cache misses are much more expensive than the L1 D-cache misses, because the data has to

be fetched from main memory. Generally, a memory latency of 60-70 cycles was observed. As discussed in

Section 3.2, multiple L2 cache misses can overlap with each other. Since we measure an upper bound of

TL2D (number of misses times the main memory latency), this overlap is hard to estimate. However, the

real TL2D cannot be significantly lower than our estimation because memory latency, rather than band-

width, bind the workload (most of the time the overall execution uses less than one third of the available
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memory bandwidth). As the gap between memory and processor speed increases, one expects data access

to the L2 cache to become a major bottleneck for latency-bound workloads. The size of today’s L2 caches

has increased to 8 MB, and continues to increase, but larger caches usually incur longer latencies. The Pen-

tium II Xeon on which the experiments were conducted can have an L2 cache up to 2 MB [18] (although

the experiments were conducted with a 512-KB L2 cache).

2.4.4   First-level cache instruction stalls

Stall time due to misses at the first-level instruc-

tion cache (TL1I) is a major memory stall compo-

nent for three out of four DBMSs. The results in

this study reflect the real I-cache stall time, with no

approximations. Although the Xeon uses stream

buffers for instruction prefetching, L1 I-misses are

still a bottleneck, despite previous results [6] that

show improvement of TL1I when using stream buff-

ers on a shared memory multiprocessor. As

explained in Section 3.2, TL1I is difficult to overlap,

because L1 I-cache misses cause a serial bottleneck to the pipeline. The only case where TL1I is insignifi-

cant (5%) is when System A executes the sequential range query. For that query, System A retires the low-

est number of instructions per record of the four systems tested, as shown in Figure 2.4. For the other

systems TL1I accounts for between 4% and 40% of the total execution time, depending on the type of the

query and the DBMS. For all DBMSs, the average contribution of TL1I to the execution time is 20%. 

FIGURE 2.4. Number of instructions retired per
record for all four DBMSs. SRS: sequential selection
(instructions/number of records in R), IRS: indexed
selection (instructions/number of selected records),
SJ: join (instructions/number of records in R).
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There are some techniques to reduce the I-cache stall time [19] and use the L1 I-cache more effectively.

Unfortunately, the first-level cache size is not expected to increase at the same rate as the second-level

cache size, because large L1 caches are not as fast and may slow down the processor clock. Some new pro-

cessors use a larger (64-KB) L1 I-cache that is accessed through multiple pipeline stages, but the trade-off

between size and latency still exists. Consequently, the DBMSs must improve spatial locality in the

instruction stream. Possible techniques include storing together frequently accessed instructions while

pushing instructions that are not used that often, like error-handling routines, to different locations. 

An additional, somewhat surprising, observation was that increasing data record size increases L1 I-

cache misses (and, of course, L1 D-cache misses). It is natural that larger data records would cause both

more L1 and L2 data misses. Since the L2 cache is unified, the interference from more L2 data misses

could cause more L2 instruction misses. But how do larger data records cause more L1 instruction misses?

On certain machines, an explanation would be inclusion (i.e., an L1 cache may only contain blocks present

in an L2 cache). Inclusion is often enforced by making L2 cache replacements force L1 cache replace-

ments. Thus, increased L2 interference could lead to more L1 instruction misses. The Xeon processor,

however, does not enforce inclusion. Another possible explanation is interference of the NT operating sys-

tem [59]. NT interrupts the processor periodically for context switching, and upon each interrupt the con-

tents of L1 I-cache are replaced with operating system code. As the DBMS resumes execution, it fetches its

instructions back into the L1 I-cache. As the record size varies between 20 and 200 bytes, the execution

time per record increases by a factor of 2.5 to 4, depending on the DBMS. Therefore, larger records incur

more operating system interrupts and this could explain increased L1 I-cache misses. Finally, a third expla-

nation is that larger records incur more frequent page boundary crossings. Upon each crossing the DBMS

executes buffer pool management instructions. However, more experiments are needed to test these

hypotheses. 
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2.4.5   Branch mispredictions

As was explained in Section 3.2, branch mispredictions have serious performance implications, because

(a) they cause a serial bottleneck in the pipeline and (b) they cause instruction cache misses, which in turn

incur additional stalls. Branch instructions account for 20% of the total instructions retired in all of the

experiments. 

Even with our simple workload, three out of the four DBMSs tested suffer significantly from branch

misprediction stalls. Branch mispredictions depend upon how accurately the branch prediction algorithm

predicts the instruction stream. The branch misprediction rate (number of mispredictions divided by the

number of retired branch instructions) does not vary significantly with record size or selectivity in any of

the systems. The average rates for all the systems are shown in the left graph of Figure 2.5. 

FIGURE 2.5. Left: Branch misprediction rates. SRS: sequential selection, IRS: indexed selection, SJ:
join. Right: System D running a sequential selection. TB and TL1I both increase as a function of an
increase in the selectivity.
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The branch prediction algorithm uses a small buffer, called the Branch Target Buffer (BTB) to store the

targets of the last branches executed. A hit in this buffer activates a branch prediction algorithm, which

decides which will be the target of the branch based on previous history [60]. On a BTB miss, the predic-

tion is static (backward branch is taken, forward is not taken). In all the experiments the BTB misses 40%

of the time on the average (this corroborates previous results for TPC workloads [23]). Consequently, the

sophisticated hardware that implements the branch prediction algorithm is only used half of the time. In

addition, as the BTB miss rate increases, the branch misprediction rate increases as well. It was shown [29]

that a larger BTB (up to 16K entries) improves the BTB miss rate for OLTP workloads. 

As mentioned in Section 3.2, branch misprediction stalls are tightly connected to instruction stalls. For

the Xeon this connection is tighter, because it uses instruction prefetching. In all of the experiments, TL1I

follows the behavior of TB as a function of variations in the selectivity or record size. The right graph of

Figure 2.5 illustrates this for System D running range selection queries with various selectivities. Proces-

sors should be able to efficiently execute even unoptimized instruction streams, so a different prediction

mechanism could reduce branch misprediction stalls caused by database workloads.

2.4.6   Resource stalls

Resource-related stall time is the time during which the processor must wait for a resource to become

available. Such resources include functional units in the execution stage, registers for handling dependen-

cies between instructions, and other platform-dependent resources. The contribution of resource stalls to

the overall execution time is fairly stable across the DBMSs. In all cases, resource stalls are dominated by

dependency and/or functional unit stalls. 
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Figure 2.6 shows the contributions of TDEP and TFU for all systems and queries. Except for System A

when executing range selection queries, dependency stalls are the most important resource stalls. Depen-

dency stalls are caused by low instruction-level parallelism opportunity in the instruction pool, i.e., an

instruction depends on the results of multiple other instructions that have not yet completed execution. The

processor must wait for the dependencies to be resolved in order to continue. Functional unit availability

stalls are caused by bursts of instructions that create contention in the execution unit. Memory references

account for at least half of the instructions retired, so it is possible that one of the resources causing these

stalls is a memory buffer. Resource stalls are an artifact of the lowest-level details of the hardware. The

compiler can produce code that avoids resource contention and exploits instruction-level parallelism. This

is difficult with the X86 instruction set, because each CISC instruction is internally translated into simpler

instructions (µops). Thus, there is no easy way for the compiler to see the correlation across multiple X86

instructions and optimize the instruction stream at the processor execution level.

FIGURE 2.6. TDEP and TFU contributions to the overall execution time for four DBMSs. SRS: sequential
selection, IRS: indexed selection, SJ: join. System A did not use the index in the IRS, therefore this query
is excluded from system A’s results.
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2.4.7   Comparison with DSS and OLTP

We executed a TPC-D workload against three

out of four of the commercial DBMSs, namely

A, B, and D. The workload includes the 17

TPC-D selection queries and a 100-MB data-

base. The results shown represent averages

from all the TPC-D queries for each system.

Figure 2.7 shows that the clock-per-instruc-

tion breakdown for the sequential range selec-

tion query (left) is similar to the breakdown of

TPC-D queries (right). The clock-per-instruc-

tion (CPI) rate is also similar between the two

workloads, ranging between 1.2 and 1.8. A

closer look into the memory breakdown (Figure

2.8) shows that first-level instruction stalls

dominate the TPC-D workload, indicating that

complicated decision-support queries will ben-

efit much from instruction cache optimizations.

TPC-C workloads exhibit different behavior than decision-support workloads, both in terms of clocks-

per-instruction rates and execution time breakdown. We executed a 10-user, 1-warehouse TPC-C workload

against all four DBMSs. CPI rates for TPC-C workloads range from 2.5 to 4.5, and 60%-80% of the time is

spent in memory-related stalls. Resource stalls are significantly higher for TPC-C than for the other two

FIGURE 2.7. Clocks-per-instruction (CPI) breakdown
for A, B, and D running sequential range selection (left)
and TPC-D queries (right).
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FIGURE 2.8. Breakdown of cache-related stall time for
A, B, and D, running the sequential range selection (left)
and TPC-D queries (right).
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workloads. The TPC-C memory stalls breakdown shows dominance of the L2 data and instruction stalls,

which indicates that the size and architectural characteristics of the second-level cache are even more cru-

cial for OLTP workloads.

2.5   Summary

Despite the performance optimizations found in today’s database systems, they are not able to take full

advantage of many recent improvements in processor technology. All studies that have evaluated database

workloads use complex TPC benchmarks and consider a single DBMS on a single platform. The variation

of platforms and DBMSs and the complexity of the workloads make it difficult to thoroughly understand

the hardware behavior from the point of view of the database. 

Based on a simple query execution time framework, we analyzed the behavior of four commercial

DBMSs running simple selection and join queries on a modern processor and memory architecture. The

results from our experiments suggest that database developers should pay more attention to the data layout

at the second level data cache, rather than the first, because L2 data stalls are a major component of the

query execution time, whereas L1 D-cache stalls are insignificant. In addition, first-level instruction cache

misses often dominate memory stalls, thus there should be more focus on optimizing the critical paths for

the instruction cache. Performance improvements should address all of the stall components in order to

effectively increase the percentage of execution time spent in useful computation. Using simple queries

rather than full TPC workloads provides a methodological advantage, because the results are much simpler

to analyze. We found that TPC-D execution time breakdown is similar to the breakdown of the simpler

query, while TPC-C workloads incur more second-level cache and resource stalls.
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Chapter 3

Weaving Relations For Cache Performance

One of the major conclusions from the previous chapter is that, when using a two-level cache hierarchy,

data misses at the second cache level are a major performance bottleneck, because the stall time penalty of

a memory access is equivalent to the execution of hundreds of arithmetic operations. Cache performance is

strongly dependent on the data layout inside disk pages. Relational database systems have traditionally

stored records sequentially on disk pages using the N-ary storage model (NSM) (a.k.a., slotted pages). In

order to minimize the expected disk I/O for queries that use a fraction of the record, the Decomposition

Storage Model (DSM) (a.k.a., vertical partitioning) partitions the relation into multiple, single-attribute

sub-relations. Commercial database management systems, however, still use NSM because DSM incurs

high record reconstruction costs. Recently, DBMS designers have become concerned with organizing data

to minimize cache misses, since modern applications such as decision-support and spatial applications are

bound by the CPU and memory rather than by I/O. On today’s processor platforms, a cache miss is as

expensive as hundreds of arithmetic operations. NSM, however, often incurs one cache miss per value

accessed when executing queries that use a fraction of the record. In addition, NSM wastes cache space

and bandwidth. This chapter proposes a new model for organizing data called PAX (Partition Attributes

Across), which improves data cache performance.

PAX exhibits better cache performance than NSM by “vertically” partitioning each attribute's values

together into minipages, so that the i-th minipage stores the values of the i-th attribute for all the records on

the page. Since PAX only affects layout inside the pages, it incurs no storage penalty and does not affect I/
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O behavior. Furthermore, DBMSs can use PAX orthogonally to NSM or other page-level storage decision,

and transparently to the higher components of the database system. We evaluate PAX against NSM and

DSM using selection queries with variable parameters on top of the Shore storage manager. Across all of

our experiments, (a) PAX exhibits better cache and memory bandwidth utilization than NSM, saving 75%

of NSM’s stall time due to data cache accesses, (b) range selection queries on memory-resident relations

execute in 17-25% less elapsed time with PAX than with NSM, and (c) TPC-H2 queries involving I/O exe-

cute in 11-42% less time with PAX than with NSM.

Section 3.1 presents an overview of the related work, and discusses the strengths and weaknesses of the

traditional n-ary storage model (NSM) and decomposition storage model (DSM). Section 3.2 explains the

design of PAX in detail, and analyzes its storage requirements. Section 3.3 analyzes the effects of PAX on

cache performance on a simple numeric workload. Section 3.4 demonstrates PAX efficiency on TPC-H

decision-support workloads. Finally, Section 3.4.1 concludes with a summary of the advantages and disad-

vantages of PAX and discusses possible improvements.

3.1   Previous work on data placement techniques

Research in computer architecture, compilers, and database systems has focused on optimizing second-

ary storage data placement for cache performance. A compiler-directed approach for cache-conscious data

placement profiles a program and applies heuristic algorithms to find a placement solution that optimizes

cache utilization [9]. Clustering, compression, and coloring are the techniques that can be applied manu-

ally by programmers to improve cache performance of pointer-based data structures [13]. For database

2.  TPC-H is the decision-support benchmark suite that replaced TPC-D in 1999.
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management systems, attribute clustering is proposed as being beneficial both for compression [22] and for

improving the performance of relational query processing [51]. 

The most popular data placement model in relational database systems is the N-ary storage model

(NSM) [47]. NSM maximizes intra-record spatial locality by storing records sequentially in slotted disk

pages. An alternative is the Decomposition Storage Model (DSM) [15] that partitions each relation with n

attributes in n separate relations. All commercial database systems that we are aware of use NSM, as DSM

incurs a high record reconstruction cost when evaluating multi-attribute queries. A recent study demon-

strates that DSM can improve cache performance of main-memory database systems, assuming that the

record reconstruction cost is low [7]. The remainder of this section describes the advantages and disadvan-

tages of NSM and DSM, and briefly outlines their variants.

3.1.1   The N-ary Storage Model

Traditionally, the records of a relation are stored in slotted disk pages [47] obeying an n-ary storage

model (NSM). NSM stores records sequentially on data pages. Figure 3.1 depicts an example relation R

(left) and the corresponding NSM page after having inserted four records (middle). Each record has a

record header (RH) that contains a null bitmap, offsets to the variable-length values, and other implementa-

tion-specific information [36][52][61]. Each new record is typically inserted into the first available free

space starting at the beginning of the page, and a pointer (offset) to the beginning of the new record is

stored in the next available slot from the end of the page. The offsets to records are necessary because

records may be of variable length. The nth record in a page is accessed by following the nth pointer from

the end of the page.
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NSM, however, exhibits poor cache utilization when the query involves a fraction of each record. Con-

sider the following query:

select name

from R

where age < 40;

To evaluate the predicate, the query processor uses a scan operator [23] that retrieves the value of the

attribute age from each record in the relation. Assuming that the NSM page in the middle of Figure 3.1 is

already in main memory and that the cache block size is smaller than the record size, the scan operator will

incur one cache miss per record. If age is a 4-byte integer, it is smaller than the typical cache block size

(32-128 bytes). Therefore, along with the needed value, each cache miss will bring into the cache the other

values stored next to age (shown on the right in Figure 3.1), wasting memory bandwidth and potentially

useful cache space to store data that the query will never use. 

FIGURE 3.1. N-ary storage model and its cache behavior. Records in R (left) are stored contiguously
into disk pages (middle), with offsets to their starts stored in slots at the end of the page. while scanning
age, NSM typically incurs one cache miss per record and brings useless data into the cache (right).
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3.1.2   The Decomposition Storage Model

Vertical partitioning is the process of striping a relation into sub-relations, each containing the values of

a subset of the initial relation’s attributes. Vertical partitioning was initially proposed in order to reduce I/

O-related costs [43]. The fully decomposed form of vertical partitioning (one attribute per stripe) is called

the decomposition storage model (DSM) [15]. DSM partitions an n-attribute relation vertically into n sub-

relations, as shown in Figure 3.2. Each sub-relation contains two attributes, a logical record id (surrogate)

and an attribute value (essentially, it is a clustered index on the attribute). Sub-relations are stored as regu-

lar relations in slotted pages, enabling each attribute to be scanned independently. 

DSM offers a higher degree of spatial locality when sequentially accessing the values of one attribute.

During a single-attribute scan, DSM exhibits high I/O and cache performance. However, when evaluating

a multi-attribute query, the database system must join the participating sub-relations on the surrogate in

order to reconstruct the partitioned records. The time spent joining sub-relations increases with the number

FIGURE 3.2. Decomposition storage model. The relation is partitioned vertically into one thin relation
per attribute. Each sub-relation is then stored in the traditional fashion.
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of attributes in the result relation. In addition, DSM incurs a significant space overhead because the record

id of each record needs be replicated.

An alternative algorithm [16] partitions each relation based on an attribute affinity graph, which connects

pairs of attributes based on how often they appear together in queries. The attributes are grouped in frag-

ments, and each fragment is stored as a separate relation to maximize I/O performance and minimize

record reconstruction cost. When the set of attributes in a query is a subset of the attributes in the fragment,

there is a significant gain in I/O performance [2]. The performance of affinity-based vertical partitioning

depends heavily on whether queries involve attributes within the same fragment.

3.2   Partition Attributes Across

In this section, we introduce a new strategy for placing records on a page, called PAX (Partition

Attributes Across). PAX (a) improves NSM’s cache behavior by improving spatial locality without a space

penalty, (b) does not incur significant record reconstruction costs, and (c) is orthogonal to other design

FIGURE 3.3. Partition Attributes Across (PAX) stores the same data in each page as NSM, only records
are partitioned vertically into minipages inside each page. The mapping of information onto the cache
blocks when scanning R for attribute age is now much more efficient, as the cache space is fully utilized.
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decisions, because it only affects the layout of data stored on a single page (e.g., one may decide to store

one relation using NSM and another using PAX, or first use affinity-based vertical partitioning, and then

use PAX for storing the ‘thick’ sub-relations). This section presents the detailed design of PAX.

3.2.1   Overview

The motivation behind PAX is to keep the attribute values of each record on the same page as in NSM,

while using a cache-friendly algorithm for placing them inside the page. PAX vertically partitions the

records within each page, storing together the values of each attribute in minipages. Figure 3.3 depicts an

NSM page and the corresponding PAX page, with the records of the former stored in the latter in a column-

major fashion. When using PAX, each record resides on the same page as it would reside if NSM were

used; however, each value in the record is stored on a separate part of the page. PAX increases the inter-

record spatial locality (because it groups values of the same attribute that belong to different records) with

minimal impact on the intra-record spatial locality. Although PAX employs in-page vertical partitioning, it

does not incur significant record reconstruction costs, because it does not need a costly join to correlate the

attribute values of a particular record. 

3.2.2   Design

In order to store a relation with degree n (i.e., with n attributes), PAX partitions each page into n

minipages. It then stores values of the first attribute in the first minipage, values of the second attribute in

the second minipage, and so on. At the beginning of each page there is a page header that contains offsets

to the beginning of each minipage. The record header information is distributed across the minipages. The

structure of each minipage is determined as follows:
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• Fixed-length attribute values are stored in F-minipages. At the end of each F-minipage there is a pres-

ence bit vector with one entry per record that denotes null values for nullable attributes.

• Variable-length attribute values are stored in V-minipages. V-minipages are slotted, with pointers to the

end of each value. Null values are denoted by null pointers.

Each newly allocated page contains a page header and a number of minipages equal to the degree of the

relation. The page header contains the number of attributes, the attribute sizes (for fixed length attributes),

offsets to the beginning of the minipages, the current number of records on the page and the total space still

available. Figure 3.4 depicts an example PAX page in which two records have been inserted. There are two

F-minipages, one for the SSN and one for the age attribute. The name attribute is a variable-length string,

FIGURE 3.4. Example of a PAX page. In addition to the traditional information (page id, number of
records in the page, field sizes, free space, etc.) the page header maintains offsets to the beginning of
each minipage. F-minipages keep fixed-length values, and maintain a bitmap to indicate whether or not
each value is present. Variable-length values are stored in V-minipages, and there is an offset to the end
of each value.
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therefore it is stored in a V-minipage. At the end of each V-minipage there are offsets to the end of each

variable-length value.

INSERTING, UPDATING, AND DELETING RECORDS. The algorithm to bulk load records from a data file

starts by allocating each minipage on the page based on attribute value size. In the case of variable-length

attributes, it uses a user hint as an indication of the average value size. PAX inserts records by copying

each value into the appropriate minipage. When variable-length values are present, page reorganizations

may be needed by moving minipage boundaries to accommodate records. If a record fits in the page but its

individual attribute values do not, the algorithm recalculates minipage sizes based on the average value

sizes in the page so far and the new record size, and reorganizes the page structure by moving minipage

boundaries appropriately to accommodate new records. When the page is full, it allocates a new page with

the initial minipage sizes equal to the ones in the previously populated page (so the initial hints are quickly

readjusted to the true per-page average value sizes). 

Like insertions, updates and deletions of fixed-length records are straightforward. On updates, page reor-

ganizations may be needed when variable-length values are present as described above (e.g., when updat-

ing a value with one of greater size). On deletions, no page boundaries need be moved; the algorithm

periodically reorganizes the values within each minipage to reduce fragmentation.

ACCESSING THE RECORDS. Records on a page are accessed either sequentially or in random order (e.g.,

through a non-clustered index). In order to sequentially access a subset of attributes, the algorithm sequen-

tially accesses the values in the appropriate minipages. Appendix A outlines the part of the sequential scan

algorithm that reads all values of a fixed-length attribute f or a variable-length attribute v from a newly

accessed page, and the part of the indexed scan that reads a value of an attribute a, given the record id.
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3.2.3   Storage requirements

In this section, we compare the storage requirements of PAX with NSM and DSM in terms of storage

requirements and demonstrate that PAX does not require more space than either NSM or DSM. For sim-

plicity, we do not take into account in the calculations any control information about the attribute size vari-

ability, null bitmaps, and page header information (the storage requirements for this information typically

vary across database systems, but are common across all three schemes). Instead, the calculations only take

into account the storage needed by the data in the relation and the offsets or surrogates needed for variable-

length records and for random record access.

NSM stores the attributes of each record contiguously. Therefore, it requires one offset (slot) per record

and one additional offset for each variable-length attribute in each record. Consider a relation R with cardi-

nality N, degree n, f fixed-length attributes, and v variable-length attributes . With NSM, each

record occupies the following amount of space:

where o is the offset (slot) size, and F, V are the average sizes of the fixed and variable-length attributes per

record, respectively. Records in a DSM sub-relation are composed by a logical id (surrogate) of size s, and

the attribute value, and are stored in slotted pages. The storage per record using DSM is

PAX stores one offset for each variable-length value, plus one offset for each of the n minipages. The

amount of space PAX requires to store each record is

n f v+=( )

S NSM( ) f F⋅ v V o+( )⋅ o+ +=

S DSM( ) f F o s+ +( )⋅ v V o s+ +( )⋅+=

S PAX( ) f F⋅ v V o+( )⋅ n
P
N
---- 

  o⋅ ⋅+ +=
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where P is the number of pages occupied by the relation. As long as the record size is smaller than the page

size by a factor greater than n (which is usually the case), PAX incurs less storage penalty than NSM.

Using these equations, when loading TPC-H relations into 8K pages, PAX requires 3-4% less space than

NSM. In main-memory database systems like Monet [7], DSM can also be implemented using virtual

memory pointers as surrogates, and without offset slots for fixed sized attributes, giving .

3.2.4   Implementation

NSM, PAX, and DSM were implemented in the Shore storage manager [10]. Shore provides all the fea-

tures of a modern storage manager, namely B-trees and R-trees, ARIES-style recovery, hierarchical lock-

ing (record, page, file), and clock-hand buffer management with hints. Normally Shore stores records as

contiguous byte sequences, therefore the finest granularity for accessing information is the record.

We implemented NSM, DSM and PAX as alternative data layouts. To implement NSM, we added

attribute-level knowledge on top of the existing Shore file manager (as explained later in this section).

DSM was implemented on top of Shore, by decomposing the initial relation into n Shore files that are

stored in slotted pages using NSM. Each sub-relation includes two columns, one with a logical record id

and one with the attribute value. During query processing, accessing the correct attribute in a record is the

responsibility of the layer that runs on top of the storage manager. Finally, PAX was implemented as an

alternative data page organization in Shore (about 2,500 lines of code).

RECORD IMPLEMENTATION. Shore implements records as contiguous byte sequences, and adds a 12-byte

tag in front of each record. The tag keeps Shore-specific information such as serial number, record type,

header length, and record length. In addition, it uses 4-byte slots at the end of the page (two bytes for the

S DSM( ) S PAX( )=
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offset and another two for the amount of space allocated for each record). This adds up to a 16-byte over-

head per record. 

Figure 3.5 illustrates how NSM records were implemented. The fixed-length attribute values are stored

first, followed by an array of offsets and a mini-heap containing the variable-length attribute values. In our

current implementation, TPC-H tables stored using PAX need 8% less space than when stored using NSM.

3-4% of this benefit is due to the fact that PAX does not need a slot table at the end of a page. The rest is

Shore-specific overhead resulting from the 12-byte Shore record tag. Commercial database management

systems store a header in front of each record, that keeps information such as the NULL bitmap, space allo-

cated for the record, true record size, fixed part size, and other flags. The record header’s size varies with

the number and type of columns in the table. For the TPC-H table Lineitem, the record header would be

about 8 bytes. Therefore, the Shore tag adds a space overhead of 4 bytes per record. Due to this overhead,

NSM takes 4% more storage than it would if the Shore tag were replaced by common NSM header infor-

mation.

SCAN OPERATOR. A scan operator that supports sargable predicates [50] was implemented on top of

Shore. When running a query using NSM, one scan operator is invoked that reads each record and extracts

the attributes involved in the predicate from it. PAX invokes one scan operator for each attribute involved

in the query. Each operator sequentially reads values from the corresponding minipage. The projected

attribute values for qualifying records are retrieved from the corresponding minipages using computed off-

FIGURE 3.5. An example NSM record. The data for fixed-length columns is stored first, followed by a 2-
byte offset array and the variable-length data.

SHORE TAG FIXED-LENGTH VARIABLE-LENGTH VALUES}

2-byte
value

}

12 bytes n bytes v bytes

VALUES

offsets
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sets. With DSM, as many operators as there are attributes in the predicate are invoked, each on a sub-rela-

tion. The algorithm makes a list of the qualifying record ids, and retrieves the projected attribute values

from the corresponding sub-relations through a B-tree index on record id.

JOIN OPERATOR. The adaptive dynamic hash join algorithm [42], which is also used in DB2 [36], was imple-

mented on top of Shore. The algorithm partitions the left table into main-memory hash tables on the join

attribute. When all available main memory has been consumed, all buckets but one are stored on the disk.

Then it partitions the right table into hash tables in a similar fashion, probing dynamically the main-mem-

ory portion of the left table with the right join attribute values. Using only those attributes required by the

query, it then builds hash tables with the resulting sub-records. The join operator receives its input from

two scan operators, each reading one relation. The output can be filtered through a function that is passed

as a parameter to the operator.

3.3   Analysis of cache performance

To evaluate PAX performance and compare it to NSM and DSM, it is necessary to first understand cache

behavior and its implications for all three schemes. First, we ran plain range selection queries on a mem-

ory-resident relation that consists of fixed-length numeric attributes. Then, we used realistic decision-sup-

port workloads to obtain results on more complicated queries. This section analyzes the cache performance

and execution time when running the simple queries, and discusses the limitations of all three schemes.

3.3.1   Experimental setup and methodology

The experiments were conducted on a Dell 6400 PII Xeon/MT system running Windows NT 4.0. This

computer features a Pentium II Xeon processor running at 400MHz, 512MB of main memory, and a
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100MHz system bus. The processor has a split first-level (L1) cache (16KB instruction and 16KB data)

and a unified 512 KB second-level (L2) cache. Caches at both levels are non-blocking (they can service

new requests while earlier ones are still pending) with 32-byte cache blocks.3 We obtained experimental

results using the Xeon’s hardware performance counters and the methodology described in previous work

[1].

The workload consists of one relation and variations of the following range selection query:

select ap

from R

where aq > Lo and aq < Hi (1)

where ap, aq are attributes in R. This query is sufficient to examine the net effect of each data layout when

accessing records sequentially or randomly (given their record id). Unless otherwise stated, R contains

eight 8-byte numeric attributes, and is populated with 1.2 million records. For predictability and easy cor-

rectness verification of experimental results, we chose the attribute size so that exactly four values fit in the

32-byte cache line, and record sizes so that record boundaries coincide with cache line boundaries. We var-

ied the projectivity, the number of attributes in the selection predicate, their relative position, and the num-

ber of attributes in the record. The distribution and data skew of values of the attribute(s) that appear in the

predicate are the same as in the l_partkey attribute of the Lineitem table in the TPC decision-support

benchmarks [24]. 

PAX is intended to optimize data cache behavior, and does not affect I/O performance in any way. In

workloads where I/O latency dominates execution time, the performance of PAX eventually converges to

the performance of NSM. PAX is designed to improve data cache performance once the data page is avail-

3.  Cache blocks are expected to be even larger in future processors. Larger blocks hold more values, therefore the spatial
locality PAX offers will result in even higher cache space and bandwidth utilization. Results on systems with larger
cache blocks are shown in Section 4.5.
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able from the disk, and is orthogonal to any additional optimizations to improve I/O performance. In the

rest of this section, we study the effects of PAX when running queries mainly on main-memory resident

relations. 

3.3.2   Results and Analysis

Figure 3.6 shows the elapsed time when using NSM, DSM, or PAX to run query (1), as the selectivity is

varied from 1% to 100%. The graph on the left compares all three page layouts and shows that, while the

performance of the NSM and PAX schemes are insensitive to selectivity changes, the performance of DSM

deteriorates rapidly as the selectivity increases. When the selectivity is low (1%), DSM reads data almost

exclusively from the sub-relation that contains the attribute in the predicate. However, as more records

qualify, DSM has to access the sub-relation that contains the projected attribute (ap) more frequently, and

suffers from both data cache misses (because it loses the advantage of spatial locality) and poor instruction

cache performance (because the sequential scan code is interleaved with the code to access the page of the

projected value based on the record id). On the contrary, NSM and PAX maintain stable performance,

FIGURE 3.6. Elapsed time comparison when running a predicate selection query with NSM, DSM and
PAX (left) and between NSM and PAX (right), as a function of the selectivity. The graph on the right is an
expansion on the y-axis of the graph on the left
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because all the attributes of each record reside on the same page, eliminating the need for an expensive join

operation to reconstruct the record.

The graph on the right side of Figure 2.6 is an expansion on the y-axis of the graph on the left, and shows

that PAX is 25% faster than NSM. As the predicate is applied to aq, NSM suffers one cache miss for each

record. Since PAX groups attribute values together on a page, it incurs a miss every n records, where n is

the cache block size divided by the attribute size. In our experiments, PAX takes a miss every four records

(32 bytes per cache block divided by 8 bytes per attribute). Consequently, PAX incurs 75% fewer data

misses in the second-level cache than NSM. 

Figure 3.7 demonstrates that PAX exhibits better cache behavior than NSM. The graphs on the left and

center show the processor stall time4 per record due to data misses at both cache levels for NSM and PAX,

respectively. Due to the higher spatial locality, PAX reduces the data-related penalty at both cache levels.

The L1 data cache penalty does not affect the overall execution time significantly, because the penalty

4. Processing time is 100% during all of the experiments, therefore processor cycles are directly analogous to elapsed time.

FIGURE 3.7. Cache miss penalty per record processed due to data misses at the second and first level
cache for NSM (left) and PAX(center) as a function of the selectivity. For selectivity 1%, the graph on the
right shows CPU time breakdown in clock cycles per record processed into useful computation (Comp),
stall time due to memory delays (Mem) and stall time due to other reasons (Misc).
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associated with one L1 data cache miss is small (10 processor cycles). Each L2 cache miss, however, costs

70-80 cycles. PAX reduces the overall L2 cache data miss penalty by 70%. Therefore, as shown in the

graph on the right of Figure 3.7, the overall processor stall time is 75% less when using PAX, because it

does not need to wait as long for data to arrive from main memory. The memory-related penalty contrib-

utes 22% to the execution time when using NSM, and only 10% when using PAX.

Although PAX and NSM have comparable instruction footprints, the rightmost graph of Figure 3.7

shows that PAX incurs less computation time. This is a side effect of reducing memory-related stalls. Mod-

ern processors can retire5 multiple instructions per cycle; the Xeon processor can retire up to three. When

there are memory-related delays, the processor cannot operate at its maximum capacity and retires less

than three instructions per cycle. With NSM, only 30% of the total cycles retire three instructions, with

60% retiring either zero or one instruction. As reported by previous studies [1][33], database systems suf-

fer high data dependencies and the majority of their computation cycles commit significantly fewer

instructions than the actual capacity of the processor. PAX partially alleviates this problem by reducing the

stall time, and the queries execute faster because they exploit better the processor’s superscalar ability.

As the number of attributes involved in the query increases, the elapsed execution times of NSM and

PAX converge. In the left graph of Figure 3.8, the projectivity of the query is varied from 1 to 7 attributes,

and the predicate is applied to the eighth attribute. In the experiments shown, PAX is faster even when the

result relation includes all the attributes. The reason is that the selectivity is maintained at 50%, and PAX

exploits full spatial locality on the predicate values, whereas NSM brings into the cache useless informa-

tion 50% of the time. Likewise, the rightmost graph of Figure 3.8 displays the elapsed time as the number

of attributes in the selection predicate is varied from 1 to 7, with the projection on the eighth attribute. PAX

5. To execute a program, a processor reads (issues) a group of instructions, executes them, and commits (retires) their
results by writing them onto memory (registers, cache). This procedure is pipelined, so in a given cycle the processor is
capable of simultaneously issuing i instructions, executing x instructions (that were issued in previous cycles) and com-
mitting c instructions (that were issued and executed in previous cycles). For the Xeon processor, i = 3, x = 5, and c = 3.
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is again faster for locality reasons. In these experiments, DSM’s performance is about a factor of 9 slower

than NSM and PAX. As the number of attributes involved in the query increases, DSM must join the corre-

sponding number of sub-relations.

Using PAX to improve the inter-record spatial locality in a page and reduce the number of data cache

misses is meaningful as long as the ratio of the record size to the page size is low enough that a large num-

ber of records fit on the page (which is a reasonable assumption in most workloads). All of the above mea-

surements were taken with R consisting of eight, 8-byte attributes. For this relation, PAX divides the page

into 8 minipages, one for each attribute. In an 8K page, this results in about 125 records in each 8-KByte

page. Therefore, in a system with 32-byte cache block, PAX incurs about four times fewer data cache

misses than NSM when scanning records to apply a predicate to an attribute. As the number of attributes in

a record increases, fewer records fit on one page. With 64 8-byte values per record, the number of records

per page is reduced to 15.

FIGURE 3.8. Elapsed time comparison when running a predicate selection query with NSM and PAX as
a function of the projectivity (left) and the number of attributes involved in the predicate (right). Selectiv-
ity is 50%.
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Figure 2.4 shows the elapsed time PAX and NSM

need to process each record, as a function of the number

of attributes in the record. To keep the relation main-

memory resident, doubling the record size implies halv-

ing R’s cardinality; therefore, we divided execution

time by the cardinality of R. The graph illustrates that,

while PAX still suffers fewer misses than NSM, the exe-

cution time is dominated by factors such as the buffer

manager overhead associated with getting the next page

in the relation after completing the scan of the current

page. Therefore, as the degree of the relation increases,

the time PAX needs to process a record converges to that of NSM.

3.4   Evaluation Using DSS Workloads

This section compares PAX and NSM when running a TPC-H decision-support workload. Decision-sup-

port applications are typically memory and computation intensive [36]. The relations are not generally

main-memory resident, and the queries execute projections, selections, aggregates, and joins. The results

show that PAX outperforms NSM on all TPC-H queries in this workload.

3.4.1   Experimental Setup and methodology

The experiments were conducted on the system described in Section 3.3.1. The workload consists of the

TPC-H database and a variety of queries. The database and the TPC-H queries were generated using the

FIGURE 3.9. Sensitivity of PAX to the number
of attributes, compared to NSM. The elapsed
time to process a record converges for the two
schemes as the number of attributes increases,
because fewer records fit on each page.
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dbgen and qgen software distributed by the TPC. The database includes attributes of type integer, floating

point, date, fixed-length string, and variable-length string. We ran experiments with insertions, range selec-

tions, and four TPC-H queries:

Insertions. When populating tables from data files, NSM performs one memory-to-memory copy per

record inserted, and stores records sequentially. PAX inserts records by performing as many copy opera-

tions as the number of values in the tuple, as explained in Section 3.2.2. DSM creates and populates as

many relations as the number of attributes. We compare the elapsed time to store a full TPC-H dataset

when using each of the three schemes and for variable database sizes. 

Range selections. This query group consists of queries similar to those presented in Section 3.3.1 but

without the aggregate function. Instead, the projected attribute value(s) were written to an output relation.

To stress the system to the maximum possible extent, the range selections are on Lineitem, the largest table

in the database. Lineitem contains 16 attributes having a variety of types, including three variable-length

attributes. There are no indexes on any of the tables, as most implementations of TPC-H in commercial

systems include mostly clustered indices, which have a similar access behavior to sequential scan [2]. As

in Section 3.3, we varied the projectivity and the number of attributes involved in the predicate.

TPC-H queries. Four TPC-H queries, Q1, Q6, Q12, and Q14, were implemented on top of Shore. The

rest of this section shortly describes the queries and discusses their implementation. The SQL implementa-

tion is presented in Appendix B.

Query #1 is a range selection with one predicate and computes eight aggregates on six attributes of the

Lineitem table. The implementation pushes the predicates into Shore, computes the aggregates on

the qualifying records, groups and orders the results.
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Query #6 is a range selection with four predicates on three attributes, and computes a sum aggregate on

Lineitem. The implementation is similar to Query #1.

Query #12 is an equijoin between Orders and Lineitem with five additional predicates on six attributes,

and computes two conditional aggregates on Lineitem.

Query #14 is an equijoin between Part and Lineitem with two additional predicates, and computes the

product of two aggregates (one conditional) on Lineitem.

Queries 12 and 14 use the adaptive dynamic hash join operator described in Section 3.2.4. The experi-

ments presented in this section use a 128-MB buffer pool and a 64-MB hash join heap. With large TPC-H

datasets the queries involve I/O, because the resulting database sizes used are larger than the memory

available and the equijoins store hash table buckets on the disk.

3.4.2   Insertions

Figure 3.10 compares the elapsed time required to load a 100-MB, 200-MB, and 500-MB TPC-H data-

base with each of the three storage organizations. DSM load times are much higher than those of NSM and

PAX, because DSM creates one relation per attribute and stores one NSM-like record per value, along with

the value’s record id. As Section 3.3.2 demonstrated, DSM never outperforms either of the other two

schemes when executing queries that involve multiple attributes. Therefore, the rest of Section 3.4 will

focus on comparing NSM and PAX. 

Depending on the database size, PAX incurs a 2-26% performance penalty compared to NSM. Although

the two schemes copy the same total amount of data to the page, PAX must perform additional page reor-

ganizations. Occasionally, when the relation involves variable-length attributes, the algorithm that allo-
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cates minipage space in a new PAX page over- or underestimates the expected minipage size. As a

consequence, a record that would fit in an NSM page does not fit into the corresponding PAX page unless

the current minipage boundaries are moved. In similar cases, PAX needs additional page reorganizations to

move minipage boundaries and accommodate new records. 

The bulk load algorithm for PAX estimates initial

minipage sizes on a page to be equal to the average

attribute value sizes on the previously populated page.

With the TPC-H database, this technique allows PAX

to use about 80% of the page without any reorganiza-

tion. However, our greedy algorithm attempts to fill

each page until no more records can be accommo-

dated. On average, each page suffers an average of

2.5 reorganizations, half of which only occur in order

to accommodate one last record on the current page

before allocating the next one. The recalculations that

compute the appropriate minipage sizes and the cost of shifting the minipage boundaries involve additional

memory copy operations and cause slower load times for PAX than for NSM.

3.4.3   Queries

In Section 3.3 we explained why PAX’s effect on performance is reduced as the projectivity increases

and the query accesses a larger portion of the record. As shown in Figure 3.8 in Section 3.3.2, PAX is more

beneficial than NSM when running range selections, especially when the query uses only a fraction of the

record. The leftmost bar group (labeled ‘RS’) in Figure 3.11 shows that the average speedup obtained by

FIGURE 3.10. Elapsed times to load a 100-MB,
200-MB and 500-MB TPC-H dataset using NSM,
PAX, and DSM page organizations.
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all range selection queries when using a 100-MB, a 200-MB, and a 500-MB dataset is 12%, 11%, and 9%,

respectively. 

Figure 3.11 also depicts PAX/NSM speedups when running four TPC-H queries against a 100, 200, and

500-MB TPC-H database. PAX outperforms NSM throughout all these experiments. The speedups

obtained, however, are not constant across the experiments due to a combination of differing amounts of I/

O and interactions between the hardware and the algorithms being used. 

Queries 1 and 6 are essentially range queries that

access roughly one third of each record in Lineitem

and calculate aggregates, as shown in Appendix B. The

difference between these TPC-H queries and the plain

range selections (RS) discussed in the previous para-

graph is that TPC-H queries exploit further the spatial

locality, because they access projected data multiple

times in order to calculate aggregate values. Therefore,

PAX improvement is higher due to the increased cache

utilization and varies from 9% (in the 500-MB data-

base) to 28% (in the smaller databases).

Queries 12 and 14 are more complicated and involve

two joined tables, as well as range predicates. The join is performed by the adaptive dynamic hash join

algorithm, as was explained in Section 3.2.4. Although both the NSM and the PAX implementation of the

hash-join algorithm only copy the useful portion of the records, PAX still outperforms NSM because (a)

with PAX, the useful attribute values are naturally isolated, and (b) the PAX buckets are stored on disk

FIGURE 3.11. PAX/NSM speedup. Speedup is
shown for a 100-MB, 200-MB, and 500-MB
TPC-H dataset when running range selections
(RS) and four TPC-H queries (Q1, Q6, Q12, and
Q14).
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using the PAX format, maintaining the locality advantage as they are accessed for the second phase of the

join. PAX executes query 12 in 27-42% less time than NSM. Since query 14 accesses fewer attributes and

requires less computation than query 12, PAX outperforms NSM by only 6-24% when running this query. 

3.5   Summary

The performance of today’s decision-support systems is strongly affected by the increasing processor-

memory speed gap. Previous research has shown that database systems do not exploit the capabilities of

today’s microprocessors to the extent that other workloads do [33]. A major performance bottleneck for

database workloads is the memory hierarchy, and especially data accesses on the second-level cache [1].

The data cache performance is directly related to how the contents of the disk pages map to cache memo-

ries, i.e., to the disk page data layout. The traditional N-ary storage model (NSM) stores records contigu-

ously on slotted disk pages. However, NSM's poor spatial locality has a negative impact on L2 data cache

performance. Alternatively, the decomposition storage model (DSM) partitions relations vertically, creat-

ing one sub-relation per attribute. DSM exhibits better cache locality, but incurs a high record reconstruc-

tion cost. For this reason, most commercial DBMSs use NSM to store relations on the disk.

This chapter introduces PAX (Partition Attributes Across), a new layout for data records on pages that

combines the advantages of NSM and DSM. For a given relation, PAX stores the same data on each page

as NSM. The difference is that within each page, PAX groups values for the same attribute together in

minipages, combining high data cache performance with minimal record reconstruction cost at no extra

storage overhead. 

Using PAX to arrange data on disk pages is beneficial when compared to both NSM and DSM:
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• When compared to NSM, PAX incurs 50-75% fewer L2 cache misses due to data accesses, and simple

queries on main-memory tables execute in 17-25% less elapsed time. TPC-H queries, that perform

extended calculations on the data retrieved and require I/O, exhibit a 10-42% PAX/NSM speedup.

• When compared to DSM, PAX cache performance is better and queries execute consistently faster

because PAX does not require a join to reconstruct the records. As a consequence, the execution time

of PAX remains relatively stable as query parameters vary, whereas the execution time of DSM

increases linearly to these parameters.

PAX incurs no storage penalty when compared with either NSM or DSM. PAX reorganizes the records

within each page, therefore can be used orthogonally to other storage schemes (such as NSM or affinity-

based vertical partitioning) and transparently to the rest of the DBMS. Finally, compression algorithms (a)

operate more efficiently on vertically partitioned data, because of type uniformity and (b) achieve higher

compression rates on a per-page basis, because the value domain is smaller. PAX combines these two char-

acteristics, and favors page-level compression schemes.
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Chapter 4

Walking Four Machines By The Shore

In the previous chapters, we studied the performance of various DBMSs on a modern computer platform.

Conceptually, all of today’s processors follow the same sequence of logical operations when executing a

program. However, there are internal implementation details that critically affect the processor’s perfor-

mance. For instance, while most modern platforms employ techniques to exploit parallelism in computa-

tion and memory accesses, the extent of parallelism extracted varies both within and across compute

vendor products. To accurately identify the impact of variation in processor and memory subsystem design

on DBMS performance, this chapter examines the behavior of a prototype database management system

on three different internal design philosophies.

Today’s hardware platform performance is strongly determined by design decisions in the system’s

architecture and microarchitecture. The processor’s architecture determines the characteristics of the soft-

ware interface, i.e., the instruction set. The processor’s microarchitecture determines program execution

characteristics such as the structure of the processor pipeline, the issue width, the speculation mechanisms

and policies, and the order of instruction execution. The processors we are considering exhibit different

designs in all of the above aspects.

The system’s microarchitecture also includes the memory subsystem design. The memory subsystem is

typically composed of multiple cache levels, in order to hide memory access delays. Still, due to the mem-

ory-processor speed gap, the design details of the memory hierarchy are critical to the performance. Com-

paring memory performance across a variety of platforms is interesting, because memory system designs
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differ in the number of cache levels, the cache location (on-chip or off-chip), the cache sizes, the associa-

tivity, the cache block size, and the inclusion policy amongst the various cache levels.

In this chapter, we use a prototype database management system built on top of the Shore storage man-

ager [17] in order to compare database workload behavior across three modern computer design philoso-

phies:

• Sun UltraSparc: We experimented with two systems, one featuring the UltraSparc-II (US-II) [54] pro-

cessor and another featuring the UltraSparc-IIi (US-IIi) [55] processor. Both processors feature an in-

order execution engine. Their basic architecture and microarchitecture is similar, but the memory sub-

system design variations are clearly exposed when executing the same workload. The US-II runs

Solaris 2.6, whereas the US-IIi runs Solaris 2.7. In this chapter, we use the term “UltraSparc” to refer

to common design elements between the US-II and the US-IIi.

• Intel P6: The Dell system we used to conduct the experiments features a Pentium II Xeon [31] proces-

sor, which is a representative example of an out-of-order CISC processor. The operating system run-

ning on the platform is Linux 2.2. In the rest of this chapter, we refer to this processor as “the Xeon.”

• Alpha 21164: Although it is an in-order machine, the A21164 [14] is the only machine in this set that

features a three-level cache hierarchy between the processor and the main memory. The system runs

OSF1, a 64-bit Unix-based operating system. In the rest of this chapter, we refer to this processor as

“the Alpha.”

The purpose of this study is not to compare processor speed, but rather to evaluate different design deci-

sions and trade-offs in the execution engine and memory subsystem, and determine the impact on the per-

formance of database workloads. All processors studied are one generation old and have different release
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dates and core clock speeds (see Table 4.1). We chose the UltraSparc-II-based systems because there was

no UltraSparc-III available, the Xeon was selected for compatibility with earlier results in this thesis, and

finally, the A21164 is the most recent Alpha processor with cache-related countable events.

Section 4.1 is an overview of the four systems, emphasizing the trade-offs involved in their design. Sec-

tion 4.2 describes the setup and methodology used in the experiments. Section 4.3 discusses interesting

results on individual systems. Section 4.4 presents insights drawn from comparing database behavior on all

four systems. Section 4.5 discusses the performance of PAX (the record partitioning technique presented in

Chapter 3), and Section 4.6 concludes.

4.1   Hardware platform overview

This chapter examines four systems that belong to different design philosophies. Tables 4.1 and 4.2 sum-

marize the major differences among the systems’ processors and memory hierarchies, respectively. The

data presented in the table are gathered from various sources, such as the Microprocessor Report articles

[18][25][26][27] and vendor manuals [31][14][54][55]. The cache and memory hit latencies were mea-

sured using the Larry McVoy benchmark suite (widely known as lmbench) [39]. The rest of this section

discusses the trade-offs involved with the most important variations in the instruction set and execution

engine of the processor, and in the design and implementation of the memory hierarchy.

4.1.1   Processor Architecture and Execution Engine Design

Table 4.1 summarizes the processor characteristics and operating systems of the four computers studied

in this chapter. The systems differ in the processor type, speed, issue width, instruction set, and execution
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engine philosophy. This section discusses these differences and explains the trade-offs that affect the

behavior of database workloads.

The primary objective of processor designers is to improve performance, i.e., maximize the amount of

work that the processor can do in a given period of time. To increase performance, we can either have the

processor execute instructions in less time, or make each instruction it executes do more work. In basic

instruction set design philosophy, this trade-off is reflected in the two main labels given to instruction sets.

CISC stands for “complex instruction set computer” and is the name given to processors that use a large

number of complicated instructions in order to do more work with each one. RISC stands for “reduced

instruction set computer” and is the generic name given to processors that use simple instructions in order

to do less work with each instruction but execute them much faster. RISC processors (like the Alpha and

the UltraSparc) have much simpler and faster fetch/decode hardware, because their instruction set is small

and each instruction has the same format and size. As a CISC processor, the Xeon features a more elabo-

rate fetch/decode unit that reads a stream of variable-length, variable-format instructions from the L1

TABLE 4.1: Processor characteristics, operating systems, and compiler

Module / Characteristic
Sun UltraSparc

Dell 6400 PII 
Xeon/MT

AlphaServer 
4100 5/533

Sun Ultra 60 Sun Ultra 10

Processor

type UltraSparc II UltraSparc IIi Pentium II Xeon Alpha 21164A

core clock speed 296 MHz 300 MHz 400MHz 532 MHz

released in 1997 1997 1998 1996

issue width 4 4 3 4

instruction set RISC RISC CISC RISC

Out of order? no no yes no

Operating System SunSolaris 2.6 Sun Solaris 2.7 Linux 2.2 DEC OSF/1

Compiler / optimization level gcc v2.95.2 / O2 gcc v2.95.2 / O2 gcc v2.95.2 / O2 gcc v2.95.2
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instruction cache. The decoder translates each instruction into a stream of one or more simpler instructions

(µops) that is sent to the instruction pool.

When executing a program, all processors studied in this chapter follow a common routine: they fetch

(issue) a number of instructions from the instruction cache, they decode each one of them, they read the

operands, they execute the instruction, they write the result. This routine is implemented in a pipelined

fashion that parallelizes disjoint stages. All processors are superscalar, i.e., they can issue multiple instruc-

tions per cycle (the Alpha and the UltraSparc can issue four and the Xeon three (µops)). In a given cycle,

all processors can simultaneously execute two or less integer instructions, plus two or less floating point

instructions, plus up to one load/store instruction. Unfortunately, database workloads typically consist of

more than 30% load/store instructions that exhibit high data dependencies, and cannot fully exploit the

issue and execution width of the processors.

In order to preserve data integrity and program correctness, the Alpha and UltraSparc processors execute

instructions in logical program order (thus they are labeled “in-order” processors). The major advantage of

in-order execution is that the hardware is kept simple and straightforward. The disadvantage is that when

an instruction takes a long time to execute (e.g., a load miss waits for data to arrive from memory) subse-

quent instructions cannot be executed, even if they are not using the stalled instruction’s results; the pro-

cessor must stop and wait as well. Any type of stall, instruction or data-related, is on the critical execution

path of an in-order processor, and computation typically accounts for a large fraction of the execution time.

On the other hand, the Xeon uses an aggressive execution engine that is capable of executing instructions

out of logical order, as long as there are no data dependencies and consistency is maintained (thus, the

Xeon is labeled an “out-of-order” processor). Out-of-order pipelines are typically deeper than in-order

pipelines, and exploit instruction-level parallelism (ILP) opportunity in the instruction stream by looking
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several instructions ahead of the current program counter. For instance, if an instruction is stalled waiting

for data to arrive from memory and subsequent instructions are independent of the stalled instruction’s

results, the processor will proceed in executing the subsequent instructions. At the end of the pipeline,

there is a retirement buffer that commits the instructions’ results in program order. 

Out-of-order processors exploit non-blocking cache technology, and can usually overlap most of the

first-level data cache stalls. When running on out-of-order processors, and the instruction stream exhibits

low data dependencies, computation accounts for a relatively small fraction of the execution time, and

instruction-related stalls are much more exposed than on in-order processors. Unfortunately, database

instruction streams exhibit high data dependencies and low ILP opportunity, and do not fully exploit the

out-of-order execution capability. Therefore, both computation and data and instruction-related stalls are

high when running database workloads on an out-of-order processor.

Instruction-related stalls occur due to instruction cache misses and due to branch mispredictions. In order

to hide the overhead associated with evaluating the branch condition, all processors predict branch targets,

and evaluate the conditions as they fetch instructions from the predicted target into the pipeline. When a

misprediction occurs, the pipeline stops, its current contents are deleted, and the processor starts fetching

the correct instruction stream. Branch prediction accuracy is extremely important on the Xeon because, in

its deep pipeline, mispredictions are more expensive (cause more stalls) than they are in these in-order pro-

cessors. The typical branch misprediction penalty is 5 cycles for UltraSparc and the Alpha, and 15 cycles

for the Xeon. In order to minimize mispredictions, the Xeon features a state-of-the-art predictor with over

98% prediction accuracy. As discussed further in Section 4.4.5, branch predictors in the Alpha and UltraS-

parc processors are simple and not as accurate as the one in the Xeon.
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4.1.2   Memory Hierarchy

Table 4.2 compares the memory system design parameters of the four systems studied in this chapter.

Several of the trade-offs involved in cache design are crucial to database system performance, because

database workload behavior depends heavily on memory performance. In this section, we discuss the most

critical of these trade-offs.

The ideal memory is large, fast, and inexpensive; however, in practice, as any two of these qualities

improve, the third deteriorates. The popular memory support design for today’s processors is a multi-level

memory hierarchy. As we move away from the processor and towards the main memory, the cache

becomes larger and slower, and the cache “level” increases. Caches on the processor’s chip are faster, but

their capacity is limited. In each of the processors studied in this chapter there are two first-level (L1)

caches (one for data and one for instructions) which can typically be accessed in one to two processor

cycles. The UltraSparc and the Xeon have an off-chip second-level (L2) unified cache. The Alpha has an

on-chip second-level cache and an off-chip unified third-level (L3) cache.

Apart from the size and location, cache design also involves deciding the cache’s associativity and block

size. The associativity denotes the number of alternative cache blocks that can serve as place-holders for a

certain memory address. Programs incur three types of cache misses when running on a uniprocessor sys-

tem: compulsory (that occur because the processor has never seen the data before), capacity (that would

not occur if the cache were larger) and conflict (that would not occur if the associativity were higher) [30].

Larger caches fit more data and reduce memory traffic but are slower; high associativity reduces conflicts

but requires more complicated access hardware, because the processor must search multiple blocks to

determine a cache hit or miss.
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TABLE 4.2: Memory system characteristics

Module / Characteristic
Sun UltraSparc

Dell 6400 PII 
Xeon/MT

AlphaServer 
4100 5/533

Sun Ultra 60 Sun Ultra 10

L1 Data Cache

size 16 KB 16 KB 16 KB 8 KB

associativity direct-mapped direct-mapped 2-way direct-mapped

block/subblock size (B) 32/16 32/16 32/32 32/32

writes through through back through

inclusion by L2 yes yes no yes

L1 Instruction Cache

size 16 KB 16 KB 16 KB 8 KB

associativity 2-way 2-way 4-way direct-mapped

block/subblock size (B) 32/32 32/32 32/32 32/16

inclusion by L2 yes yes no no

L2 Unified Cache

size 2MB 512KB 512 KB 96 KB

associativity direct-mapped direct-mapped 4-way 3-way

block/subblock size (B) 64/64 64/64 32/32 64/32

hit latency cycles (ns) 10 (34) 13 (44) 16 (40) 8 (15)

writes back back back back

inclusion by L3 N/A N/A N/A yes

L3 Unified Cache

size N/A N/A N/A 4MB

associativity N/A N/A N/A direct-mapped

block/subblock size (B) N/A N/A N/A 64/64

hit latency cycles (ns) N/A N/A N/A 40 (75)

writes N/A N/A N/A back

Main memory

size 256 MB 256 MB 512 MB 8 GB

hit latency cycles (ns) 81 (275) 72 (241) 58 (146) 131 (252)
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In the systems that we studied, the cache block size varies from 32 to 64 bytes. Smaller blocks minimize

unnecessary traffic in the cache, whereas larger blocks waste cache bandwidth for useless data. On the

other hand, cache blocks are indexed by a memory tag array, that contains one entry per block. Smaller

blocks require a larger tag array, whereas larger blocks minimize the tag array size. To resolve this trade-

off, several designers choose a large block size and divide each block into two sub-blocks. Each sub-block

is loaded and stored as a separate cache block, but two sub-blocks that belong to the same block can only

may only store information from adjacent main memory addresses. For instance, loading an integer value

in the UltraSparc’s L1 data cache will result in loading 16 bytes of data. Looking for a value in the cache

involves searching the tag array to determine which 32-byte block the data resides in, and then access the

correct subblock that contains the value. The UltraSparc’s L1 data cache and the Alpha’s L1 instruction

and L2 cache use sub-blocks, which means that they need two load instructions to fill a cache block. As

discussed later in this chapter, the major problem with subblocking is that it reduces the positive impact of

the spatial data locality.

In order to minimize the memory traffic incurred by multiprocessor cache-coherence protocols, the

UltraSparc guarantees that the contents of the first-level caches be a proper subset of the contents of the

second-level cache at all times (cache inclusion). This way, when an datum does not exist in the L2 cache,

the coherence protocol does not also have to search the L1 caches. When an L2 cache block is evicted in

order to be replaced by another cache block, inclusion is enforced examining the L1 cache for the block

and invalidating it there as well (if it is found). The disadvantage of this scheme is that, when the L2 cache

has low capacity and associativity, inclusion may result in data and instructions in a program loop “step-

ping on each other’s toes” in the L2 cache, i.e., constantly replacing each other and forcing replacements

and re-loads of the same data and instructions at the first-level caches. The Alpha maintains data inclusion

for data caches, whereas the UltraSparc observes inclusion for both data and instructions. Therefore, the
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Alpha does not evict an L1 instruction cache block when that block is replaced in the L2 cache. Finally, the

Xeon processor does not observe inclusion in either the data or the instruction cache.

A cache feature often met in today’s microarchitecture is the ability to service a cache read request

before the previous one is completed. Caches that exhibit this feature are referred to as “non-blocking”,

require more sophisticated control hardware, and are mostly useful to out-of-order processors. The Xeon’s

caches are non-blocking, whereas both the Alpha and the UltraSparc block on read requests. Write requests

are typically non-blocking in all caches, even in in-order processors, in order to enable write optimizations.

When a subsequent request needs to read data that is scheduled to be, but isn’t yet written by a previous

instruction, the pipeline is stalled until the write completes.

4.2   Experimental Setup and Methodology

4.2.1   Workload

The workload consists of a range selection and four TPC-H queries, described in Section 3.4.1. The

range selection query scans the TPC-H table lineitem with variable projectivity (1-15), selectivity (2%-

100%), and number of attributes involved in the condition (1-10). Most graphs present average measure-

ments across all range query experiments under the label ‘RS’. TPC-H queries Q1, Q6, Q12, and Q14 are

shown in Appendix B. In order to evaluate cache performance, we ran the queries against a 100-MB TPC-

H dataset, that fits in main memory.
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4.2.2   Compilation

In order to perform a fair performance comparison across machines, we attempted to compile the work-

load using the same compiler, gcc v2.95.2, with the same compilation flags. First, we attempted to use all

optimization flags; however, the version of the compiler for the Tru64 on the Alpha platform has severe

bugs when the optimization flag -O2 is used. To maintain fairness across the systems, this flag was initially

omitted in all the platforms. However, as shown in Sections 4.3.1 and 4.3.2, omitting -O2 incurs severe

performance penalty on the UltraSparc and Xeon platforms. In order for the results presented to be as real-

istic as possible, we included the optimization flag in the experiments measured on the UltraSparc and on

the Xeon, and redefined the fairness requirement as “the same compiler and version with the highest possi-

ble degree of optimization per platform.”

4.2.3   Measurement Method

The insights drawn in this chapter are based on experiments that employ the hardware counters available

on most of today’s processors. Fortunately, all processors studied in this chapter have hardware perfor-

mance counters, and there is software that can be used to measure countable events. However, in most

cases, reporting meaningful statistics from the counter values is not a straightforward task, because:

1. The sets of measurable event types differ significantly across processors. For example, one can mea-

sure the number of branch mispredictions on the Xeon, but the UltraSparc will only offer a semi-accu-

rate measurement of stall time due to branch mispredictions. Therefore, to compare the branch

misprediction rate and the misprediction penalty, one needs to apply “magic” fudge factors on the

reported values and estimate the desired quantities.
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2. Counter values reported are often inaccurate, for two reasons. First, not all processor vendors have

invested the same effort in accurately designing the counters and making the measurements available

to the user-level software. Second, execution inside the processor follows several alternative paths, and

intercepting all the paths at the appropriate points to measure certain event types is not always possi-

ble. Therefore, the occurrence counts for these events are either overestimated or underestimated. A

related problem is measuring stall time: a cycle during which a processor is stalled may be attributed to

a number of reasons (memory, misprediction, functional unit unavailability, data dependency, etc.). In

several cases it is not clear which pipeline stage or memory system component is really responsible.

3. The methods each software package uses to export counter values differ across processors and pack-

ages. There are two software package categories: The first consists of relatively simple programs that

simply set the counter to zero, assigns event type codes to them, and reads the values after a specified

amount of time or after a program has completed execution. The second category includes software

that samples each event type in time intervals and reports the results from the sampling.

We tested several different (proprietary or public-domain) software packages for each platform. To evalu-

ate each software package, we used microbenchmarks that exhibit predictable event count results. An

example of such microbenchmarks are programs that walk through a large integer array and incur predict-

able number of cache misses at all cache levels. The software we chose for each platform combines the

best we found in terms of correctness, robustness, repetitiveness of results, and support from its makers.

On the Solaris/UltraSparc platform, we used a slightly modified version of the interprocedural instru-

mentation library written by Glenn Ammons and used in previous work [3]. The interface is a simple

counting tool that sets the two UltraSparc counting registers to zero, assigns two event types to them, and

reports two counter values per program execution.
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On the Linux/Xeon platform, we used the Performance Data Standard and API (PAPI) [41], a public-

domain library that offers access to counters on numerous hardware platforms, hiding the platform-depen-

dent details behind a common programming interface. We used PAPI to obtain exact counter values for

two event types per program execution, because the Xeon has two hardware counters.

On the OSF1/Alpha platform, we used a sampling tool from Compaq, called “DIGITAL Continuous Pro-

filing Infrastructure” (DCPI) [4]. DCPI is a set of tools to sample the performance counters during program

execution, gather data in a database and generate summary reports. In order to gather data, the DCPI dae-

mon is started with a set of event types to sample as parameters. The Alpha 21164 has three counters, one

of which can only count processor cycles, while the other two can count other event types. To maximize

accuracy, we sampled one pair of event types per execution, and extracted useful information from the

DCPI reports using our own scripts.

Finally, the values collected on each platform were used as input to a set of formulae in order to obtain

performance statistics.

4.3   Workload Behavior on Individual Machines

As described in the previous section, each processor has a different set of countable event types and dif-

ferent performance counter implementations. Consequently, the set of available measurements differs

across machines. In addition, the UltraSparc and the Xeon execute optimized code, that exhibits different

behavior than the unoptimized version. This section discusses behavior that was observed on each machine

individually.
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4.3.1   Sun UltraSparc

There are two major observations from execut-

ing our workload on the UltraSparc platforms.

First, the optimized code executes 30-66% fewer

instructions than the unoptimized code, resulting

in less time spent in the pipeline and in data and

instruction-related stalls. Figure 4.1 depicts the

effect on the execution time breakdown for the

US-IIi (the US-II exhibits similar behavior). On

the horizontal axis RS shows the average for

range selection queries, whereas Q1-Q14 corre-

spond to the TPC-H queries. Pipeline denotes

time spent in the pipeline (computation and functional unit-related delays), D-stalls include delays due to

data cache misses and data dependencies, and I-stalls include delays due to instruction cache misses and

branch mispredictions. The optimized executable runs in less than half the time spent by the unoptimized

one, therefore for the rest of this chapter we consider results from the optimized executable.

Second, when cache inclusion is maintained, the L2 cache size significantly affects performance during

sequential scans. We compared our workload’s behavior between the US-II and the US-IIi [44], which is

the low-end, highly integrated derivative of the US-II. Cache configuration is common between the two

platforms, except for two characteristics [25]:

1. The US-II has a 128-bit interface from the L2 to the L1 caches, whereas the US-IIi has a 64-bit inter-

face. This means that the US-II can fill its L1 cache with half as many accesses as the US-IIi. 

FIGURE 4.1. Normalized execution breakdown com-
parison between the unoptimized UltraSparc-IIi exe-
cutable (n/o) and the one optimized with -O2 (o).
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2. The L2 cache of the US-II is 2MB, i.e., four times as large as that of the US-IIi.

The L1 interface bandwidth should not directly affect performance, because this workload is bound by

latency, rather than bandwidth [1]. The bandwidth limitation, however, increases the total time needed to

fill one cache block. The cache size difference should not be important when executing sequential scans,

because we only access the table data once. We measured the same executable was measured on both sys-

tems, and the same number of data and instruction references to the first-level caches was observed. There-

fore, the L1 cache behavior should not vary significantly between the US-II and the US-IIi.

Figure 4.2 shows that the above conjecture is false.

During execution of the range selection queries, the

L1 cache behavior varies significantly across the two

machines, and the US-II executes 37% faster than the

US-IIi. The US-IIi misses at the L1 data and instruc-

tion cache twice as often as the US-II. This behavior

is due to the enforcement of the inclusion principle

between the two cache levels. The US-II instruction

accesses on the L2 cache almost never miss, because

the L2 cache is large enough for the instruction foot-

print (2MB). However, the US-IIi L2 instruction miss

rate is 2.6%, because instructions conflict with data on the second-level cache. When a block of data needs

to be replaced by a block of instructions on the L2 cache, the data is also invalidated on the L1 data cache

due to the use of inclusion. The scan operator’s execution is entirely based on a loop, therefore the invali-

dated data include local loop variables that are likely to be re-fetched from main memory during the next

loop iteration. In addition, when a block of data replaces a block of instructions in the L2, the instructions

FIGURE 4.2. Comparison of normalized cache
performance between an US-II and and US-IIi.
The results shown are averages across all range
selection queries.
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are evicted from the L1 instruction cache. Again, loop instructions are being fetched multiple times, hence

the increased instruction miss rates at both cache levels.

4.3.2   Intel Pentium II Xeon

Similarly to the UltraSparc, the Xeon executes

30-60% fewer instructions when running the opti-

mized executable than when running the unopti-

mized one. Figure 4.3 shows the direct effect of the

instruction count on the computation and the

instruction-related stall time. Pipeline denotes time

spent in the pipeline (computation), D-stalls include

delays due to data cache misses and data dependen-

cies, and I-stalls include delays due to instruction

cache misses, branch mispredictions, and ITLB

misses. Data-related stalls are not reduced at all

with optimization, because most of the memory accesses the -O2 flag eliminates hit on the L1 data cache

and a few hit on the L2 cache. The latter incur no penalty, because the out-of-order engine overlaps the L2/

L1 transfer latency involved with computation. Finally, the elapsed execution time for the optimized code

is less than half the execution time for the unoptimized code.

In Chapter 2, we presented an analysis across four commercial database management systems running

on the Xeon processor under the NT operating system. Figure 4.4 shows why our prototype database sys-

tem based on the Shore Storage Manager is a viable sequential scan analysis testbed both under NT and

under Linux. The leftmost graph of Figure 4.4 shows the elapsed time breakdown when running range

FIGURE 4.3. Normalized execution breakdown
comparison between the unoptimized i686 execut-
able (n/o) and the one optimized with -O2 (o).
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selections on four commercial DBMSs and Shore on top of NT 4.0, and on Shore on top of Linux 2.2. The

rightmost graph shows the cache-related stall time breakdown into components due to first and second-

level cache data and instruction misses. The experiments with Shore corroborate previous results: (a) the

execution time spent in useful computation is at most 50%, (b) the memory, branch misprediction, and

dependency/resource related stall time is significant, and (c) the memory-related bottlenecks are the first-

level instruction cache and data misses on the second-level cache. The conclusion is that Shore and com-

mercial database systems exhibit similar behavior, and that, when Shore executed sequential scans, bottle-

necks are common across operating systems.

4.3.3   Compaq Alpha 21164

As discussed in Section 4.2.3, we were not able to optimize the Alpha executable to the same extent as

the UltraSparc and the Xeon executables are, therefore we are unable to demonstrate the relative perfor-
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commercial database systems (A, B, C, and D) and Shore (on NT and Linux) running a range selection
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lyzed into individual cache stalls due to data and instructions on the right.
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mance of an optimized versus an unoptimized executable on this processor. On the other hand, on the

Alpha we are able to study stall time in more detail than on the other processors, and gain insight on the

significance of each stall time component. This section discusses the Alpha stall time by breaking it into

dynamic and static stalls.

Dynamic stalls are mainly due to cache and TLB misses, and branch mispredictions. Dynamic stalls can-

not be predicted simply by looking at the instruction stream, account for about half the execution time, and

are further analyzed in Section 4.4. Static stalls are delays that the processor would suffer even if there

were no dynamic stalls. For example, a load from memory takes two cycles, assuming an L1 data cache hit,

whereas additional stall cycles due to a cache miss are considered dynamic. DCPI, the sampling tool used

to access the Alpha performance counters, produces an execution time breakdown into computation,

dynamic stalls, and static stalls. If an instruction is stalled for multiple reasons, the static stall cycles are

attributed to the last reason preventing instruction issue. Thus, shorter stalls are hidden by longer ones.

The leftmost graph of Figure 4.5 shows the CPI breakdown for the Alpha when executing the range

selection and the four TPC-H queries into computation, dynamic stalls, and static stalls. Computation time

includes mostly useful computation (17-29%), plus 1-2% due to nop’s (instructions often inserted deliber-

ately by the compiler to improve pipeline execution). About 11-20% of the time is due to static stalls

(striped part of bars). In the rightmost graph of Figure 4.5, static stalls are further analyzed into five com-

ponents:

• Slotting stall cycles are due to static resource conflicts among the instructions within the same “win-

dow” that the processor considers for issue in any given cycle. The Alpha pipeline exhibits an elabo-

rate pre-issue logic which, although in-order, is not met inside the UltraSparc processors, although

both microarchitectures are in-order. The pre-issue logic is implemented by a slotting mechanism that
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pre-evaluates the incoming instruction stream and swaps instructions around so that they are headed

for pipelines capable of executing them. This mechanism ensures optimal mapping of the instructions

to the appropriate pipelines, but also incurs additional delays in high-dependency instruction streams.

• Ra/Rb/Rc dependency stall cycles are due to register dependencies on previous instructions. Instruc-

tions operate on two operands stored in registers Ra and Rb and store the result in Rc. Each component

involves the corresponding register of the stalled instruction.

• FU dependency stall cycles are due to competition for function units and other internal units in the pro-

cessor (e.g. integer/floating point units, but not memory buffers).

The rightmost graph in Figure 4.5 shows three interesting facts. 

Static stall time breakdown

0%

20%

40%

60%

80%

100%

RS Q1 Q6 Q12 Q14

Query

S
ta

ti
c 

st
al

l t
im

e 
(%

)

Slotting Ra dep Rb dep Rc dep FU

CPI breakdown

0%

20%

40%

60%

80%

100%

RS Q1 Q6 Q12 Q14

Query

C
lo

ck
 c

yc
le

s 
/ i

n
st

r.
 

(%
)

Computation Dynamic Stalls Static Stalls

FIGURE 4.5. CPT (left) and static stall time (right) breakdown when executing a range selection (RS),
and four TPC-H queries (Q1-Q14).On the left, pipeline denotes computation time, and dynamic stalls
includes unpredictable delays due to cache misses and branch mispredictions. The static stalls compo-
nent includes predictable stalls and is analyzed in the graph on the right into delays due to unbalanced
use of resources in the instruction slot (slotting), register dependencies (Ra/Rb/Rc), and functional unit
conflicts (FU).
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1. Stalled instructions usually wait for the registers holding the operands to become available; the result

register is never a problem. This suggests that previous load instructions are not expected to complete

on time for the operands to be ready to use. Additionally, one of the major advantages of out-of-order

processors is that they hide Rc-type dependencies, using a technique called register renaming [28].

However, the lack of Rc-type dependencies in the database workload questions the usefulness of this

feature. 

2. There is virtually no competition for functional units in the issue or the execution stage, because the

database instruction stream is bound by memory operations. 

3. The processor’s capability to execute up to 5

instructions per cycle cannot be exploited by the

database workload instruction mix, because only

one load/store instruction is allowed per cycle. The

slotting function determines which instructions will

be sent forward to attempt to issue, obeying the

instruction mix restrictions. Therefore, slotting

delays cause the processor to issue fewer instruc-

tions than the maximum issue width. The stall time

due to slotting accounts for 30-40% of the static

stalls. Moreover, as shown in Figure 4.6, over half

of the time no instructions are issued; 30-40% of the

time there are no instructions to issue (pipeline is

dry), whereas over 10% of the time none of the available instructions can issue (0-issue). Although the

Alpha is capable of issuing up to 4 instructions per cycle, our experiments exploit the full width. On

FIGURE 4.6. Breakdown of Alpha execution
cycles in terms of instruction issue for the range
selection (RS) and four TPC-H queries. During
pipeline dry cycles, there are no instructions to
issue; during 0-issue cycles there are instruc-
tions, but none can be issued, due to conflicts.

A21164 Cycle Issue Breakdown

0%

20%

40%

60%

80%

100%

RS Q1 Q6 Q12 Q14

query

cl
o

ck
 c

yc
le

s 
(%

)

pipeline dry 0-issue 1-issue 2-issue



81

the average, 55% of instructions issue in single-issue cycles, 45% issue in dual-issue cycles, and there

are no triple or quad-issue cycles. Similar behavior was observed with the Xeon processor [1].

4.4   Comparison Across Systems

As was explained in Sections 4.1 and 4.2, the machines under consideration have little in common in

terms of system design, measureable events, and measuring software. Not all types of stall time compo-

nents can be measured reliably on all machines. Whenever finer detail is needed than the measurement

granularity available, we use estimated data to show trends (and we note that the data presented are esti-

mated). 

This section compares workload behavior across four systems. First, we briefly discuss a popular perfor-

mance metric (SPEC) and the reasons it is not indicative of database performance. Then, we compare the

instruction stream behavior and execution time breakdowns of the database workload across the machines,

and elaborate on data and instruction cache performance. Finally, we discuss the impact of branch predic-

tion accuracy on system’s performance.

4.4.1   SPEC Performance

For several years, processor design evaluation and architectural decisions have been largely based on the

SPEC [63] CPU benchmark performance. The SPEC CPU benchmark is composed by an integer suite

(CINT95) and a floating point suite (CFP95). Table 4.3 lists the SPEC benchmark results for the three pro-

cessors under consideration. Each number reported in Table 4.3 is the result of dividing the average execu-

tion time of all the benchmarks in the suite on the measured system by the execution time on a common
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reference machine (higher is better). The column labeled “Result” reports results when executing opti-

mized code, whereas the baseline performance is the execution rate without optimization.

The database workload performs mostly integer computations, therefore the CINT95 results are a better

database performance indication that the CFP95. Three important observations can be made by looking at

the SPEC result table. First, when comparing integer performance, at 300 MHZ the UltraSparc is by far the

slowest processor. Second, although the Xeon speed is only 400 MHz and the Alpha provides a powerful

533 MHz, the Xeon manages to climb close to the Alpha performance level on the CINT95 benchmark. On

the other hand, it is almost as slow as the US-IIi when executing the floating-point benchmark. The SPEC

floating-point benchmarks are mainly bound by main memory bandwidth, and the US-II’s memory band-

width is more than both the US-IIi’s and the Xeon’s. Third, the optimized code runs 20% faster on the Sun

than the unoptimized code, but optimization flags don’t make a difference in the other two systems as far

as integer benchmark performance is concerned. However, experiments with a database system have

shown that optimization improves performance by up to 67% on both the US-IIi and the Xeon processors

TABLE 4.3: SPEC results for each of three processors

Vendor System (Processor) Benchmark Result Baseline

Sun Ultra 60 296MHz
(UltraSparc-II)

CINT95 13.2 10.5

CFP95 18.4 17.1

Ultra 10 300MHz
(UltraSparc-IIi)

CINT95 12.1 9.57

CFP95 12.9 12.0

Intel Intel MS440GX
(Pentium II Xeon)

CINT95 16.3 16.3

CFP95 13.2 12.0

Compaq/Digital AlphaServer 4100 5/533
(Alpha 21164)

CINT95 16.9 16.8

CFP95 21.9 20.4
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(see sections 4.3.1 and 4.3.2). The conclusion is that SPEC benchmarks are an indication of the perfor-

mance differences across computer platforms, but are not representative of database performance.

4.4.2   Database Workload Instruction Stream

To determine how well the processor copes with the instruction stream., researchers often use the clock-

per-instruction rate (or CPI). CPI represents the average number of clock cycles the processor takes to exe-

cute one instruction. In this chapter, however, CPI cannot be used as a metric to compare performance,

because we are studying machines with fundamental architectural differences (RISC vs. CISC). We only

use normalized CPI measurements in this section, in order to study the behavior across queries and com-

pare the variation of inter-query measurements across systems.

The processors studied in this chapter can issue three (Xeon) or four (Alpha and UltraSparc) instructions

each clock cycle. The set of issued instructions may contain up to one load/store, up to two integer, and up

to two floating-point instructions. Therefore, they should reach peak performance with instruction streams

composed by roughly 20% load/store instructions, that hit in the first-level data cache (for in-order proces-

sors) or hit in the second level cache and exhibit low data dependencies (for out-of-order processors that

can overlap most of the first-level data cache stalls). The database instruction stream on the UltraSparc and

the Alpha consists of 30-35% load/store instructions. On the Xeon processor, the CISC load/store instruc-

tions account for more than 60%, and, presumably, the percentage drops to the same level as the other two

platforms as the instructions are decoded into µops. In addition, the database instruction stream exhibits

high data dependencies, and occasionally perform aggressive computation. From the queries in our work-

load, the plain sequential scan queries (RS in the graphs) scans a table and performs minimal computation,

while TPC-H Q1 and Q6 scan the same table and perform more computation (but Q1’s selectivity is close

to 100% whereas Q6’s selectivity is 2%, therefore Q1 performs more computation than Q6). TPC-H Q12
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and Q14 scan two tables each and apply an order of magnitude more pressure on the memory system and

the execution engine because they build and parse hash tables (Q14 is more data-demanding than Q6). 

Figure 4.7 shows the normalized CPI rate for the US-

II, the US-IIi, the Xeon, and the Alpha. The CPI rate

for RS is set to one, and the CPI rates for the rest of

the queries are shown relative to RS. The difference

in CPI rates across queries indicates that, due to the

memory-intensive instruction mix, queries with a

higher demand for data apply more pressure on the

memory subsystem. For instance, Q14 is the most

data and instruction-intensive query, the per-instruc-

tion stall time incurred by this query is higher, there-

fore the average number of cycles spent to execute an

instruction increases. 

Increased memory stalls are more exposed on an out-of-order processor than on in-order processors. The

pipelines inside the UltraSparc and the Alpha are in-order, and stops on every stall; Xeon’s out-of-order

only stops when there are no other instructions to execute due to data dependencies. Therefore, the Xeon’s

CPI exhibits little variation when executing the three first queries, but as the pressure for data and instruc-

tions increases the impact on CPI is much higher than it is on the other two systems. Between the two in-

order UltraSparc systems, the US-II CPI rate varies the least across queries, because its L2 cache is four

times larger than the US-IIi’s L2 cache. Finally, the Alpha combines a high-frequency, in-order execution

engine with a deep memory hierarchy (three cache levels). Nevertheless, CPI variation between selections

FIGURE 4.7. Normalized (relative to RS=1) clock-
per-instruction (CPI) rate when running a range
selection (RS) and four TPC-H queries on an US-
IIi, an US-II, a Xeon and an Alpha.
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and joins is higher on the Alpha than on the UltraSparc because (a) its L2 cache is too small (96K) to sus-

tain the misses from L1 and (b) its L3 cache, although large (4MB), has high access time (40 cycles).

4.4.3   Execution Time Breakdown

In order to compare the execution time breakdown across systems, we use the clock-per-tuple (CPT) rate

instead. The CPT rate represents the average number of clock cycles needed to process one record when

executing a query, and is given by the fraction of the total number of cycles the query takes to execute

divided by the total number of records processed by the query. For the queries RS, Q1, and Q6, the denom-

inator is the cardinality of the lineitem relation, while for Q12 it is the sum of the cardinalities of lineitem

and orders and for Q14 it is the sum of the cardinalities of lineitem and part.

Figure 4.8 presents a high-level CPT breakdown when executing our workload on the US-II (left), the

Xeon (center), and the Alpha (right). The two lower parts of the bars represent stall time due to misses at
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tion stalls are due to data and instruction cache misses at all cache levels, respectively, while Branch
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all cache levels during data and instruction accesses, respectively, while the third part represents stall time

due to branch mispredictions. The top part includes stall time due to other reasons (resource availability,

data dependencies, and others) and time spent in useful computation. Due to the high variation across que-

ries (for example, CPT is typically 7-10 times higher for Q14 than it is for RS) we present the trends in

TABLE 4.4: UltraSparc-II CPT Breakdown

Component RS Q1 Q6 Q12 Q14

Data-related stalls 461 418 305 4,692 6,686

Instruction-related stalls 307 87 123 447 296

Branch misprediction stalls 330 198 180 1746 414

Computation & other stalls 1,635 1,308 1,003 8,638 8,616

Total 2,734 2,010 1,611 15,522 17,012

TABLE 4.5: Pentium II Xeon CPT Breakdown

Component RS Q1 Q6 Q12 Q14

Data-related stalls 308 639 291 8,550 15,893

Instruction-related stalls 883 519 561 1,116 662

Branch misprediction stalls 269 153 60 300 88

Computation & other stalls 1,481 1,118 952 4,821 8,800

Total 2,941 2,428 1,864 14,787 25,442

TABLE 4.6: Alpha 21164 CPT Breakdown

Component RS Q1 Q6 Q12 Q14

Data-related stalls 938 867 655 7,769 15,789

Instruction-related stalls 3,291 3,187 2,939 5,713 4,290

Branch misprediction stalls 111 119 93 130 91

Computation & other stalls 5,044 6,168 4,517 12,129 10,492

Total 9,383 10,341 8,204 25,742 30,662
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100% stacked columns, and show the percentage each value contributes to the total CPT. The absolute CPT

numbers are shown in Tables 4.4, 4.5, and 4.6. In most cases, the Alpha numbers are 2-5 times higher than

on the other machines; this is natural since the executable on the Alpha is unoptimized

The main observations from Figure 4.8 are that (a) the total memory and branch misprediction stalls

account for 35-68% of the execution time (corroborating previous results [1]) and (b) data accesses are the

major memory bottleneck, especially for the join queries Q12 and Q14. The rest of this section discusses

the trends across the three computer microarchitectures and the different queries in the workload in terms

of overall performance, cache performance, and branch mispredictions.

4.4.4   Cache Performance

As shown in Figure 4.8, cache-related delays typically account for 30-65% of the overall execution time.

Figure 4.9 shows the cache-related stall CPT breakdown for the two UltraSparc processors and the Xeon.

The graphs present the stall cycles per instruction due to first or second-level cache misses, for data (bot-

FIGURE 4.9. Breakdowns of stall time related to cache misses for a range selection (RS), and four
TPC-H queries (Q1-Q14) on the US-IIi (left), the US-II (center) and the Xeon (right). Stall time is bro-
ken into penalty from data and instruction misses on the first and second-level caches.
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tom two parts of the bars) and instructions (top two parts of the bars). Unfortunately, there is no reliable

way to accurately measure the stall time due to individual cache levels on the Alpha. The estimated stall

breakdown for the Alpha is shown in Figure 4.10.

In Chapter 2, we measured four commercial database systems

running sequential or indexed scans and sort-merge joins on a

Xeon processor. We concluded that, for these experiments, (a)

the first-level data and second-level instruction cache misses are

responsible for a small percentage of the execution time, and (b)

the memory bottlenecks are data accesses the second-level

cache first-level instruction accesses (i.e., the first-level instruc-

tion cache and fetch unit). This section analyzes data and

instruction cache behavior when running sequential scans, as

well as hash-join queries, and compares results from four sys-

tems.

4.4.4.1   DATA

The conclusions from earlier experiments about the relatively low impact of first-level data cache misses

are corroborated when running queries RS, Q1, and Q6 on the UltraSparc and on the Xeon. However, the

L1 data cache becomes increasingly important when executing hash join queries. On all processors, run-

ning TPC-H queries Q12 and Q14 incurs an order of magnitude higher first-level data cache miss rates.

Profile analysis on the workload shows that 70% of the first-level data misses are spent in two functions,

the one that inserts a record to the hash table and the probing function that looks for a match in the hash

table. These two functions are the source of almost all the stall time due to L1 data cache misses. The hash

FIGURE 4.10. Estimated memory stall
time breakdown on the Alpha into time
due to data and instruction-related
cache misses.
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table creation and probing increase the data footprint of the query during the join operation, and the first-

level data cache is not large enough to store the entire hash table.

There are four reasons why a processor will incur first-level data cache misses: limited cache capacity,

low associativity, small cache blocks, and inclusion between cache levels. Figure 4.11 shows that, during

sequential scans, the Xeon incurs far fewer misses than the other systems, because it combines a 16-KB, 2-

way associative, 32-byte block first-level data cache and it is not inclusive. The UltraSparc uses 32-byte

blocks as well, but each block is divided into two 16-byte sub-blocks that are loaded and stored individu-

ally. However, sub-blocking prevents the UltraSparc cache from fully exploiting spatial data locality. For

instance, in order to load two record values that are less than 32 bytes and more than 16 bytes apart, it

incurs two cache misses whereas the Xeon will incur only one.

FIGURE 4.11. First-level data cache misses per record when executing a range selection (RS, aver-
age) and four TPC-H queries on an US-II, an US-IIi, a Xeon and an Alpha as a function of the projec-
tivity (left) and the selectivity (right).
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In addition, processors that maintain inclusion between the first and second cache levels exhibit more

first-level cache stalls. In Section 4.3.1, we compared cache behavior between the US-IIi and the US-II and

explained how the data and instructions “step on each other’s toes” in the small and direct-mapped L2

cache of the US-IIi. The comparison between the US-II and the US-IIi showed that a large L2 cache can

improve L1 performance, whereas the comparison between the Xeon and the UltraSparc shows that, when

the inclusion principle is enforced on direct-mapped data caches, the number of data misses increases. The

L2 cache block is 64 bytes; when an L2 data block is replaced by another, inclusion will result in the evic-

tion of four sub-blocks in the L1 data cache. It is possible that a subset of the evicted blocks contained data

needed in the next loop iteration, which will reload the same data from main memory. Finally, the Xeon’s

first-level data cache is 2-way set associative. Therefore, it incurs fewer conflict misses than the UltraS-

parc’s direct-mapped L1 cache.

The Alpha maintains data inclusion across all three cache levels. Both the L1 and L2 caches have limited

capacity (96K L2 and 8K L1) and are direct-mapped. As a consequence, 15% of the memory-related stalls

on the Alpha are estimated to be due to L1 misses. Figure 4.11 shows that, when executing range selections

with variable projectivity (left) and selectivity (right), the Alpha is practically thrashing on the first-level

cache, and the number of misses incurred per record is three to fifty times higher than the other processors.

4.4.4.2   INSTRUCTIONS

A non-inclusive, moderately sized L2 cache with high associativity is enough to sustain the instruction

footprint and avoid conflicts between data and instructions, minimizing the stall time due to second-level

instruction misses. An example is the Xeon, that has a 512-KB L2 cache with 4-way associativity. The sec-

ond-level instruction misses do not incur a significant stall time on this processor (shown in the rightmost

graph in Figure 4.9). In contrast, the Alpha features a fast but tiny (96 KB) on-chip L2 cache, and the L2
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instruction stalls account for 15-46% of the overall memory stall time (shown in Figure 4.10). The US-IIi

has a 512-KB L2 cache, but it is direct-mapped, resulting in increased conflict misses between data and

instructions when compared with the Xeon. Consequently, the percentage of stall time due to second-level

instruction misses (shown in the leftmost graph in Figure 4.9) is higher on that processor. The US-II (mid-

dle graph in Figure 4.9) has a direct-mapped L2 cache as well, but it is four times larger (2MB), therefore

the second-level instruction stall time is insignificant.

The instruction behavior across all machines is consistent with our earlier observations. Access to the

first-level instruction cache is the dominant reason for memory stalls during queries RS, Q1, and Q6 on all

platforms. L1 instruction stalls account for 40-85% of the memory stall time, for two reasons. First, Xeon

is a CISC processor, and instructions need more complex hardware in order to be fetched and decoded than

RISC instructions. The Xeon length decoder and fetch hardware introduces delays that are included in the

L1 instruction stalls shown in the graph. Second, L1 instruction misses are expensive and incur significant

delays. The RISC processors, although they do not incur fetch-related delays, they still exhibit high

instruction stalls due to L1 instruction cache misses. Nevertheless, when executing hash join queries, the

data stalls eventually dominate execution, because the out-of-order engine is not capable of hiding any of

the L2 data stalls. An interesting example is the US-II, that completely minimizes instruction-related stalls

when executing the hash joins, because the instruction footprint fits in its generous 2-MB L2 cache.

The US-II cache stall CPT breakdown looks similar to the Xeon when running the three first queries. Its

bottleneck is exclusively at the first cache level for both data and instructions when running the join que-

ries, because the L2 cache is sufficiently large to sustain both the data and instruction footprint.
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4.4.5   Branch Mispredictions

The instruction fetch/decode unit in the Xeon processor uses a highly optimized branch prediction algo-

rithm to predict the direction of the instruction stream through multiple levels of branches, procedure calls,

and returns. The algorithm used is an extension of Yeh’s algorithm [60], which typically exhibits an accu-

racy of about 98%. The reason for such a sophisticated branch prediction algorithm is that within the

instruction window there may be numerous branches, procedure calls, and returns, that must be correctly

predicted for the execution unit to do useful work. In addition, the misprediction penalty is much higher

than in the other processors (15 cycles), because the Xeon has a deeper pipeline [31].

On the other hand, both the UltraSparc and the Alpha record the outcome of the branch instructions in a

2-bit history state. The Alpha provides 2-bit history information for each instruction location in the instruc-

tion cache, whereas the UltraSparc provided it for every two instructions. This information is used as the

prediction for the next execution of the branch instruction. The branch predictors used in these processors

have a typical accuracy of about 87% (measured on SPECInt workloads).

Table 4.7 shows the branch frequency and misprediction rate on the Xeon and on the Alpha (we found no

reliable way to accurately measure these quantities on the UltraSparc systems). The Alpha executable

exhibits far lower branch frequency, because it is unoptimized (optimized executables include 20-25%

branch instructions). The impact of the sophisticated prediction mechanism on the Xeon’s performance is

obvious from the low branch misprediction rate; the prediction logic in the Alpha predicts the wrong way

five to six times more often than the Xeon. On the other hand, mispredictions on the Xeon are three times

more expensive than on the Alpha. Therefore, when compared to the Xeon, branches on the Alpha are rare

and mispredictions are cheap. As shown in Figure 4.8, stalls related to branch mispredictions do not

account for a significant fraction of the Alpha’s CPT. 
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The UltraSparc’s branch predictor is similar to the one inside the Alpha, and mispredictions incur the

same misprediction penalty. However, the UltraSparc executable is optimized, and branch frequency is

expected to be 20-25%. Therefore, as shown in the leftmost graph in Figure 4.8, misprediction stall time on

the US-II accounts for 7-13% of the execution time, whereas on the Xeon it only accounts for 2-7% of the

execution time.

4.5   Putting It All Together: Comparison Between NSM and PAX

In Chapter 3 we introduced a novel data page layout, called Partition Attributes Across (PAX). We pre-

sented results from running our workload with PAX on the Xeon processor on top of the Windows NT 4.0

operating system, and demonstrated that PAX is beneficial for all types of queries in the workload. This

section compares PAX across the various platforms.

Use of PAX instead of NSM improves the spatial data locality during sequential scan, especially when

the query accesses a fraction of the record in order to evaluate a condition. Therefore, the larger the cache

block size, the less often an algorithm that uses PAX will incur cache misses. In other words, the data miss

rate improvement from using PAX (defined as the number of data misses divided by the number of data

TABLE 4.7: Branch behavior

Characteristic P II Xeon Alpha 21164

Branch frequency

RS, Q1, Q6 18% 7%

Q12, Q14 22% 9%

Branch misprediction rate

RS, Q1, Q6 3.5% 15%

Q12, Q14 1% 6%

Branch penalty (cycles) 15 5
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accesses) is expected to increase as a function of the block size. The cache with the highest miss penalties

is L2 in the case of the UltraSparc and the Xeon, and L3 in the case of the Alpha. As shown in Table 4.2,

the Xeon’s L2 cache block size is 32 bytes, whereas the UltraSparc’s L2 and the Alpha’s L3 cache block

size is 64 bytes. Therefore, we expect that PAX improvement on L2 (L3) data miss rates on the UltraSparc

(Alpha) will be higher than on the Xeon. As shown in the leftmost graph of Figure 4.12, in almost all cases

the above conjecture is true. When using NSM, Q12 exhibits an unusually low miss rate for the Xeon (9%

versus 88% for Q1 and Q6 and 45% for Q14) and that is almost completely eliminated when using PAX.

The rightmost graph in Figure 4.12 shows the relative improvement in elapsed execution time when

using PAX across the four platforms. The improvement is low (3-15%) for the range selection that per-

forms sequential scan and hardly uses the data read from the relation. Q1 and Q6 make heavier usage of the

data extracted during the sequential scan in order to compute aggregates, group, and sort. Therefore, PAX

improvements are higher (8-40%) for these queries as well as for the more complex join queries. The

FIGURE 4.12. PAX improvement over NSM on L2 data miss rate (left) and elapsed execution time
(right) when running the range selection queries (RS), the TPC-H queries on four platforms.
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results corroborate the conclusions from the previous chapter that (a) PAX is a promising cache-conscious

data placement technique that minimizes data stall time, and (b) reducing data-related stalls significantly

improves query execution time.

4.6   Summary

This chapter compares the behavior of a database workload across four computer platforms, that belong

to different computer design philosophies. The processors have been designed based on non-commercial

benchmarks, and their features were developed towards optimizing performance for these applications.

Database systems, however, impose different requirements. Results from experiments conducted on a vari-

ety of processors indicate that:

• Although other computation is still significant, the memory/processor speed gap makes memory

access the major bottleneck. In order to reduce stall time when executing database workloads, execu-

tion engines must overlap memory stalls more aggressively. Tolerating multiple load/store instructions

per cycle would help, because over 30% of the instructions access data in caches and in memory.

• Data and instruction cache inclusion is not beneficial for database workloads, because the query oper-

ators are based on loops and performance deteriorates with data and instruction invalidations. If inclu-

sion is necessary (e.g., for cache coherence protocol performance on multiprocessor systems), then (a)

the L2 cache needs to be large enough to sustain the instruction footprint and (b) the instruction cache

should not be inclusive (which is easier, because there are no writes on the instruction cache).
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• Large cache blocks apparently are a good choice for the L2 cache, and in combination with PAX suc-

cessfully exploit spatial locality. On the other hand, subblocking reduces the advantage from spacial

data locality.

• Due to the increased instruction stalls, database workloads impose the need for an accurate branch pre-

diction mechanism even when running on in-order processors.

• The hash-join algorithm needs to be optimized for first-level data cache accesses.

Assuming no significant change in hardware implementation cost, database systems would perform well

on a processor that can execute multiple load/store instructions per cycle, and features a state-of-the-art

branch predictor and an out-of-order execution engine to overlap memory access penalties. Database

workloads may exhibit high data dependencies in their instruction stream, but memory-related stalls can

often be overlapped if the caches do not block and the instructions are issued out-of-order.
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Chapter 5

Conclusions

“An anecdote: in a recent database benchmark studying TPC-C, both 200-MHz Pentium Pro and
400-MHz 21164 Alpha systems were measured at 4.2-4.5 CPU cycles per instruction retired. In
other words, three out of every four CPU cycles retired zero instructions; most were spent waiting
for memory.”

Richard Sites, “It’s the Memory, Stupid!”, Microprocessor Report 8/5/1996

Recent architectural studies indicate that, while scientific applications more fully exploit the architec-

tural advances inside modern computer platforms, database workloads exhibit suboptimal performance.

This observation is counter-intuitive, given that (a) processor’s speed doubles every year, (b) there are sig-

nificant advances in the memory subsystem design, and (c) database applications become increasingly

compute and memory intensive. This dissertation presents a methodology for analyzing database work-

loads on modern hardware platforms by studying their hardware behavior, and uses the results from the

analysis to propose a new software design that improves database system performance. The primary con-

tributions are (a) to introduce a novel approach towards identifying performance bottlenecks in database

workloads by studying their hardware behavior, (b) to improve database performance by redesigning data

placement in an architecture-conscious fashion, and (c) to identify the hardware design details that most

influence database performance. 

In the first part, we propose a framework for studying the interaction between the database software and

the hardware and, based on this model, we produce the execution time breakdown when running basic

selection and join queries on four commercial database systems. The experimental results indicate that the
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processor spends approximately half of the execution time waiting for the memory subsystem to respond.

Therefore, database developers should redesign the data layout to improve utilization of the second level

data cache, because L2 data stalls are a major component of the query execution time. On the other hand,

first-level instruction cache misses often dominate memory stalls, thus there should be more focus on opti-

mizing the critical paths for the instruction cache. 

The other stall time components, which are due to hardware implementation details, account for a signif-

icant portion of the execution time and are exposed when the memory-related stalls are eliminated. Such

bottlenecks are mostly addressable by the compiler and the hardware, and less by the database manage-

ment system software. Finally, we gain more insight from the results of this analysis if we use basic selec-

tion and join queries, rather than full TPC workloads. In the commercial systems examined, TPC-D

execution time breakdown is similar to the breakdown of the basic queries, while TPC-C workloads incur

more second-level cache and resource stalls.

In order to address the stall time related to data misses in the cache hierarchy, we designed a new layout

for data records on pages, which is called PAX (Partition Attributes Across). PAX optimizes spatial local-

ity by storing values inside each disk page on a per-attribute basis. PAX improves dramatically the cache

and memory bandwidth utilization, by reducing the cache misses and without incurring a high record

reconstruction cost. When compared to the traditional data page layout (slotted pages), PAX executes deci-

sion-support queries in 10%-47% less elapsed time. PAX does not affect the I/O behavior of the traditional

scheme, because it reorganizes the records within each NSM page. Our implementation of PAX also

requires less storage than slotted pages, because it only uses one offset for each variable-length value.

Finally, this dissertation presents the insight gained by comparing database workload behavior across

four computer platforms that belong to different hardware design philosophies. The design diversity across
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the platforms was a valuable tool in order to determine which design decisions are beneficial for database

workloads and which hurt their performance. From this study we conclude that processor features such as

out-of-order execution and state-of-the-art speculation mechanisms will be best used by database systems

when combined with an execution engine capable of executing more than one load/store instructions per

cycle. Cache inclusion is not recommended, especially for instructions; in addition, generous cache block

sizes are better than subblocking because they fully exploit spacial data locality. Finally, the use of PAX

significantly improves performance across all of the platforms considered in this study.
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APPENDIX A: PAX ALGORITHMS
Get the next value of a fixed-length attribute

fscan.next() {
if (NOT nullable(a)  OR  is_set(f, presence_bit)) {// non-null value

field_ptr = position; // set field value pointer
position = position + field_size;// advance position for next field

}
else field_ptr = NULL; // null value

}

Get the next value of a variable-length attribute

vscan.next() {
attribute_size = value_offset(v) - value_offset(v-1);// set variable attribute size
if (attribute_size > 0) { // non-null value
attribute_ptr = position; // set attribute value pointer
position = position + attribute_size;// advance position for next attribute
}
else  attribute_ptr = NULL; // null value

}

Get the value of an attribute based on record id

field.get_value(a, idx) {
locate_page(idx); // locate page of record
minipage_start = page + page_header.offset (a);// find start of minipage
if (is_fixed_size(a)) {

if (NOT nullable (a)) // non-nullable
field_ptr = minipage_start + idx*sizeof(a);// locate value

else if (is_set(a, presence_bit))// nullable but not null
field_ptr = minipage_start + #non_null_values_before_idx * field_size;

else  field_ptr = NULL; // null value
}
else { // variable size value

field_size = value_offset(a) != value_offset(a-1);
if (field_size >  0 ) // non-null value

field_ptr = minipage_start + value_offset(a-1);// variable size value
else field_ptr = NULL; // field value is null

}
}
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APPENDIX B: SQL CODE OF TPC-H QUERIES

TPC-H Query #1:

select  l_returnflag,  l_linestatus,

 sum(l_quantity) as sum_qty,  sum(l_extendedprice) as sum_base_price,

 sum(l_extendedprice * (1 - l_discount)) as sum_disc_price,

sum(l_extendedprice * (1 - l_discount) * (1 + l_tax)) as sum_charge,

avg(l_quantity) as avg_qty,  avg(l_extendedprice) as avg_price,

avg(l_discount) as avg_disc,  count(*) as count_order

from lineitem

where l_shipdate <= “1998-12-01” - 116 day

group by l_returnflag, l_linestatus

order by l_returnflag, l_linestatus

TPC-H Query #6:

select sum(l_extendedprice *  l_discount) as revenue

from lineitem

where  l_shipdate >= “1997-01-01”

and l_shipdate < “1997-01-01” + 1 year

and l_discount between 0.05 - 0.01 and 0.05 + 0.01

and l_quantity < 24

TPC-H Query #12:

select  l_shipmode,

sum (case

when o_orderpriority = “1-URGENT”   or o_orderpriority = “2-HIGH”

then 1 else 0 end) as high_line_count,

sum (case
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when o_orderpriority <> “1-URGENT”  and o_orderpriority <> “2-HIGH”

then 1 else 0 end) as low_line_count

from orders, lineitem

where  o_orderkey = l_orderkey

and l_shipmode in (“SHIP”, “RAIL”)

and l_commitdate < l_receiptdate

and l_shipdate < l_commitdate

and l_receiptdate >= “1994-01-01”

 and l_receiptdate < “1994-01-01” + 1 year

group by l_shipmode

order by l_shipmode

TPC-H Query #14:

select  100.00 * sum (case

when p_type like “PROMO%”

then l_extendedprice * (1 - l_discount)

else 0  end) / sum(l_extendedprice * (1 - l_discount)) 

as promo_revenue

from lineitem, part

where l_partkey = p_partkey

and l_shipdate >= “1997-09-01”

and l_shipdate < “1997-09-01” + 1 month


