USING COMPRESSION TO IMPROVE CHIP MULTIPROCESSOR

PERFORMANCE

by

Alaa R. Alameldeen

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the
UNIVERSITY OF WISCONSIN - MADISON

2006

[] Copyright by Alaa R. Alameldeen 2006

All Rights Reserved

Abstract

Chip multiprocessors (CMPs) combine multiple processors on a single die, typically with private level-one
caches and a shared level-two cache. However, the increasing number of processors cores on a single chip
increases the demand on two critical resources: the shared L2 cache capacity and the off-chip pin band-
width. Demand on these critical resources is further exacerbated by latency-hiding techniques such as
hardware prefetching. In this dissertation, we explore using compression to effectively increase cache and

pin bandwidth resources and ultimately CMP performance.

We identify two distinct and complementary designs where compression can help improve CMP perfor-
mance: Cache Compression and Link Compression. Cache compression stores compressed lines in the
cache, potentially increasing the effective cache size, reducing off-chip misses and improving perfor-
mance. On the downside, decompression overhead can slow down cache hit latencies, possibly degrading
performance. Link (i.e., off-chip interconnect) compression compresses communication messages before
sending to or receiving from off-chip system components, thereby increasing the effective off-chip pin
bandwidth, reducing contention and improving performance for bandwidth-limited configurations. While
compression can have a positive impact on CMP performance, practical implementations of compression
raise a few concerns: (1) Compression algorithms have too high an overhead to implement at the cache
level; (2) compression overhead can degrade performance; (3) the potential for compression on a CMP is
unknown; (4) most benefits of compression can be achieved by hardware prefetching; and (5) the impact of

compression on a balanced CMP design is not well understood.

In this dissertation, we make five contributions that address the above concerns. We propose a compressed
L2 cache design based on a simple compression algorithm with a low decompression overhead. We
develop an adaptive compression scheme that dynamically adapts to the costs and benefits of cache com-

pression, and employs compression only when it helps performance. We show that cache and link com-

i
pression both combine to improve CMP performance for commercial and (some) scientific workloads. We

show that compression interacts in a strong positive way with hardware prefetching, whereby a system that
implements both compression and hardware prefetching can have a higher speedup than the product of
speedups of each scheme alone. We also provide a simple analytical model that helps provide qualitative
intuition into the trade-off between cores, caches, communication and compression, and use full-system

simulation to quantify this trade-off for a set of commercial workloads.

Acknowledgments

Thank God that | have received a lot of help and support from many people over the past few years. | can-
not imagine making it this far without such support. It is with great pleasure that | thank and acknowledge

those who contributed to my success, or as many of them as | can remember.

| am deeply grateful to my advisor, Prof. David Wood. He has been an outstanding mentor who provided

me with a lot of support and guidance. | have learned a lot under his supervision, and not just about com-
puter architecture. He taught me how to conduct research, guided me in writing research papers, and
trained me on how to present my research to others. | am thankful that he gave me as much of his time as |
asked for, and provided me with support when | needed it the most. On both a professional and a personal

level, | greatly enjoyed being his student for all these years!

The University of Wisconsin is a great place to learn about computer science in general, and computer
architecture in particular. | would like to thank many outstanding professors at UW-Madison who taught
me a lot and helped me throughout my Ph.D. program. | feel very fortunate to have had the chance to work
with and learn from Prof. Mark Hill, the other director of the Multifacet project. He is a great person to
work with. | benefited a lot from his sound advice, excellent insight, and valuable feedback on my work,
and especially my presentation skills. I would also like to thank Professors Jim Goodman, Jim Smith, Guri
Sohi and Mikko Lipasti for building and maintaining an excellent computer architecture program. | thank
Prof. Jim Goodman for teaching me about multiprocessors, for his strong support and encouragement, and
for his useful feedback on my work. | also thank Prof. Guri Sohi who has been extremely helpful to me
since my preliminary exam. | would also like to thank all my committee members: Professors Mark Hill,
Mikko Lipasti, Jim Smith and Guri Sohi for their help, support, useful feedback, and flexibility in schedul-

ing my preliminary and final oral exams. | thank them especially for encouraging and challenging me to

v
improve my dissertation research. | would also like to thank Professors David Wood, Mark Hill, Guri Sohi,

Jim Goodman, Mikko Lipasti and Jeff Naughton for taking the time to write reference letters for me.

I would also like to acknowledge many other UW-Madison faculty members. | thank Professors Mike
Shulte, Charlie Fischer and Mary Vernon for their useful feedback on my research. | also thank Prof. David
DeWitt who was the best instructor | had in graduate school, as well as all professors | was fortunate to

learn from.

| received a lot of support from student members of the Multifacet project. Milo Martin was very helpful to
me since the first day | joined the group. Milo and Dan Sorin were both good mentors to me. They both
were the first to think about workload variability, and they pointed me in the right direction to continue that
work. Carl Mauer has been a good friend, and | really appreciate his kindness towards me, as well as his
helping me solve various technical problems. Anastassia Ailamaki was a tremendous help in getting me
started on my database workloads work. | thank Brad Beckmann, my office-mate for the past year, for not
complaining—at least to my face!—when | was bothering him with questions. | also thank him for helping
me use his code to get started in studying hardware prefetching. Kevin Moore engaged me in many inter-
esting discussions. Min Xu has been a source of tremendous technical help, and | benefited a lot from his
knowledge. | also enjoyed listening to Mike Marty’s interesting opinions. Ross Dickson helped me quite a
bit with the simulation infrastructure. | would like to acknowledge other former Multifacet members, as
well as current members Luke Yen, Dan Gibson, Jayaram Bobba, Michelle Moravan, and Andy Phelps.
Many thanks are due to project assistants Alicia Walley, Erin Miller, Carrie Pritchard and Caitlin Scopel

for their help with project administration and proof-reading.

I've also had the opportunity to meet many excellent students in Madison. While | cannot possibly mention
the names of all those who gave me moral support, help and encouragement, | would like to specifically
thank a few people. My friend Ashraf Aboulnaga (currently Prof. Aboulnaga!) has helped me a lot during

my first three years in Madison. | was glad | had the opportunity to work with him on a database research

v
publication, much to my surprise! | am grateful to Craig Zilles, Adam Butts, Brian Fields, Carl Mauer,

Brad Beckmann and Philip Wells for running the always-informative, often-entertaining architecture read-
ing group, and to Allison Holloway for organizing the architecture students lunch. I also had a lot of inter-
esting discussions with some of my colleagues here that | would like to thank: Trey Cain, Ravi Rajwar,
Ashutosh Dhodapkar, Kevin Lepak, Shiliang Hu, Tejas Karkhanis, Collin McCurdy, Jichuan Chang,
Gordie Bell, Sai Balakrishnan, Matt Allen, Koushik Chakraborty, and all others | might have forgotten.
Trey Cain, Carl Mauer and | had a lot of enlightening discussions in our qualifying exam reading group. |
would also like to specially thank Ravi Rajwar for inviting me to visit his group at Intel in 2003. | would
like to acknowledge the following Wisconsin Computer Architecture Affiliates for their feedback on my
work and for the many interesting discussions | had with them: Konrad Lai, Peter Hsu, C.J. Newburn, Greg

Wright, Bob Zak, Shubu Mukherjee, and Quinn Jacobson.

My research required many hours of simulation time, and | would like to acknowledge those who helped
make it possible. | thank Virtutech AB for supporting Simics and answering many of my technical ques-
tions, particularly Peter Magnusson, Andreas Moestedt and Ross Dickson. Many thanks are due to the
Computer Systems Lab for all their support and help, especially John Perkins, David Parter and Paul

Beebe. | would also like to thank the Condor project for their support.

My research has been financially supported in part by different sources for which | am grateful: the
National Science Foundation with grants CCR-0324878, EIA-0205286, and EIA-9971256 and donations

from IBM, Intel and Sun Microsystems.

On a personal level, | am certain | could not have made it this far without the support of my family and
friends. | am forever indebted to my wife, Marwa, for supporting me during both the good days and the bad
days. She has been a constant source of encouragement, caring, and inspiration for me. | am really grateful
that she often preferred what is best for me over what is best for her, and | hope | can make it up to her. |

am also deeply grateful to my father and mother for always encouraging me, pushing me forward, and

Vi
keeping me motivated to finish my work. | could not have made it this far without their help, support,

prayers, and kindness. | am also greatly indebted to them for not discouraging me from seeking to get my
Ph.D. so far away from where they live. | would also like to thank my two sisters for their always thinking

about me, keeping me in touch with their news, and for their continuous support and encouragement. |
thank my uncle for his encouragement and support. | thank all members of my extended family, in Egypt

and elsewhere, for keeping me in their prayers and for all their kindness.

I would also like to thank many of my Egyptian friends for staying in touch and for helping me through the
past few years. Many thanks to Moataz Ali, Ayman El-Refaie, Ahmed Ayad, Ali Abdou, Essam EI-
Hanoony, Alaa Hassan, Ahmed Fahim, Adel Talaat, Khaled Kamal, Ahmad EI-Guindy, Tamer Kadous,
Essam Sharaf, Sherif Hatem, Amr Abdo, Amr Ali, Wael Abdelmegid, Ahmed Essmat, Ahmed Ghanem,
Mohamed Eldawy, Mohamed Morsi, and all other friends in Madison that | might have forgotten to men-
tion. Many thanks are also due to my friends in Egypt and elsewhere: Mohamed Samy, Mohamed Galal,
Ahmed EI-Mahdy, Ahmed Halal, Mohamed Mokbel, Sameh Elnikety, Khaled Diaa, Tamer Elsharnouby,
Sameh Meligy, Tarek Khorshed, Moustafa Youssef, Moustafa Hammad, lhab llyas, and all members of my
graduation class in Alexandria. | would also like to acknowledge my alma mater, the University of Alexan-
dria, and thank all professors there for teaching me about computer science and for their help in getting me
started in graduate school. | would like to especially thank my Masters advisor Prof. Mohamed Ismail, and

other people who wrote recommendation letters for me: Professors Nagwa EI-Makky and Badr Aboulnast.

| end just like | started by thanking God, for it is only by His blessings that | am able to accomplish this
work or any other. He gave me the patience, the perseverance, the physical and the mental ability to do this.

| pray He will continue to guide me in all my future endeavors.

Table of Contents

Abstract [
Acknowledgments iii
Table of Contents Vi
List of Figures XV
List of Tables XXi
Chapter 1 Introduction 1
1.1 Why CMPS 3
1.2 Balanced CMP DeSigN e 4. ...
1.2.1 Technology Trends e 5.....
1.2.2 Workload Trends 8 ..
1.2.3 Balance iNn CMP DeSigNttt 8
1.3 Compression and Changingthe Balance,
1.3.1 Cache Compression in UNIProCESSOIS oottt et e it e e e
1.3.2 Cache Compression in Chip MUltiproCessors 11
1.3.3 LinNk Compression 12 ..
1.4 Thesis Contributions e 14. .
1.5 Dissertation StruCtUre 15..
Chapter 2 Compression Overview and Related Work 17
2.1 Compression Background 7.. 1
2.2 Hardware Memory COMPreSSIONttt e e et 19

2.3 Cache Compression

vii

viii

2.4 LinK COMPresSION ..ottt 22 .
2. SUMMaAIY .. e e 23
Chapter 3 Compressed Cache Design 25
3.1 Frequent Pattern Compression (FPC) e 26
3.1.1 Frequent Patternso e 27. ..
3.1.2 Segmented Frequent Pattern Compression (S-FPC) 28
3.2 FPCEvaluation e 28
3.2.1 WOrkIoads 29 .
3.2.2 Compression RAtio 30....
3.2.3 Which Patterns Are Frequent? 32
3.2.4 Sensitivity 1o SEgMENt SIZeot 35
3.3 FPC Hardware Implementation e 36
3.3.1 High-Level Design e 37...
3.3.2 Gate-LevelDesign 39....
3.4 Decoupled Variable-Segment Cache 46
Chapter 4 Adaptive Cache Compression 51
4.1 Cost/Benefit Analysis K2 ..
4.1.1 Simple Model h2..
4.1.2 LRU Stack and the Classification of Cache Accesses 53
4.2 Compression Predictor 56. ...
4.3 Evaluation 57
4.3.1 System Configuration 57

4.3.2 Three Compression Alternatives e 57

5.2 LinNK COMPresSiON 89.

4.4 Compression Performance 8.. 5
441 Cache MisSsSRate e 58. ...
4.4.2 PerformancCet 60. .

4.4.3 BitActivity level 61 .

4.5 Sensitivity Analysis e e 63.

4.5.1 L1 Cache Size and ASSOCIatiVity 64
452 L2Cache Size 64. .

45.3 L2 Cache AssocCiatiVity e e 67
454 Memory LatenCy 69 ...
455 Decompression LatenCyt 71
45.6 Prefetching 73 .

457 Cache Line Size 75. ...
4.5.8 Benchmark Phases T.... 7

4.6 Discussion and Limitations 78 ...
4.6.1 Possible EXIENSIONSot 78. ...
4.6.2 ldeal COmMpression 80. ...
4.6.3 LIiMitations 81.

4.7 Related WOrk .. .o 82

Chapter 5 Cache and Link Compression for Chip Multiprocessors 85

5.1 C-CMP: A CMP with Compression Support 86
5.1.1 C-CMP DESION . .ottt e e e e e 86 .

5.1.2 Support for Cache Compression i 88

5.2.1 Technology Trendsttt e e 9.... 8
5.2.2 On-Chip LINKk Compression i e i e e e 90
5.2.3 Memory Interface al.

5.3 Evaluation 93
5.3.1 Base System Configuration i 93
5.3.2 WOrkloads 94 .

5.4 Cache and Link Compression Performance 95
5.4.1 Workload Compressibility i e 96
5.4.2 ReductioninCache MiSSES e 97
5.4.3 Bandwidth ReducCtion 97
5.4.4 Performance 99.

5.5 Sensitivity ANalySisS 100.

5.5.1 L1 Cache Size and Associativity 101
55.2 L2Cache Size 104. ..
5.5.3 L2 Cache ASSOCIatiVIty e 107
554 Memory LatencCyot a.. 11
555 PinBandwidth 113..
5.6 SUMMAIY ... e 116
Chapter 6 Interactions Between Compression and Hardware Prefetching 117

6.1 MOtIVatION .. . e 118

6.2 Terminology e 120

6.3 Evaluation 121

6.3.1 Strided Prefetching 121. ..

Xi

6.3.2 Hardware Stride-Based Prefetching Characteristics 122

6.4 Interactions Between Compression and L2 Prefetching 123
6.4.1 BandwidthDemand 124
6.4.2 Classification 0f L2 MISSESottt 125
6.4.3 Performance 127. ..
6.4.4 Interaction Between L2 Prefetching and Cache Compression 128
6.4.5 Link Compression Impact 129
B6.4.6 SUMMAIY e e e 130. .

6.5 Interactions Between Compression and L1 Prefetching 130
6.5.1 L1 Prefetching Bandwidth Demand, 130
6.5.2 Impacton L2 HitLatenCyt e e e 131
6.5.3 Performance 133. ..
B.5.4 SUMMAIY . .t e 134. .

6.6 Interactions Between Compression and Both L1 and L2 Prefetching 134

6.7 Sensitivity to Pin Bandwidth 7.. 13
6.7.1 Utilized Bandwidth 7.. 13
6.7.2 Performance 140. ..
6.7.3 Interaction Between Prefetching and Compression 143

6.8 Sensitivity to Number of CMP Cores 144

6.9 Related WOrk 146

6.10 SUMMAIY ... e 147

Chapter 7 Balanced CMP Design: Cores, Caches, Communication and Compression 149

7.1 Blocking Processor Model e 1.. 15

Xii

7.1.1 Cache Byte Equivalent (CBE) AreaModel 151
7.1.2 Throughputfora Fixed Chip Area 152
7.2 CMP Model with Cache Compression e e 154
7.3 CMP Model with Cache and Link Compressionc..uiiiiirernnn... 155
7.4 Model LImItations e 156.
7.5 Optimal CMP Configurations« .. 157
7.6 Sensitivity Analysis 159.
7.6.1 Sensitivityto PinBandwidth 159
7.6.2 Sensitivityto Cache Miss Rate i 161
7.6.3 Sensitivity to Memory Latency 162
7.6.4 Sensitivity to Compression Ratio i 163
7.6.5 Sensitivity to Decompression Penalty 164
7.6.6 Sensitivity to Perfect CPI e 166
7.7 CMP Model with Hardware Prefetching 167
7.8 Evaluation for Commercial Workloads 168
7.8.1 SIMUIAtioN SEIUP . . oo e 169, ..
7.8.2 Balanced CMP Design with Compression and Prefetching 170
7.8.3 Impact of Limited Bandwidth 174
7.9 Model Validation 177.
7.10 Related WOrK 179
711 SUMMAIY . e e 180
Chapter 8 Summary 183

8.1 CONCIUSIONS . . ot et e 183

8.2 Future Work

References

Xiv

1-1.

1-2.

3-1.

3-2.

3-3.

3-5.

3-6.

3-8.

3-9.

3-10.

3-11.

3-12.

3-13.

XV

List of Figures

Compressed Cache Hierarchy in a Uniprocessor System 10
A Single-Chip p-core CMP with Compression SUPPOrt.t 12
Compression ratios (original size / compressed size) for FPC, XRL, BRCL and gzip......... 31

Compression ratios for segmented and variable-length FPC, XRL and BRCL. The three graphs

show ratios for SPECint, SPECfp and commercial benchmarks. 33
Frequent Pattern Histogram. e 34

Average number of words in a zero run for our ten benchmarks. Large confidence intervals are due

to the variability of cache contents between differenttime samples. 35
FPC Compression ratios for segment sizes (1 byteto 32 bytes). 36
Segment Length Histogram: Percentage of cache lines compressed into 1-8 Segments 37
Cumulative Distribution of Compressed Line Lengths (1to 512 bits) 38
Cache line decompression pipeline for a 64-byte (16-word) cacheline.................... 40
First pipeline stage of compression CirCUitt 41. ..

First stage of the decompression pipeline: Parallel Prefix Decoder 43

Critical path for second and third stages of the decompression pipeline. High-level design is shown

at the top, and gate-level design atthe bottom 44
Fourth stage of the decompression pipeline (parallel shifter) 45

Part of the fifth stage of the decompression pipeline (Parallel Pattern Decoder) 46

3-14.

3-15.

4-1.

4-2.

4-3.

4-6.

4-7.

4-8.

4-9,

4-10.

4-11.

XVi

Compressed Cache Hierarchy e mad A7. .
A single set of the decoupled variable-segmentcache 49
Acachesetexample i e . 54

L2 cache miss rates (misses per thousand instructions) for the three compression alternatives. Miss

rates are normalized to the Never miss rate (shown at the bottom). 59

Runtime for the three compression alternatives, normalized to the Never runtime 60

Bits read and written from/to the L2 cache for the three compression alternatives, normalized to

the NEVEI CaSe e 62
Percentage of cache allocations that require repacking for Always 63

Sensitivity to L1 cache size and associativity of the three compression alternatives. The number of

penalized hits per avoided miss for Always is shown at the bottom. 65

Sensitivity to L2 cache size of the three compression alternatives. The number of penalized hits

per avoided miss for Always is shown atthe bottom 66

Sensitivity to L2 cache associativity of the three compression alternatives. The number of

penalized hits per avoided miss for Always is shown at the bottom 68

Sensitivity to memory latency of the three compression alternatives. The number of penalized hits

per avoided miss for Always is shown atthe bottom 70

Sensitivity to decompression latency of the three compression alternatives. Decompression latency

ranges from 0 cycles (perfect)to 25cycles. 2..... 7

Sensitivity of compression benefit to L1 and L2 prefetching. The number of penalized hits per

compression-avoided miss is shown at the bottom 74

4-12.

4-13.

4-14.

5-1.

5-2.

5-3.

5-6.

5-7.

5-8.

5-10.

5-11.

5-12.

5-13.

5-14.

XVii
Sensitivity to cache line size of the three compression alternatives. We assume almost infinite off-
chip bandwidth available. 76
Phase Behavior for gcc with adaptive COMPressionttt 77

Normalized performance of the three compression alternatives (Never, Always, Adaptive),

compared to an unrealistic pseudo-perfect compression scheme “Optimal” that is similar to

Always with no decompressionoverhead i i e 80
A Single-Chip p-core CMP with Compression SUPPOrt.ttt 87
Link Compression on a CMP 92..

Cache miss rates normalized to miss rate without compression. 97
Pin Bandwidth demand for all benchmarks (in GB/sec.) for compression alternatives 98
Normalized runtime for the four compression alternatives (relative to no compression). 100
Sensitivity to L1 cache size and associativity for commercial benchmarks 102
Sensitivity to L1 cache size and associativity for SPEComp benchmarks 103
Sensitivity to L2 cache size for commercial benchmarks 105
Sensitivity to L2 cache size for SPEComp benchmarks 106
Sensitivity to L2 cache associativity for commercial benchmarks 108
Sensitivity to L2 cache associativity for SPEComp benchmarks 109
Sensitivity to memory latency for commercial benchmarks 111
Sensitivity to memory latency for SPEComp benchmarks 112

Sensitivity to pin bandwidth for commercial benchmarks 114

5-15.

6-1.

6-3.

6-4.

6-5.

6-6.

6-7.

6-10.

6-11.

6-12.

6-13.

6-14.

Sensitivity to pin bandwidth for SPEComp benchmarks 115

Performance improvement (%) for two commercial benchmarks for different uniprocessor and

CMP configurations.t 119

Normalized off-chip bandwidth demand for L2 prefetching and compression combinations . . 125

Breakdown of L2 cache misses and prefetches. 126
Performance of combinations of L2 Prefetching and compression. 128
Off-chip bandwidth demand for L1 prefetching and compression combinations. 131
L2 hit latency for combinations of L2 compression and L1 prefetching 132
Performance of combinations of L1 prefetching and compression. 133
Performance of combinations of compression and both L1 and L2 prefetching. 135
Off-chip bandwidth demand for L1&L2 prefetching and compression combinations 136

Pin bandwidth demand of different compression and prefetching combinations for commercial

benchmarks when pin bandwidth varies from 10t0 80 GB/sec.. 138

Pin bandwidth demand of different compression and prefetching combinations for SPEComp

benchmarks when pin bandwidth varies from 10to 80 GB/sec.......................... 139

Performance of different compression and prefetching combinations for commercial benchmarks

when pin bandwidth varies from 10t0 80 GB/secC. 141

Performance of different compression and prefetching combinations for SPEComp benchmarks

when pin bandwidth varies from 10t0 80 GB/SeC. i 142

Interaction(%) between prefetching and compression as available pin bandwidth varies 143

6-15.

7-1.

7-2.

7-3.

7-4.

7-5.

7-6.

7-8.

7-9.

7-10.

XiX
Performance improvement (%) for commercial benchmarks for different uniprocessor and CMP
CONfIQUIAtIONS e e 145

Analytical model throughput (IPC) for different processor configurations (x-axis) and different

COMPression configurations.ttt 158. .

Analytical model sensitivity to pin bandwidth. Non-compressed configurations are represented by

solid lines, and compressed configurations are represented by dotted lines. 160
Analytical model sensitivity to L2 cache missratesofan8 MBcache 161

Analytical model sensitivity to memory latency. Non-compressed configurations are represented

by solid lines, and compressed configurations are represented by dotted lines 163

Analytical model sensitivity to compression ratio. No compression is compared to configurations

of compression ratios 1.1, 1.25, 1.5, 1.75and 2.0. 164

Analytical model sensitivity to decompression penalty. No compression is compared to
compressed configurations of decompression penalties of 0.0, 0.2, 0.4, 0.8 and 2.0 cycles per

INSTTUCTION . . o ot e e e e e e e e e e e e e 165

Analytical model sensitivity to perfect CPl. Non-compressed configurations are represented by

solid lines, and compressed configurations are represented by dotted lines 166

Analytical model results for four configurations: No compression or prefetching, compression

only, prefetching only,and both 167 .

Commercial workload throughout for different compression and prefetching configurations. All

Processor/cache configurations have a 20 GB/sec. pin bandwidth 171

Utilized bandwidth for different compression and prefetching configurations of commercial

workloads. All Processor/cache configurations have a 20 GB/sec. available pin bandwidth . .. 172

7-11.

7-12.

7-13.

7-14.

XX

Interaction between compression and prefetching for all benchmarks and processor

CONfIQUIAtIONS e e 174

Commercial workload throughout for different compression schemes and processor

configurations. All configurations have a 10 GB/sec. pin bandwidth. 175
Interaction between compression and prefetching for 10 GB/sec. pin bandwidth 177

Comparing throughput estimates from analytical model and simulations 178

3-2.

4-1.

5-1.

6-1.

6-1.

6-2.

6-4.

7-1.

XXi

List of Tables

Frequent Pattern ENcoding e 27
Workload DesCriptionso e e 29
Uniprocessor Simulation Parameters.t . Bh8...

CMP Simulation Parameters 94.
WOrkload DeSCIIPLiONS e 95
Compression Ratios for a 4MB cache for commercial and SPEComp benchmarks. 96
Prefetching Properties for Different Benchmarks. 122
Speedups and Interactions between L2 Prefetching and Compression. 128
Percentage of penalized hits avoided by L1 prefetching. 132
Speedups and Interactions between L1 Prefetching and Compression. 134
Speedups and Interactions between L1 and L2 Prefetching and Compression. 135
Model Parameters e 158

XXii

Chapter 1

Introduction

In today’s information era, commercial applications—including on-line banking, airline reservations, web
searching and browsing—have become essential to many aspects of everyday life. The increasing depen-
dence on these multi-threaded, throughput-oriented applications drives the increasing demand for efficient,
throughput-oriented computer systems. These workloads exhibit ample thread-level parallelism, which

makes them suitable for running on multiprocessor systems.

Chip multiprocessors (CMPs) have become an increasingly appealing alternative to run such commercial
workloads. The exponential increase in available on-chip transistors provides architects with the resources
to build multiple processor cores and large shared caches on a single chip. However, given a fixed transis-
tor (i.e., area) budget, designers must determine the “optimal” breakdown between cores and caches. This
choice is not obvious, as the 2004 ITRS Roadmap [45] predicts that transistor performance will continue to
improve faster than DRAM latency and pin bandwidth (26%, 10%, and 11% per year, respectively). The
increasing number of processor cores on a single chip increases the demand on two critical resources: the
shared cache capacity and the off-chip pin bandwidth. In this dissertation, we explore using compression to
effectively increase these resources and ultimately overall system throughput. To achieve this goal, we
identify two distinct and complementary designs where compression can help improve CMP performance:

Cache Compression and Link Compression.

Cache compression stores compressed lines in the L2 cache, potentially increasing the effective cache size,
reducing off-chip misses, and improving performance. Moreover, cache compression can also allow CMP

designers to spend more transistors on processor cores. On the downside, decompression overhead can

2
slow down cache hit latencies, which degrades performance for applications that would fit in an uncom-

pressed cache. Such negative side-effects motivate a compression scheme that avoids compressing cache

lines when compression is not beneficial.

Link (i.e., off-chip interconnect) compression compresses communication messages before sending to or
receiving from off-chip system components. Link compression has the potential to increase the effective
off-chip communication bandwidth, potentially reducing contention for pin bandwidth. Link compression

can improve performance for applications that have a high demand for pin bandwidth, especially for band-
width-limited configurations. Link compression can also shift the balance between cores and caches
towards more cores. On the other hand, decompression overheads can degrade performance for workloads

that are not bandwidth-limited.

In this dissertation, we propose using cache and link compression to improve the performance of chip mul-
tiprocessor systems. We introduce a simple compression scheme that is suitable for hardware compression
of cache lines, and propose a compressed cache design based on that scheme. We develop an adaptive com-
pression scheme that dynamically adapts to the costs and benefits of cache compression, and implements
compression only when it helps performance. We propose and evaluate a CMP design that implements
both cache and link compression. We show that compression interacts in a strong positive way with hard-
ware prefetching, whereby a system that implements both compression and hardware prefetching can have
a higher speedup than the product of the speedups due to either scheme alone. We derive a simple analyti-
cal model that can help provide qualitative intuition into the trade-off between cores, caches, communica-
tion and compression, and use full-system simulation to quantify this trade-off for a set of commercial
workloads. While we focus in this dissertation on improving performance of commercial applications, we

show that compression can also improve the performance of some (compressible) scientific applications.

In this chapter, we motivate why architects are currently building chip multiprocessors (Section 1.1). We

discuss the technology and workload trends that guide CMP design (Section 1.2). We then discuss the role

3
of compression in uniprocessor and CMP design (Section 1.3). We identify the main contributions of this

dissertation (Section 1.4), and provide a roadmap for the remainder of this document (Section 1.5).

1.1 Why CMPs

The Need For More Throughput. In today’s information era, commercial servers constitute the backbone

of the global information and communication system infrastructure. Such servers run useful commercial
applications that are essential to many aspects of everyday life such as banking, airline reservations, web
searching and web browsing. As more people depend on these multi-threaded throughput-oriented applica-
tions, demand for more throughput is likely to increase for the forseeable future. Commercial servers must
therefore improve their performance by providing more throughput to keep up with the application

demand.

Commercial Server Design.Since commercial applications have abundant thread-level parallelism, com-
mercial servers were designed as multiprocessor systems—or clusters of multiprocessors—to provide suf-
ficient throughput. While traditional symmetric multiprocessors (SMPs) can exploit thread-level
parallelism, they also suffer from a performance penalty caused by memory stalls due to cache misses and
cache-to-cache transfers, both of which require waiting for long off-chip delays. Several researchers have
shown that the performance of commercial applications, and database applications in particular, is often
dominated by sharing misses that require cache-to-cache transfers [7, 14, 100]. To avoid these overheads,
architects proposed several schemes to integrate more resources on a single chip. Barroso, et al., show that
chip-level integration of caches, memory controllers, cache coherence hardware and routers can improve
performance of online transaction processing workloads by a factor of 1.5 [16]. Simultaneous multi-
threading designs [39, 124] allow the processor to execute several contexts (or threads) simultaneously by
adding per-thread processor resources. This approach also improves the performance of database applica-

tions compared to a superscalar processor with comparable resources [87]. The trend towards more inte-

4
gration of resources on a single chip is becoming more apparent in CMP designs where multiprocessor

systems are built on a single chip.

Chip Multiprocessors (CMPs). As predicted by Moore’s law, the number of transistors on a single semi-
conductor chip has been increasing exponentially over the past 40 years [91]. Architects currently have
enough transistors on a single chip that they can use to improve the throughput of multi-threaded applica-
tions. To achieve this goal, architects developed a system design in which multiprocessors are built on a
single semiconductor chip [15, 51, 56, 68, 74, 90, 117, 128]. Chip multiprocessor (CMP) systems can pro-
vide the increased throughput required by multi-threaded applications while reducing the overhead
incurred due to sharing misses in traditional shared-memory multiprocessors. A chip multiprocessor
design is typically composed of two or more processor cores (with private level-one caches) sharing a sec-
ond-level cache. CMPs in various forms are becoming popular building blocks for many current and future
commercial servers. CMPs and multi-CMP systems have the potential to improve throughput for many

multi-threaded applications.

1.2 Balanced CMP Design

Chip multiprocessors are becoming popular building blocks for commercial servers. However, an impor-
tant question in CMP design is how to build a chip that can provide the best possible throughput for a given
chip area. For a fixed transistor (i.e., area) budget, architects must decide on the “optimal” breakdown
between cores and caches such that neither cores, caches nor communication is the only bottleneck. This
choice is not obvious, since the number of transistors per chip is increasing at a much faster pace than
DRAM latency or pin bandwidth, while software applications are demanding higher throughput every

year. In this section, we discuss some technology and software trends that affect CMP design.

1.2.1 Technology Trends

Memory Wall. Over the past few decades, transistor performance has been improving at a much faster
pace compared to memory performance. Wulf and McKee [132] show that the rate of improvement in
microprocessor speed exceeds the rate of improvement in DRAM memory speed. While each is improving
exponentially, the exponent for microprocessors is substantially larger than that for DRAMs, and the dif-
ference between diverging exponentials also grows exponentially. The 2004 ITRS Roadmap [45] predicts
that transistor speed will continue to improve at a much faster annual rate (21%) over the next fifteen years
compared to the rate of improvement in DRAM latency (10%). The trend toward increasingly deep pipe-

lines [58, 60] further exacerbates this problem, increasing main memory latencies to hundreds of cycles.

Addressing the Memory Wall. The memory wall has been a problem for a long time, leading to many
architectural enhancements that target hiding the memory latency. Thread-level speculation and multi-
threading [3, 5, 39, 108, 109], prefetching [26, 65, 66, 92, 102, 110], and runahead execution [37, 93] are
among many schemes that target hiding memory access latencies by increasing memory-level parallelism.
Value prediction targets reducing memory access latency by predicting load values that later have to be
verified [86]. A more direct approach to hide memory latency is to avoid some cache misses by increasing

the cache size. This can be achieved through cache compression [9, 24, 77, 139].

Pin Bandwidth Bottleneck. The presence of more processors on a single chip in CMPs can significantly
increase demand on the off-chip pin bandwidth required for inter-chip and chip-to-memory communica-
tion. However, pin bandwidth is not improving at the same rate as transistor performance. According to the
2004 ITRS roadmap [45], the number of pins available per chip will increase at a rate of approximately
11% per year over the next fifteen years. This is a much lower rate than the predicted rate of increase in the
number of transistors per chip, which is projected at 26% per year in the same span. This implies that the
number of processor cores on a single chip will increase at a much faster rate compared to the number of

communication pins available. Even though pins are expected to run at a higher frequency thus increasing

6
the effective bandwidth, the on-chip frequency will increase at the same rate [45], which will offset the

increase in pin frequen&yln addition, the cost per pin is predicted to decrease at a lower rate (~5%) than

that of the increase in the number of pins [45]. This means that the overall cost of packaging will increase
at a rate of approximately 5% a year. If no effort is made to reduce the cost further (or reduce the rate of
increase in the number of pins), the overall packaging cost will double in the next fifteen years, a trend that

is opposite to other design cost trends.

While the number of pins is one aspect of the pin bandwidth bottleneck problem, other factors also affect
using on-chip signal pins to increase pin bandwidth. Increasing the number of communication pins
requires increasing their pad and driver area [45]. Moreover, increasing the speed of each pin as a means to
increase bandwidth also requires significant increases in area allocated to drivers. Overall, off-chip band-
width appears to be a problem that will significantly increase for future CMP designs. The pin bandwidth
bottleneck is a problem that can hinder the development of CMPs with a large nhumber of cores. A good
design balances demands for bandwidth against the limited number of pins and wiring area per chip [32].
In order to design CMPs—or multi-CMP systems—in which off-chip bandwidth is not a performance bot-
tleneck, architects must find solutions to balance these systems by reducing their bandwidth requirements
or increasing their pin bandwidth. To achieve these goals, several architectural, software, and technology

proposals have been proposed to address pin bandwidth bottleneck.

Addressing Pin Bandwidth Bottleneck.Architectural and software proposals include increasing on-chip
cache sizes, increasing area allocated for on-chip memory controllers, or using CMP-aware operating sys-
tems. Devoting more area for on-chip caches should decrease the required off-chip bandwidth at the

expense of slowing down the increase in the number of on-chip processors. However, this solution

1. The 2004 ITRS roadmap predicts that the off-chip frequency is expected to increase at the same rate as processor frequency
only for a small number of high-speed pins, which will be used with a large number of lower-speed pins to get the total off-chip
bandwidth. This implies that while the off-chip latency will remain constant relative to processor frequency, the off-chip band-

width will effectively decrease.

7
addresses only capacity and conflict misses, and not coherence misses. Devoting more chip area for on-

chip memory controllers can increase pin bandwidth. For example, the Sun Niagara chip allocates four on-
chip memory controllers to increase pin bandwidth beyond 20 GB/sec. [21]. However, the area allocated to
memory controllers reduces the area used by cores and/or caches. CMP-aware operating systems can
schedule threads that share a lot of data on the same chip to limit off-chip communications (i.e., similar to
prior work on cache affinity process scheduling for SMPs [118, 126]). This can help systems that run dif-
ferent workloads at the same time, but provides less benefit for systems that run a homogeneous multi-

threaded workload (e.g., OLTP).

Technology enhancements to address pin bandwidth bottleneck include modifying the memory interface as
well as using different interconnect technologies. Fully-Buffered DIMM (FBDIMM) is a new technology
designed to increase memory bandwidth and capacity [53]. FBDIMM uses a buffer as an interface between
a memory controller and DRAM chips. The interface between the buffer and the memory controller is
changed to a point-to-point serial interface (instead of a shared parallel interface). Such an interface change
allows for a higher memory bandwidth per memory controller channel (nearly 7 GB/sec.) as well as a
higher memory capacity. Optical interconnects are currently being pursued as a means to significantly
increase pin bandwidth. The ITRS 2004 roadmap [45] identifies optical interconnects as one of the poten-
tial interconnect designs to succeed copper wires. Luxtera is currently designing optical links with a band-
width per link greater than 10 Gb/sec. [103]. However, such technology requires significant changes to

chip design and packaging [20].

Summary. The memory wall and pin bandwidth bottleneck are two technology trends whose impact is
expected to increase over the next few years. Both trends can be addressed in a CMP design by increasing
the chip area allocated to on-chip caches. This can reduce cache misses (thereby alleviating the impact of
the memory wall), and can also reduce demand on off-chip pin bandwidth (thereby reducing the pin band-

width bottleneck).

1.2.2 Workload Trends

Many current and future software applications have increasing throughput and computational demands.
For example, systems at the top of the online transaction processing benchmark TPC-C performance list
have improved throughput by more than 50% each of the last five years [119], with the current top per-
former achieving approximately 3.2 million transactions per minute. Media and gaming applications,
which are increasing in popularity, also require increasing parallelism. World data doubles every three
years and is now measured in billions of billions of bytes [36]. Intel predicts that software applications in

the next decade and beyond will be more computationally intensive and can use more parallelism [75].

The above trends imply that current and future software applications demand more thread-level parallelism
and computational power. Such demand can be satisfied by increasing the number of processor cores (or
threads) on a CMP. So while technology trends favor allocating more area for shared caches, workload
trends favor allocating more area for processor cores. CMP design has to balance the needs and require-
ments of software applications against technology limitations to build a system where none of the

resources is the only bottleneck.

1.2.3 Balance in CMP Design

An important question in CMP design is how to use the limited area resources on chip to achieve the best
possible system throughput for a wide range of applications. To achieve this goal, a CMP design has to bal-
ance cores, caches, and communications such that none of these resources is the only bottleneck. With few
cores that cannot support enough threads, cores become a bottleneck and degrade system throughput. With
too many cores and smaller caches, caches and/or pin bandwidth become a bottleneck and also degrade
system throughput. Should the design center on caches, to hide DRAM latency and conserve pin band-
width, or on cores, to maximize thread-level parallelism? The optimal balanced design point obviously lies

somewhere between these two extremes.

9
Many hardware proposals —such as those we described in Section 1.2.1—address only one or two of the

main technology and workload trends (i.e., memory wall, pin bandwidth bottleneck, and the increasing
thread-level parallelism). Furthermore, some of these techniques reduce the impact of one at the expense of
increasing the impact of another. For example, prefetching and thread-level speculation schemes can
reduce the impact of the memory wall at the expense of increasing demand on pin bandwidth. In this dis-
sertation, we show that compression can address all these requirements at the same time. Compression can
increase the effective cache size at a small area cost and also increase the effective pin bandwidth. In effect,
compression allows a CMP design where the optimal balanced design point has a larger effective cache

size and pin bandwidth compared to a CMP design without compression.

1.3 Compression and Changing the Balance

In this dissertation, we advocate using compression to address constraints on cores, caches, and pin band-
width. On-chip cache compression can increase the effective cache size without significantly increasing its
area, thereby avoiding some off-chip misses. In addition, cache compression can potentially allow a design
where more on-chip area is allocated to processor cores. Link compression can also reduce off-chip band-
width demand for inter-chip and chip-to-memory communication, effectively increasing pin bandwidth.
Both cache and link compression help achieve a balanced CMP system with higher throughput compared
to a system without compression. We next describe how our proposed cache and link compression can

affect uniprocessor and CMP design.

1.3.1 Cache Compression in Uniprocessors

We propose using cache compression to increase effective cache size, reduce off-chip misses and pin band-
width demand, and ultimately improve system performance. Our proposed compressed cache design for a

uniprocessor system is shown in Figure 1-1. We propose storing cache lines in a compressed format in the

10
second level caches (and potentially memory) while leaving the L1 cache uncompressed. The benefits of

this technique for many workloads are two-fold. Storing compressed cache lines can increase the effective
cache size, potentially decreasing L2 miss rates and achieving better overall performance. In addition,
transferring compressed data between the L2 cache and memory decreases the demand on pin bandwidth.

We discuss this design in more detail in Chapter 3.

Unfortunately, cache compression also has a negative side effect, since L2 cache lines have to be decom-
pressed before moving to the L1 cache or being used by the processor. This means that storing compressed
lines in the L2 cache increases the L2 hit latency. While achieving a high compression ratio is important to
increase the effective cache size, any cache compression algorithm should also have a small impact on L2
hit latency so as not to hinder performance in the common case. Most software-based compression algo-
rithms are not suitable for low-latency hardware implementation. In addition, many hardware compression
schemes that were previously proposed for memory compression have a significant relative decompression
penalty when used for cache compression. To address this problem, we propose a simple low-latency cache
compression algorithm that compresses cache lines on a word-by-word basis. Each word in a cache line is

stored in a compressed form if it matches one of a few frequent patterns. Otherwise the word is stored in an

Instruction Load-Store
Fetcher Queue
L1 I-Cache L1 D-Cache
(Uncompressed) (Uncompressed)

Uncompressed

Line Bypass | L1 Victim Cache |
/ Decompression \ 3
Pipeline Compression
Pipeline

L2 Cache (Compressed)

FIGURE 1-1. Compressed Cache Hierarchy in a Uniprocessor System

11
uncompressed form. We describe this simple hardware compression algorithm, Frequent Pattern Compres-

sion (FPC), in Chapter 3.

Even when using a simple hardware compression scheme with low decompression overhead, many work-
loads are still hurt by cache compression. For workloads whose working set sizes fit in an uncompressed
cache, cache compression only serves to increase the L2 hit latency without having an impact on the L2
miss rate. In such cases, the cost of compression (i.e., increasing hit latency) outweighs its potential benefit
(i.e., reducing miss rate), which may significantly hurt performance. To address this problem, we propose
an adaptive cache compression scheme that uses the stack of the cache replacement algorithm [89] to
determine when compression helps or hurts individual cache references. We use this cost and benefit infor-
mation to implement a predictor that measures whether compression is helping performance (and therefore
should be used for future cache lines) or hurting performance (and therefore should be avoided for future
cache lines). This adaptive scheme achieves most of the benefits of always compressing while avoiding
significant performance slowdowns when compression hurts performance. We describe this adaptive cache

compression design in Chapter 4.

1.3.2 Cache Compression in Chip Multiprocessors

The increasing number of processor cores on a chip increases demand on shared caches and pin band-
width. Hardware prefetching schemes further increase demand on both resources, potentially degrading
performance. Cache compression addresses the increased demand on both of these critical resources in a
CMP. In this dissertation, we propose a CMP design that supports cache compression, as shown in
Figure 1-2. CMP cache compression can increase the effective shared cache size, potentially decreasing
miss rate and improving system throughput. In addition, cache compression can decrease demand on pin
bandwidth due to the decreased miss rate. We describe and evaluate our CMP compressed cache system in

Chapter 5.

12

Processor 1 Processor p
L1 Cache L1 Cache
(Uncompressed) (Uncompressed)

/Decqml- Yompr-] Decqﬁ‘}- Yompr-]
pression\ \essio pression\ \essio

Shared L2 Cache (Partially Compressed)

* Compressed/Uncompressed Data

L3/Memory Controller (Could Compress/Decompress Data)

To other chips / memory

FIGURE 1-2. A Single-Chip p-core CMP with Compression Support

Due to the significant impact of the memory wall on performance, many existing uniprocessor and CMP
systems implement hardware prefetching to tolerate memory latéa8@q]. Prefetching is successful for

many workloads on a uniprocessor system. For a CMP, however, prefetching further increases demand on
both shared caches and pin bandwidth, potentially degrading performance for many workloads. This nega-
tive impact of prefetching increases as the number of processor cores on a chip increases. In Chapter 6, we
show that cache compression can alleviate the increased demand on shared caches due to prefetching, lead-
ing to significant performance improvements. Combining compression with stride-based hardware

prefetching can lead to speedups that exceed the product of speedups from either scheme alone.

1.3.3 Link Compression

CMP designs have limited off-chip bandwidth due to the chip’s area and power limitations. Furthermore,
limitations on both packaging area and the number of pins available on a chip exacerbate the pin band-

width bottleneck. With a large number of processor cores on a CMP, limited pin bandwidth can lead to an

13
unbalanced system. In addition, this pin bandwidth bottleneck can have a significant impact on perfor-

mance due to increased queuing latencies for cache-to-cache inter-chip coherence requests as well as off-
chip memory requests. For these reasons, future CMP designs should consider off-chip bandwidth a first

order design constraint.

In any multiprocessor or CMP system, off-chip bandwidth is consumed by either address messages or data
messages that are used to communicate between processors, multiprocessor chips, memory and/or direc-
tory. In this dissertation, we only target the bandwidth demand required for data messages. We propose
using link compression to compress data messages before transferring to/from a CMP. We describe our

CMP design with link compression support in Chapter 5.

Hardware prefetching schemes increase demand on pin bandwidth due to the increased volume of prefetch
requests. Pin bandwidth demand increases significantly when prefetching’s accuracy is low, leading to per-
formance degradations due to increased queuing delays. Link compression alleviates the pin bandwidth
demand increase due to prefetching, thereby turning significant performance losses due to prefetching into
performance gains. We describe this positive interaction between compression and hardware prefetching in

Chapter 6.

Both cache and link compression complicate the trade-off between cores, caches, and communication in a
CMP. The optimal breakdown of a CMP area between cores and caches can change when a system sup-
ports compression. In Chapter 7, we use analytical modeling and simulation to study the trade-off between
cores and caches for a fixed-area CMP, and the impact of compression on such trade-off. We show that an
optimal, balanced design achieves a significantly higher throughput compared to unbalanced configura-
tions. We show that cache and link compression can shift the optimal design to achieve higher throughput

for many CMP configurations.

14
1.4 Thesis Contributions

In our view, the most important contributions of this dissertation are:

» Frequent Pattern Compression (FPC).We propose and evaluate a hardware-based compression
scheme, Frequent Pattern Compression (FPC), that is suitable for compressing cache lines. We also
propose a cache design based on this compression scheme (Chapter 3). Compared to other existing
hardware-based compression schemes, FPC is less complex to implement in hardware, has a lower

decompression overhead, and has a comparable compression ratio for cache lines.

» Adaptive Cache CompressionWe develop an adaptive cache compression algorithm that dynami-
cally adapts to the costs and benefits of cache compression (Chapter 4). This adaptive scheme achieves
nearly all the benefit of cache compression when it helps, and avoids hurting performance when cache

compression’s overheads exceed its benefits.

¢ CMP Cache and Link Compression.We propose and evaluate a CMP design that supports both
cache and interconnect (link) compression (Chapter 5). We show that cache compression improves
performance by 5-18% for commercial workloads, and that link compression reduces their off-chip
bandwidth demand by 30-41%. Both cache and link compression combine to improve commercial

workloads’ performance by 6-20%, and reduce their bandwidth demand by 34-45%.

« Interactions Between Compression and PrefetchingiMe study the interactions between cache com-
pression and hardware-directed prefetching (Chapter 6). We show that the positive impact of hardware
stride-based prefetching is significantly diminished for CMPs compared to uniprocessors, leading to
performance degradations for some workloads. We show that compression and prefetching interact
positively, leading to a combined speedup that is greater than the product of the speedups of prefetch-

ing alone and compression alone.

15
* Model Balanced CMP Design.We develop a simple analytical model that estimates throughput for

different CMP configurations with a fixed area budget (Chapter 7). This model provides intuition into

the trade-off between cores and caches, but makes many simplifying assumptions that significantly
affect its accuracy. We use the model to qualitatively demonstrate the positive impact of cache and link
compression on CMP throughput, and quantify these throughput improvements using simulation of

commercial benchmarks.

1.5 Dissertation Structure

We begin this dissertation by discussing an overview of data compression and research efforts in hardware
compression schemes (Chapter 2). In Chapter 3, we discuss our frequent pattern compression scheme
(FPC), its hardware implementation and an evaluation of its main properties. We make minor changes to
the compression scheme previously published as a technical report [10] by eliminating zero run-length
encoding. We also provide a more thorough analysis of compression and decompression hardware and
latencies. We further describe our compressed cache design which was first presented in our ISCA 2004
paper [9].

In Chapter 4, we show how compression can help some uniprocessor benchmarks while hurting others.
This motivates our adaptive compression algorithm, which we describe and evaluate. The gist of this chap-
ter was first published in our ISCA 2004 paper [9], but we extend the published work by analyzing the sen-
sitivity of our adaptive compression scheme to different system parameters and discussing some of its

limitations.

We describe our compressed cache and link CMP design in Chapter 5. In addition, we evaluate the perfor-
mance of cache and link compression on an eight-core CMP, and its sensitivity to various design parame-
ters. In Chapter 6, we study the interactions between compression and hardware prefetching. We define a

terminology for such interactions, discuss different factors that cause positive and negative interactions,

16
and evaluate such interactions on an eight-core CMP. We show that compression and prefetching interact

in a strong positive way for many commercial and scientific applications. In Chapter 7, we present a simple
analytical model that measures CMP throughput for a fixed chip area. We use this model to qualitatively
evaluate optimal CMP configurations, and use simulation to quantitatively validate our model’s conclu-

sions. Chapter 8 concludes this dissertation and outlines some potential areas of future research.

17

Chapter 2

Compression Overview and Related Work

In this chapter, we present an overview of compression and related research. We first present a brief over-
view of data compression in Section 2.1. We discuss many hardware memory compression implementa-
tions in Section 2.2. We present an overview of prior work on cache compression (Section 2.3) and link
compression (Section 2.4). We intend for this chapter to present an overview of related work and not as an
exhaustive list for all prior research related to all contributions of this dissertation. In the next five chapters,

we discuss related work that is relevant to each particular chapter’s topic.

2.1 Compression Background

Data compression is a widely used technique that aims at reducing redundancy in stored or communicated
data [84]. Compression has a wide variety of applications in software and hardware; including image com-
pression [99], sparse data compression [115], web index compression [104, 143], main memory compres-
sion [73, 121], code compression [11, 23, 29, 81], and many applications for embedded processors [18, 82,
83, 136]. Some compression techniqueslasslessvhere decompression can exactly recover the original
data, while others afessywhere only an approximation of the original data can be recovered. Lossy com-
pression is widely used in many applications where lost data do not affect their usefulness (e.g., voice,
image, and video compression). In this dissertation, we only consider lossless compression since any sin-

gle memory bit loss or change can affect the validity of results in most computer programs.

Data compression techniques provide a mapping from data messages (source data) to code words (com-

pressed data). These techniques can be either static or dynamic [84]. Static techniques (e.g., Huffman cod-

18
ing[61]) provide a fixed mapping from data messages to code words. Dynamic (or adaptive) techniques can

change that mapping over time. Dynamic techniques include adaptive Huffman algorithms [127], adaptive
arithmetic coding [131], and Lempel-Ziv (LZ) coding [141, 142]. These dynamic techniques require only

one pass on the input data (as compared to two for static Huffman encoding) [84]. Since dynamic tech-
niques do not require knowing the data input beforehand, they are more widely used for hardware com-

pression.

Most dynamic compression techniques operate on sequential inputs at a bit, byte, word or block granular-
ity. However, several techniques where proposed to perform parallel compression [46, 48, 80, 111], where
the input data can be partitioned and compressed in parallel. Parallel compression is better suited for fast
hardware compression since parallel hardware circuitry can provide the necessary parallel speed. However,
many of these parallel compression schemes achieve lower compressibility compared to their sequential
counterparts. The success of parallel compression algorithms is measured by the compression and decom-
pression speedup, as well as by the compression ratio they achieve. In this dissertation, we use the term

compression ratias the size of original uncompressed data divided by the size of data after compression.

The Lempel-Ziv (LZ) algorithm [141, 142] and its derivatives are currently the most popular class of loss-
less compression algorithms, and form the basis for many hardware implementations. LZ methods achieve
higher compression ratios by parsing data input and defining source messages on the fly. The LZ algorithm
consists of a rule for parsing strings of symbols from a finite alphabet into substrings whose length does
not exceed a certain integer, and a coding scheme that maps these substrings sequentially into uniquely
decipherable code words of fixed length [141]. Storer and Syzmanski [112] present a general model for
data compression that encompasses LZ encoding, and discuss the theoretical complexity of encoding and
decoding and the lower bounds on amount of compression obtainable. Franaszek, et al., present a parallel
implementation of block-referential compression with lookahead, a technique that is similar to LZ77 but

allows both backward and forward pointers to match locations [48].

19
2.2 Hardware Memory Compression

Dictionary-based vs. Significance-based Compressio8everal researchers and hardware designers pro-
posed hardware-based compression schemes to increase effective memory size. Most previous proposals in
hardware cache or memory compression are hardware implementations of dictionary-based software com-
pression algorithms (e.g., LZ77 [141]). Such hardware dictionary-based schemes depend mainly on (stati-
cally or dynamically) building and maintaining a per-block dictionary. This dictionary is used to encode
words (or bytes) that match in the dictionary, while keeping words (bytes) that do not match in their origi-

nal form with an appropriate prefix. Dictionary-based compression algorithms are effective in compressing
large data blocks and files. Another class of compression algorithms, significance based compression,
depend on the fact that most data types can be stored in a fewer number of bits than those used in the gen-

eral case. We next discuss a few hardware memory compression implementations.

IBM’'s Memory Compression. IBM’s Memory Expansion Technology (MXT) [121] employs real-time
main-memory content compression that can be used to effectively double the main memory capacity with-
out a significant added cost. MXT was first implemented in the Pinnacle chip [120], a single-chip memory
controller. Franaszek, et al., described the design of a compressed random access memory (C-RAM),
which formed the basis for the memory organization for the MXT technology, and studied the optimal line

size for such an organization [47].

Data in main memory is compressed using a parallel version oBlbek-Referential Compression with
Lookahead (BRCLyompression algorithira derivative of the Lempel-Ziv (LZ77) sequential algorithm
[141]. BRCL's parallel version, Parallel Block-Referential Compression with Directory Sharing, divides
the input data block (1 KB in MXT) into sub-blocks (four 256-byte sub-blocks), and cooperatively con-
structs dictionaries while compressing all sub-blocks in parallel [48]. It decompresses data (with double
clocking) at a speed of 8 bytes per cycle [121]. It depends on having long enough lines/pages to increase its

overall compression ratio [48].

20
MXT is shown to have a negligible performance penalty compared to standard memory. In addition, mem-

ory contents for many applications and web servers can be compressed by a factor of two to one [2]. How-
ever, this scheme requires support from the operating system since it can change memory size and address
mapping [1].

X-Match. Kjelso, et al., demonstrated that hardware main memory compression is feasible and worth-
while [73]. They used the X-Match hardware compression algorithm that maintains a dictionary and
replaces each input data element (whose size is fixed at four bytes) with a shorter code when it matches
with a dictionary entry. X-Match attempts to compress more data with a small dictionary by allowing par-

tial matches of data words to dictionary entries [73]. Nunez and Jones [95] propose XMatchPRO, a high-

throughput hardware FPGA-based X-Match implementation.

Other Hardware Memory Compression DesignsEkman and Stenstrom [40] used our frequent pattern
compression scheme (a significance-based compression algorithm which we discuss in detail in Chapter 3)
to compress memory contents. Their compression scheme uses a memory layout that permits a small and
fast TLB-like structure to locate the compressed blocks in main memory without a memory indirection.
They arrange memory pages logically into a hierarchical structure with a different compressibility at each

level.

Zhang and Gupta [137] introduce a class of common-prefix and narrow-data transformations for general-
purpose programs that compress 32-bit addresses and integer words into 15-bit entities. They implemented
these transformations by augmenting six data compression extension (DCX) instructions to the MIPS

instruction set.

2.3 Cache Compression

Several researchers proposed hardware cache compression implementations that aim at increasing the

effective cache size and reducing cache miss rate. These implementations apply known hardware compres-

21
sion algorithms to the contents of the L1 or the L2 cache. We next describe many of these cache compres-

sion proposals. We also describe significance-based compression schemes, which form the basis for our

frequent pattern compression algorithm (Chapter 3).

Cache Compression and Related Designkee, et al., propose a compressed memory hierarchy model
that selectively compresses L2 cache and memory blocks if they can be reduced to half their original size
[77, 78, 79]. Their selective compressed memory system (SCMS) uses a hardware implementation of the
X-RL compression algorithm [73], a variant of the X-Match algorithm that gives a special treatment for
runs of zeros. They propose several techniques to hide decompression overhead, including parallel decom-
pression, selective adaptive compression for blocks that can be compressed to below a certain threshold,
and the use of a decompression buffer to be accessed on L1 misses in parallel with an L2 access. Ahn, et
al., propose several improvements on the X-RL technique that capture common values [4]. Chen, et al.,
propose a scheme that dynamically partitions the cache into sections of different compressibility using a
variant of the LZ compression algorithm [24]. Hallnor and Reinhardt’s Indirect-Index Cache [54] decou-
ples index and line accesses across the whole cache, allowing fully-associative placement and the storage

of compressed lines [55].

Frequent-Value-Based CompressionYang and Gupta [134] found from analyzing SPECint95 bench-
marks that a small number of distinct values represent a large fraction of accessed memory values. This
value locality phenomenon enabled them to design energy-efficient caches [133] and data compressed
caches [135]. In their compressed cache design, each line in the L1 cache represent either one uncom-
pressed line or two lines compressed to at least half their original sizes based on frequent values [135].
Zhang, et al., designed a value-centric data cache design called the frequent value cache (FVC) [139],
which is a small direct-mapped cache dedicated to holding frequent benchmark values. They showed that
augmenting a direct mapped cache with a small frequent value cache can greatly reduce the cache miss

rate. FVC represents a single dictionary for the whole cache, which increases the chances of a single word

22
to be found and compressed with little space overhead. FVC designs are based on the observation that a

few cache values are frequent and thus can be compressed to a fewer number of bits. However, a large FVC

requires an increased decompression latency due to the increased FVC access time.

Significance-Based CompressiorSignificance-based compression is based on the observation that most
data types (e.g., 32-bit integers) can be stored in a fewer number of bits compared to their original size. For
example, sign-bit extension is a commonly implemented technique to store small integers (e.g., 8-bit) into

32-bit or 64-bit words, while all the information in the word is stored in the least-significant few bits.

In contrast with dictionary-based compression schemes (e.g., Lempel-Ziv), significance-based compres-
sion [23, 27, 28, 42, 69, 72] does not incur a per-line dictionary overhead. Hardware implementations of
significance-based compression schemes can be simpler and faster when compared to dictionary-based
schemes. Both of these properties make significance-based compression more suitable for the typically-
short cache lines. As an example, Kim, et al., use a significance-based compression scheme to store com-
pressed data in the cache and reduce cache energy dissipation [72]. However, compressibility can be sig-
nificantly lower for long cache lines when compared to LZ-based compression. Since these significance-
based compression algorithms were initially proposed to compress communication messages, we discuss

such technigues in the next section.

2.4 Link Compression

Communication bandwidth compression (which we refer to in this dissertation as link compression) is
used to reduce memory traffic and increase the effective memory bandwidth. Traffic can be reduced by
“compacting” cache-to-memory address streams [42] or data streams [28]. Benini, et al., propose a data
compression/decompression scheme to reduce memory traffic in general-purpose processor systems [19].
They propose storing uncompressed data in the cache, and compressing data on the fly when transferring it

to memory. They also decompress memory-to-cache traffic on the fly. They use a differential compression

23
scheme that is based on the assumption that it is likely for data words in the same cache line to have some

bits in common [18].

Significance-based Link CompressionMany link compression proposals are variations of significance-
based compression. Farrens and Park [42] make use of the fact that many address references—transferred
between processor and memory—have redundant information in their high-order (i.e., most significant)
portions. They cached these high-order bits in a group of dynamically allocated base registers and only
transferred the low-order address bits in addition to small register indices (in place of the high-order
address bits) between the processor and memory. Citron and Rudolph [28] use a similar approach for
address and data words. They store common high-order bits in address or data words in a table and transfer
only an index plus the low order bits between the processor and memory. Canal, et al., proposed a scheme
that compresses data, addresses and instructions into their significant bytes while using two or three exten-
sion bits to maintain significant byte positions [23]. They use this method to reduce dynamic power con-
sumption in a processor pipeline. Kant and lyer [69] studied the compressibility properties of address and
data transfers in commercial workloads, and reported that the high-order bits can be predicted with high
accuracy in address transfers but with less accuracy for data transfers. Citron [27] utilized the low entropy
of address and data messages to transfer compressed addresses and data off chip as a stopgap solution to
reduce off-chip wire delay. He proposes transferring high-entropy data directly on the bus, while compact-

ing low-entropy data into a fewer number of bits before sending them on the bus.

2.5 Summary

Hardware compression has been proposed and used to compress memory, caches and communication
bandwidth. In this section, we described many hardware compression proposals. Compressions schemes
used in hardware implementations are either dictionary-based or significance-based. Dictionary-based

compression algorithms depend on building a dictionary and using its entries to encode repeated data val-

24
ues. Significance-based compression algorithms are based on the observation that most data types can be

stored in a fewer number of bits compared to their original size. Dictionary-based algorithms typically
have high compression ratios, while significance-based algorithms can have lower compression or decom-

pression overheads.

In the next chapter, we propose a significance-based compression scheme that provides reasonable com-
pressibility for the typically short cache lines with relatively fast compression and decompression hard-
ware. This scheme, Frequent Pattern Compression (FPC), compresses a cache line on a word-by-word
basis. For each word, FPC detects whether it falls into one of the patterns that can be stored in a smaller

number of bits, and stores it in a compressed form with an appropriate prefix.

25

Chapter 3

Compressed Cache Design

As semiconductor technology continues to improve, the rising disparity between processor and memory
speed increasingly dominates performance. Effectively using the limited on-chip cache resources becomes
increasingly important as memory latencies continue to increase relative to processor speeds. Cache com-
pression has been previously proposed to improve the effectiveness of cache memories [9, 24, 55, 77, 79,
135, 139]. Compressing data stored in on-chip caches increases their effective capacity, potentially reduc-
ing misses and improving performance. However, for complex hardware compression schemes, decom-
pression overheads can offset compression benefits. For cache compression to be an appealing solution, it

is necessary to develop hardware compression algorithms with low decompression overheads.

In this chapter, we propose and evaluate a simple significance-based compression scheme that has low
compression and decompression overheads (Section 3.1). This scheme, Frequent Pattern Compression
(FPC), compresses individual cache lines on a word-by-word basis by storing common word patterns in a
compressed format accompanied by an appropriate prefix. This simple scheme provides comparable com-
pression ratios to more complex schemes that have higher decompression overheads (Section 3.2). For a
64-byte cache line, compression can be completed in three cycles and decompression in five cycles, assum-

ing 12 fanout-of-four (FO4) delays per cycle (Section 3.3).

In order to make use of FPC in cache compression, we propose a compressed cache design in which data is
stored in a compressed form in the L2 caches, and in an uncompressed form in the L1 caches (Section 3.4).
L2 cache lines are compressed to predetermined sizes to reduce decompression overhead, never exceeding

their original size. Our compressed cache design, the Decoupled Variable-Segment Cache, builds on FPC.

26
This design decouples tag and data areas in the cache and divides the data area into compression units (seg-

ments). Using small 8-byte segments allows our cache design to store more compressed lines into the same

space allocated for fewer uncompressed lines.
In this chapter, we make the following contributions:

* We propose a hardware compression scheme, Frequent Pattern Compression (FPC), that is suitable to
compress cache lines in the L2 cache and beyond. We show that FPC achieves comparable compres-
sion ratios to more complex hardware schemes for a wide range of scientific and commercial applica-

tions.

* We propose a hardware implementation for FPC and estimate its complexity. We show that decom-
pression of a 64-byte cache line can be performed in five cycles (or fewer), and compression in three

cycles, assuming a 12 FO4 delays per cycle.

* We propose a compressed cache hierarchy that stores uncompressed lines in the L1 cache, and com-
pressed lines in the L2 cache. We propose a compressed cache design, the Decoupled Variable-Seg-
ment Cache, that decouples tag and data areas in the cache and divides the data area into compression
units (segments). We use our compressed cache design throughout this dissertation to evaluate com-

pressed caches in uniprocessors and chip multiprocessors.

3.1 Frequent Pattern Compression (FPC)

In contrast with dictionary-based compression schemes, significance-based compression [23, 27, 28, 42,
69, 72] does not incur a per-line dictionary overhead, as we described in the previous chapter. In addition,
compression and decompression hardware is faster than dictionary-based encoding and decoding. These
properties make significance-based compression schemes more suitable for the typically-short cache lines.

However, compressibility can be significantly lower for long cache lines.

27
TABLE 3-1. Frequent Pattern Encoding

Prefix Pattern Encoded Data Size
000 Zero 0 bits (no data stored)
001 4-bit sign-extended 4 bits
010 One byte sign-extended 8 bits
011 halfword sign-extended 16 bits
100 halfword padded with a zero halfword The nonzero halfword (16 bits)
101 Two halfwords, each a byte sign-extended The two bytes (16 bits)
110 word consisting of repeated bytes 8 hits
111 Uncompressed word Original Word (32 bits)

In this dissertation, we propose and use a significance-based compression $ebgoent Pattern Com-
pression (FPCYo compress cache lines. This scheme is based on the observation that some data patterns
are frequent and are also compressible to a fewer number of bits. For example, many small-value integers
can be stored in 4, 8 or 16 bits, but are normally stored in a full 32-bit word. These values are frequent
enough to merit special treatment, and storing them in a more compact form can increase the cache capac-
ity. Zeros are also frequent and merit special treatment, as in the X-RL scheme [73]. FPC is a compression
algorithm that strives to achieve most of the benefits of dictionary-based schemes while keeping the per-

line overhead at a minimum.

3.1.1 Frequent Patterns

Frequent Pattern Compression (FPC) compresses / decompresses on a cache line basis. Each cache line is
divided into 32-bit words (e.g., 16 words for a 64-byte line). Each 32-bit word is encoded as a 3-bit prefix

plus data. Table 3-1 shows the different patterns corresponding to each prefix.

Each word in the cache line is encoded into a compressed format if it matches any of the patterns in the
first seven rows of Table 3-1. These patterns are: zero (an all-zero word), 4-bit sign-extended, one byte

sign-extended, one halfword sign-extended, one halfword padded with a zero halfword, two byte-sign-

28
extended halfwords, and a word consisting of repeated bytes (e.g. “0x20202020", or similar patterns that

can be used for data initialization). These patterns are selected based on their high frequency in many of
our integer and commercial benchmarks. A word that doesn’t match any of these categories is stored in its

original 32-bit format. All prefix values are stored at the beginning of the line to speed up decompression.

3.1.2 Segmented Frequent Pattern Compression (S-FPC)

To exploit compression, the L2 cache must be able to compress cache lines into a fewer number of bits
compared to their original size. In theory, a cache line can be compressed into any number of bits. How-
ever, such designs add more complexity to cache management. In most practical cache designs, cache lines
cannot occupy an arbitrary number of bits. In designing a practical compressed cache, selecting a specific
basesegmensize is critical. Small segment sizes decrease fragmentation, therefore increasing compres-

sion ratios at the expense of a higher cache design complexity. The opposite is true for large segment sizes.

In our compressed cache design, the decoupled variable segment cache (Section 3.4), we selected a seg-
ment size of eight bytes. Each cache line can be stored as a group of one or more 8-byte segments. For
example, a 64-byte line can be stored in 1-8 segments. A compressed line is padded with zeros until its size
gets to be a multiple of the segment size. These extra zeros (that do not correspond to any prefixes) are
ignored during decompression. While this approach doesn't permit high compression ratios for some cache

lines (e.g., all zero lines), it allows for a more practical and faster implementation of cache line accesses.

3.2 FPC Evaluation

We evaluate the FPC scheme in terms of its achieved compression ratio compared to other compression
schemes. We show compression results for our frequent patterns, and demonstrate that zeros are the most
frequent. We also analyze the performance of segmented compression, and show the sensitivity of com-

pression ratios to FPC’s base segment size.

29
3.2.1 Workloads

To evaluate the FPC scheme against alternative schemes, we used several multi-threaded commercial
workloads from the Wisconsin Commercial Workload Suite [6]. We also used eight of the SPEC 2000
benchmarks [114], four from the integer suite (SPECint2000) and four from the floating point suite
(SPECfp2000). All workloads run under the Solaris 9 operating system. These workloads are briefly

described in Table 3-2. We ran multiple simulation runs for each benchmark, and measured compression

TABLE 3-2. Workload Descriptions
Online Transaction Processing (OLTP).DB2 with a TPC-C-like workload. The TPC-C benchmark modlels
r OLTP
workload is based on the TPC-C v3.0 benchmark using IBM's DB2 v7.2 EEE database management|system.

the database activity of a wholesale supplier, with many concurrent users performing transactions. O

We use a 5 GB database with 25,000 warehouses stored on eight raw disks and an additional dedicated data-
base log disk. We reduced the number of districts per warehouse, items per warehouse, and customers per dis-
trict to allow more concurrency provided by a larger number of warehouses [6]. There are 16 simulatef users,

and the database is warmed up for 100,000 transactions.

Java Server Workload: SPECjbb. SPECjbb2000 is a server-side java benchmark that models a 3-tie[sys-
tem, focusing on the middleware server business logic. We use Sun’s HotSpot 1.4.0 Server JVM. Oull experi-
ments use two threads and two warehouses, a data size of ~44 MB, and a warmup interval of

200,000 transactions.
Static Web Serving: Apache.We use Apache 2.0.43 for SPARC/Solaris 9, configured to use pthread |locks

and minimal logging as the web server. We use SURGE [13] to generate web requests. We use a repgsitory of
20,000 files (totalling ~500 MB), and disable Apache logging for high performance. We simulate 400 tlients

each with 25 ms think time between requests, and warm up for 50,000 requests.

Static Web Serving: Zeus.Zeus is another static web serving workload driven by SURGE. Zeus usgs an
event-driving server model. Each processor of the system is bound by a Zeus process, which is walting for
web serving event (e.g., open socket, read file, send file, close socket, etc.). The rest of the configuration is the
same as Apache (20,000 files of ~500 MB total size, 400 clients, 25 ms think time, 50,000 requests for war-

mup).

SPEC2000.We use four integer benchmarks (bzip, gcc, mcf and twolf) and four floating point benchmarks
(ammp, applu, equake, and swim) from the SPECcpu2000 set to cover a wide range of compressibility prop-

erties and working set sizes. We use the first reference input for each benchmark. We warm up caches of each

benchmark run for 1 billion instructions.

30
statistics periodically every 300 million cycles for each simulation run. For each data point in our results,

we present the average and the 95% confidence intervals of these multiple measurements to account for

both time and space variability [8].

3.2.2 Compression Ratio

To evaluate the success of our compression scheme, we estimated the compressibility properties of our set
of benchmarks. For each simulation run, we computed compression statistics for the whole L2 cache con-
tents every 300 million cycles (after a warm-up interval). Assuming variable length cache lines that can
occupy any number of bits, we compared the compression ratio from our Frequent Pattern Compression

scheme (FPC) with two other memory compression schemes:
» The X-RL algorithm [73] used in some compressed cache implementations [77, 78, 79].

» The Block-Referential Compression with Lookahead (BRCL) scheme [48], applied to cache lines.
This scheme is a serialized implementation of the parallel compression scheme used for memory com-
pression in the IBM MXT technology [121]. The compression ratio of this scheme presents an upper

bound on the compressibility of its parallel version.

We also compare against the “Deflate” algorithm used in the gzip unix utility, which combines an LZ-vari-
ant implementation with Huffman encoding of codewords in the dictionary. For this algorithm, we run the
gzip utility on the whole cache snapshot file (as opposed to 64-byte lines individually compressed by the
other three schemes). The “Deflate” algorithm is used to provide a practical bound on compressibility of

dictionary-based schemes for arbitrarily long cache lines.

Figure 3-1 compares compression ratios for the four compression schemes. While FPC is faster to imple-
ment in hardware, it provides comparable compression ratios to the dictionary-based X-RL and BRCL,

and even approaches gzip for some benchmarks. For some floating point benchmarks (applu and swim),

31

6
=
§ 4 il FPC
5 N XRL
Ji [] BRCL
E— .
g gzip
O

YIS IS .
\“ANANANNNNNNNY

.M NANNNNNN N

VOO OO

‘ LA BN NG N AN BN
A G R I I

FIGURE 3-1. Compression ratios (original size / compressed size) for FPC, XRL,
BRCL and gzip

none of the hardware schemes achieve a high compression ratio, and even gzip’s compression ratio was
low. We attribute this to the low compressibility of floating point numbers, since we only consider lossless
compression schemes. FPC’s compression ratio is higher than 2.0 for five of the twelve benchmarks. We
note that the wide confidence intervals for some benchmarks’ compression ratios (e.g., gcc) is due to these
benchmarks exhibiting different phase behavior during the benchmarks’ runtime. Cache lines are signifi-

cantly more compressible in some program phases compared to other (less compressible) phases.

As we discussed in the previous section, cache lines cannot occupy any arbitrary number of bits in most
practical cache designs. Restricting the compressed line sizes to a certain subset of all possible lengths (as
we do in our segmented design) partially reduces compressibility. To assess the loss in compressibility, we
compare the compression ratio from our Segmented Frequent Pattern Compression scheme (Segmented-

FPC) against the compression ratio from the Frequent Pattern Compression scheme assuming variable-

32
length lines are possible (FPC). We also compare against segmented and ideal versions of the XRL and

BRCL. Figure 3-2 shows the compression ratios for our benchmarks.

We note that the simple scheme (Segmented-FPC) achieves most of the compression benefit from variable-
length lines of the ideal version (FPC). Segmented-FPC has compression ratios of 1.15-2.15 for the four
SPECIint2000 benchmarks, 1.07-2.08 for the four SPECfp2000 benchmarks, and 1.61-1.98 for the four
commercial benchmarks. We note that OLTP had a low compression ratio since its data is randomly gener-
ated. A real OLTP application would have much less randomness, and thus have a higher compression
ratio. In addition, our FPC scheme only targets data and not code which constitutes a large fraction of

cache lines in commercial benchmarks, especially OLTP.

Compression ratios are, on average, higher for integer benchmarks compared to floating point benchmarks.
For example, only 3.3% of all cache lines across ewimsnapshots are compressible. However, some
benefit is still possible for floating point benchmarks with a high percentage of zero words. This low com-
pression ratio is because floating point numbers (except zero) rarely fit any of the frequent patterns. How-
ever, low floating point compression ratios is not only limited to the FPC scheme. Lossless compression
remains a hard problem for floating point data, even for more complex software schemes that depend on
knowing the specific application domain of floating point data (e.g., compression of floating-point geome-

try data [64], fluid dynamics data compression using wavelets [122], or JPEG image compression [125]).

3.2.3 Which Patterns Are Frequent?

Frequent Pattern Compression (FPC) is based on the observation that some word patterns are more fre-
guent than others. We experimented with cache snapshots for our different benchmarks to come up with a
reasonable set of frequent patterns (described in Table 3-1). Figure 3-3 shows the relative frequency of
incompressible words, zero words and words compressible to 4, 8 and 16 bits. The 4-, 8-, and 16-bit pat-

terns are present with various frequencies across our integer and commercial benchmarks. Unfortunately,

33

Compression Ratio Compression Ratio

Compression Ratio

o = N
e v v v v v v b e

bzip

twolf

ammp

apache

equake

oltp jbb

Il FPC

N Segmented FPC
O XRL

Segmented XRL
@ BRCL

[] Segmented BRCL

Il FPC

N Segmented FPC
O XRL

Segmented XRL
@ BRCL

[] Segmented BRCL

Il FPC

N Segmented FPC
O XRL

Segmented XRL
@ BRCL

[] Segmented BRCL

FIGURE 3-2. Compression ratios for segmented and variable-length FPC, XRL
and BRCL. The three graphs show ratios for SPECint, SPECfp and commercial

benchmarks

34

B Uncompressible
Compr. 16-bits
[Compr. 8-hits
Compr. 4-bits
[] Zeros

Pattern %

bzip ch mcf twolf ammp apblueqdakeSNimapache zeus oltp jbb

FIGURE 3-3. Frequent Pattern Histogram

most of the words in floating point benchmarks are incompressible with FPC, since its patterns are mainly

integer patterns.

As Figure 3-3 demonstrates, zero words are the most frequent compressible pattern across all benchmarks.
For five benchmarks (gcc, twolf, ammp, apache, zeus), at least 40% of all cache words are zeros. This
causes some compression techniques (e.g., X-RL) to specifically optimize for runs of zeros. Figure 3-4
shows the average number of zeros in a zero run for our set of benchmarks. The figure shows that only four
benchmarks (ammp, apache, zeus, oltp) have an average of 4 or more zeros in a zero run. In developing the
FPC scheme, we had two options to compress zeros: either to have a prefix for each zero word with no
data, or to encode zero runs with a single prefix and save the length of the run in the data part correspond-
ing to that prefix. However, the savings that could be achieved using the second alternative (zero run
encoding) would be mostly lost due to segmentation in S-FPC. Furthermore, the first alternative—which

we selected—also allows implementations with a lower compression and decompression overheads.

35

Average Zero Run Length (Words)

E
bzip gcc mcf twolf ammp applu equake swim apache zeus oltp jbb
FIGURE 3-4. Average number of words in a zero run for our ten benchmarks. Large

confidence intervals are due to the variability of cache contents between different tim
samples

1%

3.2.4 Sensitivity to Segment Size

In designing a practical compressed cache implementation, selecting a specific base segment size is an
important design decision. A compressed line can only be stored in a size that is an integer multiple of the
base segment size. Selecting a small segment size would likely decrease the amount of fragmentation,
which allows for higher compression ratios. However, a small segment size increases cache design com-
plexity. The opposite is true for large segment sizes. Cache design should balance the trade-off between
these two conflicting design constraints. We selected a base segment size of 8-bytes (i.e., up to 8 segments

for 64-byte lines) in the Segmented FPC design as a reasonable design point.

Figure 3-5 shows the sensitivity of FPC to the base segment size. The four bars for each benchmark repre-
sent compression ratios if we divide up a 64-byte cache line into two segments (i.e., 32-byte segments),
four (16-byte segments), eight (8-byte segments, which is the same as Segmented-FPC in Figure 3-2), and

64 (1-byte segments). Our 8-byte-segment design increases the compression ratio by 4-59% vs. 32-byte

36

1 Y A T
2] \ I © i
L2] \ \ \ \ \
g \ \[\ \illl ‘il ™ ' g 1-byte
= \ Y \ \i U \ \ N \
S N: N N0 B \ YA Ne INL D N 8-bytes
0 ke NP R NA K B N NUONA R Ry D=
o
I \I'm \I'm \l'm \I'm \I'm \I/m /e \'m \Im P 32-bytes
O \ \ \ \ \ \ \ \ \ \ \
Bl \ \ \ \ \ \ \ \ \ \
1K \ \ \ \ \ \ \ \ \ \
1 \ \ \ \ \ \ \ \ \ \
1IN \ \ \ \ \ \ \ \ \ \
0 I \ \ \ \ \ \ \ \ \ \
Q < & X o) > o . & o KX P
& SN & &\@ ,&Q &\}'3' é*\\® @r&‘\ /@) > N
FIGURE 3-5. FPC Compression ratios for segment sizes (1 byte to 32 bytes)

segments, and 2-22% vs. 16-byte segments. Compared to 1-byte segments, our 8-byte segment design has
a 2-12% lower compression ratio. This data shows that our 8-byte segment selection is a reasonable design

point.

We characterize our benchmarks further by showing the percentage of cache lines (across all snapshots for
each benchmark) that can be compressed into 1-8 segments (Figure 3-6). The figure shows that different
benchmarks favor different sizes. For example, nearly 97%wirhlines are uncompressed (8 segments),
while nearly 55% ofmcflines can be compressed to six segments. For completeness, we show a more
detailed distribution in Figure 3-7, demonstrating the cumulative distribution of compressed cache line

sizes (1-512 bits) assuming ideal FPC compression (i.e., 1-bit segments) for our twelve benchmarks.

3.3 FPC Hardware Implementation

Frequent Pattern Compression is an appealing compression scheme for cache lines because it achieves rel-

atively high compression ratios with a small overhead for compression and decompression. In this section,

37

/

B 8 Segments
7 Segments
] 6 Segments
5 Segments
] 4 Segments
3 Segments
Bl 2 Segments
1 Segments

/I

Pattern %

o/

ZIN

m
i
N N
R
\\
N

ZEINNNN\N\N\N\N\N

\

NNNNNEZ N\

NNNIZ N4

LA Vil

bzip gcc mcf twolf ammp applu equake swim apache zeus oltp jbb

FIGURE 3-6. Segment Length Histogram: Percentage of cache lines compressed
into 1-8 Segments

we present high-level and gate-level designs of FPC’s compression and decompression hardware, and esti-

mate their circuit delay.

3.3.1 High-Level Design

We propose a compressed cache design in which data is stored uncompressed in the level-1 caches and
compressed in the level-2 caches (Section 3.4). This helps reduce many of the costly L2 cache misses that
hinder performance, while not affecting the common case of an L1 hit. However, such a design adds the

overhead of compressing or decompressing cache lines when moved between the two levels. FPC allows a

relatively fast implementation of both of these functions.

Compression.Cache line compression occurs when data is written back from the L1 to the L2 cache, or

when data is fetched from memory to the L2. A cache line is compressed easily using a simple circuit that
checks each word (in parallel) for pattern matches. If a word matches any of the seven compressible pat-
terns, a simple encoder circuit is used to encode the word into its most compact form. If no match was

found, the whole word is stored with the prefiil.

38

- ” .
F E o 3
o F o —|||m w S §/
3) -3) 0
3 3 ” m ;
: '3 S 8
g -3 -3 g g 9
S S -8 ” ;
54 m m) 2
-2 -8 g 0g 8o o
Q FS FQ na ® L9 g2 <
o o > SR Sm |3...“.w 28
QL nx= 33@. E .= : z3 2
™M =0 = : BM u 2
Q = Bw. :) 2
O m s : ” _ - ¢
i) -8 -8 S S
S S -8 = g
& & : ”) m
F © F o) 8 2
S S S =1
S S F o =
S| g :
o [7)]
©)
Fo L L L L _____n_vn_V g
_ °© LS oo ooo oo0oo g
T gmBes° £88%R° ge89s 2889 m
eSS o - - wn Saul Jo JequinN 5
S - QUINN Saul Jo JequinN Saul Jo JequinN . 3
Saul Jo B
Saul Jo JequinN Saul Jo JequinN 71 S
8 c
o) 8 =
E o 3 : E
2 -2 Z 2 :
] 23] <
E _ i E
E 5 g g ..&
-8 g g g =
S -8 S z
54 :) :
| 8 L n =
o FOS & nﬂ«wB% 3.”.& == 5 &
o wn ro tm =g = S
tf . e B wl
3 U &E S 8 o) £
N mE :)] . =
i F o o S S s
g =S g g
S =S .
) | o N~
C . . _
o o) S n
- 3 g
g -8 g g c
S| -3 :
o o .
o T © ________n_u_n_u o
S — T
© I © ____n_un_U SRR geeTL ©
o oooo 232399 S
oco0ooo 232399 S
e - n Soul] 10 BgwinnN
- Soul] 10 BgwinnN Soul 10 BgwinnN
WNN Soul] 10 BgwiniN
Soul] 10 BgwinnN Saul 10 =g

39
Cache line compression can be implemented in a memory pipeline, by allocating three pipeline stages on

the L1-to-L2 write path (one for pattern matching, and two for gathering the compressed line). A small vic-
tim cache that contains a few entries in both compressed and uncompressed form can be used to hide the
compression latency on L1 writebacks. However, since compression is off the critical path, we do not con-

sider compression latency a first order design constraint.

DecompressionCache line decompression occurs when data is read from the L2 to the L1 cache. Thisis a
frequent event for most benchmarks whose working sets do not fit in the L1 cache. Decompression latency
is critical since it is directly added to the L2 hit latency, which is on the critical path. Decompression is a
slower process than compression, since compressed lengths for all words in the line (except the last) have
to be added. Each prefix is used to determine the length of its corresponding encoded word and therefore
the starting location of all the subsequent compressed words. Figure 3-8 presents a schematic diagram for
a five-stage hardware pipeline that can be used to decompress 64-byte cache lines. Each pipeline stage is
12 FO4 delays or less, assuming the parallel resources required are available for the parallel adder, shift
register and pattern decoder. Assuming one processor cycle requires 12 FO4 gate delays, this means that

the decompression latency is limited to five processor cycles.

3.3.2 Gate-Level Design

In order to estimate circuit delays for the compression and decompression circuits, we constructed a gate-
level design of their critical paths. We used the method of logical effort [113] to estimate FO4 gate delays

for each circuit.

Compressor.We present the first stage of the compression pipeline in Figure 3-9. The input for this circuit
is the 32-bits of an uncompressed word. The output is the three prefix bits that encode the word’s pattern

(as specified in Table 3-1). The critical path for this circuit passes through a 16-input 3-output AND gate, a

40

16
3-bit Word Starting
tags | Parallel | Lengths Parallel Addresses
p| prefix Carry-lookahead
tags Decoder T6x ™| AdderArray [16x9-bits
5-bits
Compuies starting bit
addresses for the 16 words
\
Y -
Parallel 16 32-bit registers|
Datd g | Shift |_p{(for compressed (.
Registers words) | |Ur1£:_ompressed
ne
Divide data | |
into 16 Parallel | [
compressed Pattern .
words L p| Decoder .
|
||
L
Compressed
Line
FIGURE 3-8. Cache line decompression pipeline for a 64-byte (16-word) cache line
This is a five-stage pipeline used to decompress a compressed cache line, where each stage contains 12 FO4
gate delays or less. The first pipeline stage (containing the parallel prefix decoder) decodes the prefix array to
determine the length (in bits) of each word. The second and third stages (Parallel carry-lookahead adder
array) compute the starting bit address for each data word by adding the length fields of the preceding words
in a hierarchical fashion. The fourth stage (parallel shift registers) contains 16 registers each of which is
shifted by the starting address of its word (in 4-bit increments). The fifth and last stage contains the| pattern
decoder, which decodes the content of each 32-bit register into an uncompressed word according to fits corre-
sponding prefix.

2-input 1-output AND GATE, a 2-input 2-output OR gate, a 1-input 1-output inverter, a 7-input 2-output
AND gate and a 4-input 1-output OR gate, from input bits 16-31 through pattern #5 (two sign-extended
halfwords) to the output of Prefix0 or Prefix2. Using the method of logical effort, delay in a logic gate is

computed using:

d=g.h+p (3.1)

whereg is the gate’s logical efforty is the gate’s electrical effort, amiis the gate’s parasitic delay [113].

We use theg, h andp assumptions for various gates from Sutherland, et al. ([113]):

41

repeated_bute
.]
-
g
=) JroPrefix2
H 1 T
Bit0-3 3
4bit_SE
Bit4-7
HiE -4 1
5
Bit8-15 E ¥ bute_SE H—) >r—oPrefix!
i [o
1> 11—
D4
two_byte SE
L
Zero
: [N
: 1%
Bit16-31 [hel fuord_fzero
!
i Dog | =] Dr—=Prefix0
i -
' |
hal Pword].S
|
|
:s_/:

FIGURE 3-9. First pipeline stage of compression circuit

This circuit obtains the pattern prefix for a 32-bit word. For compression, parallel instances should be $ised to
obtain the prefix of all words in a cache line in parallel

p(INV) = 0.6 delay unitsg(INV) = 1 (3.2)
p (NAND(n,1)) =n. p(INV), g(NAND(n,1)) = (0+2)/3 (3.3)
p(NOR(n,1)) =n. p(INV), g(NOR(n,1)) = (zh + 1)/3 (3.4)

P(XOR(2,1)) = 4 p(INV), g(XOR(2, 1)) = 4 (3.5)

42
p(MUX(n,1)) =2 .n. p(INV), g(MUX(n,1)) =2 (3.6)

h =C,,/Ci, (Output capacitance divided by input capacitance) 3.7)

The total delay for the above compression circuit is computed from the following equation (obtained from

the critical path Figure 3-9):

Total_delay =d(AND(16,3)) +d(AND(2,1)) + d(OR(2,2)) +d(INV(1,1)) + d(AND(7,2)) + d(OR(4.1)) (3.8)

Values for different gate delays can be directly computed from Equations 3.1-3.7. For example, the delay

for AND(16,3) can be computed from:

d(AND(16,3)) =d(NAND(16, 1)) +d(INV(L, 3)) = (16+2)/3 * 1/16 + 16*0.6 + 1 * 3/1 + 0.6 = 13.575 (3.9)

We omit the details for the remaining gates. Summing up all gate delays, we get Total_delay = 35.254

delay units.

The fanout-of-four delay using the same assumptions is:

d(INV(1,4)) =1 *4/1 + 0.6 = 4.6 (3.10)

So the above circuit has a 35.254/4.6 = 7.66 fanout-of-four delays (or less than 8 FO4 delays). This can be
implemented in one clock cycle for most processes. We are assuming 12 FO4 delays per clock cycle,
which is close to the estimated per-cycle delay for current processes [60]. The second pipeline stage, not
presented here, is used to gather significant bits (0, 4, 8, 16 or 32 bits based on the prefix) from all words in
the cache line into a single compressed word, using multiplexers and barrel shifters. This can be pipelined

in two single-clock pipeline stages.

43

[> /ero

oumJ [>len?

Pref ix [>———mn SﬁJQﬁQJ — 1 >Lens
Pref ixI[>——oyHmn wrs— | @

Prefixg C——r ws = L— > Lend

our7—4 "> lenS

FIGURE 3-10. First stage of the decompression pipeline: Parallel Prefix Decoder

For each prefix in the line header, we use the decoder to figure out the length of the corresponding word.

DecompressionWe present different stages of the decompression pipeline in Figure 3-10, Figure 3-11,

Figure 3-12 and Figure 3-13.

Figure 3-10 illustrates part of the first stage in the decompression pipeline (the parallel prefix decoder),
where we compute the compressed word length of each word in the cache line from its prefix. This is a
fairly simple circuit with the critical path going through an inverter, a three input one output AND gate

(both inside the 3-t0-8 decoder), and a three input one output OR gate. Using the method of logical effort,
the total delay for this circuit is 9.733 delay units, or less than 3 FO4 delays (i.e., less than one cycle of 12

FO4 delays).

In Figure 3-11, we show the critical path for second and third stages of the decompression pipeline, where
the computed word lengths are used to compute the starting location for each word. This stage consists of a
series of carry lookahead adders that compute the starting bit address of each word in the cache line. The
critical path shown in the circuit is that required to compute the starting address of the last word (i.e., word
#15) in the 16-word cache line. This critical path goes through the following gates: XOR(2,4), AND(4,1),

OR(4,1), XOR(2,5), AND(5,1), OR(5,1), XOR(2,6), AND(6,1), OR(6,1), XOR(2,7), AND(7,1) and

44

Len(Word#0) I\
Len(\\ard#1) | |
i —|_ F 5-bit Adder 5-bit Add
| -bit er
, I 5-bit Adder |~ :
! 1 7-bit Adder —
Len(Word#13) — 4-bit Adder \5'b“ Adder \/ 6-bit Adder &
i Q
Len(Word#14) >-bit Adder {\@
%\‘b'
4-bit Adders 5-bit Adders 6-bit Adders 7-bit Adders
I e B
P —
;:ﬂJh:Di:D—DEEZﬁEg
“‘ %ﬁstar‘t4
{h : D—Starts
3 ’%starte
i %start7
Start8
Startg

[
[s

FIGURE 3-11. Critical path for second and third stages of the decompression
pipeline. High-level design is shown at the top, and gate-level design at the bottom

This circuit uses the compressed word lengths (output of Figure 3-10) to compute the starting bit address of
each word in the cache line. A multi-stage carry lookahead adder network computes the starting bit addresses
of all words. The above circuit shows the path for computing the starting address of the last word (woyd 15).

45

r‘*‘*ﬂStaPtW
r‘*‘*ﬂStaPtZ
r‘*‘*ﬂStaPt4

[S2)
o

[

©
.
(©P)

so 0 1 so
)) wr— | ur—)

Ii;t FFCL?QF@VES StJ;

FIGURE 3-12. Fourth stage of the decompression pipeline (parallel shifter)

w—=>lord_0

]| ——=Sterty
]| ——=Stert§

For each word starting bit location (obtained from the output of Figure 3-11), we shift the cache line right by
a the corresponding number of four-bit nibbles using a barrel-shifter design. The above circuit is repedted for
all line bits. The critical path for this stage is seven 2-to-1 multiplexers. Due to the large number of multjplex-
ers in the parallel shifter circuit (512x7 array of 2-to-1 multiplexers), it is uneconomical to replicate thig cir-
cuit for all cache words. A more appealing alternative is to have two copies of the above circuit, and| time-
multiplex the shift operations for eight words on each circuit.

OR(7,1). Using the method of logical effort, the total delay for this circuit is 97.56 delay units, or less than

22 FO4 delays. This is less than two cycles assuming a 12 FO4 delay per cycle.

In Figure 3-12, we demonstrate the fourth stage in the decompression pipeline, where the compressed
words are extracted by shifting the cache line bits in 4-bit increments based on the starting locations com-
puted at the end of the third stage. The critical path of this circuit is the series of seven 2-to-1 multiplexers.

Again using the method of logical effort, the total delay is 40.6 delay units, or less than 9 FO4 delays.

In Figure 3-13, we present part of the fifth stage of the decompression pipeline used to compute the decom-
pressed words given their compressed format and the word prefix. The critical path for this circuit is the 8-
to-1 multiplexer, with a delay of 9.85 delay units (or less than 3 FO4 delays) according to the method of

logical effort.

We could optimize this circuit further by combining the fourth and fifth pipeline stages into one, thus using
four cycles for decompression instead of five. However, we chose not to optimize the circuit designs spe-
cifically for speed or power. Our objective was to illustrate that decompression can be done in five cycles

or fewer, which is faster than other hardware schemes such as X-RL or BRCL. It is possible to optimize the

46

Z
jd %
[aa) <
@
o >
bl @
5 _
—= O <
XX X
Rty -
152 [—
& DD 2
» CCC e
@ ann -
el AYAY
o3 o
% o
I
(&) Zero %)

1

ompresse
orpresse

o
g

2

g

b

8

2
2
ERA8

B

1 er=Uncompressed_4

3

——Uncompressed_8

oMpress:

i wr=Uncompressed_16

1 er=Uncompressed_24

FIGURE 3-13. Part of the fifth stage of the decompression pipeline (Parallel Pattern
Decoder)

We show the circuits used to compute bits 4, 8, 16 and 24 of the decompressed word.

decompression pipeline for power by using non-parallel resources with time multiplexing in pipeline
stages with a lot of slack (e.g., the first and the last). This low decompression overhead is particularly
important for use in our compressed cache design, as we show in the next section. We analyze the sensitiv-

ity of a compressed cache’s performance to decompression latency in the next chapter.

3.4 Decoupled Variable-Segment Cache

In this section, we propose a two-level cache hierarchy consisting of uncompressed L1 instruction and data
caches, and an optionally compressed L2 unified cache [9]. We evaluate the performance of our com-

pressed cache design in the next chapter. While many of the mechanisms and policies we develop can be

47

Instruction Load-Store
Fetcher Queue
L1 I-Cache L1 D-Cache
(Uncompressed) (Uncompressed)

I
Uncompressed
Line Bypass |

Decompression
Pipeline

L1 Victim Cache |
v
Compression
Pipeline

L2 Cache (Compressed)

FIGURE 3-14. Compressed Cache Hierarchy

adapted to other cache configurations (e.g., three-level hierarchies), we only consider two-level hierarchies

in this dissertation.

Figure 3-14 illustrates the proposed cache hierarchy. L1 instruction and data caches store uncompressed
lines, eliminating the decompression overhead from the critical L1 hit path. This design also completely
isolates the processor core from the compression hardware. The L1 data cache uses a writeback, write allo-
cate policy to simplify the L2 compression logic. On L1 misses, the controller checks an uncompressed
victim cache in parallel with the L2 access. In addition to its normal function, the victim cache acts as a
rate-matching buffer between the L1s and the compression pipeline [79]. On an L2 hit, the L2 line is
decompressed if stored in compressed form. Otherwise, it bypasses the decompression pipeline. On an L2
miss, the requested line is fetched from main memory. We assume compressed memory, though this is
largely an orthogonal decision. The L1 and L2 caches maintain inclusion. Lines are allocated in the L2
cache on L1 replacements and writebacks, L1 misses (that also miss in the L2), and L1 or L2 prefetches.

For design simplicity, we assume a single line size of 64-bytes for all caches.

48
To exploit compression, the L2 cache must be able to pack more compressed cache lines than uncom-

pressed lines into the same space. One approach is to decouple the cache access, adding a level of indirec-
tion between the address tag and the data storage. Seznec’s decoupled sector cache does this on a per-set
basis to improve the utilization of sector (or sub-block) caches [105]. Hallnor and Reinhardt’s Indirect-
Index Cache (11IC) decouples accesses across the whole cache, allowing fully-associative placement, a soft-
ware managed replacement policy, and (recently) compressed lines [54, 55]. The recently proposed V-Way
cache [98] adopts a similar decoupled approach. Lee, et al.'s selective compressed caches use this tech-
nique to allow two compressed cache blocks to occupy the space required for one uncompressed block [77,
78, 79]. Decoupled access is simpler if we serially access the cache tags before the data. Fortunately, this is

increasingly necessary to limit power dissipation [71].

In our design, we use a similar approach to previous proposals by decoupling the cache access, adding a
level of indirection between the address tag and the data storage. We also use more tags than (uncom-
pressed) cache lines to support storing compressed lines. Pomerene, et al. [97], used a similar scheme in a

shadow directory with more address tags than data blocks to improve upon LRU replacement.

We show our compressed cache design in Figure 3-15. Each set is 8-way set-associative, with a compres-
sion information tag stored with each address tag. The data array is broken into eight-byte segments, with
32 segments statically allocated to each cache set. Thus, each set can hold no more than four uncompressed
64-byte lines, and compression can at most double the effective capacity. Each line is compressed into 1-8
eight-byte segments, with eight segments being the uncompressed form. The compression tag indicates i)
the compressed size of the line (CSize) and ii) whether or not the line is stored in compressed form (CSta-
tus). A separate cache state indicates the line’s coherence state, which can be any of M (modified), O
(Owned), E (Exclusive), S (shared), I (invalid). We maintain the compression tag even for invalid lines

since we use these tags in our adaptive compression policy (discussed in the next chapter).

49

Tag Area Data Area
LRU TagQ Tag 1| *=* *** **® "** *""1Tag7 segment_offset(k) = Sum (actual_size(i))
State 1.k-1
2 1 3 segment_offset 16 Even segment_offse| 16 Odd
Segments Segments
Permissions Cstatus | CSize |Address segment_offset+1 segment_offset+1
(Compregsion Tag)| Tag - 8-byte - 8-byte

segment ¢ + segment

Permissions: States M (modified), S (shared), | (invalid), NP (not present)
CsStatus: 1 if line is compressed, 0 otherwise \

CSize: Size of compressed line (in segments) if compressed

CStatus and CSize are used to determine the actual size

16-byte-wide 2—-input multiplexor
(in segments) of the cache line :

CStatus| CSize Actual Size 16 bytes
0 s 8
1 s s

FIGURE 3-15. A single set of the decoupled variable-segment cache

Data segments are stored contiguously in address tag order. That is, the offset for the first data segment of

line k is:

k-1
segment_offs¢k) = z actual_sizéi)

2 (3.11)

A line’s actual size is determined by the compression tag (Figure 3-15) and the eight segment offsets are
computed in parallel with the address tag match using 5-bit parallel adders (similar to the circuit in
Figure 3-11, though much smaller). On an address tag match, the segment offset and actual length are used
to access the corresponding segments in the data array. The array is split into banks for even and odd seg-

ments, allowing two segments (16 bytes) to be fetched per cycle regardless of the alignment [52].

An L1 replacement writes back dirty lines to the L2 cache, where it finds a matching address tag since we
maintain inclusion. An L2 fill can also replace a line in the L2 cache. If the new line’s compressed size is
the same as the replaced line (or smaller), this writeback or fill is trivial. However, if the new size is larger,
the cache controller has to allocate space in the set. This may entail replacing one or more L2 lines or com-

pacting invalid lines to make space. More than one line may have to be replaced if the newly allocated line

50
is larger than the LRU line plus the unused segments. In this case, we replace at most two lines by replac-

ing the LRU line and searching the LRU list to find the least-recently-used line that ensures we have

enough space.

Compacting a set requires moving tags and data segments to maintain the contiguous storage invariant.
This operation can be quite expensive, because it may require reading and writing all the set’s data seg-
ments. For this reason, compaction is deferred as long as possible and is never needed on a read (e.g., L1
fill) access. In the next chapter, we evaluate the impact of compaction on the number of bits read/written
for our compressed cache design. With a large L1 victim cache and sufficient L2 cache banks, compaction

can have a negligible impact on performance.

A decoupled variable-segment cache adds relatively little storage overhead. For example, consider a 4-
way, 4 MB uncompressed cache with 64-byte lines. Each set has 2048 data bits, in addition to four tags.
Each tag includes a 24-bit address tag, a 2-bit LRU state, and a 3-bit permission, for a total of

4*(24+2+3)=116 bits per set. Our scheme adds four extra tags, increases the LRU state to three bits and
adds a 4-bit compression tag per line. This adds 116+8*1+8*4=156 bits per set, which increases the total
cache storage by approximately 7%. For an 8-way 4 MB cache, the overhead per set is 312 bits, also

approximately 7%.

51

Chapter 4

Adaptive Cache Compression

Cache compression increases the effective cache size at the expense of increasing cache hit latency for
compressed lines. On the one hand, compression can potentially help some applications by eliminating
many off-chip misses. On the other hand, applications that fit in an uncompressed cache can be hurt by

decompression overhead.

In this chapter, we develop an adaptive policy that dynamically balances the benefits of cache compression
against its overheads. We use the cache replacement algorithm’s stack depth [89] and compression infor-
mation to determine whether compression (could have) eliminated a miss or incurs an unnecessary decom-
pression overhead (Section 4.1). Based on this determination, we develop an adaptive policy that updates a
single global saturating counter. This counter predicts whether to allocate future cache lines in compressed

or uncompressed form (Section 4.2).

We evaluate our adaptive cache compression policy using full-system simulation of a uniprocessor system
and a range of benchmarks (Section 4.3). We show that compression can improve performance for some
memory-intensive workloads by 2-34%. However, always using compression hurts performance for low-
miss-rate benchmarks—due to unnecessary decompression overhead—degrading performance by 4-16%.
By dynamically monitoring workload behavior, the adaptive policy achieves comparable benefits from
compression, while avoiding most of the performance degradation for benchmarks that are hurt by com-
pression (Section 4.4). We analyze the sensitivity of compressed cache performance to different memory
system parameters (Section 4.5). We conclude by discussing limitations of our adaptive compression

scheme (Section 4.6) and presenting relevant related work (Section 4.7).

52
This chapter makes the following contributions:

» We show that cache compression in a uniprocessor system can help the performance of some bench-

marks while hurting the performance of others.

* We propose a scheme that uses the stack of a cache replacement algorithm [89] to identify whether

compression helps or hurts each individual cache reference.

* We propose an adaptive prediction scheme that dynamically adapts to a benchmark’s behavior or sys-
tem configuration. This adaptive scheme compresses cache lines only when compression helps. We
show that our adaptive compression scheme performs similar to the best of the two exkbkvags:

CompressaindNever Compress

4.1 Cost/Benefit Analysis

In this section, we analyze the costs and benefits associated with cache compression. We present a simple
analytical model for compression’s costs and benefits, and discuss how we classify different cache

accesses according to whether compression helped, hurt or did not affect each access.

4.1.1 Simple Model

While compression helps eliminate long-latency L2 misses, it increases the latency of the (usually more
frequent) L2 hits. Thus, some benchmarks (or benchmark phases) will benefit from compression, but oth-
ers will suffer. For a simple, in-order blocking processor, L2 cache compression will help if the benefit of
compression due to avoiding some L2 misses is greater than the cost due to increasing L2 hit latency for
compressed lines:

Avoided L2 Misses (L2 Miss Penalty L2 Hit LatencyPenalized L2 Hitx Decompression Penalty
(4.1)

53
Where penalized L2 hits are those that unnecessarily incur the decompression penalty. Rearranging terms

yields:

Penalized L2 Hits< (L2 Miss Penalty- L2 Hit Latengy

Avoided L2 Misses Decompression Penalty (4.2)

For a 5-cycle decompression penalty and 400-cycle L2 miss penalty, compression wins if it eliminates at
least one L2 miss for every 400/5=80 penalized L2 hits (or a ratio of less than 80 penalized hits per avoided
miss). While this may be easily achieved for memory-intensive commercial workloads, smaller work-

loads—whose working set size fits in an uncompressed L2 cache—may suffer performance degradation.
We note, however, that this model might not be accurate for more complex processors that use various

latency hiding techniques (e.g., out-of-order execution and prefetching).

Ideally, a compression scheme should compress data when the benefit (i.e., avoided misses) outweighs the
cost (i.e., penalized L2 hits). We next describe how we classify cache accesses according to the cost or ben-

efit of compression, and use that information in the next section to update a compression predictor.

4.1.2 LRU Stack and the Classification of Cache Accesses

The key insight underlying our adaptive compression policy is that the LRU stack depth [89] and com-
pressed line sizes determine whether compression helps or hurts a given reference. As an example,
Figure 4-1 illustrates the LRU stack of a single cache set, where a stack depth of 1 indicates the most
recently used line. In our decoupled variable-segment cache design, only the top half of the stack (i.e., the
most recently used four lines) would be in the cache without compression. Lines in the bottom half only
exist in the cache because of compression. Based on the cache lines in Figure 4-1, we next classify cache

references (hits and misses) according to whether compression helps or hurts these references.

54
Classification of hits:

» A reference to Address A hits at stack depth 1. Because the set can hold four uncompressed lines and
the LRU stack depth is less than or equal to four, compression provides no benefit. Conversely, since
the data is stored uncompressed, the reference incurs no decompression penalty as we bypass the

decompression pipeline for uncompressed lines. We call this casgpamnalized hit

» A reference to Address C hits at stack depth 3. Compression does not help, since the line would be
present even if all lines were uncompressed. Unfortunately, since the block is stored in compressed

form, the reference incurs an unnecessary decompression penalty. We call thiseredzed hit

« Areference to Address E hits at stack depth 5. As only the top four lines would have been in the cache
without compression, this reference is a hit only because of compression. In this case, compression has

eliminated a miss that would otherwise have occurred. We call this caseidad miss

Stack Depth Address Tag CStatus CSize (Segments) Permissions

1 A Uncompressed 2 Modified
2 B Uncompressed 8 Modified
3 C Compressed 4 Modified
4 D Compressed 3 Modified
5 E Compressed 2 Modified
6 F Compressed 7 Modified
7 G Uncompressed 5 Invalid

8 H Uncompressed 6 Invalid

FIGURE 4-1. A cache set example

Address tags are shown in LRU order (Address A is the most recent). The first six tags corresponds tg lines in
the cache, while the last two correspond to evicted lines (Permissions = Invalid). Addresses C, D, E and F are
stored in compressed form.

55
Classification of misses:

« A reference to Address G misses in the cache, but matches the address tag at LRU stack depth 7. The
sum of the compressed line sizes at stack depths 1 through 7 totals 29. Because this is less than 32 (the
total number of data segments per set), this reference misses only because one or more lines at stack
depths less than 7 are stored uncompressed (i.e., Address A could have been stored in two segments).

Since compression could have helped avoid a miss, we call this cageidable miss

« Areference to Address H misses in the cache, but matches the address tag at LRU stack depth 8. How-
ever, this miss cannot be avoided because the sum of compressed sizes for stack depths 1-8 exceeds the
total number of segments available (i.e., 35 > 32). Similarly, a reference to Address | does not match
any tag in the cache set, so its LRU stack depth is greater than 8. We call both of these cases an

unavoidable miss

While we assume LRU replacement in this dissertation, any stack algorithm—including random [89]—
will suffice. Moreover, the stack property only needs to hold for lines that either do or might have fit due to
compression (e.g., LRU stack depths 5-8 in the example of Figure 4-1). We can use any arbitrary replace-

ment policy for the top four elements in the “stack.”

In our adaptive compression scheme, the cache controller uses the LRU state and compression tags to clas-
sify each L2 reference. The avoidable miss calculation can be implemented using a five-bit parallel adder
with 8:1 multiplexors on the inputs to select compressed sizes in LRU order. To save hardware, a single
carry-lookahead adder can be time-multiplexed, since gathering compression information is not on the crit-
ical path, and the data array access takes longer than the tag access. We use the above classification of hits
and misses to monitor the actual effectiveness of cache compression. We next describe our adaptive predic-
tor that uses this information to dynamically determine whether to store a line in a compressed or uncom-

pressed form.

56
4.2 Compression Predictor

Like many predictors, the adaptive compression policy uses past behavior to predict the future. Specifi-
cally, the L2 cache controller uses the classification in the previous section to update a global saturating
counter—called the Global Compression Predictor (GCP)—to aggregate the recent history of compression
benefit minus cost. On a penalized hit (a compression cost), the controller biases against compression by
subtracting the decompression penalty. On an avoided or avoidable miss (a compression benefit or poten-
tial benefit), the controller increments the counter by the (unloaded) L2 miss penalty. To reduce the counter
size, we normalize these values to the decompression latency, subtracting one and adding the miss penalty

divided by decompression latency (e.g., 400 cycles / 5 cycles = 80).

The L2 controller uses the GCP when allocating a line in the L2 cache. Positive values mean compression
has been helping eliminate misses, so the L2 controller stores the newly allocated line in compressed form.
Negative values mean compression has been penalizing hits, so the controller store the line uncompressed.
All allocated lines—even those stored uncompressed—must run through the compression pipeline to cal-

culate their compressed size, which is used in the avoidable misses calculation.

The size of the saturating counter determines how quickly the predictor adapts to workload phase changes.
The results in this dissertation use a single global 19-bit counter that saturates at 262,143 or -262,144
(approximately 3300 avoided or avoidable misses). Using a large counter means the predictor adapts
slowly to phase changes, preventing short bursts from degrading long-run behavior. On the other hand, a
small counter can quickly identify phase changes. Section 4.5.8 examines the impact of workload phase
behavior on the predictability of cache compression. We next evaluate the performance of this global adap-

tive compression policy.

57
4.3 Evaluation

We present an evaluation of adaptive compression on a dynamically-scheduled out-of-order uniprocessor
system. We use full-system simulation of commercial workloads and a subset of the SPECcpu2000 bench-
marks. The workloads we use in this chapter are the same as those of Section 3.2.1. We ran warmed up the
benchmarks as specified in the previous chapter. We then ran apache, zeus, oltp, and jbb for 3000, 3000,
300 and 20000 transactions, respectively. We also ran SPEC2000 benchmarks for one billion instructions

after the warm interval. We summarize our simulated system parameters next.

4.3.1 System Configuration

We evaluated the performance of our compressed cache designs on a dynamically-scheduled SPARC V9
uniprocessor using the Simics full-system simulator [88], extended with the Multifacet General Execution-
driven Multiprocessor Simulator [130]. Our target system is a superscalar processor with out-of-order exe-

cution. Table 4-1 presents some of our basic simulation parameters.

4.3.2 Three Compression Alternatives

To evaluate the effectiveness of adaptive compression, we compare it with two extreme peéeiesind

Always Nevermodels a standard 8-way set associative L2 cache design, where data is never stored com-
pressedAlwaysmodels a decoupled variable-segment cache (Section 3.4) that always stores compressible
data in compressed form. ThN&verstrives to reduce hit latency, whildwaysstrives to reduce miss rate.
Adaptiveuses the policy described in Section 4.2 to utilize compression only when it predicts that its bene-

fits outweigh decompression overheads.

58
TABLE 4-1. Uniprocessor Simulation Parameters
Split 1 & D, each 64 KB 4-way set associative with LRU replacement, 64-byte

L1 Cache Configuration _ _
line, 3-cycle access time

Unified 4 MB (unless otherwise specified), 8-way set associative with LRU
L2 Cache Configuration replacement for both compressed and uncompressed caches (compressed

caches have double the number of sets), 64-byte lines,

Uncompressed caches have a 10-cycle bank access latency plus a 5-cycle|wiring
L2 Cache Hit Latency delay. Compressed caches add a 5-cycle decompression overhead for com-

pressed lines.

.) 4 GB of DRAM, 400 cycles access time with a 50 GB/sec. memory bandwifdth,
Memory Configuration)))
16 outstanding memory requests (including prefetches).

)) 4-wide superscalar, 11-stage pipeline—Pipeline stages: fetch (3), decode|(4),
Processor Configuration .
schedule (1), execute (1 or more), retire (2).

IW/ROB 64-entry instruction window, 128-entry reorder buffer.
4 KB YAGS direct branch predictor [38], a 256-entry cascaded indirect branch

Branch Predictors

predictor [35], and a 64-entry return address stack predictor [67].

4.4 Compression Performance

In this section, we present performance results for the three compression altermégivesAlwaysand

Adapt For each data point in our results, we present the average and the 95% confidence interval of multi-
ple simulations to account for space variability [8]. Our runtime results for commercial workloads repre-
sent the average number of cycles per transaction (or request), whereas runtime results for SPEC
benchmarks represent the average number of cycles per instruction (CPI). We evaluate cache miss rates,
performance and the effect of compression on the number of bits read and written (as an indirect measure

of dynamic power).

4.4.1 Cache Miss Rate

Using compression to increase effective cache capacity should decrease the L2 miss rate. Figure 4-2 pre-

sents the average miss rates for our set of benchmarks. The results are normaligeelrto focus on the

59
benefit of compression, but the absolute misses per 1000 instructioNsverare included at the bottom.

Both Alwaysand Adaptivehave lower or equal miss rates when comparebléwerwith one exception,
ammp. In the next section, we show that ammfdaptivepolicy predicts that no compression compares
favorably to compression. Whekxdaptivepredicts no compression, the effective L2 cache configuration is
a 4 MB, 4-way set associative cache, as compared to a 4 MB, 8-way set associative caheforhis
difference in associativity accounts for the small increase in the miss rafeléptivewhen compared to

Neverin ammp (about 0.2%).

Not surprisingly, the commercial benchmarks achieve substantial benefits from compression, reducing the
miss rates by 4-18%. Some other benchmarks achieve significant reductions in miss rate (e.g., mcf’s miss
rate decreases by 15%). Benchmarks with small working sets (e.g., twolf) get little or no miss rate reduc-

tion from compression. The four floating-point benchmarks, despite very large working sets, do not benefit

1.0+

B Never
0.5 — N Always
[] Adaptiv

Normalized Miss Raie

0.0-

13 29 399 50 02 157 111 416 157 153 36 39
bzip gcc mcf twolf ammp applu equake swim apache zeus oltp jbb

FIGURE 4-2. L2 cache miss rates (misses per thousand instructions) for the
three compression alternatives. Miss rates are normalized to tidevermiss
rate (shown at the bottom)

60
from compression (except for ~4% for equake) due to the poor compression ratios that our compression

algorithm achieves for floating-point data.

4.4.2 Performance

The ultimate objective of adaptive cache compression is to achieve performance that is comparable to the
best ofAlwaysandNever Reducing the cache miss rate Adwaysdoes for some benchmarks, may be out-
weighed by the increase in hit latency. Figure 4-3 presents the simulated runtime of our twelve bench-
marks, normalized to thBlevercase. Most of the benchmarks that have substantial miss rate reductions
underAlwaysalso improve runtime performance (e.g., a speedup of 18% for apache, 7% for zeus, and 34%
for mcfl). However, the magnitude of this improvement depends upon the absolute frequency of misses.
For example, jbb and zeus have similar relative miss rate improvements, but since zeus has more than four

times as many misses per instruction, its performance improvement is greater. On the other hand, bench-

1.0+
[«5}
=
=
7 B Never
§ N Always
g 0.5 — [] Adaptive
<]
=

bzip gcc mcf twolf ammp applu equake swim apache zeus oltp jbb

FIGURE 4-3. Runtime for the three compression alternatives, normalized to the
Neverruntime

61
marks with smaller working sets (e.g., gcc, twolf, ammp) do not benefit from bigger cache capacity. For

example,Alwaysdegrades performance compared\teverby 16% for ammp, 5% for gcc and 4% for

twolf.

Figure 4-3 also shows thaaptiveachieves the benefit éflwaysfor benchmarks that benefit from com-
pression. In addition, for benchmarks that do not benefit from compression, it degrades performance by
less than 4% compared iever The 4% is in the case of ammp due to the lower associativibadlaptive

compared tiNever

In summary, while some memory-intensive benchmarks benefit significantly from compression, other
benchmarks receive little benefit or even degrade significantly. For our benchidagsiveachieves the

best of both worlds, improving performance by using compression when it helps, while not hurting perfor-
mance (except marginally) when compression does not help. We next discuss the implacaysfand

Adaptiveon the number of bits read and written from/to the L2 cache.

4.4.3 Bit Activity level

Our adaptive cache compression scheme specifically targets being close in performance to the best of
Alwaysor Never However, it does not specifically adapt to other system aspects such as power or cache
bandwidth. While doing a complete study of the impact of cache compression on power is beyond the
scope of this dissertation, we present a study of bits read and written from/to the L2 cache as an indirect
measure of dynamic power. This study doesn'’t take into account the power savings due to avoiding cache

misses.

1. We note that some benchmarks (e.g., mcf in this section, and others in later sections) have super-linear speedups that are higher
than expected from the reduction in miss rate. This is attributed to compression decreasing the miss rates to a degree where the
number of outstanding misses (i.e., number of MSHRS) is not a bottleneck. A miss rate of ~40 per 1000 instructions for mcf
mean a near 100% utilization of MSHRs, since each miss penalty is 400 cycles. Compression helps reduce miss rates to a point

where utilization is significantly lower.

62

N

g

%]

g] B Never

%] N Always
3 [] Adaptive
N 1+ —

E 4

£

()

Z

bzip gcc mcf twolf ammp applu equake swim apache zeus oltp jbb

FIGURE 4-4. Bits read and written from/to the L2 cache for the three compression
alternatives, normalized to theNevercase

Figure 4-4 shows the number of bits read and written from/to the L2 cache for the three compression alter-
natives, normalized tblever Compression can increase the number of bits read and written since alloca-
tions may require repacking, i.e., reading all lines in a cache set and writing an aligned, compact version of
it back. This increases the number of bits read and written compaiéeMerfor many benchmarks, by up

to 164% for applu and 133% for equake. Other than these two benchmarks, only apache, zeus and specjbb

show increases of more than 10% in bits read/written (46% for zeus).

We further studied the percentage of cache allocates in which repacking is needed. Figure 4-5 shows such
percentage foAlways The percentage of repacks required is at its highest for twolf and ammp, but their
impact on power (in terms of number of bits read/written) is minimal since the absolute number of cache
allocations is small. The two benchmarks with the most increase in bits read/written are applu and equake,
whose repack percentages are 37% and 36%, respectively. However, since the absolute number of alloca-

tions is large, the impact of such percentage on bits read/written is significant.

63

B Repacking Not Needed
Repacking Set Needed

Cache Allocate %

/S S/
I/l S/

e B 0 P R P S D L S & O
T F gV & & F P

bzip gcc mcf twolf ammp appluequake swim apache zeus oltp jbb

FIGURE 4-5. Percentage of cache allocations that require repacking féxlways

The absolute number of allocations (in thousands) is shown at the bottom

Our adaptive compression policy did not take the metric of cache set repacking into account when updating
the predictor. However, the policy can be slightly modified to bias against compression when a repacking
event occurs. In this case, the predictor can be decremented by the number of cycles required to read, mod-
ify and write a whole cache set (normalized to decompression penalty). While we did not implement such
policy in this dissertation, we anticipate it will cause applu and equake to ad&f@vey avoiding such

high bit activity level. Furthermore, this policy will not affect benchmarks that benefit from compression
since the benefit clearly outweighs the cost (even when adding the cost of repacking) in all such bench-

marks.

4.5 Sensitivity Analysis

The effectiveness of cache compression depends upon the interaction between a workload’s working-set
size and the caches’ sizes and latencies. Adaptive cache compression is designed to dynamically adjust its

compression decisions to approach the performance of the better of the two static pdlicgsand

64
Never In this section, we investigate how wéltlaptiveadjusts to changes in L1 and L2 cache sizes and

associativities, memory latency, decompression latency, prefetching, cache line size and benchmark
phases. We vary a single parameter in each of the following subsections while keeping the remaining
parameters constant. We focus on three benchmarks where compression helps (mcf, apache, zeus) and

three where compression hurts (ammp, gcc, twolf).

4.5.1 L1 Cache Size and Associativity

The effectiveness of L2 cache compression depends on the overhead incurred decompressing lines on L2
hits. Since the L1 cache filters requests to the L2, the L1 cache size impacts this overhead. As the L1 size
(or associativity) increases, references that would have hit in the L2 can be satisfied in the L1. Thus the
decompression overhead tends to decrease. Conversely, as the L1 size (or associativity) decreases, the L2
incurs more penalized hits due to the increased number of L1 misses. Figure 4-6 illustrates this trade-off

for a 4 MB L2 cache, assuming a fixed L1 access latency.

For our set of benchmarks and configuration parameters, increasing L1 size has very little impact on the
relative benefit of compression. Only mcf’'s performance is slightly degraded (by approximately 1%) for
Alwayswith the smaller L1 cache compared to the original 128K L1 cache. The figure also shows that L1

associativity has little impact on the performance of compressed caches.

45.2 L2 Cache Size

Cache compression works best when it can increase the effective L2 cache size enough to hold a work-
load’s critical working set. Conversely, compression provides little or no benefit when the working set is
either much larger or much smaller than the L2 cache size. Figure 4-7 illustrates this phenomenon by pre-

senting normalized runtimes for various L2 cache sizes, assuming a fixed L2 access latency.

65

Normalized Runtime Normalized Runtime Normalized Runtime Normalized Runtime Normalized Runtime

Normalized Runtime

1.0

K/4 128K/4 56K/4 128K/1 128K/4 128K
10.2 7.2 4.9 31 7.0 55 4.9 4.7
Zeus
32K/4 64K/4 128K/4 256K 74 128K71 128K /2 128K/4 128K/8
155 11.0 75 4.7 12.3 8.6 7.5 7.2

mcf

56K/4

10.0

128K/1
10.9

128K
10.8

128K/4
10.8

10.9

K12 128K /4
8039 8064 8252 8433 8189 8229 8252 8247
cc
1.0 9
05
0.0 RIZ — 128RIZ — 256R/A — 128K/ 128K T28R/Z
471 447 438 439 463 447 438
twolf
1.0
05 —
0.0 -53K/a— 64R/A :EMK T 256KR/A :EWK T 128K/2 128K/Z ﬂu&(—
346061 323288 201688 276884 366642 315270 291688 270163

FIGURE 4-6. Sensitivity to L1 cache size and associativity of the three compression
alternatives. The number of penalized hits per avoided miss féklwaysis shown at the

bottom

N

Eg =
128KI8
434

== Never
o= Always
= Adaptive

== Never
o= Always
= Adaptive

== Never
o= Always
= Adaptive

== Never
o= Always
= Adaptive

== Never

= Adaptive

== Never
o= Always
= Adaptive

66

(0]
£ apache
n'? == Never
§ 0.5 w Always
é = Adaptive
<23 0.0 —-256K78 512K78 1M/ 2M/8 aM/8 8M/8 16M/8
34 76 14.1 121 4.9 38 8.2
()
£ 10 ZEeUS
S
x == Never
'§ 0.5 == Always
é = Adaptive
s 0.0 258K 512K ™ M M M 6MB
2.9 6.6 115 10.9 75 35 47
()
£ mcf
= 1.0
x == Never
E 05 = Always
g = Adaptive
<23 0.0 —-256K78 512K78 1M/ 2M/8 AMTS 8M/8 16M8
5.9 5.8 3.3 2.9 10.8 80.7 6631841
()
£ ammp
E 10
x == Never
8 os = Always
g = Adaptive
s 0.0 258K ™ M M T6MB
0.9 11 5.8 8252 164923 1722811
()
£ cC
E 1.0
=}
x == Never
§ 05 == Always
é = Adaptive
<23 0.0 —-256K78 512K78 1M/ 2M/8 AMTS 8M/8 16M8
0.0 0.4 57.1 404 438 1497 3295
()
£ twolf
2 1.0
03: == Never
8 05 == Always
é = Adaptive
s 0.0 258K 512K ™ M M M T6MB
16 21 10.1 4102 201688 18376267 18376156

FIGURE 4-7. Sensitivity to L2 cache size of the three compression alternatives. Thie
number of penalized hits per avoided miss foAlwaysis shown at the bottom

67
For benchmarks that were hurt by compression for a 4 MB L2 cache (ammp, gcc and twolf), compression

helps performance for smaller cache sizes. This is due to compression allowing the L2 cache to hold more
data (e.g., compression allows gcc to hold an average of ~1 MB in a 512 KB L2, resulting in more than a
3x speedup). However, compression hurts performance for larger cache sizes, since compression increases
the hit latency but doesn’t significantly increase the effective cache size. At the other extreme, mcf, apache
and zeus benefit more from compression for larger caches (2 to 16 MB), since the working set is too large
to fitin the smaller cache sizes, even with compression. For all cadaptiveadapts its behavior to match

the better ofAlwaysandNever

4.5.3 L2 Cache Associativity

Our cache compression proposal helps performance when it is able to increase the effective cache size.
Since we are comparing to an uncompressed cache with the same associativity as a fully-compressed
cache, L2 associativity plays an important role in the performance of cache compression. For caches with

low associativities (e.g., 2-way set associative caches), a compressed cache has—in effect—a lower asso-
ciativity than an uncompressed cache. For example, we compare a 1-2 way set-associative compressed
cache to a 2-way uncompressed cache. Such associativity can be too low and can cause many more conflict
misses for most benchmarks. When cache associativity is high, reduction in associativity has a lower

impact on the performance of compressed caches.

Figure 4-8 illustrates the impact of L2 cache associativity on the relative performaAtsafsandAdap-

tive compared tdNever For benchmarks that are helped by compression (on the left hand side), compres-
sion’s benefit increases for higher associativities. For example, mcf has a speedup of 70% for 16-way set
associative caches compared\iever However, that trend does not hold for high associativities for bench-

marks that are hurt by compression (on the right hand side).

68

Normalized Runtime Normalized Runtime

Normalized Runtime

apache
1.0
i B Never
0.5 — N Always
O Adaptive
0.0-
\/ ¥ N \Z
6.1 55 49 45
Zeus
1.0
i B Never
0.5 —— N Always
O Adaptive
0.0-
\/ ¥ N \Z
7.1 74 75 74
mcf
1.0
] B Never
N Always
] 0O Adaptive
0.5+ P
0.0-
\/ ¥ N \Z
6653 228 108 9.1

FIGURE 4-8. Sensitivity to L2 cache associativity of the three compression
alternatives. The number of penalized hits per avoided miss foAlwaysis shown at the

bottom

Normalized Runtime Normalized Runtime

Normalized Runtime

154
1.0

05-

0.0-

1.0

0.5+

0.0-

1.0+

0.5+

0.0-

ammp
W% \a Qo ©
N A\ N N
104 510 8252 8994
gce
W\ \a Qo ©
N A\ N N
362 523 438 485
twolf
W% \a Qo ©
N A\ N N

3458 15024 291688 3675261

B Never
N Always
O Adaptive

B Never
N Always
O Adaptive

B Never
N Always
O Adaptive

69
Figure 4-8 also clearly shows that compression is ineffective when the associativity is low (e.g., 2-way).

Even for benchmarks that are helped by compression for 8-way set associative caches, compression hurts
for 2-way caches. This is due to the fact that compressed caches decrease the effective associativity, caus-
ing an increase in conflict misses that exceeds the decrease in misses due to compression. This is exacer-
bated for benchmarks that are hurt by compression. The extreme example in our experiment is ammp, in
which Alwaysincreases the number of misses by 7%. Combined with decompression overheads, this
causes a 51% slowdown comparedNiever Even worseAdaptiveadapts td\ever thus negating the per-
formance gains due to the increased cache size, while still increasing the number of misses due to reducing
associativity. The net increase in missesAalaptiveis 27% compared tdlever which causes a relative
slowdown of 70%. This shows a weakness in our adaptive model which only considers avoided misses due
to compression, and not additional misses due to reduced associativity caused by our compressed cache
design. We do not consider reduced associativity since our decoupled variable-segment cache can only
hold half the uncompressed lines per cache seAdaptiveis comparing the performance of a 2-way com-

pressed cache to that of a direct-mapped uncompressed cache in this case.

4.5.4 Memory Latency

As semiconductor technology continues to improve, processors may use faster clocks and deeper pipelines.
A consequence of this trend is that cache and memory latencies are likely to increase (in terms of processor
cycles), potentially decreasing the relative compression overhead (i.e., decompression latency) and
increasing the potential benefit (i.e., eliminating longer latency misses). On the other hand, with the trend
towards faster clocks slowing down, memory speeds may get to be smaller (in terms of cycles) compared
to what they are now. We analyze the sensitivity of cache compression to both higher and lower memory

latencies in Figure 4-9.

70

(O]

£

5

x == Never

B —— o= Always
N .
= = Adaptive
e

S 600 700 800

2 4.9 49 4.9

(O]

£ 10 zeus

5

x == Never

B —— o= Always
N .
= = Adaptive
e

S 600 700 800

< 75 75 75

(]

£

g

x == Never

B = Always
N .
® = Adaptive
£

(@]

pd

[&]

£

5

x == Never

) = Always
N .
= = Adaptive
e

o)

pd

(O]

£

g

x == Never

B o= Always
N .
= = Adaptive
£

(@]

pd

(0]

£

= 10 —

)

x == Never

B 05 L o= Always
N .
= = Adaptive
£ 0.0

§ : 200 300 400 500 600 700 800

291685 291685 291688 291689 291683 296388 291688

FIGURE 4-9. Sensitivity to memory latency of the three compression alternatives.
The number of penalized hits per avoided miss foAlwaysis shown at the bottom

71
For benchmarks that benefit from cache compression, performance benefits are smaller for the shorter

memory latencies, and are larger for the longer memory latencies. In mcf, for example, compression
speeds up performance by only 18% for a 200-cycle memory latency, and by 49% percent for a 800-cycle
memory latency. On the other hand, performance of benchmarks that are hurt by compression varies
slightly with a change in memory latency (e.g., less than a 2% swing in relative performaide/éysin

ammp). This phenomenon is due to the fact that such benchmarks have very few misses, and therefore
penalized hits dominate performance. We note also that in all cAdaptiveadapts its behavior to match

the better ofAlwaysand Never(again with the notable exception of ammp where it is 4% slower than

Neve).

4.5.5 Decompression Latency

All cache compression schemes are highly sensitive to the decompression latency. Larger decompression
latencies decrease the appeal of cache compression by increasing the effective access latency. On the other
hand, smaller decompression latencies increases the benefits due to compression. We study the sensitivity
of the three compression alternatives to decompression latency in Figure 4-10, where decompression laten-

cies vary from 0 to 25 cycles.

For benchmarks that benefit from compression, speedup increases—as expected—when the decompres-
sion penalty is low and decreases when it is high. In rAbfjaysspeeds up performance by 40% for a O-

cycle decompression overhead, but by only 19% for a 25-cycle overhead. On the other hand, benchmarks
that are hurt by compression are penalized moré\faayswhen the decompression latency is high (e.qg.,
ammp’s performance is slowed down by 83% for a 25-cycle overhead, compared to 16% for a 5-cycle
overhead). However, small changes in decompression latency do not have a significant impact on perfor-

mance, since we simulate an out-of-order processor that can partly hide cache latency. Figure 4-10 also

72

Normalized Runtime Normalized Runtime

Normalized Runtime

Normalized Runtime Normalized Runtime

Normalized Runtime

10 *—x—*—%«—;«——*——*——a@agh—e——x— —————— H———— X
T Al e St e A & e s e R e never
’ ---o-- aways
0.6 - -A— - adapt
r— 71 - - 1 - - 1 T 1T T 1
0 5 10 15 20 25
1.0 - XX X XN — e —— e — OIS o HX——— X
PSP OUIEP SRy SERTRY STSSEEESY S il e el 1= < §
0.9 ---e-- dways
— -A— adapt
0.8 | ! ! ! ! | ! ! ! ! I ! ! ! ! I ! ! ! ! I ! ! ! !]
0 5 10 15 20 25
1.0 —x—><——x—x——x—x———*——->e———m£f———>e —————— S X
o geiiaiiiece-----@ T nEver
08 IIPSRPSEPIRr S SRS S 5 it el * *-- aways
0.6 ~ 4 adapt
| I I I]
0 5 10 15 20 25
ammp e
1 o
54 - —>— never
: o----@ - N . e aways
] o--0-® 9 A A ————Ah———— T AT T T .
10 T#’é&;;c:*__ —— —-—9‘6——9‘6_————% —————— > X - adapt
- - r - - - 1 - - 1 1T T - - 1
0 5 10 15 20 25
gcc e
124 e o
' o --® T e —»— never
T . S A- - --e-- dways
MR EPEPSE B 4SS SO ke S - X ————— X ot
038 I T T T T I T T T T I T T T T I T T T T I T T T T 1
0 5 10 15 20 25
twol f
24 P ®
JUNIUPOISRP SRS S ¢ —>— never
10 m;g;-*.‘_H-——*_—‘—’*‘—"———x———'-—"—————— — ———_—_—_—_—_—* --9-- aIWayS
— - adapt
0.8 | ! ! ! ! | ! ! ! ! I ! ! ! ! I ! ! ! ! I ! ! ! !]
0 5 10 15 20 25
 Decompression Latency (Cycles)]
FIGURE 4-10. Sensitivity to decompression latency of the three compression
alternatives. Decompression latency ranges from O cycles (perfect) to 25 cycles

73
show thatAdaptiveadjusts to changes in decompression latency, and therefore achieves performance com-

parable to the better élwaysandNever

4.5.6 Prefetching

Hardware prefetching is a technique that is used in many modern processors to hide memory latency.
Hardware-directed stride-based prefetchers make use of repeatable memory access patterns to avoid some
cache misses and tolerate cache miss latency [26, 96]. Current hardware prefetchers [58, 116, 117] observe
the unit or fixed stride between two cache misses, then verify the stride using subsequent misses. Once the
prefetcher reaches a threshold of strided misses, it issues a series of prefetches to the next level in the mem-
ory hierarchy to reduce or eliminate miss latency. Since compression is another technique used to hide
memory latency, we studied the sensitivity of compression speedups to whether prefetching was imple-

mented or not. We present a more detailed study for chip multiprocessors in Chapter 6.

We implemented a strided L1 and L2 prefetching strategy based on the IBM Power 4 implementation [116,
117] with some minor modifications, which we discuss in more detail in Chapter 6. Figure 4-11 shows how
prefetching impacts the performance benefit due to compression. For most benchmarks, the only apparent
difference in performance is the increase in the number of penalized hits per avoided miss when prefetch-
ing is implemented. For example, apache’s penalized hits per avoided miss increases from 4.9 to 9.0 with
both L1 and L2 prefetching. This is expected since prefetching avoids some of the misses that could have
been avoided by compression, thus reducing compression’s share of avoided misses. However, the relative
speedup of cache compression is almost the same compaxeyeoregardless of whether prefetching is

implemented.

The only exception to the above observation is gcc, where prefetching calveags and Adaptiveto
achieve a small speedup as compared to a slowdown in the chlsvef This is cause by L1 prefetching

triggering L2 fill requests from memory at a higher rate compared to gcc’s original miss rate. Prefetching

74

Q
E
=

)}
o
3
N
©

£

o
Z

Normalized Runtime Normalized Runtime Normalized Runtime Normalized Runtime

Normalized Runtime

1.0

05

0.0 No_P

B\

&

Z

Bot
11.4

a

10.8

10.6

10.8

Z

8252

10.6

8158

ammp

7864

%

438

L2 Pl
7970
gce
L2 Pl
468
twolf

&

No P!
291688

FIGURE 4-11. Sensitivity of compression benefit to L1 and L2 prefetching. The
number of penalized hits per compression-avoided miss is shown at the bottom

325

262490

>

L2 |
189474

Bot
162614

=== Never
==z Always
== Adaptive

= Never
=== Always
—= Adaptive

=== Never
==z Always
== Adaptive

= Never
=== Always
—= Adaptive

=== Never
==z Always
== Adaptive

= Never
=== Always
—= Adaptive

75
therefore increases the L2 cache footprint (or working set size) of gcc to greater than 4 MB. Since com-

pression can increase the effective cache size, it can alleviate some of the increased demand on the L2
cache and therefore speed up gcc’s performancalfeaysand Adaptivecompared tdNever We discuss

similar interactions between compression and hardware prefetching in Chapter 6.

45.7 Cache Line Size

We evaluated the performance of cache compression for 64-byte cache lines. However, some modern pro-
cessors have longer lines in their L2 cache as a technique to tolerate memory latency at the expense of
increasing demand on memory bandwidth. Shorter cache lines increase the number of misses, while longer
cache lines increase the required chip-to-memory bandwidth. We studied the sensitivity of cache compres-

sion’s performance to various cache lines sizes (16, 32, 64, 128 and 256) in Figure 4-12.

For most benchmarks, compression provides a bigger benefit for the small cache line sizes. For example,
twolf shows a 68% speedup due to compression for 16-byte line sizes. This is because compression signif-

icantly reduces the absolute number of misses, thus improving performance.

Longer cache lines do not follow a single trend regarding the impact of compression on performance. In
some cases, longer lines tend to decrease the performance benefit because of compression. For example
Alwaysachieves only a 5% speedup for 128-byte lines, and a 6% slowdown for 256-byte lines in the mcf
benchmark. However, this comes at the expense of increased bandwidth (more than 5x from 64 to 256-byte
lines). In some other cases (e.g., apache and zeus), longer cache lines increase the performance benefit due
to compression (e.g., 22% for 128-byte lines and 39% for 256-byte lines in zeus, compared to 7% for 64-
byte lines). This is because the absolute number of misses is lower for larger cache line sizes, which
inflates the relative improvement due to compression for these benchmarks. In allAdessyeadapts

its behavior to match the betterAlfivaysandNever(again except for long cache lines in ammp).

76

Normalized Runtime Normalized Runtime Normalized Runtime Normalized Runtime Normalized Runtime

Normalized Runtime

apache
=== Never
—— o= Always
== Adaptive
1 5 —
0.37 0.57 1.0 1.57 2.54
zeus
=== Never
—— o= Always
== Adaptive
1 5 —
0.36 0.57 0.98 1.57 2.55
mcf
=== Never
L o= Always
== Adaptive
1 5 —
3.05 8.34 16.75
ammp
10 —
=== Never
05 S S Alwa){s
== Adaptive
0.4 0.51 0.05 0.1 0.13
CcC
=== Never
o= Always
== Adaptive
0.39 0.81
twolf
10
=== Never
0.5 o= Always
== Adaptive
0.0 »
0.56 1.29 2.26 3.73 6.0
FIGURE 4-12. Sensitivity to cache line size of the three compression alternatives.
We assume almost infinite off-chip bandwidth available
The actual bandwidth (in GB/sec.) requiredXaveris shown at the bottom

77

i D--D--D-D—D—D—D—D—D—D—-D--D.C\q ’R
200
i ,' AN [X
I | LY RN
~ 100 I | | ||
g AT B I \
S | i A} | Y
g/ 0 ||||||||| T |" T |'| T T T , T T T T T T T T T T T T \J"D-D_é—l—l—hﬁ
S \ t " ? 3 4
O 100 \\ ,' || 'l
I I
2004 | | || ,l
[!I—D—D—-D--D-D-D—D—D—D—f!l |!I—D-~fj
(a)
8- Q-O—O—O—O—O—O—O--O--O-O—O—O—O—O—O-O-Q\ p—O—O—O
/ 2
m / \b/ \O'
2 6- é
8 /
(9]
2 4 p-o-o—C!
8] <
O o©
.g ,o’o’d
g 2- o
B |
/
0“.'(""""" T T T |
0 1 2 3 4
Time (Billion Cycles)
(b)
FIGURE 4-13. Phase Behavior for gcc with adaptive compression
(a) Changes in the Global Compression Predictor (GCP) values over time;
(b) Changes in effective L2 cache size over time

4.5.8 Benchmark Phases
Many benchmarks exhibit phase behavior [106], and a benchmark’s working set size may change between

different phases. Such changes can affecttti@ptivepolicy, since the past (the previous phase) may not

be a good predictor of the future (the next phase). On the other hand, adaptive compression can outperform

78
both AlwaysandNeverfor benchmarks with a changing working set size where neither extreme policy is

the best all the time.

For our set of benchmarks, gcc had the most recognizable phase behavior. Figure 4-13 shows the changes
over time of the Global Compression Predictor values (Figure 4-13 (a)) and the effective cache size
(Figure 4-13 (b)) for a two-billion instruction run of gcc. Itis clear from the figure that gcc has two distinct
phases: A phase with a working set that is smaller than 4 MB (up to approximately 1.6 billion cycles), and

a second phase with a working set bigger than 4 MB. In the first pAakagtiveadapts td\ever(since

values of GCP are below zero) to avoid decompression overheads associatédwaigs In the second

phase, howeveAdaptiveadapts toAlways and the effective cache size shoots up to 8 MB to accommo-

date the bigger working set size. As a reséltaptive outperforms bothAlways and Never for gcc,

although by small margins (3% and 1%, respectively).

4.6 Discussion and Limitations

Evaluation of adaptive compression shows that our adaptive compression scheme adapts to benchmark
behavior, adapting thleverwhen compression hurts performance, and adaptidgwayswhen compres-

sion helps performance. With a few exceptioAgaptiveprovides performance that is very close to the
better of AlwaysandNever and outperforms both in some cases (Section 4.5.8). However, this adaptive
policy is a simple, global scheme with room for improvement. In this section, we discuss some of the pos-

sible improvements and limitations for adaptive compression.

4.6.1 Possible Extensions

Since our adaptive compression scheme is a simple, global scheme, it has room to improve predictor accu-

racy. We list some of the possible improvements below.

79
« We can build a distributed predictor where each cache bank has its own saturating counter that is used

to make compression predictions for that bank. This has the potential to help performance if different
cache banks show different compression characteristics (i.e., different ratios for penalized hits per
avoided miss). The number of bits per predictor should be adjusted to the ratio between the number of
bits in the global predictor to the number of cache banks since each instance of the predictor is likely to
be updated fewer times. In the general case, however, it is unlikely that such a distributed predictor will
have a significant impact on performance. On the other hand, it may be necessary to build such a dis-

tributed predictor to avoid wiring delay between the global predictor and different banks.

< A smaller, simpler predictor can be attached to each cache set. This can help performance since differ-
ent cache sets are likely to have different compression characteristics. While compression can help
reduce miss rate for some cache sets, it can also hurt by increasing miss rates for other sets. However,
a per-set predictor can significantly increase the overhead for each cache set in terms of area, power
and bandwidth. The area and power increases are due to the additional predictor bits, as well as the cir-
cuitry required to update all predictors. Updates to multiple predictors may also place additional con-

straints on cache bank bandwidth.

« For heterogeneous multi-threaded applications, different applications might have different working set
sizes that can be affected by compression in different (and sometimes opposite) ways. Having separate
predictors for different threads can improve performance by avoiding compression for threads that are
hurt by it, and compressing data for threads that benefit from it. However, it is not clear that such a pre-
diction strategy is going to be effective since all threads share the same cache. The compression policy
of one thread can affect the performance of another thread (e.g., a thread that is hurt by compression
can store uncompressed lines where the space used by such lines could have been used by another
thread that benefits from compression). In addition, such a predictor will require maintaining thread

information (e.g.,. thread IDs) for L2 cache lines.

80
In order to estimate the potential benefits possible from any of these extensions, we studied a pseudo-ideal

compression scheme in the next section.

4.6.2 Ideal Compression

Our adaptive compression scheme maintains a single predictor for the whole L2 cache. Similar to branch
predictors, the accuracy of our global compression predictor can be improved, as discussed in the previous
section. However, it is not clear that even a perfect predictor will lead to much improvement in perfor-

mance. In this section, we study the limitations of a perfect compression predictor.

An ideal compression predictor would base its cache line allocation predictions on perfect knowledge of
future accesses for every cache set. Unfortunately, simulating such a predictor requires prohibitive simula-
tion time, since each prediction needs to compare the outcome of simulation for both cases (i.e., allocating

a compressed or an uncompressed cache line). Another easier-to-implement upper bound on performance

P PPy yyyyyyyress i

A N
1.0 \ \ =
N \ \ \ , \ \
T \ \ \ \ \ \
° 1IN \ \ \ \ \ \
g \ \ \ \ \ \ \
= il \ \ \ \ \ \ \ B Never
2 \ \ \ \ \ \ \
= 1S \ \ : : : : N Always
o \ \ \ -
= 050 - \ \ N LAY B [Adaptive
S B\ \ \ N \ \ \
\ \ \ \ \ \ \
1 \ \ \ \ N \
\ \ \ \ \ \ \
1 \ \ \ \ \ \
\ \ \ \ \ \ \
T \ \ \ \ \ \
\ \ \ \ \ \ \

YO O LYYy
PO O OO

0.0-

o

zip gcc mcf twolf ammp applu equake swim apache zeus oltp jbb

FIGURE 4-14. Normalized performance of the three compression alternatives
(Never Always Adaptivg, compared to an unrealistic pseudo-perfect compression
scheme'Optimal” that is similar to Alwayswith no decompression overhead

81
of such a perfect predictor is the performancedbfrayswith zero decompression overhead. Figure 4-14

compares the performance of our three compression alternatives with such pseudo-perfect compression

scheme.

Figure 4-14 shows that our adaptive compression policy achieves performance that is very close to the
unrealistic pseudo-perfect upper bound. TBgtimal” scheme achieves a speedup of 0-4.6% édap-

tive across all benchmarks. Only three benchmarks show improvements that are greater than 2% with
“Optimal” overAdaptive(4.6% for ammp, 4% for mcf, and 2.4% for gcc). For the remaining benchmarks,

the pseudo-perfect compression scheme had an insignificant impact on performance. Based on these
results, we find it hard to justify the additional hardware, area, power and bandwidth required for a more

accurate compression prediction scheme.

4.6.3 Limitations

Our adaptive compression scheme is built on top of a decoupled variable-segment L2 cache. Its perfor-
mance is limited by the limitations of our cache design. First, we assume Frequent Pattern Compression
(FPC) as our compression algorithm. Second, we are limited to double the number of lines for each cache
set compared to an uncompressed cache. Third, we assume only a two-level cache hierarchy. However, we

can also apply adaptive compression when these limitations are removed. We discuss such designs next.

Fully-associative cachesThe indirect-indexed cache and the V-Way cache are examples of recent propos-
als for fully-associative cache implementations [54, 55, 98]. For such schemes, the global replacement pol-
icy is responsible for classifying different types of cache misses (Section 4.1.2). Unfortunately, these
proposals do not maintain accurate replacement stack information. However, approximate information can
be used to update the compression predictor since it does not need to be completely accurate. For example,
the generational replacement algorithm in the Indirect Index Cache can be extended by adding more pools

to accommodate compressed cache lines [54]. An access to higher-priority pools can be considered a

82
penalized hit (for compressed lines), whereas an access to lower-priority pools can be considered an

avoided miss. Another coarse approximation can be implemented for the reuse replacement algorithm used
in the V-Way cache [98]. In this case, an access to a line whose reuse counter value is in the top half (e.g.,
2 or 3 for 2-bit reuse counters) can be considered a penalized hit. An access to a line with a reuse counter
value in the bottom half is considered an avoided miss with some probability that corresponds to the prob-
ability of evicting this line without compression. However, further study for these schemes is needed to

estimate their effectiveness.

Different compression algorithms.The implementation of adaptive compression is straight-forward with

a different compression algorithm. The only parameter that needs adjustment is the decompression penalty.
For compression algorithms with variable decompression penalties, a variable latency can be taken into
consideration in updating the compression predictor. Alternatively, an average can be used as an estimate
decompression penalty to minimize the predictor update overhead (since predictor updates can be coarsely

accurate).

Deeper cache hierarchiesOur adaptive compression scheme is implemented at the second-level cache in

a two-level cache hierarchy. We believe that compression at the L1 level has a high overhead and a negative
impact on performance. However, adaptive compression can be implemented at any other level of the

cache or memory hierarchy where compression can help or hurt performance. Adaptive compression has

been proposed for virtual memory systems as we discuss in the next section.

4.7 Related Work

Adaptive compression has been previously proposed for virtual memory management schemes. In such
systems, portions of main memory are compressed (and thus called compression caches) to avoid 1/0O oper-
ations caused by page faults. Douglis observes that different programs need compressed caches of different

sizes [34]. He implements a simple adaptive scheme that dynamically split main memory pages between

83
uncompressed and compressed portions. Both portions compete for the LRU page in memory. However, he

biases allocating a new page towards the compression cache. Cortes, et al., classify reads to the compres-
sion cache according to whether they were caused by swapping or prefetching, and propose optimized

mechanisms to swap pages infout [30].

Wilson, et al., propose dynamically adjusting the compressed cache size using a cost/benefit analysis that
compares various target sizes, and takes into account the compression cost vs. the benefit of avoiding I/Os
[129]. Their system uses LRU statistics of touched pages to compare the costs and benefits of target sizes,
and adjusts the compression cache size on subsequent page accesses. However, the adaptive compression
scheme we propose in this chapter is different since it is not restricted to specific compressed-cache quotas.
Freedman [49] optimizes the compression cache size for handheld devices according to the energy costs of

decompression vs. disk accesses.

84

85

Chapter 5

Cache and Link Compression for Chip
Multiprocessors

Chip multiprocessor caches experience greater capacity demand compared to uniprocessor caches since
they are shared among multiple processors. Such high demand can increase cache miss rates and conten-
tion for the limited off-chip pin bandwidth. A CMP design should balance processor cores, shared caches,
and off-chip pin bandwidth so that no single resource is the only bottleneck. In this chapter, we explore
using cache and off-chip interconnect (link) compression to more efficiently utilize the shared cache and

communication resources on a CMP.

Compression increases the effective cache capacity (thereby reducing off-chip misses) and increases the
effective off-chip bandwidth (reducing contention). On an 8-processor CMP with no prefetching, we show
that L2 cache compression improves commercial workloads’ performance, but has little benefit for scien-
tific workloads. We also show that adding link compression greatly reduces pin bandwidth demand for

most of our workloads.

We first present our Chip Multiprocessor design with cache compression support in Section 5.1. We then
motivate interconnect compression and discuss how to implement it on a CMP (Section 5.2). We evaluate
our compressed CMP design for an 8-core CMP with commercial and SPEComp workloads (Section 5.3).
We show that cache compression improves performance by 5-18% for commercial workloads, and that
link compression reduces off-chip bandwidth demand for most workloads by 17-41% (Section 5.4). We

study the sensitivity of our results to various system parameters in Section 5.5. We summarize our results

in Section 5.6.

86
In this chapter, we make the following contributions:

* We extend our compressed cache design to CMPs. We also propose a CMP design that supports link

compression.

« We show that cache compression helps increase the effective CMP shared cache size, reduce miss rate

and improve performance for commercial workloads.

» We show that link compression greatly reduces off-chip pin bandwidth demand for commercial and

(some) scientific workloads, potentially improving performance.

5.1 C-CMP: A CMP with Compression Support

As we discussed in Chapter 1, semiconductor technology trends continue to exacerbate the wide gap
between processor and memory speeds as well as the increasing gap between on-chip transistor perfor-
mance and the available off-chip pin bandwidth. Both of these trends favor allocating more of the on-chip

transistors to caches. On the other hand, throughput-oriented commercial workloads place an increasing

demand on the processor resources of a system to sustain their increasing transaction processing rates.

With technology trends favoring more cache area and workload trends favoring more processing resources,
cache compression provides an appealing alternative to achieve the best of both worlds. A compressed
cache system has the potential to increase the effective cache capacity, thereby reducing off-chip misses.
Having fewer misses leads to improved performance, power savings, and decreased demand for off-chip

pin bandwidth. We next describe our design for a CMP with compression support.

5.1.1 C-CMP Design

Our base design is processor CMP with single-threaded cores. Most of our design parameters are an
extrapolation of a next-generation CMP chip loosely modeled after IBM’'s Power5 [68] and Sun’s Niagara

[74], except that our chip only has single-threaded cores. Each processor has a private L1 I-cache and a pri-

87
vate L1 D-cache. The shared L2 cache is divided lmtianks, and cache line addresses are mapped into

banks based on the least significant address bits.

We extend the base design to include compression support for both the caches and the interconnect.
Figure 5-1 summarizes our proposed CMP system. For all processor cores, private L1 instruction and data
caches store uncompressed lines, eliminating the decompression overhead from the critical L1 hit path. On
a hit to a compressed L2 line, the line is decompressed before going to the L1 cache. A hit to an uncom-
pressed L2 line bypasses the decompression pipeline. On an L2 miss, the requested line is fetched from
main memory or directory and, if compressed, runs through the decompression pipeline on its way to the
L1. For design simplicity, we assume a single line size for all caches. We use an MSl-based coherence pro-
tocol between the L1's and the shared L2, and an MOESI-based protocol between L2 caches in a multi-
CMP system (though we only studied systems with a single CMP in this dissertation). The L2 cache main-

tains strict inclusion and has full knowledge of on-chip L1 sharers via individual bits in its cache tag. L1

Processor 1 Processor p
L1 Cache L1 Cache
(Uncompresseq) (Uncompressed)

Deco_ i\'- Elompr-i DGCO_”\’- Eompr-]
pressio eSsIo pressio essIo

Shared L2 Cache (Partially Compressed)

* Compressed/Uncompressed Data

L3/Memory Controller (Could Compress/Decompress Data)

To other chips / memory

FIGURE 5-1. A Single-Chipp-core CMP with Compression Support

88
caches are write-back caches, and only communicate with memory through the shared L2 cache where

inter-chip coherence is maintained. We next describe our support for cache compression.

5.1.2 Support for Cache Compression

In our design, we implement each bank of the shared L2 cache as a decoupled variable-segment cache (as
we described in Chapter 3). We extend our uniprocessor design from previous chapters to target a CMP.
We evaluated an 8-way set associative L2-cache with a compression tag stored with each address tag. The
compression tag indicates the compressed size of the line and whether or not the line is stored in com-
pressed form. The data area is broken into eight-byte segments, with 32 segments statically allocated to
each cache set. Thus, each set can hold no more than four uncompressed 64-byte lines, and compression
can at most double the effective capacity. Each line is compressed into between one and eight segments,
with eight segments being the uncompressed form. We maintain inclusion between the L1 cache contents
and the shared L2 cache. We also use the Frequent Pattern Compression scheme (Chapter 3) to compress
individual cache lines into multiples of these eight-byte segments. Our decoupled variable-segment cache

adds relatively little storage overhead to the cache area, approximately 7% for a 4MB cache (Chapter 3).

While compression helps eliminate long-latency L2 misses, it also increases the latency of the more fre-
guent L2 hits. For benchmarks (or benchmark phases) that have working sets that fit in an uncompressed
cache, compression only degrades performance. We therefore use the adaptive cache compression scheme
(Chapter 4) to dynamically adapt to workload behavior, and compress only when the benefit of compres-
sion exceeds its cost. However, in our evaluation, none of our benchmarks suffered a significant degrada-

tion due to compression, since their working sets did not fit in our uncompressed cache.

Adaptive compression only considers compression costs from avoiding off-chip misses and compression
costs from penalized hits to compressed lines. It does not take into account other compression benefits

such as the reduction in on-chip and off-chip bandwidth demand. However, our simple adaptive model did

89
not negatively impact performance for our benchmarks since they all adaptediinéines-Compresgol-

icy. We next describe link compression and its role in reducing off-chip bandwidth demand.

5.2 Link Compression

5.2.1 Technology Trends

While CMP systems can increase commercial workloads’ throughput, a CMP design inherently increases
the amount of off-chip bandwidth required (per-chip) for inter-chip and chip-to-memory communication
compared to a uniprocessor system. Without any optimizations to reduce off-chip bandwidth, adding more
processors on a chip will increase the amount of data transferred for communication with main memory
(and maintaining memory consistency between chips in a CMP-based multiprocessor system). This prob-
lem is exacerbated by hardware-directed prefetching schemes that target increasing the memory-level par-

allelism and reducing off-chip demand misses [22].

As we discussed in Chapter 1, the 2004 ITRS roadmap [45] predicts that the number of pins available per
chip for high performance processors will increase at a rate of approximately 11% per year till 2009. This
is a much lower rate than the 26% predicted as the annual rate of increase in the number of transistors per
chip. These trends imply that the number of processor cores on a single chip could increase at a much
faster rate compared to the number of communication pins available. Huh, et al. [62] identified pin band-
width as a potential limiting factor for CMP performance. Furthermore, Kumar, et al. [76] identified on-

chip interconnect bandwidth as a first-order CMP design concern.

Overall, the increasing demand on off-chip bandwidth appears to be a problem that will significantly get
worse for future CMP designs, unless emerging technologies (e.g., optical interconnects) evolve quickly. A
balanced CMP design balances demands for bandwidth against the limited number of pins and wiring area

per chip [32]. In order to reduce such bandwidth demand, an obvious solution is to increase the on-chip

90
cache size to reduce off-chip misses. Unfortunately, this comes at the expense of reducing on-chip proces-

sor area, thereby reducing potential throughput.

In this dissertation, we propose using cache and link compression to reduce the off-chip bandwidth
demand for inter-chip and chip-to-memory communication. Cache compression helps as it reduces the
cache miss rate, thus eliminating some off-chip accesses. Link compression helps by compressing both

outgoing and incoming communication messages, which also reduces a workload’s bandwidth demand.

5.2.2 On-Chip Link Compression

To make use of the reduction in off-chip bandwidth due to compression, the L3/memory controller—the
on-chip part of the memory controller—must be able to send and receive compressed messages to/from the
chip. In addition, the off-chip memory controller must be able to send/receive compressed messages and
understand the format required for compressed messages. Off-chip messages should support compressed

formats, and the memory controller should be equipped to handle compressed lines.

Our design uses a message format that is similar to the segment format of the decoupled variable-segment
cache. We also use the same FPC compression algorithm to compress cache lines (if they were not already
compressed). Each data message that originally included a complete cache line is transferred in 1-8 sub-
messages (flits), each containing an 8-byte segment. The message header contains a length field indicating
the number of segments in the line. In our evaluation, we assume that no messages or flits are lost or cor-
rupted during transmission. However, this constraint can be easily relaxed by applying standard flow con-
trol and error detection mechanisms. ECC codes can be maintained on a per-line basis whereby an error in

a single segment requires the retransmission of all segments of a line.

Assuming compressed memory, the off-chip memory controller combines flits of the same cache line and
stores the combined cache line to physical memory. However, this requires having an additional bit per line

to indicate whether the line is compressed, possibly encoded in the line’s error-correcting code [101]. If

91
memory is uncompressed, the off-chip memory controller must have the capability to compress lines on

their path from main memory to the chip, and decompress compressed data messages sent from the chip to
memory. Using the simple frequent pattern compression scheme greatly reduces the latency overhead due

to compression and decompression, as exploited by Ekman and Stenstrom [40].

Link compression affects both bandwidth and latency in a CMP. Link compression increases the effective
pin bandwidth, which can significantly improve performance for bandwidth-limited benchmarks. On the

other hand, the impact of link compression on latency is not significant, especially when a system imple-
ments cache compression. We summarize the impact of link compression on latency for outgoing (i.e.,

from chip to memory/other chips) and incoming messages as follows:

« For outgoing compressed cache lines transferred off-chip, no additional compression overhead is

incurred.

« Outgoing uncompressed cache lines are not compressed if compression does not save bandwidth (i.e.,
if their compressed size has the same number of segments as an uncompressed line). When such lines
are compressible, however, a compression penalty is added to the memory writeback latency which

has little effect since it is off the critical path.

* Incoming compressed data from memory or other system CMPs can be directly filled into the com-
pressed L2 cache. When such data is requested by the L1 cache or the processor, a decompression
overhead is incurred, which is on the critical path. However, such overhead is relatively small (5 cycles

in our design) relative to the memory access penalty (typically measured in hundreds of cycles).

5.2.3 Memory Interface
Memory compression has previously been proposed to increase the effective memory capacity and reduce
overall system cost. For example, IBM’s Pinnacle chip [120] implements the IBM Memory Expansion

Technology (MXT) [121]. In MXT, memory management hardware dynamically allocates main memory

92

L1Caches | | -rrriiiiiiiiieiieie

L2 Cache

N \

4 y
Decomp-\ ' | 3/Memory [Controller (Comy

N

Chip Boundary

Memory Controller

Memory \4 v

FIGURE 5-2. Link Compression on a CMP

Components that store compressed data are shaded (i.e., L2 cache and memory). Cache lines are cdmpressed
before sending to memory, and L1 fills have to be compressed. This figure assumes compressed mgmory. If
memory is not compressed, compression and decompression circuits have to be added to the off-chip memory
controller.

storage in small 256-byte sectors in order to support variable-size compressed data with minimal fragmen-
tation. The compressed memory is divided into two logical structures: the Sector Translation Table and the

sectored memory. This scheme requires support from the operating system [1].

Since our focus in this dissertation is on cache and link compression rather than memory compression, we
use a simpler scheme that does specifically target increasing the effective memory capacity. We propose
storing our 64-byte cache lines in either uncompressed or compressed form in memory, with a bit encoded
into the ECC to indicate whether the corresponding line is compressed or uncompressed [101]. In

Figure 5-2, we show a CMP with link compression support that assumes compressed memory. An alterna-

tive scheme to use is the memory compression scheme recently proposed by Ekman and Stenstrom [40]

93
that also uses the same FPC compression algorithm to store cache lines in memory. Neither scheme uses

the more complex compression algorithms that have higher in-memory compression ratios. However, both
schemes have the advantage of being transparent to software. Cache and link compression can also be used
with the MXT scheme with additional overheads and complexity due to the difference in compression

algorithms and granularities between caches and memory.

5.3 Evaluation

We present an evaluation of cache and link compression using an 8-core CMP, where each core is a single-
threaded dynamically-scheduled out-of-order processor with private L1 caches. We use full-system simu-
lation of commercial workloads and a subset of the SPEComp benchmarks. We next describe our base sys-

tem configuration and the workloads we use in our evaluation.

5.3.1 Base System Configuration

We evaluate the performance of our compressed cache and link designs on an 8-core CMP with SPARC V9
processors and a 5 GHz clock. We use the Simics full-system simulator [88], extended with GEMS [130]

(a detailed memory system timing and out-of-order processor simulator). Table 5-1 presents our basic sim-
ulation parameters. All parameters are the same as those in Chapter 4 except for CMP-specific parameters
and the lower, more realistic pin bandwidth. Our base system is modeled as a future generation CMP
inspired by IBM’s Power5 [68] and Sun’s Niagara [74], except that our CMP only has single-threaded
cores. Different base system parameters are based on our speculation of future CMP parameters. We use
this base system to demonstrate the impact of cache and link compression in Section 5.4. However, we also

study the sensitivity of our results to various parameters in Section 5.5.

94
TABLE 5-1. CMP Simulation Parameters

Processor Cores Eight processors, each a single-threaded core with private L1 caches.

] Split| & D, each 64 KB 4-way set associative with LRU replacement, 64-lyte
Private L1 Caches) , . .
lines, 3-cycle access time, 320 GB/sec. total on-chip bandwidth (from/to L{1's).

Unified 4 MB, composed of eight 512KB banks, 8-way set associgtive

(uncompressed) or 4-8 way set associative (compressed) with LRU replace-
Shared L2 Cache]] .
ment, 64-byte lines, 15 cycle uncompressed hit latency (includes bank access

latency), 20 cycles compressed hit latency (15 + 5 decompression cycles).

]) 4 GB of DRAM, 400 cycles access time with 20 GB/sec. chip-to-memory
Memory Configuration _ _
bandwidth, each processor can have up to 16 outstanding memory requests.

Each processor is an out-of-order superscalar processor with a 5 GHz[clock
Processor Model
frequency.

4-wide fetch and issue pipeline with 11 stages (or more): fetch (3), decodg (4),

Processor Pipeline]
schedule (1), execute (1 or more), retire (2).

IW/ROB 64-entry instruction window, 128-entry reorder buffer.
4 KB YAGS direct branch predictor [38], a 256-entry cascaded indirect branch

Branch Prediction

predictor [35], and a 64-entry return address stack predictor [67].

5.3.2 Workloads

To evaluate compression alternatives, we use several multi-threaded commercial workloads from the Wis-
consin Commercial Workload Suite [6]. We also use four benchmarks from the SPEComp2001 suite [12].
All workloads run under the Solaris 9 operating system. These workloads are briefly described in Table 5-
2. Commercial workloads are the same as those in the previous chapters except for multiprocessor-related
parameters (e.g., the number of users or threads). We selected workloads that cover a wide range of com-
pressibility properties, miss rates, and working set sizes. For each data point in our results, we present the
average and the 95% confidence interval of multiple simulations to account for space variability [8]. Our
runtime results for commercial workloads represent the average number of cycles per transaction (or
request). For SPEComp benchmarks, our runtime results represent the average number of cycles required

to complete the main loop.

95

TABLE 5-2. Workload Descriptions
Online Transaction Processing (OLTP):DB2 with a TPC-C-like workload. The TPC-C benchmark models

the database activity of a wholesale supplier, with many concurrent users performing transactions. Odr OLTP

workload is based on the TPC-C v3.0 benchmark using IBM’s DB2 v7.2 EEE database management sygtem. We
use a 5 GRlatabase with 25,000 warehouses stored on eight raw disks and an additional dedicated database log
disk. We reduced the number of districts per warehouse, items per warehouse, and customers per district to
allow more concurrency provided by a larger number of warehouses. We simulate 128 users, and warm up the

database for 100,000 transactions before taking measurements for 100 transactions.

Java Server Workload: SPECjbb. SPECjbb2000 is a server-side java benchmark that models a 3-tier system,
focusing on the middleware server business logic. We use Sun’s HotSpot 1.4.0 Server JVM. Our experiments
use 1.5 threads and 1.5 warehouses per processor (12 for 8 processors), a data size of ~44 MB, a warmup inter-

val of 200,000 transactions and a measurement interval of 2,000 transactions.

Static Web Serving: Apache We use Apache 2.0.43 for SPARC/Solaris 9, configured to use pthread locks and
minimal logging as the web server. We use SURGE [13] to generate web requests. We use a repository ¢f 20,000
files (totalling ~500 MB), and disable Apache logging for high performance. We simulate 400 clients per pro-
cessor (3200 clients for 8 processors), each with 25 ms think time between requests. We warm up for ~2 million

requests before taking measurements for 500 requests.

Static Web Serving: Zeus Zeus is another static web serving workload driven by SURGE. Zeus uses an pvent-
driving server model. Each processor of the system is bound by a Zeus process, which is waiting for web serving
event (e.g., open socket, read file, send file, close socket, etc.). The rest of the configuration is the same as
Apache (20,000 files of ~500 MB total size, 3200 clients, 25 ms think time, ~2 million requests for warmup, 500

requests for measurements).
SPEComp. We use four benchmarks from the SPEComp2001 benchmark suite [12]: 330.art, 324.apsi,

328.fma3d, and 314.mgrid. We used the ref input set, and fast-forwarded each benchmark till the beginning of
the main loop. We warmed up caches for approximately 2 billion instructions, and measured till the end of the
loop iteration. Since these benchmarks are multi-threaded, we use a work-related metric rather than IPC to

address workload variability [8]. Loop completions seemed the best choice [17], since simulating thel whole

benchmark takes a prohibitive period of time.

5.4 Cache and Link Compression Performance

In this section, we compare the relative benefits of cache and link compression. We monitor their separate
and combined effects on miss rates, off-chip bandwidth and performance for our base 8-core, 4 MB L2

configuration. We simulated the following configurations: No compression, cache compression only, link

96
compression only, and both cache and link compression. Neither L1 nor L2 prefetching is implemented for

results in this section. Cache compression implements our adaptive cache compression policy (Chapter 4)

which reverts tcAlwaysfor all benchmarks.

5.4.1 Workload Compressibility

A compression scheme is successful if it can significantly increase the effective cache size.ddmuse
pression ratie of different benchmarks as indicators of a compression algorithm’s success, as we dis-
cussed in Chapters 1 and 3. As in Chapter 3, we definedh®ression ratiof a cache snapshot as the
guotient of the effective cache size divided by the uncompressed size of 4 MB. We computed compression
ratios as an average of compression ratios for periodic snapshots taken every 50 million cycles during a
benchmark’s runtime. This method is similar to how we computed compression ratios for uniprocessor

benchmarks in Chapter 3, except for a shorter sampling interval.

Our eight workloads show a wide range of compression ratios (Table 5-3). Compression ratios for com-
mercial benchmarks were relatively high, ranging from 1.36 to 1.8. Zeus’s compression ratio is 1.8, which
translates into approximately 7.2 MB of effective cache size (compared to the 4 MB base case). However,
SPEComp benchmarks showed smaller gains, with compression ratios ranging from 1.01 to 1.19. This can
be attributed to the fact that the simple compression scheme we chose does not perform as well for floating
point data, for which lossless compression remains a hard problem even for more complex compression

schemes (as we discussed in Chapter 3).

TABLE 5-3. Compression Ratios for a 4MB cache for commercial and SPEComp
benchmarks

Benchmark apache zeus oltp jbb art apsi fma3d mgrid

Compr. Ratio 1.74 1.80 1.36 1.48 1.15 1.01 1.19 1.04

97

[No Compression
I L2 Compression
33 35 9.3 51

apache zeus oltp jbb art aps fma3d mgrid

1.0

0.0 i "

05
15.2 11.3

Normalized Missrate

"T

175

75.2

FIGURE 5-3. Cache miss rates normalized to miss rate without compression

Misses per 1000 instructions for the no compression case are shown at the bottom.

5.4.2 Reduction in Cache Misses

Compression increases the effective cache size for most benchmarks. With such increases in cache size,
commercial benchmarks show a reduction in cache miss rates ranging from 10-22% (Figure 5-3). For SPE-
Comp benchmarks, the maximum miss rate reduction was 6% due to their lower compression ratios. We
note that mgrid has a 3% higher miss rate with compression due to the decrease in associativity (4-way vs.

8-way) that is not offset by the increase in cache size.

5.4.3 Bandwidth Reduction
We definepin bandwidth demands a workload'’s utilized pin bandwidth on a system with an infinite avail-
able pin bandwidth. Without prefetching, our set of commercial workloads is not bandwidth-limited, as we

demonstrate in Figure 5-4. The average bandwidth demand ranges from 5.0 GB/sec. for oltp to 8.8 GB/sec.

98

25
20
é] [l No Compression
9 15 [l L2 Compression
=]
g] [] Link Compression
3] Both
8 104 i
5
0 _ _ ,
apache zeus oltp jbb art aps fma3d mgrid
FIGURE 5-4. Pin Bandwidth demand for all benchmarks (in GB/sec.) for
compression alternatives
Pin bandwidth demand is based on a CMP with infinite available bandwidth.

for apache, which are much lower than the available 20 GB/sec. pin bandwidth in our baseline system. For
SPEComp benchmarks, however, bandwidth demand is high, ranging from 7.6 GB/sec. for art to 27.7 GB/

sec. for fma3d.

Figure 5-4 presents the bandwidth demand for our benchmarks with no compression, only cache compres-
sion, only link compression, and both types of compression. Link compression can achieve up to 41%
reduction in off-chip bandwidth (for zeus), a significant reduction for bandwidth-limited configurations.
Link compression achieves a 34-41% reduction in off-chip bandwidth for the four commercial bench-
marks, and 17-23% reduction for three of the four SPEComp benchmarks. Only apsi, whose compression
ratio is 1.01, fails to achieve a significant bandwidth reduction. The combination of cache and link com-
pression achieves a 35-45% reduction in off-chip bandwidth for commercial benchmarks, and a 7-23%

reduction for SPEComp benchmarks.

99
We note from Figure 5-4 that the impact of cache compression alone on bandwidth reduction is sometimes

smaller than expected given the compression ratios in Table 5-3. This can be attributed to the fact that

cache compression affects two terms in the bandwidth equation (assuming a blocking in-order processor):

BandwidthDeman@ byté€s see (bytes miskx (misseg instyx (instructions cyclgx (cycles seg
(5.1)

Cache compression reduces the numbemidses/insirwhich should reduce bandwidth demand. How-

ever, such reduction in miss rate also improves the numhestfictions/cyclewhich increases the band-

width demand. Both of these effects almost offset for many benchmarks, and so our results show that cache
compression has little impact on bandwidth reduction. For our benchmarks, cache compression alone led
to a decrease of up to 9% in bandwidth demand (for apache), but bandwidth is not significantly reduced for

most benchmarks.

Compared to cache compression, link compression reducéytbe'misserm of the above equation, and
has minor impact on the other terms except for systems with high contention. Therefore, link compression

always leads to a reduction in bandwidth demand for compressible benchmarks, as we show in Figure 5-4.

5.4.4 Performance

Cache compression achieves a significant reduction in miss rates, especially for commercial benchmarks
(Section 5.4.2). For these benchmarks, cache compression has a significant impact on performance.
Figure 5-5 shows that cache compression alone can speed up performance of our base, 8-core 4 MB L2
system by 5-18% for our four commercial workloads. However, it doesn’t perform as well for the less-

compressible SPEComp benchmarks (0-4% speedup). For 20 GB/sec. bandwidth, link compression has an

impact on performance only for benchmarks with high off-chip bandwidth requirements (up to a 23%

100
speedup for fma3d). The combined speedup of cache and link compression is slightly higher than that of

cache compression alone (except for fma3d where link compression shows a significant speedup).

These results show speedups by cache and link compression for a system that does not implement hard-
ware prefetching. However, many current systems have some sort of hardware prefetching implemented.

For such systems to consider implementing compression, we need to study the impact of compression on
the performance of such systems. We also need to study whether compression complements the perfor-
mance benefits due to prefetching and vice-versa. We study the interactions between compression and

hardware prefetching in the next chapter.

5.5 Sensitivity Analysis
As with many architectural enhancements, the performance impact of cache and link compression is
affected by changes in system configuration parameters. In this section, we investigate how compression’s

performance is affected by changes in L1 and L2 cache sizes and associativities, memory latency, and pin

B No Compression
Bl L2 Compression
[J Link Compression
l Both

Normalized Runtime

0.0-

apache zeus oltp jbb art apsi fma3d mgrid

FIGURE 5-5. Normalized runtime for the four compression alternatives
(relative to no compression)

101
bandwidth. We vary a single parameter in each of the following subsections while keeping the remaining

parameters constant. In the next few subsections, we demonstrate that:

« Increasing L1 cache size or associativity slightly increases the performance benefit due to compres-

sion.

* Increasing L2 cache size has a mixed effect on the performance benefit due to compression, increasing

the benefit for some benchmarks while reducing it for others.
« Increasing L2 cache associativity increases the performance benefit due to cache compression.

« Increasing memory latency increases the performance benefit due to cache compression. Decreasing
memory latency leads to increasing bandwidth demand, therefore increasing the performance benefit

of link compression.

* Increasing available pin bandwidth significantly diminishes the performance gains due to link com-

pression.

5.5.1 L1 Cache Size and Associativity

The effectiveness of L2 cache compression depends on the overhead incurred by decompressing lines on
L2 hits. Since the L1 filters requests to the L2, the L1 size impacts this overhead (similar to the uniproces-
sor case in the previous chapter). As the L1 cache size (or associativity) increases, some references that
would have missed in the L1 and hit in the L2 will instead hit in the L1. This leads to a lower number of
penalized hits to the compressed L2 cache, thereby reducing the decompression overhead. We illustrate
this trade-off for commercial workloads (Figure 5-6) and for SPEComp benchmarks (Figure 5-7). These

results assume a 4 MB L2 cache and a fixed L1 access latency.

For our set of benchmarks and configuration parameters, increasing L1 size or associativity has a notice-

able effect on the relative benefit of cache compression for zeus, jbb and apsi. For these benchmarks, the

102

]
E
0§: m No Compression
B m |2 Compression
N & Link Compression
g = Both
<]
z
128K/4 256K/4 128K/1 128K/2 128K/4 128K/8
83 6.7 53 4.7 7.6 57 53 25
zeus
]
E
0§: m No Compression
= m |2 Compression
N O Link Compression
@
g m Both
]
z
128K/4 256K/4 128K/1 128K/2 128K/4 128K/8
15.2 116 85 51 115 85 85 6.5
]
E
0§: m No Compression
B m |2 Compression
N & Link Compression
g = Both
<]
z
128K/4 256K/4 128K/1 128K/2 128K/4 128K/8
26.6 18.8 13.3 9.1 20.1 15.3 13.3 12.4
jbb
o 1.0—_ —
E
0§: m No Compression
B 05_‘ m |2 Compression
N T & Link Compression
g = Both
<]
> |
0.0- 32K/4 64K/4 128K/4 256K/4 128K/1 128K/2 128K/4 128K/8
12.9 10.2 7.1 4.4 9.4 7.7 7.1 6.7
FIGURE 5-6. Sensitivity to L1 cache size and associativity for commercial benchmarks
The number of penalized hits per avoided miss for cache compression is shown at the bottom.

103

Normalized Runtime

727

1.0+

0.5

Normalized Runtime

0.0- 32K/4

0.9

64K/4

0.8

128K/4

346

128K /4

0.8

256K/4

372

256K/4

0.8

128K/1

1765

128K/1

14
fma3d

I
|

128K /2

517

128K /2

0.8

128K/4

346

128K/4

0.8

128K/8

551

128K/8

0.8

Normalized Runtime

183

128

128K /4

39.8

256K /4

19.0

128K/1

262
mgrid

Normalized Runtime

T 32K/4

16.3

FIGURE 5-7. Sensitivity to L1 cache size and associativity for SPEComp benchmarks

The number of penalized hits per avoided miss for cache compression is shown at the bottom.

64K/4

10.6

128K/4

6.3

256K/4

3.1

128K/1

15.8

128K/2

49.1

128K /4

39.8

128K/8

291

128K /2

6.8

128K/4

6.3

128K/8

53

= No Compression
m |2 Compression
O Link Compression
= Both

= No Compression
m |2 Compression
O Link Compression
= Both

= No Compression
m L2 Compression
O Link Compression
= Both

= No Compression
m |2 Compression
O Link Compression
= Both

104
speedup due to compression increased slightly when the L1 cache size or associativity increased. For other

benchmarks the L1 configuration had little impact on the performance of cache compression. For all
benchmarks, the performance of link compression was not affected by changes in the L1 cache configura-

tion.

We also note from Figure 5-7 that apsi shows a performance improvement due to compression despite its
high ratio of penalized hits per avoided miss. This is caused by our adaptive compression implementation
that adapts to compression only when it helps. For the most part, the ratio is high and our adaptive com-
pression algorithm adapts téever For some short intervals, howevétwaysis the better policy and

adaptive compression implements it.

5.5.2 L2 Cache Size

Cache compression works best when it can increase the effective L2 size enough to hold a workload’s crit-
ical working set. For chip multiprocessors, working set sizes of workloads are typically much larger than
those for uniprocessors since multiple processors share the L2 cache. We show the relative performance of
cache and link compression as the L2 cache size changes for commercial workloads (Figure 5-8) and SPE-

Comp benchmarks (Figure 5-9).

For commercial workloads, L2 cache size slightly increases compression’s benefits for apache, and slightly
reduces these benefits for jbb and oltp, due to the different patterns of change for penalized hits per avoided
miss (explained later in this section). For SPEComp benchmarks, L2 cache size had little impact on the rel-
ative speedup of cache and link compression. We note that for some benchmarks, increasing the cache size
did not have much impact on performance after a certain size. For example, increasing the cache size
beyond 8 MB did not significantly affect apsi’s performance. On the other hand, many SPEComp bench-

marks did not show significant performance improvements for small L2 cache sizes, but their runtimes

105

Normalized Runtime Normalized Runtime Normalized Runtime

Normalized Runtime

1.0

0.5+

0.0-

1.0+

0.5+

0.0-

1.0

0.5

0.0-

1.0+

0.5+

0.0-

apache
256K /8 512K/8
24.4 14.9 9.8 7.4 53 5.7 111
256K/8 512K/8
20.6 6.9 54 6.6 85 7.9 12.3
oltp
256K /8 512K/8
6.6 45 41 6.9 133 20.7 321
jbb
256K /8 512K/8 1M/8 2M/8 8M/8 16M/8
38 2.6 34 43 7.1 16.0 30.8

FIGURE 5-8. Sensitivity to L2 cache size for commercial benchmarks

The number of penalized hits per avoided miss for cache compression is shown at the bottom.

= No Compression
mm 2 Compression
O Link Compression
= Both

= No Compression
mm |2 Compression
= Link Compression
= Both

= No Compression
mm L2 Compression
O3 Link Compression
= Both

= No Compression
mm |2 Compression
O Link Compression
= Both

106

Normalized Runtime Normalized Runtime Normalized Runtime

Normalized Runtime

1.0+

0.5

0.0-

1.0

0.5

0.0

1.0

0.5+

0.0

1.0

05

0.0

256K /8

415

256K/8

79.2

512K/8

42.2

512K/8

114

199

84.1

375
art

65.6
fma3d

346

0.8

275

13.0

842

6158

256K /8

55

256K/8

12.3

512K/8

59

512K/8

10.1

9.0

1m/8

22.6

2M/8

18.3
mgrid

2M/8

20.7

4M/8

39.8

28.8

17.0

4M/8

6.3

8M/8

8.3

16M/8

4.6

FIGURE 5-9. Sensitivity to L2 cache size for SPEComp benchmarks

The number of penalized hits per avoided miss for cache compression is shown at the bottom.

= No Compression
mm 2 Compression
O Link Compression
= Both

= No Compression
mm |2 Compression
= Link Compression
= Both

= No Compression
mm L2 Compression
O3 Link Compression
= Both

= No Compression
m |2 Compression
= Link Compression
= Both

107
decreased dramatically once a certain L2 size was reached. For example, art’s absolute performance (not

shown in the figure) achieved more than a 2x speedup when the cache size doubled from 4 to 8 MB.

We also note from both figures that the number of penalized hits per avoided miss follows two distinct
trends in two sets of benchmarks. For some benchmarks (e.g., apsi and mgrid), the number of penalized
hits per avoided miss steadily increases as the L2 cache size increases. For other benchmarks (e.qg.,
apache), the number of penalized hits per avoided miss decreases at the beginning until it reaches a mini-
mum then increases again. The first trend is intuitive, since a bigger cache size tends to increase the num-
ber of L2 hits, thus increasing the number of penalized L2 hits. A bigger cache also reduces the number of
L2 misses, thereby reducing the number of misses avoidable by compression. Both effects, i.e., increasing
the numerator and reducing the denominator, lead to a steady increase in the ratio of penalized hits per
avoided miss. The same factors affect the increase in the number of penalized hits per avoided miss for
medium and large cache sizes in the second trend (i.e., the decrease then increase in the number of penal-
ized hits per avoided miss). For small cache sizes, however, the number of misses avoided by compression
is low since the cache size is much smaller than the benchmarks’ working set sizes. This leads to a higher
ratio of penalized hits per avoided miss, since the numerator dominates that ratio with a smaller denomina-

tor.

5.5.3 L2 Cache Associativity

Cache compression increases the effective L2 associativity compared to an uncompressed cache. In our
experiments, however, we compare against an uncompressed L2 cache that has the same associativity as
the maximum associativity of a compressed cache. Therefore our results tend to favor uncompressed

caches for benchmarks that are not compressible, since such caches have double the effective associativity

as a compressed cache. We illustrate the relative speedup of cache and link compression as the L2 associa-

108

Normalized Runtime Normalized Runtime Normalized Runtime

Normalized Runtime

apache

mmm No Compression
= | 2 Compression
—= Link Compression
mEmm Both

= No Compression
= | 2 Compression
—= Link Compression
mEmm Both

mmm No Compression
= | 2 Compression
—=3 Link Compression
mE=m Both

mmm No Compression
= |2 Compression
—= Link Compression
= Both

74 7.1 7.6

FIGURE 5-10. Sensitivity to L2 cache associativity for commercial benchmarks

The number of penalized hits per avoided miss for cache compression is shown at the bottom.

109

Norma“z&i Runtl me Norma“zm Runtl me TVYOTTTICITZC O TXUTIUIT T I

Normalized Runtime

4M/16

mmm No Compression
= | 2 Compression
—= Link Compression
mEmm Both

= No Compression
= | 2 Compression
—= Link Compression
mEmm Both

mmm No Compression
mmm |2 Compression

14 0.8 10.5
fma3d
4aM/16
11.2 39.8 48.8
mgrid

aM/4

10.7

FIGURE 5-11. Sensitivity to L2 cache associativity for SPEComp benchmarks

The number of penalized hits per avoided miss for cache compression is shown at the bottom.

6.3

—= Link Compression
= Both

mmm No Compression
= |2 Compression
—= Link Compression
= Both

4.9

110
tivity increases for commercial workloads (Figure 5-10) and SPEComp benchmarks (Figure 5-11). We

assume the same L2 bank access latency for all configurations.

We note from both figures that L2 associativity has little or no impact on the performance of link compres-
sion. For cache compression, however, the speedup due to compression increases when the L2 cache asso-
ciativity increases. The extreme example in our commercial workloads is jbb, where adaptive cache
compression has a 12% slowdown for a 4-way cache but achieves a 13% speedup for a 16-way cache.
Fma3d represents the extreme case for SPEComp benchmarks, with more than a 4x slowdown for 4-way
caches, while achieving a 23% speedup for a 16-way cache. The reduction in associativity for compressed
caches has a significant impact on performance for lower associativity caches (e.g., 4-way), while such
effect is greatly diminished for caches with medium and high associativities. We also note that the speedup

of cache compression significantly increases for 16-way caches, where apache achieves a speedup of 21%

compared to an uncompressed cache.

5.5.4 Memory Latency

We analyze the sensitivity of cache compression to higher and lower memory latencies for commercial
workloads (Figure 5-12) and SPEComp benchmarks (Figure 5-13). We varied memory latencies between
200 and 800 cycles. As intuitively expected, the relative speedup of cache compression increases for
slower memory, since compression avoids more costly misses. Perhaps less intuitive, however, is the
impact of smaller memory latencies on the relative speedup of link compression. Fma3d, mgrid, art and
apache show significantly greater speedups due to link compression when the memory latency decreases
(e.g., 200 cycles). For example, link compression alone achieves a 26% speedup for fma3d when the mem-
ory latency is 200 cycles, compared to a 3% speedup when latency is 800 cycles. This is caused by the fact
that a lower memory latency significantly increasesitistructions/cycleéerm in Eq 5.1 (Section 5.4.3)

without affecting any of the equation’s other terms. This leads to a significant increase in pin bandwidth

111

Normalized Runtime Normalized Runtime Normalized Runtime

Normalized Runtime

1.0+

0.5+

0.0-

1.0+

0.5

0.0-

1.0

054

0.0-

1.0+

0.5+

0.0-

FIGURE 5-12. Sensitivity to memory latency for commercial benchmarks

apache

200

200

300

400 500 600
Memory Latency (cycles)
zeus

400 500 600
Memory Latency (cycles)

oltp

200

200

300

400 500 600
Memory Latency (cycles)

Memory Latency (cycles)

jbb
400 500 600 700 800

= No Compression
mm 2 Compression
O Link Compression
= Both

= No Compression
m L2 Compression
3 Link Compression
m Both

= No Compression
m L2 Compression
O3 Link Compression
m Both

= No Compression
m L2 Compression
O3 Link Compression
m Both

112

Normalized Runtime Normalized Runtime Normalized Runtime

Normalized Runtime

= No Compression
mm 2 Compression
O Link Compression
= Both
400 500 600
Memory Latency (cycles)
art
1.0
= No Compression
| = |2 Compression
0.5 ; .
| = Link Compression
@ Both
0.0- 200 300 400 500 600 700 800
Memory Latency (cycles)
fma3d
1.0
= No Compression
05 1 m L2 Compression
=] = Link Compression
@ Both
0.0—"200 300 400 500 600
Memory Latency (cycles)
mgrid
1.0
1 = No Compression
05] m L2 Compression
- O3 Link Compression
1 @ Both
0.0—"200 300 400 500 600
Memory Latency (cycles)
FIGURE 5-13. Sensitivity to memory latency for SPEComp benchmarks

113
demand, causing more benchmarks to be bandwidth-limited. Since link compression helps offset the

increase in pin bandwidth demand, its impact on performance increases.

5.5.5 Pin Bandwidth

Link compression’s and (in part) cache compression’s performance gains are caused by their impact on pin
bandwidth demand. Link compression directly decreases pin bandwidth demand, while cache compression
does so indirectly by decreasing off-chip misses (Section 5.4.3). In this section, we analyze the impact of
pin bandwidth changes on the relative speedups of cache and link compression for commercial workloads
(Figure 5-14) and SPEComp benchmarks (Figure 5-15). We simulated systems with pin bandwidth rang-

ing from 10 GB/sec. to 80 GB/sec.

The speedup of cache compression did not change significantly with pin bandwidth, since cache compres-
sion affects bandwidth by changing two terms in Eq. 5.1 in opposite directions, as we discussed in
Section 5.4.3. Overall, cache compression achieved almost the same speedup regardless of pin bandwidth.
As expected, the impact of pin bandwidth on the speedup of link compression is more obvious. For 10 GB/
sec., link compression—and therefore the combination of cache and link compression—achieves signifi-
cant speedup for many benchmarks, up to a 26% speedup for fma3d, 22% for mgrid, and 11% for apache.
However, such speedup almost completely disappears for the 40 and 80 GB/sec. configurations. This trend
demonstrates that the speedup of link compression is closely correlated to how close the benchmark is to
the pin bandwidth saturation point. When the bandwidth available is much higher than the pin bandwidth
demand, the impact of link compression is significantly diminished. However, such significant increases in
available pin bandwidth are unlikely to happen for larger chip multiprocessors (as we discussed in
Section 5.2.1) unless optical interconnect technologies develop and mature quickly. The implementation of

prefetching can also significantly increase bandwidth demand, as we discuss in the next chapter. We also

114

Normalized Runtime Normalized Runtime Normalized Runtime

Normalized Runtime

apache

20

40
Pin Bandwidth (GB/sec)

Zeus

20

40
Pin Bandwidth (GB/sec)

oltp

FIGURE 5-14

20

20

. Sensitivity to pin bandwidth for commercial benchmarks

40
Pin Bandwidth (GB/sec)

jbb

40
Pin Bandwidth (GB/sec)

mm No Compression
mmm |2 Compression
= Link Compression
== Both

mm No Compression
= |2 Compression
= Link Compression
Em Both

mm No Compression
= |2 Compression
= Link Compression
Em Both

mm No Compression
= |2 Compression
= Link Compression
Em Both

115

Normalized Runtime Normalized Runtime Normalized Runtime

—
—
-

Normalized Runtime

—

1.0+

0.5

0.0- 10 20

1.0+

0.5

0.0- 10 20

1.0+

0.5+

0.0- 1

FIGURE 5-15. Sensitivity to pin bandwidth for SPEComp benchmarks

20 40

apsi
10 20 40 80

Pin Bandwidth (GB/sec)

art

40
Pin Bandwidth (GB/sec)

fma3d

40
Pin Bandwidth (GB/sec)

mgrid

Pin Bandwidth (GB/sec)

mm No Compression
mmm |2 Compression
= Link Compression
== Both

== No Compression
mmm | 2 Compression
— Link Compression
== Both

mm No Compression
= |2 Compression
= Link Compression
Em Both

mm No Compression
= |2 Compression
= Link Compression
Em Both

116
note that link compression can be a cheaper alternative with lower power consumption compared to other

techniques that can increase pin bandwidth.

5.6 Summary

Chip multiprocessor design requires balancing three critical resources: number of processors, on-chip
cache size, and off-chip pin bandwidth. In this chapter, we explored using cache and interconnect (link)
compression to effectively increase cache size and pin bandwidth resources and ultimately overall system
throughput. Cache compression increases the effective capacity of the shared cache (by 36-80% in our
commercial benchmarks), thus reducing off-chip misses and improving performance. Link compression
increases the effective off-chip communication bandwidth for most workloads by 17-41%, reducing possi-
ble contention. However, link compression did not have a significant impact on performance except for one
benchmark (fma3d). We showed that both cache and link compression combine to improve performance of
commercial benchmarks, and that link compression can achieve significant speedups for bandwidth-lim-

ited SPEComp benchmarks.

Many current CMP systems implement hardware prefetching. On the one hand, hardware prefetching can
significantly increase pin bandwidth demand, thereby increasing compression’s relative benefits. On the
other hand, prefetching can also avoid misses that could be avoided by compression, thereby reducing
compression’s benefits. We study the interactions between compression and hardware stride-based

prefetching in the next Chapter.

117

Chapter 6

Interactions Between Compression and Hardware
Prefetching

In the previous chapter, we showed that compression is an appealing alternative for Chip Multiprocessors
that can avoid many off-chip misses and reduce off-chip pin bandwidth demand. Many current CMP sys-
tems implement some form of hardware-directed prefetching to help tolerate increasingly long memory
latencies [58, 68]. For uniprocessors, stride-based hardware prefetching improves performance by 2-74%
for the commercial workloads used in this dissertation. Unfortunately, prefetching also increases a work-
load’s working set size and memory traffic, therefore increasing demand for caches and pin bandwidth.
Since processors share both of these critical resources in a CMP, the benefit of prefetching decreases dra-
matically. On a 16-processor CMP with the same uniprocessor cache size and pin bandwidth, stride-based
prefetching can degrade performance by up to 35% (Section 6.1). In this chapter, we show that compres-
sion and prefetching interact positively, leading to a combined speedup that is greater than the product of

the speedup of prefetching alone and compression alone.

After motivating how compression can interact positively with prefetching (Section 6.1), we define the ter-
minology we use to study the interactions between any two hardware schemes (Section 6.2). We discuss
our simulation parameters and prefetching implementation (Section 6.3). We study the interactions
between compression and L2 prefetching (Section 6.4), L1 prefetching (Section 6.5) and both
(Section 6.6). We analyze the sensitivity of these results to available pin bandwidth (Section 6.7) and CMP
configurations (Section 6.8). We then discuss some related work (Section 6.9) and summarize our results

(Section 6.10).

118
In this chapter, we make the following main contributions:

« We present quantitative evidence that stride-based prefetching improves performance of CMPs far less
than it does for uniprocessors, even degrading performance for some workload and system configura-

tions.

* We show that compression and prefetching interact in strongly positive ways, resulting in a combined

performance improvement of 10-51% for seven of our eight benchmarks on an 8-processor CMP.

 We show that the combined improvement from both prefetching and compression significantly
exceeds the product of individual improvements for most benchmarks, with positive interactions of 13-

22% for half of our benchmarks.

* We analyze different factors that cause positive and negative interactions between compression and L1

prefetching or L2 prefetching.

6.1 Motivation

Compression is an appealing alternative for CMP systems that helps increase the effective on-chip cache
capacity and effective off-chip pin bandwidth for compressible benchmarks. Cache compression increases
the effective cache capacity, thereby reducing some off-chip misses. Link compression (directly) and cache
compression (indirectly) increase the effective off-chip bandwidth, potentially reducing contention for pin
bandwidth. Both cache and link compression combine to improve performance for most benchmarks at a
small hardware cost. However, decompression overheads increase the L2 cache hit latency, which reduces
some of compression’s performance gains. Overall, we showed in the previous chapter that compression

can improve performance for many commercial and some scientific benchmarks.

Many current systems implement hardware-based prefetching to address the increasing gap between pro-
cessor and memory speeds [58, 68, 117]. Many such implementations are variations of hardware-directed

stride-based prefetching [26]. Hardware prefetching improves CMP performance by hiding L2 access

119

zeus jbb
M 10 4 'l
80 —]
S 60- %7
5]
& I 104 M P Only
3 40 E B Compr Only
E— 0 PF+Compr
~§ 20 -20 5
0 30
1 2 4 8 16 T 2 4 8 16
P P #Progessors P P P P #Progessors P P

FIGURE 6-1. Performance improvement (%) for two commercial benchmarks
for different uniprocessor and CMP configurations

Performance improvement is shown compared to a base case of no compression or prefetching. The three
bars represent performance improvement due to stride-based prefetching alone, cache and link compres-
sion alone, and both prefetching and compression. All configuratiorsséndWB(shared) L2 cache and
a 20 GB/sec. available off-chip bandwidth.

latency (L1 prefetching) and avoiding some off-chip misses or tolerating memory latency (L2 prefetching).
Unfortunately, hardware stride-based prefetching can significantly increase demand on cache banks and
off-chip pin bandwidth. If hardware prefetching’s accuracy is low, it can increase a workload’s working set
size and therefore increase cache pollution. CMPs exacerbate both problems since more processors share

cache and pin bandwidth resources.

For CMP systems that implement prefetching, an important question is whether prefetching achieves most
of the benefits of compression, which makes implementing compression less appealing. Alternatively,
compression and prefetching can help offset each other’s disadvantages, leading to a combined design that

outperforms either scheme alone. Figure'6shows that for a uniprocessor, hardware stride-based

1. We discuss this figure and other benchmarks in more detail in Section 6.8.

120
prefetching achieves 74% and 2% performance improvements for zeus and jbb, respectively. For a 16-pro-

cessor CMP with the same cache size and pin bandwidth, however, stride-based prefetching degrades per-
formance by 8% and 35%, respectively. For both benchmarks, the benefit of stride-based prefetching

decreases as the number of processor cores grows, eventually degrading performance.

In this chapter, we show that compression and prefetching interact positively, leading to a combined
speedup that equals or exceeds the product of the two individual speedups for most of our benchmarks. A
16-processor CMP with both prefetching and compression has a speedup of 28% for zeus, and only a 10%
slowdown for jbb (Figure 6-1). This is in contrast with slowdowns of 8% and 35%, respectively, with
prefetching alone. Such combined performance reflect positive interactions (i.e., greater than expected per-
formance improvements) between compression and prefetching of 24% and 26%, respectively. We present

terminology to quantify positive and negative interactions in the next section.

6.2 Terminology

In order to understand the interactions between prefetching and compression, we use the following termi-
nology derived from Fields, et al.’s interaction cost definition [44]. For an architectural enhancement A
(e.g., L2 compression), we define its speedup for a certain work®aetdup(A)as the workload’s runt-

ime on a base system (without A) divided by the workload’s runtime on the same system with enhance-
ment A. For two architectural enhancements A and B (e.g., link compression and L2 prefetching), we

define the combined speedup of the base system with both enhancements as:

Speedup A B= Speedup Ax Speedup Bx (1+Interaction(A B) (6.1)

WhenInteraction(A,B)is positive, the speedup of the two enhancements together exceeds the product of
individual speedups. We call this casgasitive interactiorbetween A and B. Wheteraction(A,B)is

negative, the speedup of the combined system is less than that of the product of individual speedups, and

121
we call this case aegative interactiobetween A and B. We use these definitions to quantify the interac-

tions between compression and prefetching combinations.

6.3 Evaluation

We evaluated the interactions between compression and prefetching using the same set of benchmarks of
Chapter 5, and using the same base system configuration. We next describe the hardware stride-based

prefetchers we use to study their interactions with compression.

6.3.1 Strided Prefetching

Hardware-directed stride-based prefetchers make use of repeatable memory access patterns to avoid some
cache misses and tolerate cache miss latency [26, 96]. Current hardware prefetchers [58, 116, 117] observe
a unit or a fixed stride between two cache misses, then verify the stride using subsequent misses. Once the
prefetcher reaches a threshold of strided misses, it issues a series of prefetches to the next level in the mem-

ory hierarchy to reduce or eliminate miss latency.

We implemented a strided L1 and L2 prefetching strategy to study the interactions between L2 compres-
sion and hardware prefetching. We based our prefetching scheme on the IBM Power 4 implementation
[116, 117] with some minor modifications. Each processor has three separate prefetchers for the L1I, L1D
and L2 caches. Each prefetcher contains three separate 32-entry filter tables, and an 8-entry stream table.
The three filter tables detect positive unit stride, negative unit stride, and non-unit stride access patterns,
respectively. Once a filter table entry detects four fixed-stride misses, the prefetcher allocates the miss
stream to an entry in its 8-entry stream table (i.e., each prefetcher can prefetch lines from up to 8 streams
detected using its 96 filter table entries). Upon allocation, the L1l or L1D prefetcher launches 6 consecu-
tive prefetches along the stream to compensate for the L1 to L2 latency, while the L2 prefetcher launches

25 consecutive prefetches to memory to compensate for the memory latency. Each prefetcher issues

122
prefetches for both loads and stores because our target system uses an L1 write-allocate protocol support-

ing sequential consistency (unlike Power 4) [17]. We also model separate L2 prefetchers per processor
rather than a single shared prefetcher to reduce stream interference [17], and we allow L1 prefetches to
trigger L2 prefetches. We evaluate hardware-based strided prefetching and its interactions with cache and

link compression in the next few sections.

6.3.2 Hardware Stride-Based Prefetching Characteristics

Table 6-1 presents the characteristics of hardware stride-based prefetching for the L1l, L1D and L2

prefetchers using the following metrics:

TotalPrefetches 1000

PrefetchRate= Prefetches per thousand instructiors . (6.2)
Totallnstructions :

PrefetchHits
0, = 0,
Coverag¢%) PrefetchHits+ DemandMissexleOA) (6.3)

TABLE 6-1. Prefetching Properties for Different Benchmarks

L1 I Cache L1D Cache L2 Cache
Benchmark pf Cover- | Accu- pf Cover- | Accu- Pf Cover- | Accu-
rate age racy rate age racy rate age racy

apache 4.9 16.4%| 42.0% 6.1 8.8% 55.5% 105 37.7% 57.9%
zeus 7.1 145% | 38.9% 5.5 17.7% 79.29 8.2 44.4% 56.0%
oltp 135 20.9% | 44.8% 2.0 6.6% 58.0% 2.4 26.4% 41.5%
jbb 1.8 24.6% | 49.6% 4.2 23.1%| 60.3% 55 34.2% 32.4%
art 0.05 9.4% 24.1% 56.3| 30.9% 81.3% 49.7 56.0% 85.0%6
apsi 0.04 15.7% | 30.7% 8.5 25.5% 96.9% 4.6 95.8% 97.6%6
fma3d 0.06 7.5% 14.4% 7.3 27.5% 80.9% 8.8 44.6% 73.5%
mgrid 0.06 155% | 26.6% 8.4 80.2%| 94.2% 6.2 89.9% 81.9%

123
Where a prefetch hit is defined as the first reference to a prefetched block, excluding partial hits where

prefetched blocks are still in flight.

PrefetchHits
0 = - = 0,
Accuracy%) = Percent of Accurate Prefetches Total Prefetcheg 100% (6.4)

Table 6-1 shows the different prefetching properties of commercial and SPEComp benchmarks on an 8-
processor CMP. Commercial benchmarks issue many more L1 instruction prefetches (up to 13.5 per 1000
instructions for oltp), while the number of instruction prefetches for SPEComp benchmarks is negligible.
L1 instructions’ prefetching accuracy is not high since prefetch streams are initialized after recognizing
four fixed-stride cache line accesses, typically larger than most basic blocks. On the other hand, the num-
ber of prefetches and the accuracy of L1 data and L2 prefetching is much higher for SPEComp bench-
marks, which is expected since their data access patterns are more predictable compared to commercial

benchmarks.

In the next two sections, we study the interactions between compression and L2 prefetching alone, and its
interactions with L1 prefetching alone. We separate the effects of both types of prefetching to demonstrate
the different positive and negative interaction factors between compression and prefetching. In Section 6.6,

we show the combined effect of both L1 and L2 prefetching and its interactions with compression.

6.4 Interactions Between Compression and L2 Prefetching
In this section, we study the interactions between compression and L2 prefetching. We simulated different
combinations of cache/link compression and L2 prefetching for our eight benchmarks. We present results

from configurations that implement L2 prefetching—and not L1 prefetching—to isolate the impact of L2

2. Uniprocessors have higher L1D and L2 coverage for commercial benchmarks since they have less thread contention. Other
prefetching properties for commercial benchmarks do not differ significantly from those of Table 6-1. We did not study unipro-

cessor versions of SPEComp benchmarks in this dissertation.

124
prefetching alone. In the next few subsections, we show the following positive and negative interactions

between compression and L2 prefetching:

e L2 prefetching significantly increases pin bandwidth demand for most benchmarks. Compression
(mostly link compression) helps alleviate such increase in pin bandwidth demand, a positive interac-

tion between compression and L2 prefetching.

L2 prefetching significantly increases many benchmarks’ working set size (or cache footprint). Cache

compression alleviates this increase by increasing the effective cache size, a positive interaction.

« Cache compression and L2 prefetching avoid some of the same L2 misses. These common avoided
misses cannot be counted towards improving the combined performance of prefetching and compres-
sion. According to our terminology in Section 6.2, this constitutes a negative interaction between com-

pression and L2 prefetching.

6.4.1 Bandwidth Demand

Figure 6-2 shows the bandwidth demand of prefetching and compression combinations, normalized to the
case of no compression or prefetching. L2 prefetching alone increases off-chip bandwidth demand for our
benchmarks by 17-178%. Combining prefetching with L2 and link compression achieves a significant off-
chip bandwidth demand reduction across all benchmarks except gpssjtave interactiorbetween the

two techniques. For example, while zeus has an 82% bandwidth demand increase due to L2 prefetching,
bandwidth demand increases by only 3% when combining it with L2 and link compression (compared to
the base case of no compression or prefetching). Apache’s 64% bandwidth demand increase due to
prefetching turns into a 7% reduction when both compression and prefetching are combined. Compression
in apsi does not achieve a significant reduction in bandwidth over L2 prefetching (only 3%) since its com-

pression ratio is low (Chapter 5).

125
6.4.2 Classification of L2 Misses

Figure 6-3 presents a classification of L2 misses according to whether they are avoidable by L2 prefetching
only, L2 compression only, both, or neither. The figure shows six classes of accesses (from the bottom up):
misses that could not be avoided by either L2 prefetching or L2 compression, misses that could be avoided
by L2 compression and not L2 prefetching, misses that could be avoided by L2 prefetching and not L2
compression, misses that could be avoided by either L2 compression or L2 prefetching, extra L2 prefetches
that could not be avoided by L2 compression, and extra L2 prefetches that could be avoided by L2 com-
pression. The 100% line represents the total misses in the case of no compression or prefetching. The fig-
ure presents approximate data that we obtained from comparing cache miss profiles across simulations of
different configurations, and using set theory and the theory of inclusion and exclusion to obtain cardinali-

ties of different sets of accesses.

N
P T T T R T

— B No PF or Compr

B L2PF

[] L2 Compr

il L2 PF+L2 Compr

[L2&Link Compr

[] L2 PF+L2&Link Compr

[EnY
P
i

Normalized Bandwidth

8.8 7.3 50 6.6 7.6 215 276 14.4
apache zeus oltp jbb art apsi fma3d mgrid

FIGURE 6-2. Normalized off-chip bandwidth demand for L2 prefetching and
compression combinations

Bandwidth demand is obtained as the bandwidth utilized with an infinite available pin bandwidth. For each
benchmark, bandwidth demand is normalized to the bandwidth demand with no prefetching or comprgssion,
shown at the bottom (in GB/sec.).

126
Figure 6-3 demonstrates that L2 prefetching succeeds in avoiding many misses in SPEComp benchmarks,

while L2 compression is not as successful. For commercial benchmarks, both prefetching and compression

avoid some L2 misses. We also note the following two sources of interaction between compression and

prefetching:

Negative Interaction: Misses avoided by BothFigure 6-3 shows that there is an intersection between the
sets of misses avoided by L2 compression and those that could be avoided by L2 prefetching (i.e., misses
that could be avoided by either technique). This intersection is a negative interaction factor between the
two techniques, since they can be accounted for once when comf@aegiup(Compression, Prefetching)

in Eq. 6.4. However, this set only represents a small fraction of the total number of misses (8% for apache,

150

Extra Avoided PF Misses
[l ExtraUnavoided PF Misses
Avoided by Both

[] Avoided by Pref. Only
Avoided by Compr. Only

] [Unavoidable Misses
50

apache zeus oltp jbb art apss fma3d mgrid

FIGURE 6-3. Breakdown of L2 cache misses and prefetches

The figure shows for each benchmark (from the bottom up): unavoidable misses, misses avoided by compres-
sion and not prefetching, misses avoided by prefetching and not compression, and misses avoided [by both
compression and prefetching. The 100% line represent the total misses for no compression or prefetching. We
show extra prefetches (both avoided and unavoided by compression) above the 100% line.

127
7% for art, and 3% or less for all other benchmarks). We attribute this small intersection to the fact that L2

compression and L2 prefetching target different sets of misses: While L2 compression mainly targets con-
flict and capacity misses, L2 strided prefetching targets misses that follow a strided pattern. The two sets of

misses, while partially overlapping, are largely orthogonal.

Positive Interaction: Prefetching Misses Avoided by Compressiorkigure 6-3 also shows that compres-

sion avoids some prefetches when their data can fit in a compressed cache, removing some of the addi-
tional bandwidth due to prefetching. While this fraction is negligible for SPEComp benchmarks where
prefetching is more accurate, it is significant for commercial workloads. Prefetching, in effect, increases a
workload’s working set size (or cache footprint), and compression helps by increasing the effective cache

size to tolerate that increase in cache footprint.

6.4.3 Performance

Figure 6-4 shows normalized runtimes for our eight benchmarks for different combinations of compres-
sion and L2 prefetching, relative to the base case of no compression or prefetching. Table 6-1 presents
speedups and interaction coefficients between different combinations. L2 prefetching alone speeds up all
benchmarks (except jbb and fma3d) by 1-28%. These speedups are higher for SPEComp benchmarks com-
pared to the commercial benchmarks except for zeus. Zeus shows the highest performance improvement of
all commercial benchmarks since L2 prefetching avoids a larger percentage of all L2 misses, as we showed

in Section 6.4.2.

Jbb suffers from a 16% slowdown because its L2 prefetching accuracy is much lower (at 32.4%, Table 6-1)
than all other benchmarks, which leads to many additional misses since prefetches replace useful lines in
the L2 cache. Fma3d with no compression or prefetching is already bandwidth limited for our 20 GB/sec.
pin bandwidth base configuration as we showed in Chapter 5, and prefetching increases bandwidth demand

leading to a performance slowdown.

128

1.0 1T "
@ l No PF or Compr
E i BL2PF
%: & [J L2 Compr
% 05 ll L2 PF+L2 Compr
£ [L2&Link Compr
(=]
z [L2 PF+L2&Link Compr
0.0- - . .
apache zeus oltp jbb apsi fma3d mgrid
FIGURE 6-4. Performance of combinations of L2 Prefetching and compression
Performance is normalized to the case of no prefetching or compression.

TABLE 6-1. Speedups and Interactions between L2 Prefetching and Compression

Benchmark apache zeus oltp jbb art apsi fma3d mgrid
Speedup (L2 PF) 4.4% 27.9% 1.0% -155% 6.1% 122% -28% 2(8%
Speedup (L2 C) 176% 65% 49% 51% 20% 42% -06% 0.9%
Speedup (L2 PF, L2 C) 245% 39.1% 5.8% -5.4% 49% 14.6% -42% 13.3%
Speedup (L2+Link C) 205% 9.7% 5.6% 5.9% 31% 42% 226% 2.9%
Speedup (L2 PF, L2+Link C) 39.5% 52.8% 10.6% 0.2% 74% 14.3% 19.6% 42.5%
Interaction(L2 PF, L2C) 1.4% 22% -02% 6.5% -3.1% -2.0% -0.8% -5.4%
Interaction (L2 PF, L2+Link C) | 10.9% 8.9% 3.7% 11.9% -1.8% -2.3% 0.3% 14.6%

6.4.4 Interaction Between L2 Prefetching and Cache Compression

When combining cache compression and L2 prefetching, we get a multiplicative speedup effect compared
to the speedup of either technique alone. Table 6-1 shows the interaction between L2 prefetching and cache
compression (sixth row). The interaction factor is negligible for most benchmarks as the positive and neg-

ative interactions offset. When the negative interaction factor is higher than the positive interaction factor,

129
the speedup of the combined configuration is less than the product of individual configurations. This is the

case for SPEComp benchmarks since prefetching is highly accurate, and compression avoids part of the
same misses avoided by prefetching. On the other hand, most commercial applications show a positive
interaction factor. This is because cache compression helps avoid some of the “additional prefetches”
caused by L2 prefetching (Figure 6-3), as well as reducing off-chip bandwidth demand (Figure 6-2). Both
of these positive interaction effects lead to a larger benefit from prefetching than if compression was not
implemented. In apache, for example, the speedup of L2 prefetching alone is 4.4%, and that of L2 com-
pression alone is 17.6%, and the speedup of the combination of L2 prefetching and L2 compression is
24.5% (slightly higher than 1.044*1.176=1.228 or a 22.8% speedup). Eq. 6.4 shows that this is a positive
interaction coefficient of 1.4%. This is because the positive interaction (of compression avoiding some
additional prefetches and prefetching-induced misses) outweighs the negative interaction of having both

schemes target some of the same misses (Figure 6-3).

6.4.5 Link Compression Impact

In Chapter 5, we showed that link compression alone provided little benefit for all benchmarks except
fma3d. However, link compression increased the speedup of the combination of L2 prefetching and L2
compression for apache and zeus by more than 14% (compare bars 6 and 4 in Figure 6-4). This is because
link compression helps reduce the increase in off-chip bandwidth demand due to prefetching, thus reduc-
ing interconnect contention and increasing prefetching speedup. The combination of L2 prefetching and
cache plus link compression helps achieve a speedup of 11-53% for commercial benchmarks except jbb,

and 7-43% for SPEComp benchmarks.

130
6.4.6 Summary

The combination of L2 prefetching and compression achieves a significant speedup (0-53%) for scientific
and commercial benchmarks. This combined speedup is affected by positive and negative interaction fac-
tors. Positive interaction factors include: link compression reducing contention because of prefetching, and
cache compression avoiding some of the additional prefetches and misses caused by prefetching. A nega-
tive interaction factor is that both compression and prefetching can help avoid some of the same misses.
Combining L2 prefetching and compression achieves speedups that are higher—in all but two bench-

marks—than the product of their individual speedups.

6.5 Interactions Between Compression and L1 Prefetching

In this section, we study the interaction between compression and L1 prefetching. We simulated different
combinations of cache/link compression and L1 prefetching for our eight benchmarks. We present results
from configurations that implement L1 prefetching—and not L2 prefetching—to isolate the impact of L1
prefetching alone. In the next few subsections, we show the following two positive interactions between

compression and L1 prefetching:

* L1 prefetching significantly increases pin bandwidth demand for many benchmarks since it can initial-
ize L2 fill requests from memory. Compression (mostly link compression) helps alleviate such
increase in pin bandwidth demand, a positive interaction between compression and L1 prefetching.

» L1 prefetching helps tolerate decompression overhead for some L2 hits penalized by cache compres-

sion, a positive interaction.

6.5.1 L1 Prefetching Bandwidth Demand

When L1 prefetching is implemented without L2 prefetching, L1 prefetches that miss in the L2 cache ini-

tialize L2 fill requests from memory. This leads to an increase in pin bandwidth demand that can be signif-

131
icant for many benchmarks. Figure 6-5 shows the off-chip bandwidth demand for different combinations

of L1 prefetching and compression. L1 Prefetching alone increases the off-chip bandwidth demand by 22-
51% for commercial benchmarks, and by 12-133% for SPEComp benchmarks. This increase in bandwidth
demand is less than that of L2 prefetching (Figure 6-2). When combining L1 prefetching with cache and
link compression, however, all benchmarks (except the incompressible apsi) show a significant reduction
in bandwidth demand compared to L1 prefetching alone. This constitytesitive interactiorbetween

L1 prefetching and compression.

6.5.2 Impact on L2 Hit Latency

Cache compression increases L2 hit latency, since L2 hits to compressed cache lines suffer a decompres-

sion overhead (five cycles in our evaluation). We expect that L1 prefetching would decrease such overhead

N
i R R R R S R

—] No PF or Compr
JL2PF
[] L2 Compr
ll L2 PF+L2 Compr
[L2&Link Compr
[] L2 PF+L2&Link Compr

Ay
P R R

Normalized Bandwidth

8.8 7.3 50 6.6 7.6 215 276 144

apache zeus oltp jbb art apsi fma3d mgrid

FIGURE 6-5. Off-chip bandwidth demand for L1 prefetching and compression
combinations

Bandwidth demand is obtained as the bandwidth utilized with an infinite available pin bandwidth. For pach
benchmark, bandwidth demand is normalized to the bandwidth demand with no prefetching or conjpres-
sion, shown at the bottom (in GB/sec.).

132
due to prefetching compressed lines before they are needed, thereby reducing the impact of the decompres-

sion overhead. Figure 6-6 shows the average L2 cache hit latency for different combinations of L2 com-
pression and L1 prefetching. L2 compression increases the average L2 hit latency by 1.2-3.7 cycles for

compressible benchmarks.

Surprisingly, L1 prefetching does not decrease the L2 hit latency for most benchmarks. This is because we
do not count hits in the L1 due to L1 prefetches as L2 hits, so L1 prefetching reduces the total number of
L2 hits while increasing the number of L1 hits. Since L1 prefetching increases the demand on the L2

cache, this leads to an increased contention for L2 bank ports and a slight increase in L2 hit latency (up to

0.7 cycles).

B L1 PF+L2 Compr

15
2 |
% B No PF or Compr
z o] WLLPF
T 10+
~ . [0 L2 Compr
-
o
>
<

apache zeus oltp jbb art apsi fma3d mgrid

FIGURE 6-6. L2 hit latency for combinations of L2 compression and L1
prefetching

Average L2 hit latency is measured in cycles from fill to use. We do not count completed L1
prefetches (that hit in the L1) as L2 hits.

TABLE 6-2. Percentage of penalized hits avoided by L1 prefetching

Benchmark apache | zeus oltp jbb apsi art fma3d mgrid

%Penalized Hits 2.4 6.2 0.4 0.9 1.9 0.9 11.4 0.4

133
L1 prefetching helps reduce the decompression overhead by prefetching compressed lines to the L1 cache,

a positive interaction We show the percentage of penalized hits that are avoided by L1 prefetching in
Table 6-2. However, this percentage is small for most benchmarks due to the low L1 prefetching accuracy
and coverage for compressible commercial benchmarks, and the incompressibility of most lines in SPE-

Comp benchmarks where L1 prefetching has higher coverage and accuracy (Table 6-1).

6.5.3 Performance

Figure 6-7 shows normalized runtimes for our eight benchmarks for different combinations of compres-

sion and L1 prefetching, relative to the base case of no compression or prefetching. Table 6-3 shows the
speedups and interaction coefficients for these combinations. L1 prefetching alone speeds up all bench-
marks by up to 35%. Fma3d shows the least speedup at 0.2% since it is bandwidth-limited—at 20 GB/sec.
available bandwidth—even with no prefetching, and prefetches have to compete with demand misses for

pin bandwidth (with priority given to demand misses).

ll No PF or Compr
BLiPF

[] L2 Compr

[l L1 PF+L2 Compr

[L2&Link Compr

[] L1 PF+L2&Link Compr

Normalized Runtime

aoaché zeus oltp_ jbb_ aps fma3d mgrid

FIGURE 6-7. Performance of combinations of L1 prefetching and compression

Performance is normalized to the case of no prefetching or compression.

134

TABLE 6-3. Speedups and Interactions between L1 Prefetching and Compression

Benchmark apache zeus oltp jbb art apsi fma3d mgrid
Speedup (L1 PF) 18.4% 34.2% 6.6% 0.8% 9.7% 13.4% 0.2% 34.6%
Speedup (L2 C) 176% 65% 4.9% 51% 2.0% 42% -0.6% 0.9%
Speedup (L1 PF, L2 C) 37.4% 485% 11.9% 7.2% 11.9% 14.9% -0.4% 37.4%
Speedup (L2+Link C) 205% 9.7% 5.6% 59% 3.1% 42% 226% 2.9%
Speedup (L1 PF, L2+Link C) 43.8% 55.4% 16.0% 9.1% 13.6% 13.9% 23.1% 6$.0%
Interaction(L1 PF, L2C) -1.3% 3.9% 0.1% 1.2% -0.1% -2.8% 0.0% 1.2%
Interaction (L1 PF, L2+Link C) 0.8% 5.5% 3.1% 21% 0.4% -3.6% 0.29%21.3%

When combining compression and L1 prefetching (last row in Table 6-3), we also get an overall positive
interaction coefficient for all benchmarks except apsi. This higher than expected speedup is because of the

positive interactions between compression and prefetching.

6.5.4 Summary

L1 prefetching alone provides speedups across all benchmarks, while compression achieves speedups
mostly for commercial benchmarks. The combination of L1 prefetching and compression can achieve
speedups higher than the product of individual speedups due to two main positive interaction factors. First,
cache and link compression reduce the increase in pin bandwidth demand due to L1 prefetching that trig-
gers L2 fill requests. Second, L1 prefetching hides decompression overhead caused by hits to compressed
lines. We showed that the effect of the first factor (reduction in pin bandwidth demand) outweighs the sec-

ond.

6.6 Interactions Between Compression and Both L1 and L2 Prefetching

When combining both L1 and L2 prefetching, the same trends in the two previous sections hold. In this

section, we show the combined impact of positive and negative interaction factors between compression

135

1.0+
o I = [l No Pref or Compr
S 7] =
= f Pref
]
% i [] L2 Compr

3l

s [l Pref+L2 Compr
g 0.5] L2&Link Compr
& [] Pref+L2& Link Compr

0.0-

apache zeus oltp jbb art aps fma3d mgrid

FIGURE 6-8. Performance of combinations of compression and both L1 and L2
prefetching

Performance is normalized to the case of no prefetching or compression.

TABLE 6-4. Speedups and Interactions between L1 and L2 Prefetching and Compression

Benchmark apache zeus oltp jbb art apsi fma3d mgrid
Speedup (L1+L2 PF) -09% 21.3% 0.3% -24.5% 6.4% 13.6% -3.4% 18§
Speedup (L2 C) 176% 65% 4.9% 5.1% 2.0% 42% -0.6% 0.9
Speedup (L1+L2 PF, L2 C) 18.8% 32.1% 5.8% -14.9% 7.9% 14.1% -36% 1
Speedup (L2+Link C) 20.5% 9.7% 5.6% 5.9% 3.1% 42% 22.6% 2.9
Speedup (L1+L2 PF, L2+Link|
o) 37.3% 50.7% 9.9% -6.5% 10.6% 15.5% 18.6% 48.]
Interaction(L1+L2 PF, L2C) 2.0% 2.3% 0.5% 7.3% -0.6% -3.7% 0.5% -2.
Interaction (L1+L2 PF,

) 15.0% 132% 3.8% 16.9% 0.9% -25% 0.2% 21.5%
L2+Link C)

.9%
%
4%
%

(=)

| %

and prefetching. Figure 6-8 shows normalized runtimes for different combinations of prefetching and com-

pression. Table 6-4 shows the speedups and interaction coefficients.

136

3]
k2 -
£ I No Pref or Compr
3 — B P
c% [] L2 Compr
E [Pref+L2 Compr
g [L2&Link Compr
2] — [] Pref+L2&Link Comp
8.8 7.3 5.0 6.6 7.6 215 217 144
apache zeus oltp jbb art apsi fma3d mgrid

FIGURE 6-9. Off-chip bandwidth demand for L1&L2 prefetching and compression
combinations

Bandwidth demand is obtained as the bandwidth utilized with an infinite available pin bandwidth. Hor each
benchmark, bandwidth demand is normalized to the bandwidth demand with no prefetching or compression,
shown at the bottom (in GB/sec.).

Combining L1 and L2 prefetching achieves a smaller speedup compared to the product of the two individ-
ual speedups. This is expected since L1 and L2 prefetching can redundantly avoid the same L2 misses, and
since they combine to increase off-chip bandwidth demand (Figure 6-9). For three of the SPEComp bench-
marks (apsi, fma3d and mgrid), the increase in bandwidth due to prefetching is enough to make these
benchmarks bandwidth-limited, leading to smaller performance improvements. Overall, stride-based
prefetching alone speeds up some benchmarks by 0-21%, while slowing down others by 1-25%. On the

other hand, cache and link compression speed up all benchmarks by 3-23%.

When combining both L1 and L2 prefetching with cache and link compression, we achieve speedups of
10-51% for all benchmarks, except for jbb. The two schemes interact positively for all our benchmarks
except apsi (last row of Table 6-4). The interaction coefficients can be as high as 22% (mgrid) or 17%

(jbb). We attribute these large positive interaction coefficients the combination of positive interaction fac-

137
tors between both prefetching schemes and both compression schemes, as we discussed in more detail in

the previous sections. We next study the sensitivity of these results to changes in pin bandwidth.

6.7 Sensitivity to Pin Bandwidth

In the previous sections, we showed that increasing off-chip bandwidth demand is one of the main negative
effects of prefetching. We also demonstrated that compression interacts positively with prefetching by tol-
erating such demand increase. In this section, we analyze the impact of changing pin bandwidth on the per-
formance of hardware prefetching and its interaction with compression. Our evaluation parameters remain
the same except for available pin bandwidth. We show how the utilized bandwidth, performance and inter-

action coefficients change when pin bandwidth varies between 10 and 80 GB/sec.

6.7.1 Utilized Bandwidth

At 20 GB/sec. available bandwidth, many of our benchmarks (mainly SPEComp benchmarks) were band-
width-limited (i.e., utilized bandwidth is close to available pin bandwidth and therefore limits perfor-
mance). In this section, we show the impact of increasing the available bandwidth on pin bandwidth
utilization of our benchmarks. We show the utilized bandwidth for commercial workloads (Figure 6-10)
and SPEComp benchmarks (Figure 6-11) as pin bandwidth varies between 10 and 80 GB/sec. We note that

the scale is not the same for different benchmarks.

For commercial benchmarks, our scaled-down versions of commercial benchmarks do not have significant
utilized-bandwidth increases as the available pin bandwidth increases. Their bandwidth demand is at most
15.4 GB/sec., even with prefetching (Figure 6-9). These benchmarks are bandwidth-limited only for the

extreme 10 GB/sec. pin bandwidth configuration.

SPEComp benchmarks, on the other hand, show significant increases in bandwidth demand as available

pin bandwidth increases. With stride-based prefetching, apsi's pin bandwidth demand increases to higher

138

Utilized Bandwidth (GB/sec.) Utilized Bandwidth (GB/sec.)
o [8;]
| S R R

Utilized Bandwidth (GB/sec.)

Utilized Bandwidth (GB/sec.)

apache

10

=
o al o
e v o |y 0y
N%
i

L]

Pin Bandwidth (GB/sec.)

10

]

|
N%
(@]

Zeus
40

Pin Bandwidth (GB/sec.)
oltp

o N H
I I R
E |

%{

I |T'r
40

20

Pin Bandwidth (GB/sec.)
jbb

10

FIGURE 6-10. Pin bandwidth demand of different compression and prefetching
combinations for commercial benchmarks when pin bandwidth varies from 10 to

80 GB/sec.

=
o al o
IR ST

_|
%1

il

20
Pin Bandwidth (GB/sec.)

B No PF or Compr

M L1&L2 PF

3 L2 Compr

B L1& L2 PF+L2 Compr
3 L2&Link Compr

[L1&L2 PF+L2&Link Compf

B No PF or Compr

M L1&L2 PF

3 L2 Compr

B L1& L2 PF+L2 Compr
3 L2&Link Compr

[L1&L2 PF+L2&Link Compf

B No PF or Compr

M L1&L2 PF

3 L2 Compr

B L1&L2 PF+L2 Compr

3 L2&Link Compr

3 L1&L2 PF+L2&Link Compr

B No PF or Compr

M L1&L2 PF

3 L2 Compr

B L1& L2 PF+L2 Compr
3 L2&Link Compr

[L1&L2 PF+L2&Link Compf

139

Utilized Bandwidth (GB/sec.) Utilized Bandwidth (GB/sec.) Utilized Bandwidth (GB/sec.)

Utilized Bandwidth (GB/sec.)

apsi
40 E T T T
30 -
20 I
10 I
. L
10 20 40 80
Pin Bandwidth (GB/sec.)
art
8 | T T
6 -
4
2 -
0- 20 40 80
Pin Bandwidth (GB/sec))
fma3d
30 E T T
20
" “
hE
10 20 40 80
Pin Bandwidth (GB/sec.)
mgrid
303 [TTTT
203 S
Wﬂ B
0 .
10 20 40 80
Pin Bandwidth (GB/sec.)

FIGURE 6-11. Pin bandwidth demand of different compression and prefetching
combinations for SPEComp benchmarks when pin bandwidth varies from 10 to

80 GB/sec.

B No PF or Compr

M L1&L2 PF

3 L2 Compr

B L1&L2 PF+L2 Compr
3 L2&Link Compr

[L1&L2 PF+L2&Link Compf

B No PF or Compr

M L1&L2 PF

3 L2 Compr

B L1&L2 PF+L2 Compr

@ L2&Link Compr

[L1&L2 PF+L2&Link Compr

B No PF or Compr

M L1&L2 PF

3 L2 Compr

B L1& L2 PF+L2 Compr
3 L2&Link Compr

[L1&L2 PF+L2&Link Compf

B No PF or Compr

M L1&L2 PF

3 L2 Compr

B L1& L2 PF+L2 Compr
3 L2&Link Compr

[L1&L2 PF+L2&Link Compf

140
than 55.8 GB/sec. All SPEComp benchmarks are bandwidth-limited for the 10 GB/sec. configuration, and

all except art are bandwidth-limited for the 20 GB/sec. configuration. Two of the benchmarks (apsi and

mgrid) are even bandwidth-limited at 40 GB/sec. available pin bandwidth.

6.7.2 Performance

Since prefetching can significantly increase pin bandwidth demand, its impact on performance is expected
to be negative for bandwidth-limited configurations. Cache and link compression can improve perfor-

mance for systems that implement prefetching since they combine to reduce pin bandwidth demand. We
show the impact of prefetching and compression on performance for commercial workloads (Figure 6-12)

and SPEComp benchmarks (Figure 6-13) as pin bandwidth varies between 10 and 80 GB/sec.

For commercial workloads, the bandwidth-limited 10 GB/sec. pin bandwidth configuration shows a slow-

down of 6-42% due to hardware prefetching. On the other hand, prefetching shows speedups for most
benchmarks (except jbb) when bandwidth increases. When combined with cache and link compression,
prefetching shows a speedup for all benchmarks (except jbb) for the 10 GB/sec. configuration that is close
to the speedups achieved for bandwidth-abundant configurations. This is caused by the positive interaction

of compression reducing pin bandwidth demand increase due to prefetching.

For SPEComp benchmarks, the performance improvement due to prefetching increases as available pin
bandwidth increases. For example, apsi suffers a 2% slowdown for 10 GB/sec. pin bandwidth, but shows
speedups of 14%, 75% and 157% for the 20, 40 and 80 GB/sec. configurations, respectively. For fma3d
and mgrid, cache and link compression achieve significant speedups for bandwidth-limited configurations
when combined with hardware prefetching. However, the impact of cache and link compression in most

cases is limited due to the low compression ratios for these benchmarks.

141

Normalized Runtime Normalized Runtime Normalized Runtime

Normalized Runtime

1.0+

0.5

0.0-

apache
20 40 80
Bandwidth (GB/sec.)
zeus
10 20 40 80 -
Bandwidth (GB/sec.)
oltp
20 40 80
Bandwidth (GB/sec.)
jbb
10 20 40 80
Bandwidth (GB/sec.)

FIGURE 6-12. Performance of different compression and prefetching
combinations for commercial benchmarks when pin bandwidth varies from 10 to

80 GB/sec.

B No PF or Compr

M L1&L2 PF

3 L2 Compr

B L1&L2 PF+L2 Compr
3 L2&Link Compr

[L1&L2 PF+L2&Link Comp

B No PF or Compr

M L1&L2 PF

3 L2 Compr

B L1&L2 PF+L2 Compr
3 L2&Link Compr

[L1&L2 PF+L2&Link Comp

B No PF or Compr

M L1&L2 PF

3 L2 Compr

B L1&L2 PF+L2 Compr
3 L2&Link Compr

O L1&L2 PF+L2&Link Comp

B No PF or Compr

M L1&L2 PF

3 L2 Compr

B L1&L2 PF+L2 Compr
3 L2&Link Compr

O L1&L2 PF+L2&Link Comp

142

Normalized Runtime Normalized Runtime Normalized Runtime

Normalized Runtime

apsi
1.0
- :HH::H%
0.0- 10 20 40 80
Bandwidth (GB/sec.)
art
1.0-
- :W::Wl:
20 40 80
Bandwidth (GB/sec.)

fma3d

20 40

Bandwidth (GB/sec.)
mgrid

10

FIGURE 6-13. Performance of different compression and prefetching
combinations for SPEComp benchmarks when pin bandwidth varies from 10 to
80 GB/sec.

20 40
Bandwidth (GB/sec.)

80

B No PF or Compr

M L1&L2 PF

3 L2 Compr

B L1&L2 PF+L2 Compr
3 L2&Link Compr

[L1&L2 PF+L2&Link Comp

B No PF or Compr

M L1&L2 PF

3 L2 Compr

B L1&L2 PF+L2 Compr
3 L2&Link Compr

[L1&L2 PF+L2&Link Comp

B No PF or Compr

M L1&L2 PF

3 L2 Compr

B L1&L2 PF+L2 Compr
3 L2&Link Compr

O L1&L2 PF+L2&Link Comp

B No PF or Compr

M L1&L2 PF

3 L2 Compr

B L1&L2 PF+L2 Compr
3 L2&Link Compr

O L1&L2 PF+L2&Link Comp

143

e 20 |
S 4
§ . B 10GB/sec.
.] B 20 GB/sec.
5 [] 40 GB/sec.
"§ 10 [l 80 GB/sec.
g 4

04

) apache zeus oltp jbb art apsi fma3d mgrid

FIGURE 6-14. Interaction(%) between prefetching and compression as available
pin bandwidth varies

6.7.3 Interaction Between Prefetching and Compression

The negative side effects of prefetching are most obvious for systems with limited bandwidth. Since com-
pression tolerates some of these negative side effects, the positive interaction between compression and
prefetching can be higher for bandwidth-limited configurations. Figure 6-14 presents the interaction terms

between compression and prefetching when the available pin bandwidth changes from 10 to 80 GB/sec.

For commercial benchmarks, the interaction term is large (7-29%) for the 10 GB/sec. pin bandwidth con-
figuration. The interaction is also significant (4-17%) for the 20 GB/sec. configuration. However, the inter-
action drops dramatically for the 40 and 80 GB/sec. configurations since the available bandwidth
significantly exceeds demand, even with prefetching (Figure 6-9). Overall, the interaction is positive

between compression and prefetching for all configurations.

144
For SPEComp benchmarks, the interaction is negative for some configurations since compression is less

effective for these benchmarks. However, the negative interaction terms are limited to 3% or less. On the
other hand, some configurations show significant positive interaction terms (as high as 22% for mgrid) due
to the impact of link compression on reducing pin bandwidth demand caused by prefetching. Except for a

few configurations, the interaction is mostly positive for SPEComp benchmarks.

6.8 Sensitivity to Number of CMP Cores

Prefetching schemes have been previously shown to be successful for uniprocessor systems. However,
implementing prefetching on a CMP introduces contention for shared resources (caches and pin band-
width) that reduce its performance improvement. In Figure 6-15, we show the performance imprévement
due to stride-based prefetching, compression and other alternatives for our commercial berftirarrks
formance improvements are shown relative to a base system with the same parameters as those in
Chapter 5, except for the different number of processors. Stride-based prefetching alone improves unipro-
cessor performance by 61%, 73%, 11% and 2% for apache, zeus, oltp and jbb, respectively. However, such
performance improvement decreases as we increase the number of processor cores on a CMP, eventually
degrading performance. For a 16-processor CMP, stride-based prefetching shows no improvement for

apache, and degrades the performance of zeus, oltp and jbb by 8%, 10% and 35%, respectively.

Cache and link compression with no prefetching achieve modest performance improvements for unipro-
cessors (20%, 7%, 2% and 6% for apache, zeus, oltp and jbb, respectively). However, compression and

prefetching interact positively since compression mitigates some of the negative side effects due to

3. We use the term “performance improvement” instead of “speedup” in this section to avoid confusion with parallel speedup over
a uniprocessor configuration. Performance improvement is defined as (S-1)*100%, where S is the speedup in performance rel-

ative to our base system of no prefetching or compression.

4. We did not have the necessary checkpoints for SPEComp benchmarks, except for the 8-processor checkpoints.

145

Perf. Improvement (%)
=
o
e v b i

-10

apache
80 T |_
S 60
5
% 4
]
5 40+
E
& 20
0 —
1p 2p 4p 8p 16p
#Processors
oltp
30 7
20 1

1p 8p 16p

2 #Préltprs

an 8 MB cache.

zeus
80 11—
60 —
40 —
20 —
0
1p » #Prélcprs & 16p
jbb
10 — | i
-20
-30
1p » #Prélcprs & 16p

[l PF Only

l Compr Only
[0 PF+Compr

[l PF+2x BW
0 PF+2x L2

[l PF Only

l Compr Only
[0 PF+Compr

[l PF+2x BW
0 PF+2x L2

FIGURE 6-15. Performance improvement (%) for commercial benchmarks for
different uniprocessor and CMP configurations

Performance improvement is shown relative to a configuration with no compression or prefetching. A
figurations have a 20 GB/sec. available off-chip bandwidth except for the “PF+2x BW” which has a 4
sec. available bandwidth. All configurations have a 4 MB shared L2 cache except for the “PF+2x L2" t

Il con-
0 GB/
hat has

prefetching. This leads to strong positive interactions between the two schemes for all CMP configurations.

These interactions increase with the number of processor cores. On a 16-processor CMP, for example, per-

formance improves for a combination of prefetching and compression by 33%, 28% and 7% for apache,

zeus, and oltp, respectively. The performance degradation in jbb was limited to 10%.

146
The positive interactions between prefetching and compression result from compression mitigating the

impact of prefetching on both pin bandwidth and cache size. Therefore, the performance improvement due
to compression may exceed that of technigues that address pin bandwidth alone or cache size alone. On a
CMP with hardware prefetching, implementing compression outperforms doubling pin bandwidth for all
configurations (except for zeus and jbb on a 16-processor CMP). Furthermore, implementing compression
outperforms doubling the cache size for many configurations (apache on 8- and 16-processors, zeus on 4-,
8- and 16-processors, and jbb on 16-processors). Compression is attractive since it is less expensive to

implement than either of these alternatives.

6.9 Related Work

Hardware Prefetching. Hardware-directed prefetching has been proposed and explored by many
researchers [26, 65, 94, 96, 102, 140], and is currently implemented in many existing systems [58, 59, 107,
117]. Jouppi [66] introduced stream buffers that trigger successive cache line prefetches on a miss. Chen
and Baer proposed variations of stride-based hardware prefetching to reduce the cache-to-memory latency
[26], and studied its positive and negative impacts on different benchmarks [25]. Dahlgren, et al., proposed
an adaptive sequential (unit-stride) prefetching scheme that adapts to the effectiveness of prefetching [31].
Zhang and Torrellas proposed a scheme that targets irregular access patterns by binding together (in hard-
ware) and prefetching groups of short data lines that are indicated by the compiler to be strongly related
[140]. Tullsen and Eggers studied the negative side effects of software prefetching on bus utilization, cache
miss rates and data sharing for a multiprocessor system, and proposed techniques to reduce some of these
negative effects [123]. Lin, et al., mitigate the negative effects of prefetching on performance by prefetch-
ing only when the memory bus is idle (to reduce contention), and prefetching to lower replacement priori-

ties than demand misses (to reduce cache pollution) [43].

147
CMP Prefetching. Prefetching has been proposed or implemented to improve CMP performance. IBM’s

Power4 [117] and Power5 [107] both support stride-based hardware prefetching to different levels of the
cache hierarchy. Beckmann and Wood show that hardware stride-based prefetching can significantly
improve performance for commercial and scientific benchmarks on an 8-processor CMP [17]. Huh, et. al.,
show that L1 prefetching can decrease L1 miss rates and improve performance for a 16-processor CMP
with a NUCA L2 cache [63]. Ganusov and Burtscher propose dedicating one processor core of a CMP to
prefetch data for a thread running on another core [50]. This dissertation differs from previous proposals
since it studies some negative effects of prefetching on a CMP, and is the first to study the interactions

between prefetching and hardware compression.

Prefetching and CompressionZhang and Gupta [138] exploit their compressed cache design [139] to
prefetch partial compressed lines from the next level in the memory hierarchy without increasing memory
bandwidth, and with no need for prefetch buffers. They store compressed values in the cache, and use the
freed up space to prefetch other compressed values (i.e., prefetch partial lines). Their proposal makes use
of the positive interaction between compression and prefetching since compression frees up space and
bandwidth that can be used by prefetching. Lee, et al., use a decompression buffer between their cache lev-
els to buffer decompressed lines, which can be viewed as storing “prefetched” uncompressed lines to
reduce decompression overhead [77, 78, 79]. This dissertation differs from these proposals as it introduces
a general unified cache and link compression CMP design that interacts with hardware prefetching. We

also explore in more detail different positive and negative interactions between compression and prefetch-

ing.

6.10 Summary

Many CMP designs implement hardware-based prefetching to hide L1 and L2 miss latencies. For such sys-

tems, compression can be less appealing if prefetching achieves most of the benefits due to compression.

148
However, prefetching schemes can greatly increase off-chip bandwidth demand. In addition, prefetching

can increase demand on cache size for many benchmarks due to cache pollution. Since both cache size and
pin bandwidth are shared resources in a CMP, the benefit of prefetching decreases dramatically. In this
chapter, we show that hardware stride-based prefetching provides smaller performance improvements for
CMPs than for uniprocessors, even hurting performance in some cases. We further show that cache and
link compression partially compensate for the increased demand by effectively increasing cache size and

pin bandwidth.

In the central result of this chapter, we showed that compression and prefetching have a strong positive
interaction, improving performance by 10-51% for seven of our eight benchmarks for an 8-processor CMP.
Compression and prefetching interact positively in three ways: link compression reduces prefetching’s off-
chip bandwidth demand; L1 prefetching hides part of the decompression penalty due to cache compres-
sion; and cache compression helps accommodate the increase in working set size due to prefetching. This
implies that compression helps reduce the two main negative side effects of prefetching, and prefetching
helps mitigate the main negative side effect due to compression. We also show a negative interaction
between the two schemes, since a fraction of the misses avoided by compression can also be avoided by
prefetching. Overall, compression and prefetching interact positively, and their combined speedup equals
or exceeds the product of the two individual speedups for most benchmarks. Such positive interactions can
lead to performance improvements for CMP configurations whose performance would have degraded with

hardware stride-based prefetching alone.

149

Chapter 7

Balanced CMP Design:
Cores, Caches, Communication and Compression

A fundamental question in chip design is how to best utilize the available on-chip transistor area. For
CMPs, this translates to how to allocate chip area between cores and caches. Given a fixed transistor (i.e.,
area) budget, designers must choose an “optimal” breakdown between cores and caches. This choice is not
obvious, since the 2004 ITRS Roadmap [45] predicts that transistor speed will continue to improve faster
than DRAM latency and pin bandwidth (21%, 10%, and 11% per year, respectively). Should the design
center on caches, to hide DRAM latency and conserve off-chip bandwidth, or on cores, to maximize

thread-level parallelism?

Compression further complicates this trade-off. Cache compression increases the effective cache size for a
given transistor budget, reducing both average memory latency and (possibly) contention for limited pin
bandwidth. Link compression increases the effective pin bandwidth, potentially supporting more cores
with smaller caches. Compression in any form adds latency overheads to compress and decompress data,

possibly outstripping any improvements.

This chapter examines an important aspect of how to design balanced CMP systems. That is, given a fixed
core design, how to allocate on-chip transistors to balance the demand on cores, caches, and communica-
tion. In particular, we study the role that compression plays in shifting this balance. To provide intuition
about this trade-off, we develop a simple analytical model that estimates throughput for different CMP
configurations with a fixed area budget (Section 7.1). We extend our model to include cache compression

(Section 7.2) and link compression (Section 7.3). We discuss the many simplifying assumptions that affect

150
our model’s accuracy (Section 7.4). We use our model to estimate the “optimal” CMP configuration (in

terms of the number of cores and cache sizes) for a set of parameters and the impact of compression on that
optimal configuration (Section 7.5). We also study the sensitivity of CMP throughput to different model
parameters (Section 7.6). We extend our simple model to include prefetching and study its interactions
with compression (Section 7.7). We then use full-system simulation and commercial workloads to quanti-
tatively evaluate the “optimal”’ design point given a fixed area assumption (Section 7.8). We compare sim-
ulation results to those of the analytical model to evaluate its relative error (Section 7.9). Although the
analytical model makes too many simplifying assumptions to accurately predict absolute throughput, we
show in Section 7.9 that it can provide insight by capturing the general trends. We discuss some related

work (Section 7.10) and conclude (Section 7.11).
In this chapter, we make the following contributions:

« We introduce a simple analytical model that helps build intuition about the trade-off between cores,

caches, and communication, and the role of compression in CMP design.

« We show, using our analytical model and simulation experiments, that compression can improve CMP

throughput by nearly 30%.

* We use our analytical model to demonstrate that compression can lead to significant throughput

improvements across a wide range of CMP system parameters.

* We show that both cache and interconnect compression can slightly shift the optimal CMP design

towards having more cores, leading to more core-centric designs.

« We show that cache compression interacts positively with hardware prefetching across a wide range of
workloads and CMP configurations. Positive interaction coefficients (as high as 33%) lead to through-
put improvements that are significantly higher than the product of throughput improvement for either

scheme alone.

151
7.1 Blocking Processor Model

A fundamental question in CMP design is how to best utilize the limited transistor area and split it between
processor cores and caches. Ultimately, this comes down to a question of balance. A balanced CMP design
allocates transistors to processor cores and on-chip caches such that neither cores, caches, nor communica-
tion is the only bottleneck. In order to gain some insight on the trade-off between cores and caches, we
develop a simple model for a CMP with a fixed transistor budget. We use this model to roughly evaluate
what the best CMP design configuration is and how it changes with different system parameters. We next

describe an area model and a throughput model for a fixed-area CMP.

7.1.1 Cache Byte Equivalent (CBE) Area Model

Assume we have a CMP with a total fixed afga,p allocated to cores and caches that is a proper multiple

of the area needed for a 1MB L2 cache:

Acmp = MEAMB (7.1)

whereA;\g is the area required for 1 MB of L2 cache, ands a design constant taking into account semi-
conductor process generation, cost objectives, etc. The area of one processor (including its private L1

caches) can be written also in terms of 1 MB L2 cache area:

Ap = KpPame (7.2)

For a system oN processors, the area allocated to L2 cacheg()) is simply the area not consumed by

cores:

ALoNy = Acmp— N DAy = mUA g =NIK, A yp = Apyg Hm= Ky IN) (7.3)

152
7.1.2 Throughput for a Fixed Chip Area

To estimate performance, we assume the cores are simple, in-order blocking processors. For a given work-

load, we can model the cycles per instruction for a single processor with an L2 cach&gof asze

CPI(1) = CPI +missraté $,) (MissPenalty, (7.4)

perfectl2
whereCPlyerfect 2is an estimate of the CPI of the processor core (including L1 caches) with a perfect L2
cache missratéS ,) is the miss rate (per instruction) for a cache of sfgg andL2_Miss_Penaltys the

average number of cycles needed for an L2 miss.

As we increase the number of cores, the area that remains available for cache decreases (Eqg. 7.3). In addi-
tion, more non-idle cores lead to more threads competing for the L2 cache, therefore increasing L2 misses.

To address this latter issue, we make the following two simplifying assumptions.

Assumption A (Sharing assumption).A pessimistic assumption is that cores do not actually share code

or data in the L2 cache. In that case, fbprocessors, the working sethstimes as large. We can approxi-

mate the effective cache size that each core sees\#sof the whole cache, B op = S ovyN- While this

might accurately characterize a multi-tasking workload, it is pessimistic for our commercial workloads,
which have been shown to heavily share both code and data [17]. Instead, we use the average number of
sharers per bloclksharersg(N), to adjust the working set size (essentially eliminating double counting of
shared blocks). We note that the average number of sharers per block can vary with the number of proces-

sors. Using this sharing assumption, the size of the L2 cache used by a single processor is:

SL2(N)

Step = N —sharerg (N) + 1

(7.5)

153
Assumption B (Square root assumption)To estimate the miss ratio for caches of different sizes, we use

the well-known square root rule of thumb [57]. Thus for each core, its L2 miss rate can be computed in

terms of a known miss rate for a cache of §ze
missraté $,,) = missratd $,) DJE (7.6)
ﬁ_Zp

From the previous two assumptions, the CPI of a single processor in a CMRwithcessors sharing an

L2 cache of siz§ , yis (from Eq. 7.4):

CPI(N) = CPI +missratd $,,) (MissPenalty, .7

perfectl2

And from Eq. 7.6 substituting fonissrat¢S o)

- i I
CPI(N) = CPIperfectL2+ MissPenalty , [iissraté $,) U SL_Zp (7.8)

Substituting assumption A's sharing rule 85, =3 5Ny / (N - sharerg(N) +1):

SL2

CPI(N) = CPI S o(ny/ (N —sharerg (N) +1) (7.9)

perfectL2+ MissPenalty , Lmissraté $,) DJ

Since the areas of caches are proportional to their sizes, we can substitute by the area of Eq. 7.3:

154

A, N- sharer%V(N) +1)
CPI(N) = CPI o ectio + MissPenalty , [imissraté $,) U
p (A Hm- kaIN))
(7.10)
. (N—sharerg,(N) +1)
= CPlperfectL2+ MissPenalty, (o [m= kp ™)

Wherea aggregates all the invariant L2 factors other ttianMiss_Latency

a = missraté $,) [—Al‘—z—
2 AlMB (7.12)

To estimate aggregate system throughput, we make the further simplifying assumption that there is no
other interference between threads (i.e., threads do not have to compete for cache or memory bandwidth).

We can estimate throughput as the aggregate number of instructions per chigedoessors:

N N
CPI(N)

IPC(N) =
(N —sharerg,(N) +1) (7.12)

CPI K)

perfectl2 + MissPenaIt\(2 o DJ

7.2 CMP Model with Cache Compression

Cache compression can improve CMP performance by increasing the effective density of the shared cache.
To model the impact of cache compression on CMP design, we need to add two parameters to the model in

the previous section:

« The cache compression ratds a workload property that measures the ratio between the effective
cache size of a compressed cache and the original cach&sigg.should be multiplied by in our

model.

155
« The decompression penaltp is the average number of cycles per instruction required to decompress

a block due to L1 misses to compressed L2 blocks. This should be ad@#jgsecy oin our model.

Our final model fotPC(N) now becomes:

IPC(N) = N

(N—sharer%V(N)+1) (7.13)

CPI ST, ™)

perfectl2 +dp+ MissPenalty, [DJ

7.3 CMP Model with Cache and Link Compression

The model in the previous sections assumed that there is no queuing delay due to pin bandwidth limita-
tions. To model the effects of interconnect latency, we split the penalty due to an L2 miss into two compo-

nents, memory latency and link latency:

MissPenaItXZ: MemoryLatency LinkLatency (7.14)

LinkLatency= ResponseTimePerMiss ServiceTimePerMiss QueuingDeIayPerMi§§)

We use mean value analysis (MVA) to compute thekLatencyand therefore the actual IPC. We first
define the interconnect (link) throughpu(in requests per cycle) as the product of the number of instruc-

tions per cycle and the number of misses per instruction:

A = IPC(N) (Missrat¢g §2p) (7.16)

Using Little’s law, the link utilizatiord is defined as:

U=\ (7.17)

156
WhereX is the average service time per miss. We assume that the service time is the physical link latency

for data to get to/from memory. Assuming no transmission errors, this service time is deterministic. This is

an M/D/1 queue, and its response tigiean be computed from:

U X (7.18)

R = LlnkLatency:)@'m

We then use this response time to compute a new valllrfGON), and iterate until the model converges.

Accounting for Memory-level Parallelism. We note that the model we discussed so far assumes a block-
ing memory model that doesn’t handle parallel memory requests. Current systems can handle memory
requests in parallel to exploit memory-level parallelism. To include such effect in our simple model, we
assume that the average number of memory requests issued in paratlgljsThe average memory
latency that is used to compufeC(N) in this case can be divided bylp,,, since each request on average

will block the processor for a fraction of the total memory latency [70].

7.4 Model Limitations

The simple analytical model we described in this chapter is useful to qualitatively provide intuition about
CMP throughput. However, our model makes many simplifying assumptions that affect its accuracy. Some

of these simplifying assumptions are:

* We assume that missrates decrease linearly with the square root of the increase in cache size. While
such trend has been demonstrated for smaller cache size, there is no evidence to support it holds for

large caches (1 MB or larger).

* Many of the model assumptions are based on having a blocking in-order processor. For non-blocking

and out-of-order processors, the impact of cache miss latency might be lower [70].

157
* We assume that many model parameters remain fixed even with changes in the number of cores or

cache size. However, many parameters can vary with a change in CMP configuratidp éadc).

* We assume that pin bandwidth demand has a similar behavior to an M/D/1 queue. However, many off-
chip requests tend to be clustered together in bursts, which implies that the Poisson incoming request
distribution is not accurate. Furthermore, a deterministic service time is not accurate in the presence of

transmission errors that require retransmission.

« IPC is not the best estimate of throughput for workloads that have abundant inter-thread interactions
and operating system cooperation. For such benchmarks, a direct throughput measure (e.g., transac-
tions per second) can be a better estimate. However, obtaining such estimate from IPC is not straight-
forward, since it requires estimating the number of instructions per transaction. Such number can vary

between different CMP configurations due to a change in idle time or spin-lock waiting time.

In order to develop a model that can more accurately predict CMP throughput, future research can target
developing a more complex model for CMP throughput that takes some of the above limitations into

account.

7.5 Optimal CMP Configurations

In this section, we use our simple analytical model to estimate the optimal CMP configuration for a hypo-
thetical benchmark. We show our base model parameters in Table 7-1, including both system and bench-
mark parameters. We chose benchmark parameters that approximate apache’s behavior (from chapters 4
and 5). We assume that hardware prefetching is not implemented in the base system. We show the model
results for four configurations (no compression, cache compression only, link compression only, both

cache and link compression) in Figure 7-1. We make the following observations:

158

TABLE 7-1. Model Parameters

Total CMP area is equivalent to that of 8 MB of L2 cache area §). Each
core (plus L1 caches) has the same area as 0.5 MB of L2 cghd(5). The

Area Assumptions
two extreme configurations for the CMP are: 16 cores with no cache, or 8
of cache with no cores

CPI perfectL2 1

_ . 20 GB/sec. pin bandwidth. Average service time per miss

Pin Bandwidth _)
X =72 bytes_per_miss / 4 bytes_per_second = 18 cycles.

Memory Latency 400 cycles

Missrate (8 MB) 10 misses / 1000 instructions

Compression Properties

Compression ratio = 1.75, decompression penatlly = 0.4 cycles per

instruction

sharers,,(N) 1.0 sharers/line if N=1, 1.3 sharers/line otherwise

Throughput (IPC)

20 GB/sec. B/W- 400 cycles memory latency - 10 missed/1K inst

0.4 1

—@-— No compr

---&-- cache compr

\ - a--link compr
¥ —+— cache+ link compr
0.2
0.0 T T T | | | |
0 2 4 6 8 10 12 14

#Processors

FIGURE 7-1. Analytical model throughput (IPC) for different processor
configurations (x-axis) and different compression configurations

159
« All curves show increasing throughput that peaks at 8-9 processors after which throughput decreases.

IPC increases as more processors are available up to a certain point (8 processors/4 MB L2). Beyond
this point, the impact of memory latency on performance becomes more dominant, thus decreasing

IPC.

» At 20 GB/sec. pin bandwidth and a base L2 missrate of 10 misses per 1000 instructions, pin bandwidth
is not a critical resource. The impact of link compression on performance is limited (only a 2.5%

throughput increase for the optimal 8 processor configuration).

« Since cache compression increases the effective cache size and reduces off-chip misses, its impact on
throughput is significant for all configurations. Cache compression alone achieves up to a 26%
improvement in throughput over the no compression case. Moreover, the increase in throughput is

more significant for the optimal processor/cache configurations.

« The combination of cache and link compression improve throughput by up to 29%.

7.6 Sensitivity Analysis

Our analytical model allows us to easily evaluate and gain insight into the impact of different parameters
on CMP throughput. In this section, we discuss the sensitivity of our results to different model parameters.
In each of the next few subsections, we vary one parameter while leaving the remaining parameters con-

stant.

7.6.1 Sensitivity to Pin Bandwidth

Both cache and link compression can reduce pin bandwidth utilization and therefore improve throughput
for bandwidth-limited systems. As available pin bandwidth increases, the impact of compression on
throughput decreases. Figure 7-2 shows the impact of pin bandwidth on throughput for our hypothetical

benchmark. We make the following observations:

160

« When pin bandwidth is limited (10 GB/sec.), the peak of the throughput curve moves to the left. This

is because pin bandwidth becomes a critical resource, and fewer processors with bigger caches are less
limited by off-chip bandwidth. The optimal configuration for an uncompressed system with 10 GB/

sec. pin bandwidth is at 7 processors, compared to 8 or 9 processors for most other configurations.

Cache and link compression provide a significant increase in throughput across all bandwidth configu-
rations. The throughput increase is bigger for low pin bandwidth (36% for the 10 GB/sec. system) due
to the additional impact of link compression, but is still significant for high bandwidths. The through-

put increase is at 26% for the 10 TB/sec. (i.e., 10000 GB/sec.) system.

Compression tends to slightly shift the optimal configuration towards more cores. The optimal config-

uration for all systems (except the 10 GB/sec. system) is at 8 processors with no compression, and at 9
processors with compression. For the 10 GB/sec. system, the optimal configuration is at 7 processors
with no compression, and at 8 processors with compression. This is because cache compression

increases the effective cache size and reduces miss rates.

Throughput (1PC)

0.6 - RO e
¥ i".""‘?\\‘

—— 10 GB/sec.- no compr

0.4 - --®-- 10 GB/sec.- cache + link compr

) ——a&—— 20 GB/sec.- no compr

---k-- 20 GB/sec.- cache + link compr
—&— 40 GB/sec.- no compr
--4-- 40 GB/sec.- cache + link compr
—— 80 GB/sec.- no compr
---#-- 80 GB/sec.- cache + link compr

0.2 —>— 10000 GB/sec.- no compr
===~ 10000 GB/sec.- cache + link compr

0.0 T T T T T T T

0 2 4 6 8 10 12 14
#Processors

FIGURE 7-2. Analytical model sensitivity to pin bandwidth. Non-compressed
configurations are represented by solid lines, and compressed configurations are
represented by dotted lines

161
7.6.2 Sensitivity to Cache Miss Rate

Figure 7-3 shows the impact of the base L2 cache miss rate on throughput for our hypothetical benchmark.
Since our model represents a simple blocking processor, cache miss rates have a significant impact on

throughput. We make the following observations:

1 IO Shid ahid YO8

3]
3
= 2 —eo— 1 misses/1K inst.- no compr
2 ---®@-- 1missesd1K inst.- cache + link compr
5, i 5 misses/1K inst.- no compr
3 ---k-- 5missesd1K inst.- cache + link compr
=]
— 1__ ‘-.-*_,.‘.--*"*"*--

—— 10 misses/1K inst.- no compr

---@-- 10 misses/1K ingt.- cache + link compr
=t 20 misses/1K inst.- no compr

---k-- 20 misses/1K inst.- cache + link compr
—@— 40 misses/1K inst.- no compr

---- 40 misses/1K ingt.- cache + link compr
—— 100 misses/1K inst.- no compr

---¢-- 100 misses/1K ingt.- cache + link compr

TRrOUGhPUE (TPC)

#Processors
FIGURE 7-3. Analytical model sensitivity to L2 cache miss rates of an 8 MB cache

Since the scale widely varies, we show the low miss rates in the top graph and the high miss rates in the bot-
tom graph. Non-compressed configurations are represented by solid lines, and compressed configurations are
represented by dotted lines.

162
* When the miss rate is low (1-5 misses per 1000 instructions), compression has a small impact on per-

formance for configurations with a small number of processors. Compression even slows down perfor-
mance due to the decompression overhead for some configurations. However, compression still
achieves non-trivial throughput improvements at the optimal design point (e.g., 7.5% for the 1 miss/
1000 instructions configuration). Moreover, compression shifts the optimal configuration towards

more cores (e.g., 11 cores vs. 10 for the 1 miss/1000 instructions configuration).

* When the miss rate is high, the impact of compression becomes more significant. Compression
achieves large throughput improvements since it reduces both cache miss rate and pin bandwidth utili-
zation. For the 20-100 misses/1000 instruction systems, compression achieves a 33-35% improvement
in throughput compared to uncompressed systems. However, the optimal configuration does not

change for these systems.

7.6.3 Sensitivity to Memory Latency

Figure 7-4 shows the impact of memory latency on throughput for our hypothetical benchmark. We vary

the memory latency between 200 and 800 cycles. We make the following observations:

* The impact of compression on throughput is almost the same on both extremes (31% improvement for
the 200-cycle system and 30% for the 800-cycle system). Two main factors contribute to the improve-
ment in throughput. First, cache compression avoids cache misses, which reduces the impact of mem-
ory latency on throughput. Second, cache and link compression reduce pin bandwidth utilization, thus
reducing link latency and improving IPC. For slower memory access latencies, the first factor is more
significant. For faster memory access latencies, the increase in IPC increases pin bandwidth utilization

so the second factor contributes more to throughput improvement.

163

Throughput (IPC)

#Processors

represented by dotted lines

—@— 200 cycle mem.
--®-- 200 cycle mem.
——a— 300 cycle mem.
---&-- 300 cycle mem.
—&— 400 cycle mem.
--4-- 400 cycle mem.
—&— 600 cycle mem.
---¢-- 600 cycle mem.
—>— 800 cycle mem.
- === 800 cycle mem.

lat..-
lat.
lat..-
lat.
lat..-
lat.
lat..-
lat.
lat..-
lat.

no compr

.- cache + link compr

no compr

.- cache + link compr

no compr

.- cache + link compr

no compr

.- cache + link compr

no compr

.- cache + link compr

FIGURE 7-4. Analytical model sensitivity to memory latency. Non-compressed
configurations are represented by solid lines, and compressed configurations are

* For all systems, cache and link compression shift the optimal design point from eight to nine processor

cores. This is consistent with the observations in the previous sections.

7.6.4 Sensitivity to Compression Ratio

The success of cache and link compression is greatly dependent on compression ratio (i.e., the ratio
between the compressed and uncompressed effective cache sizes). Figure 7-5 shows the impact of com-
pression ratio on throughput with all other model parameters fixed. We compared an uncompressed system
with systems of compression ratios between 1.1 and 2.0. As expected, throughput increases when com-
pression ratios are higher. Throughput improvements range from 3% for a 1.1 compression ratio to 38%

for a 2.0 compression ratio. In addition, the optimal design point shifts from eight to nine processors for

the compression ratios of 1.5 or higher.

164

Throughput (1PC)

T
0.6_ ‘_+-' X"'x--*.'%- ‘h\
a0 X" I
P _‘._-"'"'-.... “.X .
PR o Ny
,"X' 4 : .’--...---_-_--.-...‘- ~‘. .X‘\
0.4 4 —e— no compr.
---k-- 1.1 compr. ratio- cache + link compr
--<l-- 1.25compr. ratio- cache + link compr
--=0-- 1.5compr. ratio- cache + link compr
-==%-- 1.75 compr. ratio- cache + link compr
===+-- 2.0 compr. ratio- cache + link compr
0.2
0.0 T T T T T T T
0 2 4 6 8 10 12 14
#Processors
FIGURE 7-5. Analytical model sensitivity to compression ratio. No compression is
compared to configurations of compression ratios 1.1, 1.25, 1.5, 1.75 and 2.0

7.6.5 Sensitivity to Decompression Penalty

As cache hit rates increase, the compression overhead per instruction due to accessing compressed lines

(i.e., decompression penaltp in our model) also increases. Therefore, we expect throughput improve-

ments due to compression to decrease as decompression penalties increase. Figure 7-6 shows the impact of

the decompression penalty on throughput with all other model parameters fixed. We vary the decompres-

sion penalty between 0.0 and 2.0. A decompression penalty of 0.0 represents an unrealistic best case where

all decompression overheads are hidden from the L1 cache. A decompression penalty of 2.0 represents a

pessimistic worst case where all load and store instructions (approximately 40% of all instructions) miss in

the L1 cache and hit to compressed lines in the L2 cache, therefore incurring an additional penalty of 5

cycles for each load or store (or 5 * 40% = 2 cycles per instruction). We make the following observations:

165

—0— dp 0.0 cycles/inst - no compr

—<-=—(p 0.0 cycles/inst - cache + link compr
--<4-- dp0.2cycleslinst - cache + link compr
= 0= dp 0.4 cycles/inst - cache + link compr
—<%=-- dp 0.8 cycles/inst - cache + link compr
= == dp 2.0 cycles/inst - cache + link compr

Throughput (IPC)

0.0

T | T T T | |
0 2 4 6 8 10 12 14

#Processors
FIGURE 7-6. Analytical model sensitivity to decompression penalty. No compression

is compared to compressed configurations of decompression penalties of 0.0, 0.2, 0
0.8 and 2.0 cycles per instruction

4,

» Small decompression penalties (0.4 cycles per instruction or less) only slightly increase throughput for

our hypothetical benchmark. The maximum throughput for a perfect decompression overhead of zero

cycles per instruction is only 3% higher than that of a system with 0.4 decompression cycles per

instruction.

» For the worst case configuration (a decompression penalty of 2.0 cycles per instruction), the maximum

throughput is reduced by 14% compared to that of a zero-cycle decompression penalty. However, even

for this unrealistic worst case configuration, the maximum throughput is still 17% higher than

an uncompressed system.

that of

» As with many other configurations, compression with decompression penalties of 0.2-2.0 shift the

optimal design point from eight to nine processor cores per chip.

166
7.6.6 Sensitivity to Perfect CPI

Wider issue queues and wider pipelines can decrease the number of cycles per instruction for a perfect L2
system CPlyerfecti 2in our model). On the other hand, less effective L1 caches can increase the perfect CPI
estimate. Figure 7-7 shows how compression improves throughput for diff@Btefect 2 Values

between 0.25 and 3.0. The model does not take into account techniques that decrease the impact of cache
misses on performance (e.g., runahead execution [37]). This figure shows that throughput improvement
due to compression slightly increases wi@lyefect 2decreases. Throughput improves over an uncom-
pressed system by 26% for@GPlyeect 2 0f 3.0, and by 31% for &Plyerect20f 0.25. This follows

directly from the model because the relative impact of avoided cache misses on IPC increases (Eq. 7.13).

In addition, the optimal design point shifts towards more cores for higher valG&d@ftect -

0.6
—— 0.25 perfect CPI.- no compr
= ---@-- 0.25 perfect CPl.- cache + link compr
8 0.4 —a&— 0.5 perfect CPI.- no compr
?_: ---k-- 0.5 perfect CPI.- cache + link compr
a —&— 1.0 perfect CPl.- no compr
:m --<4l-- 1.0 perfect CPl.- cache + link compr
8 —— 2.0 perfect CPI.- no compr
E ---¢-- 2.0 perfect CPl.- cache + link compr
— 0.2 —>— 3.0 perfect CPI.- no compr
--=%-- 3.0 perfect CPl.- cache + link compr
0.0 T T T T T T T
0 2 4 6 8 10 12 14
#Processors
FIGURE 7-7. Analytical model sensitivity to perfect CPl. Non-compressed
configurations are represented by solid lines, and compressed configurations are
represented by dotted lines

167
7.7 CMP Model with Hardware Prefetching

Many current CMP systems implement hardware prefetching schemes to reduce cache misses or hide part
of the memory latency. In order to model the impact of prefetching on throughput, we need to add two

parameters to our simple model:

» Prefetching ratepfrate) represents the number of prefetches issued per instruction. This directly

affects the link latency, since it should be added to missrate in Eq. 7.16 to compute the link throughput:

A = IPC(N) OMissratg §2p) + pfrate) (7.19)

* Prefetching avoided miss rat&Missratgq(S o)) represents the difference between the number of
misses per instruction when prefetching is implemented and the number of misses per instruction
when prefetching is not implemented. This parameter can be positive or negative since prefetching

can, in pathological cases, increase the cache miss rate. For simplicity, we assume that this missrate

0.6 1 Sy, e
g —eo-— Neither
3 0.4 ---&-- Compression
5 -a--PF
3 —— Both
kS
|_

0.2+

0.0

|
0 2 4 6 8 10 12 14

#Processors

FIGURE 7-8. Analytical model results for four configurations: No compression or
prefetching, compression only, prefetching only, and both

168
also follows the square root rule of thumb for regular misses. We also ignore the impact of partial

prefetch hits. We assume that prefetching does not affect the average number of sharers per cache line
(sharerg(N)) or the CPI for a perfect L2GPlyerfect 2. This parameter should be subtracted from

missratgs ») in Eq. 7.11:

[A
o = (missratd §2)—AvMissrat%f(§_2)) O A—L2 (7.20)

1MB

To analyze the interaction between prefetching and compression, we show throughput (in terms of IPC) for
systems with neither compression or prefetching, compression only, prefetching only, or both compression
and prefetching in Figure 7-8. We assume our hypothetical benchmark pfeest@of 15 prefetches per

1000 instructions and an avoided missrate of 3 per 1000 instructions. We observe from Figure 7-8 that
prefetching alone increases the maximum throughput by 34%, and compression alone increases the maxi-
mum throughput by 29%. We also observe that the combination of prefetching and compression improves
the maximum throughput by 75% with a positive interaction coefficient of 0.4% between prefetching and
compression (as defined in Chapter 6). Prefetching alone does not shift the optimal design point. On the
other hand, compression shifts the optimal point towards more cores compared to an uncompressed sys-

tem, regardless of whether prefetching was implemented or not.

7.8 Evaluation for Commercial Workloads

Chip multiprocessor design involves achieving the right balance between cores, caches and communica-
tions to achieve the best possible system throughput. Our analytical model provided some qualitative

insight into this design space. With few cores that cannot support enough threads, cores become a bottle-
neck and degrade system throughput. With too many cores and smaller caches, caches and/or pin band-

width become a bottleneck and also degrade system throughput. The optimal CMP design lies somewhere

169
between these two extremes. Our analytical model provides a simple and fast method to evaluate many

high-level design choices. However, we use many simplifying assumptions in our model that do not hold
for real systems. In order to quantitatively evaluate the CMP design space, we use simulation of commer-

cial workloads.

In this section, we evaluate the performance of different core/cache configurations that have the same
equivalent area. We show that compression can have a significant impact on all configurations, and that
link compression also has a significant impact on bandwidth-limited configurations. We focus on our four

commercial benchmarks in this section. We next discuss our simulation and workload setup.

7.8.1 Simulation Setup

The objective of our simulation experiments is to obtain more accurate estimates of throughput for com-
mercial benchmarks compared to our analytical model. We measure throughput for commercial bench-
marks using the number of transactions completed per billion cycles of runtime. We use the same base
processor configuration of Chapter 6. However, our CMP design is different from that of Chapter 6 since

we use a fixed-area processor model where each processor core and its associated L1 caches is area-equiv-

alent to 0.5 MB of L2 cache area. The total chip area is the same as 8 MB of L2 cache.

Due to the time and space overhead of setting up simulation experiments, we only simulate configurations
at two-processor increments. We simulate the following configurations represented as tuples of (number of
processor cores, L2 cache size): (2, 7 MB), (4, 6 MB), (6, 5 MB), (8, 4 MB), (10, 3 MB), (12, 2 MB), (14,

1 MB).

In order to obtain a fair estimate of throughput for commercial workloads, we used the same number of
users/threads for each workload across different processor configurations. We used the same commercial
workloads described in Table 5-2, but we increased the number of users/threads we use for all processor

configurations as follows:

170
OLTP. We used 256 total users for all processor configurations.

SPECjbb. We used 24 warehouses for all processor configurations.
Apache and ZeusWe used 6000 threads for all processor configurations.

We simulated our four benchmarks for all seven processor configurations and obtained estimates of
throughput for each configuratibnThroughput for a real setup of these benchmarks will be dependent on
the number of users/threads. However, we anticipate that the qualitative analysis (e.g., the shape of the

throughput graphs) will remain the same.

7.8.2 Balanced CMP Design with Compression and Prefetching

With unlimited bandwidth, a CMP design has to divide the chip area between caches and cores to achieve
the best throughput. As we showed in our analytical model, configurations with very few cores have fewer
threads to run, while configurations with too many cores have higher miss rates. Both extremes can signif-
icantly limit throughput. In Figure 7-9, we show the impact of cores and caches on the throughput of com-
mercial benchmarks for different compression and prefetching configurations (no compression or
prefetching, prefetching only, compression only, and both compression and prefetching). We also show the
impact on utilized bandwidth in Figure 7-10. The left most point in each line is an artificial point that cor-
responds to no cores and the whole chip composed of caches. We did not simulate the other extreme (all
cores, no caches) because of the prohibitive simulation time, but its throughput would be very close to

zero. We make the following observations:

» With no compression, adding more cores improves throughput up to a certain point for all benchmarks:
10p for zeus and oltp, and 12p for apache and jbb. Speedups for these optimal configurations over the

2-processor configurations were 4.3x, 3.7x, 1.8x, and 3.2x for apache, zeus, oltp and jbb, respectively.

1. We do not show results for apache on 10 processors since it showed some abnormal behavior that is not similar to the other

configurations.

171

Throughput (Tr/1B cycles) Throughput (Tr/1B cycles) Throughput (Tr/1B cycles)

Throughput (TT/1B Cycles)

apache
10000 o--oE s
] g T T T.T* —3— No PF or Compr.
® . e--FF Only
5000] — ==+ Compr Only
. —a&— Both
0 | T |
0 2 4 6 8 10 12 14

---®-- PFOnly
— ==+ Compr Only
—a&— Both

#processors
oltp

---0-- PFOnly
— ==+ Compr Only
—a— Both

--®-- PFOnly
— A=+ Compr Only
—a— Both

o

T T T T |
0 2 4 6 8 10 12 14

#processors

FIGURE 7-9. Commercial workload throughout for different compression and

prefetching configurations. All Processor/cache configurations have a 20 GB/sec. pi

bandwidth

—¢— No PF or Compr.

—>— No PF or Compr.

—3>¢— No PF or Compr.

-

172

Bandwidth (GB/sec.) Bandwidth (GB/sec.) Bandwidth (GB/sec.)

Bandwidth (GB/sec.)

#processors
oltp

15 e

10 -k
e L --

5- i

0 1 = I I]
0 2 4 6 8 10 12 14

#processors

—>¢— No PF or Compr.

---®-- PFOnly
— -A—- Compr Only
—a— Both

—3¢— No PF or Compr.

---®-- PFOnly
— -A—- Compr Only
—a— Both

—3¢— No PF or Compr.

--®-- PFOnly
— -A—- Compr Only
—=a— Both

—3¢— No PF or Compr.

--®-- PFOnly
— -A—- Compr Only
—=a— Both

FIGURE 7-10. Utilized bandwidth for different compression and prefetching
configurations of commercial workloads. All Processor/cache configurations have a 2

GB/sec. available pin bandwidth

173
« Compression alone helps all workloads and configurations achieve up to 13% improvement in

throughput. This is mostly due to the impact of cache compression. At 20 GB/sec. pin bandwidth, link

compression does not provide any significant impact on throughput except for the extreme configura-
tion of 14 processors /1 MB L2 cache. Speedups for the optimal compression configurations over the
2-processor baseline with no compression or prefetching were 4.8x, 4.1x, 1.95x, and 3.5x for apache,

zeus, oltp and jbb, respectively.

» Prefetching alone helps many workloads and configurations achieve up to 33% throughput improve-
ment. However, for some benchmarks where prefetching is not effective (e.g., jbb), prefetching
reduces throughput by up to 35%. In addition, prefetching reduces throughput for configurations with
small cache sizes by up to 28% due to the increase in pin bandwidth demand. Speedups for the optimal
compression configurations over the 2-processor baseline were 4.2x, 4.2x, 1.7x, and 2.5x for apache,

Zeus, oltp and jbb, respectively.

« Prefetching alone increases utilized pin bandwidth for all configurations by up to 44% (Figure 7-10).
For some configurations with small cache sizes, the increase in pin bandwidth demand due to prefetch-
ing utilizes more than 90% of the available pin bandwidth. Compression alone decreases pin band-
width utilization by up to 40%. When both compression and prefetching are implemented, utilized pin

bandwidth is almost the same as the utilized pin bandwidth when neither is implemented.

* The combination of prefetching and compression provides significant throughput improvements com-
pared to the two base cases (no compression or prefetching, and prefetching alone). Throughput
improvement can be up to 49% compared to the base case of no compression or prefetching, and up to
27% compared to the base case of prefetching alone. Speedups for the optimal compression configura-
tions over the 2-processor baseline with no compression or prefetching were 5.5x, 5.3x%, 2.0x, and 3.3x

for apache, zeus, oltp and jbb, respectively.

174
» The optimal design point for each benchmark does not shift towards more cores when compression is

implemented. We attribute this to the fact that we are simulating throughput for different configura-
tions at 2-processor increments, whereas our analytical model showed smaller differences. In many

cases, compression only shifted the optimal design point by one processor.

 Prefetching and compression interact positivity for most configurations. We show the interaction coef-
ficient of all benchmarks and configurations in Figure 7-11. The positive interaction coefficients can be
up to 28% due to many of the same factors discussed in Chapter 6. The two schemes interact nega-
tively only for a few configurations (2p zeus, 2p and 4p oltp). However, all negative interaction coeffi-

cients are less than 4%.

7.8.3 Impact of Limited Bandwidth

For bandwidth-limited systems, a CMP design has to balance the three C’'s—cores, caches, and communi-

cation—such that none is the sole bottleneck. For such a bandwidth-limited system, adding more cores

Interaction (PF, Compr) %

#Processors

FIGURE 7-11. Interaction between compression and prefetching for all benchmarks
and processor configurations

175

Throughput (Tr/1B cycles) Throughput (Tr/1B cycles) Throughput (Tr/1B cycles)

Throughput (Tr/1B cycles)

10000 =

Te~a
-~
\ —3¢— No PF or Compr.

................... ‘_".. ---9-- PFOnly
Teel — -o—- Compr Only
—=&— Both

—¢— No PF or Compr.
---9-- PFOnly

— ==+ Compr Only
—a&— Both

oltp

—>— No PF or Compr.
---9-- PFOnly

— ==+ Compr Only
—a— Both

0 2 4 6 8 10 12 14
#processors
jbb

—>— No PF or Compr.
--®-- PFOnly
= -A=- Compr Only

#processors

FIGURE 7-12. Commercial workload throughout for different compression schemes
and processor configurations. All configurations have a 10 GB/sec. pin bandwidth

176
also improves throughput until bandwidth becomes a critical resource. For our four commercial bench-

marks, the bandwidth demand increases with more cores and fewer caches.

Figure 7-12 demonstrates the trade-off between cores, caches, and communication for our commercial

benchmarks assuming a 10 GB/sec. pin bandwidth. We make the following observations:

* When the utilized bandwidth is low, the lines follow the same trends of Figure 7-9. However, as pin
bandwidth becomes a bottleneck, many uncompressed configurations (with or without prefetching)

suffer from degraded performance as the number of cores increases and cache sizes decrease.

e Compression alone improves performance for all configurations by up to 25% compared to configura-
tions without compression or prefetching that have the same number of cores. For this bandwidth-lim-
ited system, the optimal design point is also shifted towards more cores for jbb. When combined with
prefetching, the two schemes interact positively. Such positive interaction is mostly caused by band-
width savings due to compression that alleviate some of prefetching’s extra bandwidth demand. The
optimal configuration of both compression and prefetching has up to a 37% higher throughput com-

pared to the optimal configuration of prefetching alone (since jbb has a slowdown due to prefetching).

« The optimal configuration with no compression or prefetching is at 10 cores for zeus, oltp and jbb; and
12 for apache cores. The optimal design point shifts towards more cores for some benchmarks with
compression alone (e.g., jbb where it shifts to 12 processors). When compared with the base case of

only prefetching, compression shifts the optimal design point towards more cores for all benchmarks.

« Prefetching and compression interact positivity for most configurations. We show the interaction coef-
ficient of all benchmarks and configurations in Figure 7-13. The positive interaction coefficients can be
up to 33%, and are higher for most configurations than the coefficients for 20 GB/sec. bandwidth. The
two schemes interact negatively only for 2p and 4p oltp, with negative interaction coefficients below

3%.

177
« We note from Figure 7-13 that the interaction coefficients decrease for the 14-processor configuration

for all benchmarks. Since such configuration has a small cache (1 MB), miss rates are high and band-
width is constrained even in the absence of prefetching. With prefetching, link compression cannot
reduce bandwidth demand to the point where demand is no longer a bottleneck. This decreases the

positive interaction coefficients between compression and prefetching.

7.9 Model Validation

We used our simulation experiments in the previous section to validate results from our analytical model.
We extracted model parameters from our simulation experiments. We used the model to estimate the num-

ber of transactions per billion cycles for each of our benchmarks using the model’s IPC:

IPC x 10°

TransactionsPerBillionCycles - - (7.22)
InstructionsPerTransaction
Interaction (PF, Compr) % X
/// \\
30 .. -~
] T s “‘\\
20
T xS e —>— agpache
/ --®-- Zeus
] o M —a--oltp
10 .- A \ o —=—jbb
] / \
] it \\
] /. \
0 —f T | | *
T~ Z2 - 6 8 10 12 14
#Processors
FIGURE 7-13. Interaction between compression and prefetching for 10 GB/sec. pin
bandwidth

178

Trans. Per 1B Cycles

—e-— Model_no compr

---a-- Mode_cache&link compr.

- - Simulation_no compr.

—— Simulation_cache&link compr.

Trans. Per 1B Cycles

Zeus

—e-— Model_no compr

---a-- Mode_cache&link compr.

- - Simulation_no compr.

—— Simulation_cache&link compr.

2500
2000
1500
1000

500

Trans. Per 1B Cycles

6 8 10 12 14
#Processors
oltp
- e

—e-— Model_no compr

---4-- Model_cache&link compr.

- - Simulation_no compr.

—e— Simulation_cache&link compr.

Trans. Per 1B Cydles

—e-— Model_no compr

---4-- Model_cache&link compr.

- - Simulation_no compr.

—e— Simulation_cache&link compr.

simulations

FIGURE 7-14. Comparing throughput estimates from analytical model and

Throughput is shown in transactions per 1 billion cycles for all benchmarks.

6 8 10 12 14
#Processors

179
We estimated performance for our four commercial benchmarks for the base case and for when cache and

link compression are implemented. We compare model and simulation results in Figure 7-14. This figure

demonstrates the following:

« The analytical model can successfully predict the general trend in throughput improvements for our
workloads. The general shape of the throughput curve is similar for the analytical model and simula-

tion.

« The relative error in the model’s throughput estimates compared to simulation is quite high, as much as

43%, 29%, 46%, and 30% for apache, zeus, oltp, and jbb, respectively.

» The figure shows that except for apache, the model has errors in a single direction by over-estimating
throughput. For apache, the model under-estimated throughput for some configurations as well. This is

caused by the model’s many simplifying assumptions (Section 7.4).

« The model successfully predicted the optimal configuration for zeus with and without compression. It
also predicted the optimal configuration for apache and jbb with compression. For other benchmarks
and configurations, we note that the model’s predicted optimal configuration differs by 2-processors
from simulation results. We note, however, that there is only a small difference in throughput (as mea-

sured by simulations) between the model’'s optimal and the simulation’s optimal configuration.
In summary, our simple analytical model provided some qualitative estimates that can be used for initial

exploration and to gain intuition into CMP design trade-offs. However, a more accurate model should be

developed to predict throughput with more accuracy.

7.10 Related Work
There has been some work on chip design space that is related to our study. Farrens, et al., explored how to
utilize a large number of transistors (by 1994 standards) and allocate them to processors, instruction caches

and data caches. Using trace-based simulation, they found that a balance needs to be achieved between

180
instruction and data caches, and that more processors can be placed on-chip to improve performance [41].

They defined the equivalent cache transistor (ECT) metric as a relative area metric between processor cores

and caches.

Huh, et al., explored the CMP design space and tried to answer several questions: How many cores future
CMPs will have, whether cores will be in-order or out-of-order, and how much cache area will there be in
future CMPs [62]. They also pointed out pin bandwidth as being a potential limiting factor for CMP per-
formance. They pointed out that the number of transistors per pin is increasing at an exponential rate,
which they projected would force designers to increase the area allocated to on-chip caches at the expense
of processor cores. In our design, this is not necessarily the case since compression shifts the balance point

by increasing the effective cache size without significantly increasing its area.

Dauvis, et al., studied the throughput of area-equivalent multi-threaded chip multiprocessors (CMT) using
simulation of throughput-oriented commercial applications [33]. They demonstrated that “mediocre” cores
(i.e., small, simple cores with small caches and low performance) maximize the total number of CMT
cores and outperform CMTs built from larger, higher performance cores. They also showed that through-
put increases with the number of threads till it reaches a maximum and then degrades due to pipeline satu-

ration or bandwidth saturation. Such behavior is similar to our throughput curves.
Li, et al., used uniprocessor traces of SPEC2000 benchmarks to estimate CMP throughput [85]. They

assert that thermal constraints dominate other physical constraints in CMP design such as pin-bandwidth

and power delivery. However, their work did not consider multi-threaded or commercial benchmarks.

7.11 Summary
In this chapter, we examined how to design CMP systems that balance cores, caches and communication
resources. We discussed the role that compression plays in shifting this balance. We developed a simple

analytical model that measures throughput for different CMP configurations with a fixed area budget. We

181
used this model and simulation experiments to qualitatively and quantitatively show that compression can

significantly improve CMP throughput (by 25% or more for some configurations). We showed that com-
pression improves CMP throughput over a wide range of system parameters. We demonstrated that com-
pression interacts positively with hardware prefetching, leading to improvements in throughput that are
significantly higher than expected from the product of throughput improvements of either scheme alone.
We show that compression can sometimes shift the optimal design point towards more processor cores,

potentially leading to more core-centric CMP designs.

182

183

Chapter 8

Summary

In this chapter, we summarize the conclusions of this dissertation, and discuss some possible areas of

future research.

8.1 Conclusions

Chip multiprocessors (CMPs) combine multiple processors on a single die. The increasing number of pro-
cessor cores on a single chip increases the demand on the shared L2 cache capacity and the off-chip pin
bandwidth. Demand on these critical resources can be further exacerbated by latency-hiding techniques
such as hardware prefetching. In this dissertation, we explored using compression to effectively increase

cache and pin bandwidth resources and ultimately CMP performance.

Cache compression stores compressed lines in the cache, potentially increasing the effective cache size,
reducing off-chip misses, and improving performance. On the downside, decompression overhead can
slow down cache hit latencies, possibly degrading performance. Link compression compresses communi-
cation messages before sending to or receiving from off-chip system components, thereby increasing the
effective off-chip pin bandwidth, reducing contention and improving performance for bandwidth-limited
configurations. While compression can have a positive impact on CMP performance, practical implemen-

tations of compression raise a few concerns (e.g., compression’s overhead and its interaction with prefetch-
ing).
In this dissertation, we made several contributions that address concerns about different aspects of imple-

menting compression. We proposed a compressed L2 cache design based on a simple compression scheme

184
with a low decompression overhead. Such design can double the effective cache size for many bench-

marks. We developed an adaptive compression algorithm that dynamically adapts to the costs and benefits

of cache compression, and uses compression only when it helps performance.

We showed that cache and link compression both combine to improve CMP performance for commercial
and scientific workloads by 3-20%. We demonstrated that compression interacts in a strong positive way
with hardware prefetching, whereby a system that implements both compression and hardware prefetching
outperforms systems that implement one scheme and not the other. Furthermore, the speedup due to both
compression and prefetching (10-51% for all but one of our benchmarks) can be significantly higher than
the product of the speedups of either scheme alone. We presented a simple analytical model that helps pro-
vide qualitative intuition into the trade-off between cores, caches, communication, and compression, and

we used full-system simulation to quantify this trade-off for a set of commercial workloads.

8.2 Future Work

Opportunities for future research exist in cache and link compression, since this dissertation has not

exhausted either of these areas. We next outline a few possible areas of future research.

Power. We did not study the full impact of cache and link compression on CMP power. On the one hand,
we anticipate that compression can significantly reduce power by avoiding misses and reducing communi-
cation bandwidth. On the other hand, it can have an adverse effect on core power consumption due to com-
pression and decompression of cache lines, as well as cache set repacking. We predict that compression

can have a significant impact on power reduction, but such prediction merits further investigation.

Compression in multi-CMP systemsin this dissertation, we only studied the impact of compression on a
single CMP. In a multi-CMP system, compression and decompression overheads will be added to inter-
chip communication. Our adaptive compression scheme predicts whether compression is beneficial on a

single chip, and is therefore not optimized for inter-chip communication. While we anticipate that more

185
“optimal” predictors will not significantly change on-chip predictions regarding compression, such solu-

tions need to be studied further.

Use of extra tagsIn our decoupled variable-segment cache design, we support having more tags per cache
set than existing lines. We use these extra tags to save information about compressed lines. We also use
these tags to classify cache accesses and use this information to update our compression predictor. How-
ever, these extra tags can be used for many additional purposes. For example, they can be used to comple-
ment and improve cache replacement algorithms, classify useful and harmful prefetches, and trigger
requests in speculative coherence protocols. Previous work has explored uses of additional tags, but the

interactions of such uses with compression has not been studied.

Analytical CMP models. In this dissertation, we showed that a simple analytical model can provide intu-
ition into CMP design. However, the many approximations we made in our model make it unsuitable to
accurately predict throughput. Future research can explore analytical models with different levels of com-

plexity to more accurately predict CMP throughput, a speed vs. accuracy trade-off.

The above areas do not present an exhaustive list of future related research. We hope that our work will

enhance and motivate research in these and other areas.

186

[1]

[2]

[3]

[4]

[5]

[6]

[7]

187

References

Bulent Abali, Hubertus Franke, Dan E. Poff, Jr. Robert A.Saccone, Charles O. Schulz,
Lorraine M. Herger, and T. Basil Smith. Memory Expansion Technology (MXT): Software Sup-
port and PerformancéM Journal of Research and Developmet(2):287-301, March 2001.
Bulent Abali, Hubertus Franke, Xiaowei Shen, Dan E. Poff, and T. Basil Smith. Performance of
hardware compressed main memory.Aroceedings of the Seventh IEEE Symposium on High-
Performance Computer Architectugages 73—-81, January 2001.

Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. APRIL: A Processor
Architecture for Multiprocessing. IRroceedings of the 17th Annual International Symposium on
Computer Architecturgpages 104-114, May 1990.

Edward Ahn, Seung-Moon Yoo, and Sung-Mo Steve Kang. Effective Algorithms for Cache-level
Compression. IfProceedings of the 2001 Conference on Great Lakes Symposium onpdh8$
89-92, 2001.

Haitham Akkary and Michael A. Driscoll. A Dynamic Multithreading ProcessorPinceedings

of the 31st Annual IEEE/ACM International Symposium on Microarchitecipages 226—236,
November 1998.

Alaa R. Alameldeen, Milo M. K. Martin, Carl J. Mauer, Kevin E. Moore, Min Xu, Daniel J. Sorin,
Mark D. Hill, and David A. Wood. Simulating a $2M Commercial Server on a $2K EREE
Computer 36(2):50-57, February 2003.

Alaa R. Alameldeen, Carl J. Mauer, Min Xu, Pacia J. Harper, Milo M. K. Martin, Daniel J. Sorin,
Mark D. Hill, and David A. Wood. Evaluating Non-deterministic Multi-threaded Commercial
Workloads. InProceedings of the Fifth Workshop on Computer Architecture Evaluation Using

Commercial Workloadgages 30-38, February 2002.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

188
Alaa R. Alameldeen and David A. Wood. Variability in Architectural Simulations of Multi-

threaded Workloads. IRroceedings of the Ninth IEEE Symposium on High-Performance Com-
puter Architecturepages 7—-18, February 2003.

Alaa R. Alameldeen and David A. Wood. Adaptive Cache Compression for High-Performance
Processors. IfProceedings of the 31st Annual International Symposium on Computer Architec-
ture, pages 212—-223, June 2004.

Alaa R. Alameldeen and David A. Wood. Frequent Pattern Compression: A Significance-Based
Compression Scheme for L2 Caches. Technical Report 1500, Computer Sciences Department,
University of Wisconsin—Madison, April 2004.

Guido Araujo, Paulo Centoducatte, Mario Cartes, and Ricardo Pannain. Code Compression Based
on Operand Factorization. Proceedings of the 31st Annual IEEE/ACM International Symposium
on Microarchitecture pages 194-201, November 1998.

Vishal Aslot, Max Domeika, Rudolf Eigenmann, Greg Gaertner, Wesley Jones, and Bodo Parady.
SPEComp: A New Benchmark Suite for Measuring Parallel Computer Performangéerikshop

on OpenMP Applications and Top[sages 1-10, July 2001.

Paul Barford and Mark Crovella. Generating Representative Web Workloads for Network and
Server Performance Evaluation.Pmoceedings of the 1998 ACM Sigmetrics Conference on Mea-
surement and Modeling of Computer Systgrages 151-160, June 1998.

Luiz A. Barroso, Kourosh Gharachorloo, and Edouard Bugnion. Memory System Characterization
of Commercial Workloads. IProceedings of the 25th Annual International Symposium on Com-
puter Architecturepages 3-14, June 1998.

Luiz Andre Barroso, Kourosh Gharachorloo, Robert McNamara, Andreas Nowatzyk, Shaz

Qadeer, Barton Sano, Scott Smith, Robert Stets, and Ben Verghese. Piranha: A Scalable Architec-

[16]

[17]

[18]

[19]

[20]

[21]

[22]

189
ture Based on Single-Chip Multiprocessing Aroceedings of the 27th Annual International Sym-

posium on Computer Architectyrgages 282-293, June 2000.

Luiz Andre Barroso, Kourosh Gharachorloo, Andreas Nowatzyk, and Ben Verghese. Impact of
Chip-Level Integration on Performance of OLTP WorkloadsPhoceedings of the Sixth IEEE
Symposium on High-Performance Computer Architectiaauary 2000.

Bradford M. Beckmann and David A. Wood. Managing Wire Delay in Large Chip-Multiprocessor
Caches. IrProceedings of the 37th Annual IEEE/ACM International Symposium on Microarchi-
tecture December 2004.

Luca Benini, Davide Bruni, Alberto Macii, and Enrico Macii. Hardware-Assisted Data Compres-
sion for Energy Minimization in Systems with Embedded ProcessoRrdoeedings of the IEEE
2002 Design Automation and Test in Europages 449-453, 2002.

Luca Benini, Davide Bruni, Bruno Ricco, Alberto Macii, and Enrico Macii. An Adaptive Data
Compression Scheme for Memory Traffic Minimization in Processor-Based SysteRmcleed-

ings of the IEEE International Conference on Circuits and Systems, ICCASaQ2s 866—869,
May 2002.

A. F. Benner, M. Ignatowski, J. A. Kash, D. M. Kuchta, and M. B. Ritter. Exploitation of Optical
Interconnects in Future Server ArchitecturédBM Journal of Research and Development
49(4):755-775, 2005.

William Bryg and Jerome Alabado. The UltraSPARC T1 Processor - High Bandwidth For
Throughput Computing, December 2005. http://www.sun.com/processors/whitepapers/
UST1_bw_v1.0.pdf.

Doug Burger, James R. Goodman, and Alain Kagi. Memory bandwidth limitations of future
microprocessors. IRroceedings of the 23th Annual International Symposium on Computer Archi-

tecture pages 78-89, May 1996.

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

190
Ramon Canal, Antonio Gonzalez, and James E. Smith. Very Low Power Pipelines Using Signifi-

cance Compression. IAroceedings of the 33rd Annual IEEE/ACM International Symposium on
Microarchitecture pages 181-190, December 2000.

David Chen, Enoch Peserico, and Larry Rudolph. A Dynamically Partitionable Compressed
Cache. InProceedings of the Singapore-MIT Alliance Symposilamuary 2003.

Tien-Fu Chen and Jean-Loup Baer. A Performance Study of Software and Hardware Data
Prefetching Schemes. Proceedings of the 21st Annual International Symposium on Computer
Architecture pages 223-232, April 1994.

Tien-Fu Chen and Jean-Loup Baer. Effective Hardware-Based Data Prefetching for High Perfor-
mance ProcessofEEE Transactions on Computer(5):609-623, May 1995.

Daniel Citron. Exploiting Low Entropy to Reduce Wire DeldgEE TCCA Computer Architec-

ture Letters 3, January 2004.

Daniel Citron and Larry Rudolph. Creating a Wider Bus Using Caching Techniqu&soteed-

ings of the First IEEE Symposium on High-Performance Computer Architeqiages 90-99,
February 1995.

Thomas M. Conte, Sanjeev Banerjia, SergeiY. Larin, Kishore N. Menezes, and Sumedh W.
Sathaye. Instruction Fetch Mechanisms for VLIW Architectures with Compressed Encodings. In
Proceedings of the 29th Annual IEEE/ACM International Symposium on Microarchitepages
201-211, December 1996.

Toni Cortes, Yolanda Becerra, and Raul Cervera. Swap Compression: Resurrecting Old Ideas.
Software - Practice and Experience Journ8(15):567-587, December 2000.

Fredrik Dahlgren, Michel Dubois, and Per Stenstrom. Sequential Hardware Prefetching in Shared-
Memory MultiprocessordEEE Transactions on Parallel and Distributed Syste(3):733—-746,

July 1995.

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

191
William J. Dally and John W. Poultoigital Systems Engineering€ambridge University Press,

1998.

John D. Davis, James Laudon, and Kunle Olukotun. Maximizing CMP Throughput with Mediocre
Cores. InProceedings of the International Conference on Parallel Architectures and Compilation
Techniquespages 51-62, September 2005.

Fred Douglis. The Compression Cache: Using On-line Compression to Extend Physical Memory.
In Proceedings of 1993 Winter USENIX Conferempames 519-529, January 1993.

Karel Driesen and Urs Holzle. Accurate Indirect Branch PredictiorRrsceedings of the 25th
Annual International Symposium on Computer Architectoages 167—178, June 1998.

Pradeep Dubey. A Platform 2015 Workload Model: Recognition, Mining and Synthesis Moves
Computers to the Era of Tera, June 2005. ftp://download.intel.com/technology/computing/archin-
nov/platform2015/download/RMS.pdf.

Jim Dundas and Trevor Mudge. Improving Data Cache Performance by Pre-Executing Instruc-
tions Under a Cache Miss. Proceedings of the 1997 International Conference on Supercomput-
ing, pages 68-75, July 1997.

Avinoam N. Eden and Trevor Mudge. The YAGS Branch Prediction Schemirdeeedings of

the 25th Annual International Symposium on Computer Architeqiages 6977, June 1998.

Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, Rebecca L. Stamm, and Dean M.
Tullsen. Simultaneous Multithreading: A Platform for Next-generation Proced&i& Micro,
17(5):12-18, September/October 1997.

Magnus Ekman and Per Stenstrom. A Robust Main-Memory Compression ScheRrecéed-

ings of the 32nd Annual International Symposium on Computer Architegages 74-85, June

2005.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

192
M. Farrens, G. Tyson, and A. R. Pleszkun. A Study of Single-Chip Processor/Cache Organizations

for Large Numbers of Transistors. Rroceedings of the 21st Annual International Symposium on
Computer Architecturgpages 338 — 347, April 1994.

Matthew Farrens and Arvin Park. Dynamic Base Register Caching: A Technique for Reducing
Address Bus Width. IrProceedings of the 18th Annual International Symposium on Computer
Architecture pages 128-137, May 1991.

Wi fen Lin, Steven K. Reinhardt, and Doug Burger. Reducing DRAM Latencies with an Integrated
Memory Hierarchy Design. IRroceedings of the Seventh IEEE Symposium on High-Performance
Computer Architecturgpages 301-312, January 2001.

Brian A. Fields, Rastislav Bodik, Mark D. Hill, and Chris J. Newburn. Using Interaction Costs for
Microarchitectural Bottleneck Analysis. IRroceedings of the 36th Annual IEEE/ACM Interna-
tional Symposium on Microarchitectyuggages 228-241, December 2003.

International Technology Roadmap for Semiconductors. ITRS 2004 Update. Semiconductor
Industry Association, 2004. http://www.itrs.net/Common/2004Update/2004Update.htm.

P.A. Franaszek, P. Heidelberger, D.E. Poff, R.A. Saccone, and J.T. Robinson. Algorithms and Data
Structures for Compressed-Memory MachinéBM Journal of Research and Development
45(2):245-258, March 2001.

P.A. Franaszek and J.T. Robinson. On Internal Organization in Compressed Random-Access
Memories.IBM Journal of Research and Developmett(2):259-270, March 2001.

Peter Franaszek, John Robinson, and Joy Thomas. Parallel Compression with Cooperative Dictio-
nary Construction. IProceedings of the Data Compression Conference, DCQi8ges 200-209,

March 1996.

193
[49] Michael J. Freedman. The Compression Cache: Virtual Memory Compression for Handheld Com-

puters. Technical report, Parallel and Distributed Operating Systems Group, MIT Lab for Com-
puter Science, Cambridge, 2000.

[50] llya Ganusov and Martin Burtscher. Future Execution: A Hardware Prefetching Technique for
Chip Multiprocessors. IfProceedings of the International Conference on Parallel Architectures
and Compilation Techniquepages 350-360, September 2005.

[51] Kourosh Gharachorloo, Madhu Sharma, Simon Steely, and Stephen Von Doren. Architecture and
Design of AlphaServer GS320. RProceedings of the Ninth International Conference on Architec-
tural Support for Programming Languages and Operating Systpages 13—-24, November 2000.

[52] Gregory F. Grohoski. Machine Organization of the IBM RISC System/6000 ProcéBkbdour-
nal of Research and Developmesd(1):37-58, January 1990.

[53] Jon Haas and Pete Vogt. Fully-Buffered DIMM Technology Moves Enterprise Platforms to the
Next Level.Technology@Intel Magazin®&arch 2005.

[54] Erik G. Hallnor and Steven K. Reinhardt. A Fully Associative Software-Managed Cache Design.
In Proceedings of the 27th Annual International Symposium on Computer Architepages
107-116, June 2000.

[55] Erik G. Hallnor and Steven K. Reinhardt. A Compressed Memory Hierarchy using an Indirect
Index Cache. Technical Report CSE-TR-488-04, University of Michigan, 2004.

[56] Lance Hammond, Basem A. Nayfeh, and Kunle Olukotun. A Single-Chip Multiprocd&46E
Computer 30(9):79-85, September 1997.

[57] John L. Hennessy and David A. PattersGomputer Architecture: A Quantitative Approadfor-
gan Kaufmann, third edition, 2003.

[58] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and P. Roussel. The microarchi-

tecture of the Pentium 4 procesdatel Technology JournaFebruary 2001.

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

194
Tim Horel and Gary Lauterbach. UltraSPARC-III: Designing Third Generation 64-Bit Perfor-

mancelEEE Micro, 19(3):73-85, May/June 1999.

M. S. Hrishikesh, Norman P. Jouppi, KeithI. Farkas, Doug Burger, Stephen W. Keckler, and
Premkishore Shivakumar. The Optimal Logic Depth Per Pipeline Stage is 6 to 8 Inverter Delays. In
Proceedings of the 29th Annual International Symposium on Computer Architétayr@002.

David A. Huffman. A Method for the Construction of Minimum-Redundancy Coéesc. Inst.

Radio Engineers40(9):1098-1101, September 1952.

Jaehyuk Huh, Stephen W. Keckler, and Doug Burger. Exploring the Design Space of Future
CMPs. InProceedings of the 2001 International Conference on Parallel Architectures and Compi-
lation Techniquespages 199-210, 2001.

Jaehyuk Huh, Changkyu Kim, Hazim Shafi, Lixin Zhang, Doug Burger, and Stephen W. Keckler.
A NUCA Substrate for Flexible CMP Cache Sharing.Rroceedings of the 19th International
Conference on Supercomputjdgine 2005.

Martin Isenburg, Peter Lindstrom, and Jack Snoeyink. Lossless Compression of Predicted Float-
ing-Point GeometryComputer Aided Desigr37(8):869-877, July 2005.

Doug Joseph and Dirk Grunwald. Prefetching Using Markov PredictorBraceedings of the

24th Annual International Symposium on Computer Architechages 252—-263, June 1997.
Norman P. Jouppi. Improving Direct-Mapped Cache Performance by the Addition of a Small
Fully-Associative Cache and Prefetch Buffers.Aroceedings of the 17th Annual International
Symposium on Computer Architectupages 364—-373, May 1990.

Stephan Jourdan, Tse-Hao Hsing, Jared Stark, and Yale N. Patt. The Effects of Mispredicted-Path
Execution on Branch Prediction Structures.Rroceedings of the International Conference on

Parallel Architectures and Compilation Technigupages 58—67, October 1996.

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

195
Ron Kalla, Balaram Sinharoy, and Joel M. Tendler. IBM Power5 Chip: A Dual Core Multi-

threaded ProcessdEEE Micro, 24(2):40-47, Mar/Apr 2004.

Krishna Kant and Ravi lyer. Compressibility Characteristics of Address/Data transfers in Com-
mercial Workloads. IrProceedings of the Fifth Workshop on Computer Architecture Evaluation
Using Commercial Workloagdpages 59-67, February 2002.

Tejas Karkhanis and James E. Smith. A First-Order Superscalar Processor Mdrttecérdings

of the 31st Annual International Symposium on Computer Architechages 338-349, June
2004.

R. E. Kessler. The Alpha 21264 Microproces#6EE Micro, 19(2):24—-36, March/April 1999.

Nam Sung Kim, Todd Austin, and Trevor Mudge. Low-Energy Data Cache Using Signh Compres-
sion and Cache Line Bisection. lBecond Annual Workshop on Memory Performance Issues
(WMPI), in conjunction with ISCA-22002.

Morten Kjelso, Mark Gooch, and Simon Jones. Design and Performance of a Main Memory Hard-
ware Data Compressor. Rroceedings of the 22nd EUROMICRO Confered&86.

Poonacha Kongetira, Kathirgamar Aingaran, and Kunle Olukotun. Niagara: A 32-Way Multi-
threaded Sparc Procesd&EE Micro, 25(2):21-29, Mar/Apr 2005.

David J. Kuck. Platform 2015 Software: Enabling Innovation in Parallelism for the Next Decade,
June 2005. ftp://download.intel.com/technology/computing/archinnov/platform2015/download/
Parallelism.pdf.

Rakesh Kumar, Victor Zyuban, and Dean Tullsen. Interconnections in multi-core architectures:
Understanding Mechanisms, Overheads and ScalinBrdoeedings of the 32nd Annual Interna-

tional Symposium on Computer Architectulene 2005.

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

196
Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. Design and Evaluation of a Selective Com-

pressed Memory System. IRroceedings of Internationl Conference on Computer Design
(ICCD’99), pages 184-191, October 1999.

Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. An On-chip Cache Compression Technique to
Reduce Decompression Overhead and Design Complekitynal of Systems Architecture:the
EUROMICRO Journal46(15):1365-1382, December 2000.

Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. Adaptive Methods to Minimize Decompres-
sion Overhead for Compressed On-chip Cad¢hiernational Journal of Computers and Applica-

tion, 25(2), January 2003.

Jonghyun Lee, Marianne Winslett, Xiaosong Ma, and Shengke Yu. Enhancing Data Migration Per-
formance via Parallel Data Compression.Rroceedings of the 16th International Parallel and
Distributed Processing Symposium (IPDP&ges 47-54, April 2002.

Charles Lefurgy, Eva Piccininni, and Trevor Mudge. Evaluation of a high performance code com-
pression method. IfProceedings of the 32nd Annual IEEE/ACM International Symposium on
Microarchitecture pages 93-102, November 1999.

Haris Lekatsas, Jurg Henkel, and Wayne Wolf. Design and Simulation of a Pipelined Decompres-
sion Architecture for Embedded SystemsPiroceedings of the International Symposium on Sys-
tems Synthesipages 63—-68, 2001.

Haris Lekatsas and Wayne Wolf. Code compression for embedded systdpngcérdings of the

35th Annual Conference on Design Automatjmamges 516-521, 1998.

Debra A. Lelewer and Daniel S. Hirschberg. Data Compressid@M Computing Surveys

19(3):261-296, September 1987.

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

197
Yingmin Li, Benjamin Lee, David Brooks, Zhigang Hu, and Kevin Skadron. CMP Design Space

Exploration Subject to Physical Constraints.Rroceedings of the Twelfth IEEE Symposium on
High-Performance Computer Architectuféebruary 2006.

Mikko H. Lipasti and John Paul Shen. Exceeding the Dataflow Limit via Value Predictid®rohn
ceedings of the 29th Annual IEEE/ACM International Symposium on Microarchitegages
226-237, December 1996.

Jack L. Lo, Luiz Andre Barroso, Susan J. Eggers, Kourosh Gharachorloo, Henry M. Levy, and
Sujay S. Parekh. An Analysis of Database Workload Performance on Simultaneous Multithreaded
Processors. IProceedings of the 25th Annual International Symposium on Computer Architec-
ture, pages 39-50, June 1998.

Peter S. Magnusson et al. Simics: A Full System Simulation PlatfiiEEE Computer35(2):50—

58, February 2002.

R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger. Evaluation Techniques for Storage Hierar-
chies.IBM Systems Journa®(2):78-117, 1970.

Cameron McNairy and Rohit Bhatia. Montecito: A Dual-Core Dual-Thread Itanium Processor.
IEEE Micro, 25(2):10-20, March/April 2005.

Gordon E. Moore. Cramming More Components onto Integrated Cir&tldstronics pages 114—

117, April 1965.

Todd Mowry and Anoop Gupta. Tolerating Latency Through Software-Controlled Prefetching in
Shared-Memory Multiprocessordournal of Parallel and Distributed Computind2(2):87-106,

June 1991.

Onur Mutlu, Jared Stark, Chris Wilkerson, and Yale N. Patt. Runahead Execution: An Effective

Alternative to Large Instruction WindowcEE Micro, 23(6):20-25, Nov/Dec 2003.

198
[94] Kyle J. Nesbit and James E. Smith. Data Cache Prefetching Using a Global History Buifes: In

ceedings of the Tenth IEEE Symposium on High-Performance Computer Archit@ctges 96—
105, February 2004.

[95] Jose Luis Nunez and Simon Jones. Gbit/s Lossless Data Compression Hat&E&rdransac-
tions on VLSI Systemt1(3):499-510, June 2003.

[96] Alex Pajuelo, Antonio Gonz-lez, and Mateo Valero. Speculative Dynamic Vectorizatidgtroin
ceedings of the 29th Annual International Symposium on Computer Architéday002.

[97] J. Pomerene, T. Puzak, R. Rechtschaffen, and F. Sparacio. Prefetching System for a Cache Having
a Second Directory for Sequentially Accessed Blocks, February 1989. U.S. Patent 4,807,110.

[98] Moinuddin K. Qureshi, David Thompson, and Yale N. Patt. The V-Way Cache: Demand Based
Associativity via Global Replacement. Proceedings of the 32nd Annual International Sympo-
sium on Computer Architectyrpages 544-555, June 2005.

[99] Majid Rabbani and Paul W. JoneBigital Image Compression TechniqueaPIE Optical Engi-
neering Press, first edition, 1991.

[100] Parthasarathy Ranganathan, Kourosh Gharachorloo, Sarita Adve, and Luis Barroso. Performance
of Database Workloads on Shared-Memory Systems with Out-of-Order ProcessBrecéed-
ings of the Eighth International Conference on Architectural Support for Programming Languages
and Operating Systemgages 307—318, October 1998.

[101] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest and Typhoon: User-Level
Shared Memory. IfProceedings of the 21st Annual International Symposium on Computer Archi-
tecture pages 325-337, April 1994,

[102] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependence Based Prefetching for Linked
Data Structures. IProceedings of the Eighth International Conference on Architectural Support

for Programming Languages and Operating Systgrages 115126, October 1998.

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

199
Gabriele Sartori. Fiber Will Displace Copper Sooner Than You Think, November 2005. http://

www.luxtera.com/assets/Luxtera_ WPFiberReplacesCopper.pdf.

Falk Scholer, Hugh E. Williams, John Yiannis, and Justin Zobel. Compression of Inverted Indexes
for Fast Query Evaluation. IRroceedings of the 25th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrigages 222—-229, 2002.

Andre Seznec. Decoupled Sectored CacHeBE Transactions on Computerd6(2):210-215,
February 1997.

Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder. Automatically Characteriz-
ing Large Scale Program Behavior. Rroceedings of the Tenth International Conference on
Architectural Support for Programming Languages and Operating Sysfeames 45-57, October
2002.

B. Sinharay, R.N. Kalla, J.M. Tendler, R.J. Eickemeyer, and J.B. Joyner. Power5 System Microar-
chitecturelBM Journal of Research and Developmet&(4), 2005.

G. S. Sohi and Amir Roth. Speculative Multithreaded Proces$6EE Computer34(4), April

2001.

G.S. Sohi, S. Breach, and T.N. Vijaykumar. Multiscalar ProcessomBrdoeedings of the 22nd
Annual International Symposium on Computer Architectoages 414-425, June 1995.

Viji Srinvasan, Edward S. Davidson, and Gary S. Tyson. A Prefetch Taxon®&hj§e Transac-

tions on Computer$3(2):126-140, February 2004.

Lynn M. Stauffer and Daniel S. Hirschberg. Parallel Text Compression. Technical Report TR91-
44, REVISED, University of California, Irvine, 1993.

James A. Storer and Thomas G. Szymanski. Data Compression via Textural Subsfitutioal

of the ACM 29(4):928-951, October 1982.

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

200
Ivan E. Sutherland and Robert F. Sproull. Logical effort: designing for speed on the back of an

envelope. IrProceedings of the 1991 University of California/Santa Cruz conference on Advanced
research in VLSIpages 1-16, March 1991.

Systems Performance Evaluation Cooperation. SPEC Benchmarks. http://www.spec.org.

Robert Endre Tarjan and Andrew Chi-Chih Yao. Storing a Sparse Tablamunications of the
ACM, 22(11):606-611, November 1979.

Joel M. Tendler, Steve Dodson, Steve Fields, Hung Le, and Balaram Sinharoy. POWER4 System
Microarchitecture. IBM Server Group Whitepaper, October 2001.

Joel M. Tendler, Steve Dodson, Steve Fields, Hung Le, and Balaram Sinharoy. POWER4 System
MicroarchitecturelBM Journal of Research and Developmet@(1), 2002.

J. Torrellas, A. Tucker, and A. Gupta. Evaluating the Performance of Cache-Affinity Scheduling in
Shared-Memory Multiprocessordournal of Parallel and Distributed Computing4(2):139-151,

1995.

Transaction Processing Performance Council. TPC-C. http://www.tpc.org/tpcc/.

R. Brett Tremaine, T. Basil Smith, Mike Wazlowski, David Har, Kwok-Ken Mak, and Sujith
Arramreddy. Pinnacle: IBM MXT in a Memory Controller ChipEEE Micro, 21(2):56—-68,
March/April 2001.

R.B. Tremaine, P.A. Franaszek, J.T. Robinson, C.O. Schulz, T.B. Smith, M.E. Wazlowski, and
P.M. Bland. IBM Memory Expansion Technology (MXTBM Journal of Research and Develop-
ment 45(2):271-285, March 2001.

Aaron Trott, Robert Moorhead, and John McGinley. Wavelets Applied to Loseless Compression
and Progressive Transmission of Floating Point Data in 3-D Curvilinear Gridaoceedings of

the 7th conference on Visualizatiggages 385-389, October 1996.

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

201
Dean M. Tullsen and Susan J. Eggers. Limitations of Cache Prefetching on a Bus-Based Multipro-

cessor. InProceedings of the 20th Annual International Symposium on Computer Architecture
pages 278-288, May 1993.

Dean M. Tullsen, Susan J. Eggers, Joel S. Emer, Henry M. Levy, Jack L. Lo, and Rebecca L.
Stamm. Exploiting Choice: Instruction Fetch and Issue on an Implementable Simultaneous Multi-
threading Processor. IRroceedings of the 23th Annual International Symposium on Computer
Architecture pages 191-202, May 1996.

Bryan Usevitch. JPEG2000 compliant lossless coding of floating point dadaoteedings of the
2005 Data Compression Conferenpage 484, March 2005.

Raj Vaswani and John Zahorjan. The Implications of Cache Affinity on Processor Scheduling for
Multiprogrammed, Shared Memory MultiprocessorsPhoceedings of the Thirteenth ACM Sym-
posium on Operating Systems Principleages 26—40, 1991.

Jeffrey Scott Vitter. Design and Analysis of Dynamic Huffman Codksirnal of the ACM
34(4):825-845, October 1987.

J. D. Warnock and et al. The Circuit and Physical Design of the POWER4 Microprockgor.
Journal of Research and Developmet@(1):27-51, January 2002.

Paul R. Wilson, Scott F. Kaplan, and Yannis Smaragdakis. The Case for Compressed Caching in
Virtual Memory Systems. IrProceedings of the USENIX Annual Technical Conferepeges
101-116, June 1999.

Wisconsin Multifacet GEMS Simulator. http://www.cs.wisc.edu/gems/.

lan H. Witten, Radford M. Neal, and John G. Cleary. Arithmetic Coding for Data Compression.
Communications of the AGN0(6):520-540, June 1987.

Wm. A. Wulf and Sally A. McKee. Hitting the Memory Wall: Implications of the ObvioGam-

puter Architecture New23(1):20-24, 1995.

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

202
Jun Yang and Rajiv Gupta. Energy Efficient Frequent Value Data Cache DesRyockedings of

the 35th Annual IEEE/ACM International Symposium on Microarchitectpages 197-207,
November 2002.

Jun Yang and Rajiv Gupta. Frequent Value Locality and its Applicatid@d Transactions on
Embedded Computing Systerh@):79—-105, November 2002.

Jun Yang, Youtao Zhang, and Rajiv Gupta. Frequent Value Compression in Data Cadbres. In
ceedings of the 33rd Annual IEEE/ACM International Symposium on Microarchiteqiages
258-265, December 2000.

Y. Yoshida, B.Y. Song, H. Okuhata, T. Onoye, and I. Shirakawa. An Object Code Compression
Approach to Embedded ProcessorsPhceedings of the International Symposium on Low Power
Electronics and Desigrpages 265—-268, August 1997.

Youtao Zhang and Rajiv Gupta. Data Compression Transformations for Dynamically Allocated
Data Structures. IRProceedings of the International Conference on Compiler Construction,(CC)
pages 24-28, April 2002.

Youtao Zhang and Rajiv Gupta. Enabling Partial Cache Line Prefetching Through Data Compres-
sion. InProceedings of the 2003 International Conference on Parallel Processaggs 277-285,
October 2003.

Youtao Zhang, Jun Yang, and Rajiv Gupta. Frequent Value Locality and Value-centric Data Cache
Design. InProceedings of the Ninth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systggages 150-159, November 2000.

Zheng Zhang and Josep Torrellas. Speeding up Irregular Applications in Shared-Memory Multi-
processors: Memory Binding and Group PrefetchingPloceedings of the 22nd Annual Interna-

tional Symposium on Computer Architectyrages 188-199, June 1995.

[141]

[142]

[143]

203
Jacob Ziv and Abraham Lempel. A Universal Algorithm for Sequential Data CompretSoBE.

Transactions on Information Theg33(3):337-343, May 1977.

Jacob Ziv and Abraham Lempel. Compression of Individual Sequences Via Variable-Rate Coding.
IEEE Transactions on Information ThepB4(5):530 —-536, September 1978.

Nivio Ziviani, Edleno Silva de Moura, Gonzalo Navarro, and Ricardo Baeza-Yates. Compression:
A Key for Next-Generation Text Retrieval SystemlBEE Computer33(11):37—-44, November

2000.

204

	” Copyright by Alaa R. Alameldeen 2006
	All Rights Reserved
	Abstract
	Acknowledgments

	Table of Contents
	Chapter 1 Introduction 1
	Chapter 2 Compression Overview and Related Work 17
	Chapter 3 Compressed Cache Design 25
	Chapter 4 Adaptive Cache Compression 51
	Chapter 5 Cache and Link Compression for Chip Multiprocessors 85
	Chapter 6 Interactions Between Compression and Hardware Prefetching 117
	Chapter 7 Balanced CMP Design: Cores, Caches, Communication and Compression 149
	Chapter 8 Summary 183

	List of Figures
	List of Tables
	Chapter 1
	Introduction
	1.1 Why CMPs
	1.2 Balanced CMP Design
	1.2.1 Technology Trends
	1.2.2 Workload Trends
	1.2.3 Balance in CMP Design
	1.3 Compression and Changing the Balance
	1.3.1 Cache Compression in Uniprocessors
	FIGURE 1-1.� Compressed Cache Hierarchy in a Uniprocessor System

	1.3.2 Cache Compression in Chip Multiprocessors
	FIGURE 1-2.� A Single-Chip p-core CMP with Compression Support

	1.3.3 Link Compression
	1.4 Thesis Contributions
	1.5 Dissertation Structure

	Chapter 2
	Compression Overview and Related Work
	2.1 Compression Background
	2.2 Hardware Memory Compression
	2.3 Cache Compression
	2.4 Link Compression
	2.5 Summary

	Chapter 3
	Compressed Cache Design
	3.1 Frequent Pattern Compression (FPC)
	3.1.1 Frequent Patterns
	TABLE 3-1. Frequent Pattern Encoding
	Prefix
	Pattern Encoded
	Data Size
	000
	001
	010
	011
	100
	101
	110
	111

	3.1.2 Segmented Frequent Pattern Compression (S-FPC)
	3.2 FPC Evaluation
	3.2.1 Workloads
	TABLE 3-2. Workload Descriptions

	3.2.2 Compression Ratio
	FIGURE 3-1.� Compression ratios (original size / compressed size) for FPC, XRL, BRCL and gzip
	FIGURE 3-2.� Compression ratios for segmented and variable-length FPC, XRL and BRCL. The three gr...

	3.2.3 Which Patterns Are Frequent?
	FIGURE 3-3.� Frequent Pattern Histogram
	FIGURE 3-4.� Average number of words in a zero run for our ten benchmarks. Large confidence inter...

	3.2.4 Sensitivity to Segment Size
	FIGURE 3-5.� FPC Compression ratios for segment sizes (1 byte to 32 bytes)
	FIGURE 3-6.� Segment Length Histogram: Percentage of cache lines compressed into 1-8 Segments
	FIGURE 3-7.� Cumulative Distribution of Compressed Line Lengths (1 to 512 bits)

	3.3 FPC Hardware Implementation
	3.3.1 High-Level Design
	FIGURE 3-8.� Cache line decompression pipeline for a 64-byte (16-word) cache line

	3.3.2 Gate-Level Design
	FIGURE 3-9.� First pipeline stage of compression circuit
	d = g . h + p (3.1)
	p(INV) = 0.6 delay units, g(INV) = 1 (3.2)
	p (NAND(n,1)) = n . p(INV), g(NAND(n,1)) = (n+2)/3 (3.3)
	p(NOR(n,1)) = n . p(INV), g(NOR(n,1)) = (2n + 1)/3 (3.4)
	p(XOR(2,1)) = 4 . p(INV), g(XOR(2, 1)) = 4 (3.5)
	p(MUX(n,1)) = 2 . n . p(INV), g(MUX(n,1)) = 2 (3.6)
	h = Cout/Cin (Output capacitance divided by input capacitance) (3.7)
	Total_delay = d(AND(16,3)) + d(AND(2,1)) + d(OR(2,2)) + d(INV(1,1)) + d(AND(7,2)) + d(OR(4.1)) (3.8)
	d(AND(16,3)) = d(NAND(16, 1)) + d(INV(1, 3)) = (16+2)/3 * 1/16 + 16*0.6 + 1 * 3/1 + 0.6 = 13.575 ...
	d(INV(1,4)) = 1 * 4/1 + 0.6 = 4.6 (3.10)

	FIGURE 3-10.� First stage of the decompression pipeline: Parallel Prefix Decoder
	FIGURE 3-11.� Critical path for second and third stages of the decompression pipeline. High-level...
	FIGURE 3-12.� Fourth stage of the decompression pipeline (parallel shifter)
	FIGURE 3-13.� Part of the fifth stage of the decompression pipeline (Parallel Pattern Decoder)

	3.4 Decoupled Variable-Segment Cache
	FIGURE 3-14.� Compressed Cache Hierarchy
	FIGURE 3-15.� A single set of the decoupled variable-segment cache
	(3.11)

	Chapter 4
	Adaptive Cache Compression
	4.1 Cost/Benefit Analysis
	4.1.1 Simple Model
	(4.1)
	(4.2)

	4.1.2 LRU Stack and the Classification of Cache Accesses
	FIGURE 4-1.� A cache set example

	4.2 Compression Predictor
	4.3 Evaluation
	4.3.1 System Configuration
	TABLE 4-1. Uniprocessor Simulation Parameters

	4.3.2 Three Compression Alternatives
	4.4 Compression Performance
	4.4.1 Cache Miss Rate
	FIGURE 4-2.� L2 cache miss rates (misses per thousand instructions) for the three compression alt...

	4.4.2 Performance
	FIGURE 4-3.� Runtime for the three compression alternatives, normalized to the Never runtime

	4.4.3 Bit Activity level
	FIGURE 4-4.� Bits read and written from/to the L2 cache for the three compression alternatives, n...
	FIGURE 4-5.� Percentage of cache allocations that require repacking for Always

	4.5 Sensitivity Analysis
	4.5.1 L1 Cache Size and Associativity
	FIGURE 4-6.� Sensitivity to L1 cache size and associativity of the three compression alternatives...

	4.5.2 L2 Cache Size
	FIGURE 4-7.� Sensitivity to L2 cache size of the three compression alternatives. The number of pe...

	4.5.3 L2 Cache Associativity
	FIGURE 4-8.� Sensitivity to L2 cache associativity of the three compression alternatives. The num...

	4.5.4 Memory Latency
	FIGURE 4-9.� Sensitivity to memory latency of the three compression alternatives. The number of p...

	4.5.5 Decompression Latency
	FIGURE 4-10.� Sensitivity to decompression latency of the three compression alternatives. Decompr...

	4.5.6 Prefetching
	FIGURE 4-11.� Sensitivity of compression benefit to L1 and L2 prefetching. The number of penalize...

	4.5.7 Cache Line Size
	FIGURE 4-12.� Sensitivity to cache line size of the three compression alternatives. We assume alm...

	4.5.8 Benchmark Phases
	FIGURE 4-13.� Phase Behavior for gcc with adaptive compression

	4.6 Discussion and Limitations
	4.6.1 Possible Extensions
	4.6.2 Ideal Compression
	FIGURE 4-14.� Normalized performance of the three compression alternatives (Never, Always, Adapti...

	4.6.3 Limitations
	4.7 Related Work

	Chapter 5
	Cache and Link Compression for Chip Multiprocessors
	5.1 C-CMP: A CMP with Compression Support
	5.1.1 C-CMP Design
	FIGURE 5-1.� A Single-Chip p-core CMP with Compression Support

	5.1.2 Support for Cache Compression
	5.2 Link Compression
	5.2.1 Technology Trends
	5.2.2 On-Chip Link Compression
	5.2.3 Memory Interface
	FIGURE 5-2.� Link Compression on a CMP

	5.3 Evaluation
	5.3.1 Base System Configuration
	TABLE 5-1. CMP Simulation Parameters

	5.3.2 Workloads
	TABLE 5-2. Workload Descriptions

	5.4 Cache and Link Compression Performance
	5.4.1 Workload Compressibility
	TABLE 5-3. Compression Ratios for a 4MB cache for commercial and SPEComp benchmarks

	5.4.2 Reduction in Cache Misses
	FIGURE 5-3.� Cache miss rates normalized to miss rate without compression

	5.4.3 Bandwidth Reduction
	FIGURE 5-4.� Pin Bandwidth demand for all benchmarks (in GB/sec.) for compression alternatives
	(5.1)

	5.4.4 Performance
	FIGURE 5-5.� Normalized runtime for the four compression alternatives (relative to no compression)

	5.5 Sensitivity Analysis
	5.5.1 L1 Cache Size and Associativity
	FIGURE 5-6.� Sensitivity to L1 cache size and associativity for commercial benchmarks
	FIGURE 5-7.� Sensitivity to L1 cache size and associativity for SPEComp benchmarks

	5.5.2 L2 Cache Size
	FIGURE 5-8.� Sensitivity to L2 cache size for commercial benchmarks
	FIGURE 5-9.� Sensitivity to L2 cache size for SPEComp benchmarks

	5.5.3 L2 Cache Associativity
	FIGURE 5-10.� Sensitivity to L2 cache associativity for commercial benchmarks
	FIGURE 5-11.� Sensitivity to L2 cache associativity for SPEComp benchmarks

	5.5.4 Memory Latency
	FIGURE 5-12.� Sensitivity to memory latency for commercial benchmarks
	FIGURE 5-13.� Sensitivity to memory latency for SPEComp benchmarks

	5.5.5 Pin Bandwidth
	FIGURE 5-14.� Sensitivity to pin bandwidth for commercial benchmarks
	FIGURE 5-15.� Sensitivity to pin bandwidth for SPEComp benchmarks

	5.6 Summary

	Chapter 6
	Interactions Between Compression and Hardware Prefetching
	6.1 Motivation
	FIGURE 6-1.� Performance improvement (%) for two commercial benchmarks for different uniprocessor...

	6.2 Terminology
	(6.1)

	6.3 Evaluation
	6.3.1 Strided Prefetching
	6.3.2 Hardware Stride-Based Prefetching Characteristics
	TABLE 6-1. Prefetching Properties for Different Benchmarks
	(6.2)
	(6.3)
	(6.4)

	6.4 Interactions Between Compression and L2 Prefetching
	6.4.1 Bandwidth Demand
	FIGURE 6-2.� Normalized off-chip bandwidth demand for L2 prefetching and compression combinations

	6.4.2 Classification of L2 Misses
	FIGURE 6-3.� Breakdown of L2 cache misses and prefetches

	6.4.3 Performance
	FIGURE 6-4.� Performance of combinations of L2 Prefetching and compression
	TABLE 6-1. Speedups and Interactions between L2 Prefetching and Compression

	6.4.4 Interaction Between L2 Prefetching and Cache Compression
	6.4.5 Link Compression Impact
	6.4.6 Summary
	6.5 Interactions Between Compression and L1 Prefetching
	6.5.1 L1 Prefetching Bandwidth Demand
	FIGURE 6-5.� Off-chip bandwidth demand for L1 prefetching and compression combinations

	6.5.2 Impact on L2 Hit Latency
	FIGURE 6-6.� L2 hit latency for combinations of L2 compression and L1 prefetching
	TABLE 6-2. Percentage of penalized hits avoided by L1 prefetching

	6.5.3 Performance
	FIGURE 6-7.� Performance of combinations of L1 prefetching and compression
	TABLE 6-3. Speedups and Interactions between L1 Prefetching and Compression

	6.5.4 Summary
	6.6 Interactions Between Compression and Both L1 and L2 Prefetching
	FIGURE 6-8.� Performance of combinations of compression and both L1 and L2 prefetching
	TABLE 6-4. Speedups and Interactions between L1 and L2 Prefetching and Compression
	FIGURE 6-9.� Off-chip bandwidth demand for L1&L2 prefetching and compression combinations

	6.7 Sensitivity to Pin Bandwidth
	6.7.1 Utilized Bandwidth
	FIGURE 6-10.� Pin bandwidth demand of different compression and prefetching combinations for comm...
	FIGURE 6-11.� Pin bandwidth demand of different compression and prefetching combinations for SPEC...

	6.7.2 Performance
	FIGURE 6-12.� Performance of different compression and prefetching combinations for commercial be...
	FIGURE 6-13.� Performance of different compression and prefetching combinations for SPEComp bench...

	6.7.3 Interaction Between Prefetching and Compression
	FIGURE 6-14.� Interaction(%) between prefetching and compression as available pin bandwidth varies

	6.8 Sensitivity to Number of CMP Cores
	FIGURE 6-15.� Performance improvement (%) for commercial benchmarks for different uniprocessor an...

	6.9 Related Work
	6.10 Summary

	Chapter 7
	Balanced CMP Design: Cores, Caches, Communication and Compression
	7.1 Blocking Processor Model
	7.1.1 Cache Byte Equivalent (CBE) Area Model
	(7.1)
	(7.2)
	(7.3)

	7.1.2 Throughput for a Fixed Chip Area
	(7.4)
	(7.5)
	(7.6)
	(7.7)
	(7.8)
	(7.9)
	(7.10)
	(7.11)
	(7.12)

	7.2 CMP Model with Cache Compression
	(7.13)

	7.3 CMP Model with Cache and Link Compression
	(7.14)
	(7.15)
	(7.16)
	(7.17)
	(7.18)

	7.4 Model Limitations
	7.5 Optimal CMP Configurations
	TABLE 7-1. Model Parameters
	FIGURE 7-1.� Analytical model throughput (IPC) for different processor configurations (x-axis) an...

	7.6 Sensitivity Analysis
	7.6.1 Sensitivity to Pin Bandwidth
	FIGURE 7-2.� Analytical model sensitivity to pin bandwidth. Non-compressed configurations are rep...

	7.6.2 Sensitivity to Cache Miss Rate
	FIGURE 7-3.� Analytical model sensitivity to L2 cache miss rates of an 8 MB cache

	7.6.3 Sensitivity to Memory Latency
	FIGURE 7-4.� Analytical model sensitivity to memory latency. Non-compressed configurations are re...

	7.6.4 Sensitivity to Compression Ratio
	FIGURE 7-5.� Analytical model sensitivity to compression ratio. No compression is compared to con...

	7.6.5 Sensitivity to Decompression Penalty
	FIGURE 7-6.� Analytical model sensitivity to decompression penalty. No compression is compared to...

	7.6.6 Sensitivity to Perfect CPI
	FIGURE 7-7.� Analytical model sensitivity to perfect CPI. Non-compressed configurations are repre...

	7.7 CMP Model with Hardware Prefetching
	FIGURE 7-8.� Analytical model results for four configurations: No compression or prefetching, com...
	(7.19)
	(7.20)

	7.8 Evaluation for Commercial Workloads
	7.8.1 Simulation Setup
	7.8.2 Balanced CMP Design with Compression and Prefetching
	FIGURE 7-9.� Commercial workload throughout for different compression and prefetching configurati...
	FIGURE 7-10.� Utilized bandwidth for different compression and prefetching configurations of comm...
	FIGURE 7-11.� Interaction between compression and prefetching for all benchmarks and processor co...

	7.8.3 Impact of Limited Bandwidth
	FIGURE 7-12.� Commercial workload throughout for different compression schemes and processor conf...
	FIGURE 7-13.� Interaction between compression and prefetching for 10 GB/sec. pin bandwidth

	7.9 Model Validation
	FIGURE 7-14.� Comparing throughput estimates from analytical model and simulations
	(7.21)

	7.10 Related Work
	7.11 Summary

	Chapter 8
	Summary
	8.1 Conclusions
	8.2 Future Work

	References

