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Abstract
Transactional memory (TM) promises to simplify multi-
threaded programming. Transactions provide mutual exclu-
sion without the possibility of deadlock and the need to as-
sign locks to data structures. To date, most investigations
of transactional memory have looked atpurelytransactional
systems that do not interact with legacy code using locks.
Unfortunately, the reality of software engineering is that
such interaction is likely.

We investigate the interaction of transactional memory
implementations and lock-based code. We identify and dis-
cuss five pathologies that arise with different systems when
a lock is accessed both within and outside a transaction:
Blocking, Deadlock, Livelock, Early Release, and In-
visible Locking. To address these pathologies we designed
and implementedtransaction-safe locks(TxLocks) by mod-
ifying the existing lock implementation of the OpenSolaris
C Library and extending the conflict resolution policy of a
hardware transactional memory system.

1. Introduction
Transactional memory (TM) [7] promises to simplify multi-
threaded programming by removing the need to assign locks
to data. However, it is likely that transactional memory
must co-exist with lock-based code for the foreseeable fu-
ture. While TM is most helpful to applications written from
scratch, it may also simplify existing programs written using
locks. In both cases, transactional code may need to invoke
existing, lock-based code that has not or cannot (because it
is available only in binary form) be converted to transac-
tions. Furthermore, in existing programs, it may be useful to
convert only key data structures or functions to transactions,
leaving parts of the code to use locks.

When converting lock-based code to transactions, we ran
across many cases where transactional code naturally ac-
quired locks that were also acquired by non-transactional
code. This happened for two reasons: (1) calls into applica-
tion subsystems that were not yet transactionalized and (2)
calls into standard libraries. An example of the first case oc-
curs in the BIND DNS Server [8, 9]. BIND is composed
of several subsystems that make extensive use of locks. We
converted the red-black tree structure, which stores the in-
dividual name records, to transactions. This structure is fre-
quently accessed during queries and updates and is a good fit
for TM. Transactionalizing this subsystem while keeping the
rest of the subsystems unmodified is sufficient to improve

atomic {
  key = remove(heap)

lock(heap.L)

}

insert(heap, key)
  lock(heap.L)
  ...
  ...
  unlock(heap.L)
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Figure 1. Interaction between lock-based and transactional
code can bring the system in an unrecoverable state.

performance through optimistic concurrency. However, on
some paths the red-black tree invokes shared logging code,
which uses locks. As a result, the locks in the logging code
are acquired within transactions.

An example where transactions may interact with locks
in library code occurs with theld.so dynamic linker used
in UNIX platforms. Dynamic linking is performed on the
first call to a library function, and must use locks to prevent
multiple threads from simultaneously linking a library. If
a transaction makes the first call to a dynamically linked
function, then the linker’s locks will be acquired within a
transaction.

These examples demonstrate that transactions and locks
may interact when legacy code is used in transactional pro-
grams. To date, though, most investigations of transactional
memory have looked atpurely transactional systems that
have no interaction with code using locks. Unfortunately,
our personal experience with our own LogTM [13] system
reveals that non-trivialpathological behaviormay arise.

Figure 1 presents an example of pathological behav-
ior when transactions and locks interact. In the example, a
heap data structure provided by a library is invoked from
a transaction (Thread 1) and from non-transactional code
(Thread 2). When executed on the LogTM hardware TM
system [13], deadlock can occur when transactional and non-
transactional threads compete for a lock. Thread 2 acquires
the lock non-transactionally. When Thread 1 attempts to ac-
quire the lock within a transaction, it finds the lock in use and
spins reading the lock variable. However,the act of read-
ing the lock variable adds it to the transaction, preventing
other threads from changing it until Thread 1’s transaction
completes. When Thread 2 tries to release the lock, LogTM
prevents it from writing the lock variable, and thereby releas-



Pathology Version Management Conflict Detection Strong Systems
Eager Lazy Eager Lazy /Weak

Blocking yes yes yes yes strong LogTM/LogTM-SE, Bulk [5]
Deadlock yes no yes no strong LogTM/LogTM-SE, OneTM [2]
Livelock yes yes yes yes strong Bulk, LTM [1]
Early Release yes no yes yes weak McRT-STM [17]
Invisible Locking no yes yes yes weak TL2 [6]

Table 1. Summary of the lock pathologies together with TM systems affected by these pathologies.

ing the lock, in order to preserve the transaction’s isolation.
Thus, the program deadlocks because Thread 1 cannot com-
plete its transaction until Thread 2 releases the lock. Thread
2 cannot release the lock until Thread 1’s transaction com-
pletes.

While this pathology has been presented in the con-
text of LogTM, it applies to other systems that block non-
transactional code behind transactions, such as OneTM [2].
Investigating further, we found that similar pathologicalbe-
haviors arise in other TM systems as well. Specifically, we
have identified five pathologies that arise when transactions
interact with locks:Blocking, Deadlock, Livelock, Early
Release, and Invisible Locking. These pathologies occur
across the spectrum of TM system designs, including both
hardware and software systems. Table 1 summarizes where
the pathologies occur and shows which proposed TM sys-
tems they affect. We describe the pathologies in detail in
Section 3. These problems prevent current TM systems from
interacting with locks.

Driven by these pathologies we have designed and imple-
mentedtransaction-safe locks(TxLocks) that interact grace-
fully with transactions and eliminate the pathologies. The
TxLocks’ implementation entails modifications to the exist-
ing lock code in OpenSolaris’ C Library and extensions to
the conflict resolution policy of the TM system in use, in our
case LogTM-SE [21]. In contrast to other proposals integrat-
ing locks and transactions [16], TxLocks do not depend on
hardware support and work for a variety of TM systems. The
design and implementation of TxLocks is presented in Sec-
tion 4.

We measure the additional cost of our TxLocks’ imple-
mentation over traditional locks in Section 5 and finally draw
conclusions in Section 6.

2. Background
In this section we provide background material on transac-
tional memory and locking that is critical to understanding
their interaction.

2.1 Transactional Memory

A transactional memory (TM) system allows the program-
mer to mark code regions as transactions. The TM system
is responsible for ensuring that the code executes atomically

(to completion) and in isolation (without intermediate state
visible to others). TM systems, both hardware and software,
can be characterized along four dimensions:version man-
agement, conflict detection, conflict resolutionandatomicity
strength.

Version managementhandles the simultaneous storage of
both newly written values (for commit) and old values (for
abort).Eager version managementstores new values in place
and old values elsewhere (e.g., a software log).Lazy version
managementleaves old values in place and stores new values
elsewhere.

Conflict detectionchecks for conflicts between concur-
rent transactions.Eager conflict detectionchecks for con-
flicts on each memory request, whilelazy conflict detection
defers the check until commit. Eager version management
requires eager conflict detection to prevent other transactions
from reading intermediate states.

Conflict resolutiontakes action when a conflict is de-
tected. For eager conflict detection, resolution centers on
the requester, while for lazy conflict detection it centers on
the committer. The resolution policy can stall the requester
(committer), abort the requester (committer), or abort the
others. The choice of policy can have a large impact on per-
formance [4, 18].

Atomicity strengthreasons about the relationship between
transactions and non-transactional code.Strongly atomic
systems execute transactions atomically with respect to both
other transactionsand non-transactional code. In essence,
these systems implicitly treat each instruction appearingout-
side a transaction as a singleton transaction.Weakly atomic
systems execute transactions atomically only with respect
to other transactions, i.e. their execution may be interleaved
with non-transactional code [3]. While weak atomicity leads
to several programming pitfalls [19], most software transac-
tional memory systems employ it to boost performance.

2.2 Locks

Locks provide mutual exclusion semantics for synchronized
access to shared data. A thread that attempts but fails to
acquire a lock has two options:spinor block.

With spin locks, the thread loops reading and writing the
lock variable with atomic instructions such asCompare-
and-Swap orTest-and-Set. Spinning allows fast acquisi-



atomic {
  x = A
  lock(L)

block()

lock(L)
...
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A = y
unlock(L)
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Figure 2. A case of theblockingpathology where transac-
tional Thread 1 is aborted instead of blocking on lock L. It
spins, retrying continuously instead of waiting in the kernel.

tion of the lock when it is released but it consumes processor
cycles while busy waiting.

Blocking locksplace a thread on a sleep queue while the
lock is held and wake it when the lock is released. The
thread sleeps in the kernel while waiting, which allows other
threads to use the processor. The queue can be implemented
in the kernel or in user space. Blocking has the benefit of
freeing the processor for other work but requires a system
call and context switches to sleep and wake up.

Adaptive lockscombine the benefits of the two schemes
by first spinning for a while and reverting to blocking when
that fails. This can occur after a fixed number of tries, when
the spinning thread is preempted, or when the thread holding
the lock is suspended.

3. Classification of Pathological Behavior
When transactional code acquires a lock, the interaction of
the transaction with non-transactional code contending for
the same lock can lead to abnormal execution behaviors,
which we callpathologies. We consider these execution be-
haviors as abnormal because they result from the execution
of otherwise correct code that makes proper use of locks.
We have identified five behavior pathologies where the TM
system’s behavior may lead to deadlock, livelock, or loss of
mutual exclusion. This set has been useful in understanding
TM systems but may not be exhaustive.

We now discuss each pathology in detail, describe which
systems they affect, and describe with sample code the sce-
nario under which they arise.

3.1 Blocking

Systems affected
Version Management Any
Conflict Detection Any
Conflict Resolution Any
Atomicity Strong

Description With blocking and adaptive locks a transac-
tion may eventually block-wait in the kernel after failing to
acquire a lock. On any system, this requires that transactions
can bevirtualized to survive context switching [15, 20]. If
the TM system does not support suspending threads in a
transaction and instead aborts the transaction, then the lock
becomes a spin lock. After aborting, the transaction will con-

spinlock(S)
...
atomic {
 ...
 unlock(S)
 ...
}

atomic {
spinlock(S)

 ...
 ...
 unlock(S)
}

spinlock(S)
...
...
unlock(S)

Thread 1 Thread 2

(a) (b)

...
spinlock(S)
...
...

Thread 2Thread 1

stalling

Figure 3. A case of Deadlock in an eager conflict detec-
tion and eager version management strongly atomic system
(a) and a case ofLivelock in a lazy conflict detection and
lazy version management strongly atomic system (b).

tinuously re-execute up to the point of acquiring the lock
rather than relinquish the CPU. Even if the TM system backs
off by stalling before retrying a transaction, other threads are
still prevented from running on that processor.

If the TM system supports virtualization, as in soft-
ware TM systems (STMs), then a problem may arise if the
blocked transaction must be aborted to resolve a deadlock.
Existing TM systems may not be able to abort suspended
threads safely.

Figure 2 shows an example program that experiences the
blocking pathology. In this example, transactional Thread
1 fails to acquire lock L, which is already acquired by the
non-transactional Thread 2. With a blocking lock, Thread 1
will try to wait in the kernel. However, in this example the
TM system does not support virtualization and instead aborts
the transaction, causing it to restart and immediately try to
acquire the lock.

3.2 Deadlock

Systems affected
Version Management Eager
Conflict Detection Eager
Conflict Resolution Requester Stalls
Atomicity Strong

Description In some TM systems, merelyattemptingto
acquire a lock within a transaction can prevent another
thread from releasing the lock and lead to deadlock. TM sys-
tems with eager version management and strong atomicity
must stall non-transactional threads until conflicting trans-
actions commit or abort to prevent them from reading in-
termediate states of the transaction. This policy can lead to a
deadlock when a transactional and a non-transactional thread
concurrently access a lock. This deadlock occurs both on the
lock variable itself and when a non-transactional thread con-
flicts with any variable that a waiting transaction previously
accessed.

Figure 3(a) illustrates such a deadlock. Non-transactional
Thread 2 owns lock S when transactional Thread 1 tries
but fails to acquire it. Although the lock acquisition fails,



the transaction still brings the memory location of the lock
into its read and/or write set because of the memory access
done by the atomic operation.1 Thus, Thread 1 prevents
subsequent access by any other thread, including access to
release the lock, until its transaction commits or aborts.
This effectively results in two owners holding the lock at
different levels of abstraction. The non-transactional thread
logically owns the lock while the transactional thread owns
the memory containing the lock variable. These two owners
prevent each other from modifying the lock’s value, thereby
preventing progress and leading to deadlock. Furthermore,
this deadlock is undetectable by TM systems that detect only
memory-level dependencies.

3.3 Livelock

Systems affected
Version Management Any
Conflict Detection Any
Conflict Resolution Committer Wins
Atomicity Strong

Description In some TM systems, spinning by a non-
transactional thread can prevent a transactional thread
from releasing a lock and lead to livelock. Systems using
committer-wins conflict resolution and strong atomicity, so
that non-transactional code always causes conflicting trans-
actions to abort, can have this pathology.

Figure 3(b) presents sample code that experiences this
pathology. Transactional Thread 1 acquires and releases lock
S in separate transactions. However, when non-transactional
Thread 2 spins trying to acquire lock S, it repeatedly causes
the transaction that should release the lock to abort. The
transaction continuously attempts to release the lock but is
always aborted by the non-transactional thread’s spinning
before it can commit. This leads to livelock that will only be
resolved when Thread 2 is eventually preempted. Note that
while locks may be released in any order without ill effects,
but reordering lock releases and transaction commits cause
a pathology.

3.4 Early Release

Systems affected
Version Management Eager
Conflict Detection Any
Conflict Resolution Any
Atomicity Weak

Description Weakly atomic systems with eager version
management allow non-transactional code to access uncom-
mitted data. These systems may lose mutual exclusion when
a transaction aborts after releasing a lock. Three problems
may arise. First, the TM system will restore old values to

1 Test-And-Setalways writes a memory location bringing it into the transac-
tion’s write set.Compare-And-Swapalways reads a memory location bring-
ing it into the transaction’s read set and just brings the memory location into
the write set when it writes it on success.

lock(L)
...
atomic {
 ...
 unlock(L)

}

ABORT

atomic {
 lock(L)
 ...
 ...
 unlock(L)
}

...
lock(L)
...
...
unlock(L)

Thread 1 Thread 2

(a) (b)

lock(L)
...
...

Thread 2Thread 1

Figure 4. (a) A case of Early Release in weakly atomic
eager version management system and (b) a case ofInvis-
ible Locking in weakly atomic lazy version management
system. Both pathological cases break mutual exclusion en-
forced by lock L.

data protected by the lock without waiting to reacquire the
lock, corrupting the data if another thread has since acquired
the lock. Second, the TM system may restore the lock to its
unlocked state, even though it is owned by another thread.
Third, if the lock was acquired before beginning the transac-
tion, the transaction will restart assuming it owns the lock,
even if another thread has since acquired it. In all cases, the
system violates the mutual exclusion provided by the lock.

Figure 4(a) shows sample code that is affected by this
pathology. Thread 1’s release of lock L in a transaction
is immediately visible to other threads. As a result non-
transactional Thread 2 can acquire the lock before the trans-
action commits. This operation is unsafe if the transaction
aborts and restarts. In such a case both threads incorrectly
think that they exclusively have the lock and consequently
the mutual exclusion semantics provided by the lock are lost.

3.5 Invisible Locking

Systems affected
Version Management Lazy
Conflict Detection Any
Conflict Resolution Any
Atomicity Weak

Description Systems with weak atomicity that buffer
writes until commit may acquire locks invisibly: the ac-
quisition of the lock and update of data are buffered un-
til the transaction commits. As a result, concurrent non-
transactional threads may also acquire the lock, unaware that
it is held by a transaction, and access the data it protects. If
the transaction commits while another thread holds the lock,
the transaction will both update the data and potentially re-
lease the lock, violating the mutual exclusion provided by
the lock.

Figure 4(b) shows sample code that experiences this
pathology. Thread 1 acquires lock L inside a transaction. Be-
cause of lazy version management, the acquisition is invisi-
ble until the transaction commits. Non-transactional Thread
2 finds the lock free and successfully acquires it without con-



atomic {
spinlock(S)

 ...
 ...

}

spinlock(S)
...
atomic {
 ...
 unlock(S)
}

Thread 1 Thread 2

Figure 5. A case that can either deadlock or livelock de-
pending on the conflict resolution used.

flicting because of weak atomicity. Both threads believe that
they exclusively have the lock and get into the critical sec-
tion protected with lock L, violating mutual exclusion.

3.6 Discussion

The Deadlock and Livelock pathologies are dual to each
other in the sense that solving the one pathology may give
rise to the other. Deadlock appears when the conflict reso-
lution policy blocks requestors in favor of the owner of a
transactional line. However, if the conflict resolution policy
instead aborts the owner then the system can get into a live-
lock. Figure 5 illustrates sample code that can either dead-
lock or livelock depending on the conflict resolution used.
Stalling the unlock request results in deadlock but aborting
the transaction that encloses the unlock operation resultsin
livelock.

Weak atomicity raises problems with locks because the
additional semantics of locking are not preserved by the TM
system: they are not properly acquired or released during
commit or abort. This leads to theEarly Release and In-
visible Locking pathologies. Prior study of weak atomic-
ity anomalies [19] may be sufficient to explain why code
that accesses a lock both within and outside a transaction
is problematic. However, we find value in identifying these
two pathologies because it enables construction of locks
(described in the following section) that allow transactions
to syncronize access to data shared with non-transactional
code.

Strong atomicity leads to pathologies when the depen-
dence of one thread on another through a lock is not visible
to the TM system. Thus, the TM system may stall or abort
the thread holding the lock, blocking forward progress.

4. Transaction-Safe Locks
In this section we proposetransaction safe locks(TxLocks),
which cooperate with the transactional memory system to
solve the pathologies discussed in Section 3. Our lock design
is driven by two practical goals:

1. Fast-Path: The overhead of TxLocks on the common-
case uncontended path should be minimal.

2. Starvation-Freedom: When locks and transactions con-
flict, all threads should eventually make progress.

The first goal requires that little additional code, and no addi-
tional synchronization, is encountered by non-transactional
threads. The second goal requires that conflict resolution
eventually allows all threads to make progress.

We first present an abstract design of TxLocks that may
be applied to locks in any system. Later, in Section 4.2,
we describe in detail an implementation of TxLocks for
LogTM-SE system running on Solaris.

4.1 Design

Transaction-safe locks extend locks in four directions to
prevent pathologies from occurring. The design makes three
demands from the TM system.

1. A transaction must be able to specify code to execute
when it commits (commit actions) and aborts (compen-
sating actions) [12, 14, 22]. These actions enable locks to
defer locking operations until commit and perform undo
operations on abort.

2. A transaction must be able toescape into non-
transactional code without terminating the transac-
tion [14, 22]. These escape actions allow modifications
of the lock variable outside transactional control so that
they are immediately visible to all threads.

3. It must be possible to modify the conflict resolution pol-
icy to perform additional tasks when a transaction con-
flicts with a lock.

We next present the design of TxLocks by separately
describing the four design elements and how they fix the
pathologies. We separate design elements by the pathol-
ogy they prevent, so a system that does not suffer from all
pathologies does not need to implement the entire design.

4.1.1 Non-transactional Lock Operations

In order to solve theInvisible Locking pathology, we use
escape actions to remove atomic operations that modify the
lock variable from transactional control. Memory accessed
inside an escape action is not added to the transaction’s
read and write sets, so modifications of the lock variable
are immediately visible to the other threads. Because the
lock is modified outside transaction control, the change must
be explicitly reversed. The lock implementation registersa
compensating action to release the lock if the transaction
aborts.

This change also prevents theLivelock and some cases of
the Deadlock pathology. Previously, a transaction that reads
a lock variable could prevent another thread from unlocking
a lock, leading to deadlock or livelock. If the transaction
accesses the lock variable only in an escape action then it
no longer prevents other threads from releasing the lock.

4.1.2 Deferred Unlock

A side effect of removing locks from transactional con-
trol is that strongly atomic systems become vulnerable to



atomic {
 lock(L)
}

lock(L)
atomic {
 ...
}

...

...
lock(L)

Thread 1 Thread 2
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...
lock(L)

Thread 2Thread 1
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Figure 6. In (a) the thread acquires the lock inside a trans-
action so the logical dependency can be broken by aborting
the transaction. In (b), however, the thread acquires the lock
outside the transaction, so abort does not break the logical
dependency.

the Early Release pathology, which previously impacted
only weakly atomic systems. To prevent this pathology, the
TxLocks implementation does not release a lock immedi-
ately when called within a transaction. Instead, the unlock
code registers a commit action to release the lock after the
transaction commits. This ensures that the lock is not re-
leased until there is no possibility of rolling back changes
to the data it protects. While other threads cannot acquire
the lock before the transaction commits, TxLocks allow the
transaction to reacquire the lock if needed to avoid deadlock-
ing with itself. Note that deferring release may decrease con-
currency because locks are held until the transaction com-
mits.

4.1.3 Lock-aware Conflict Resolution

The conflict resolution policies implemented in TM systems,
such as committer-wins and requester-stalls, do not con-
sider the effects of locks. As a result, they may select the
wrong victim (the transaction to stall or abort) and cause the
Deadlock and Livelock pathologies. We assume a software
contention managerexists that can implement sophisticated
policies, such as deadlock detection.

To prevent these two pathologies, TxLocks provide ad-
ditional information to the contention manager when locks
and transactions conflict. Specifically, locks provide infor-
mation about when the lock was acquired and which thread
owns the lock. Information about the lock owner is necessary
to build a dependency graph that includes both transactions
and locks.

In addition, both locks and transactions have timestamps
indicating when they were acquired. This enables a con-
tention manager to identify whether a lock is nested in a
transaction or a transaction is nested in a lock. Differenti-
ating between these two cases is important because aborting
a transaction will release only the locks that are nested in that
transaction. If the lock timestamp is newer than the transac-
tion’s timestamp, the transaction had begun before the lock
was acquired and aborting the transaction will release the
lock. However, if the lock is earlier, then aborting the trans-

action will not release the lock.
Figure 6 illustrates the two cases. On the left, the times-

tamp of the lock owner (Thread 1) is older than the lock’s
timestamp. Thus, aborting Thread 1’s transaction will re-
lease the lock. When the lock timestamp is older, shown on
the right, aborting the transaction will not release the lock
and resolve a deadlock.

In addition, the contention manager for TxLocks uses
both transactional dependencies (provided by the TM sys-
tem) and lock dependencies (provided by the lock owner
fields) to detect deadlock that arise due to interactions of
locks and transactions. When such a deadlock occurs, the
contention manager aborts the youngest transaction that can
break the deadlock.

4.1.4 Block/Wake-up Protocols

The Blocking pathology occurs for two reasons. If the TM
system does not support suspending transactional threads,
blocking leads to spinning. If the TM system can suspend
transactional threads, problems occur if it cannot abort wait-
ing threads. In both case, the TM system must cooper-
ate with the lock code through a block/wake-up protocol
to achieve a graceful wake-up of the blocked transaction
in the case of abort or when the lock can be acquired.
We have identified two possible protocols:Abort/Blockand
Block/Abort.

For TM systems that cannot suspend a thread within a
transaction, theAbort/Blockprotocol aborts the transaction
and then suspends the thread, placing it on the lock’s sleep
queue. When the lock is available, the lock code wakes
up the thread and restarts the transaction. The thread re-
executes the transaction and hopefully acquires the lock
without blocking.

While this protocol seems feasible, it suffers from several
drawbacks:

• If the transaction acquires multiple locks, it may never
acquire all locks without blocking, leading to starvation.

• If the transaction follows a different path upon restarting,
it may need a different lock. This could lead to starvation.

• Under contention, the transaction may starve because it
does not acquire the lock immediately after resuming; it
must first execute from the start of the transaction up to
the call to acquire the lock.

However, this protocol may be the best option for systems
that cannot suspend threads in a transaction.

An alternative is theBlock/Abortprotocol in which trans-
actions block on a lock and only abort on requests from the
contention manager. The transaction must notify the TM sys-
tem of which lock it is waiting for before it blocks. This
allows the contention manager to resolve deadlocks that
arise due to interactions of locks and transactions. When a
blocked thread resumes, it checks whether it was aborted,
and if so removes itself from the lock’s sleep queue, waking



the next waiting thread. Otherwise the thread acquires the
lock and continues with the transaction.

Both protocols allow a transaction to safely acquire a
blocking lock without devolving to spinning. TxLocks im-
plement the Block/Abort protocol because our platform sup-
ports suspending transactions.

4.2 Implementation in OpenSolaris

We implemented a working version of TxLocks by extend-
ing the adaptive mutex lock implementation of OpenSo-
laris’ C Library with the four components presented in Sec-
tion 4.1. We chose the adaptive mutex lock since this is the
one most often used in our workloads. As a base TM sys-
tem we use LogTM-SE, which is an HTM providing strong
atomicity, using eager version management, eager conflict
detection, and requester-stalls conflict resolution. We have
chosen LogTM-SE over the original LogTM system because
LogTM-SE supports virtualizing transactions and compen-
sating/commit actions.

LogTM-SE records a timestamp in hardware when a
transaction begins. This timestamp, taken from a loosely-
synchronized cycle counter such as thestick (system tick)
in SPARC systems, is sent on all coherence requests and
is used for conservative deadlock detection: transactions
stalled on a conflict that receive a conflicting request from
an older transaction detect a possible deadlock and invoke
the contention manager.

Figure 7 shows pseudocode for top-level TxLocks’lock

andunlock functions. Shaded areas highlight addition of
new code to standard OpenSolaris adaptive mutexes. The
lock routines have four sets of additions, corresponding to
the four design elements with each set marked in the figure
using one of the lowercase lettersa-d.

First, all lock code executes as an escape action, outside
of transactional control (set a: lines 2, 13, 24, 27, 30, 39).
This prevents theInvisible Locking, Livelock, and some
cases of theDeadlock pathology. To ensure locks are re-
leased on abort, the lock function registers a compensating
action to release the lock in this case (set a: line 21).

Second, the unlock function defers releasing the lock
when called within a transaction (set b: line 34). This pre-
vents the Early Release pathology by ensuring that locks
are held until the transaction commits. To allow the same
transaction to reacquire the lock without deadlocking with
itself we rely on the fact that OpenSolaris’s adaptive mutexes
can be acquired recursively (lines 7, 28).

Third, the lock implementation stores information about
when the lock was acquired for lock-aware conflict res-
olution (set c: line 18). We added atimestamp field to
the mutex structure, in which the lock code stores LogTM-
SE’s transaction timestamp after acquiring the lock. For non-
transactional code, this is the current value of thestick

counter. Conflict resolution also requires the lock owner,
which is already stored by OpenSolaris mutex locks (line
4). With this information, the contention manager can detect

1.   void lock(txlock_t*mp) {
2.     BEGIN_ESCAPE;
3.     if (set_lock_byte(&mp->txlock_lockw) == 0) {
4. mp->mutex_owner = self;
5. goto lock_acquired;
6.     }
7.     if (mp->mutex_owner == self) {
8. mp->rcount++;
9. goto lock_acquired_noTS;
10.    }
11.    if (txlock_trylock_adaptive(mp) != 0) {
12.      if (txlock_lock_queue(self,mp) == ABORT) {
13.        END_ESCAPE;
14.        ABORT_TRANSACTION;
15.      }
16.    }
17.  lock_acquired:
18. mp->timestamp =xact_timestamp();
19.  lock_acquired_noTS:
20.    if (in_xact()) {
21.      register_compensating_action(
22. txlock_unlock_impl,mp);
23.    }
24.    END_ESCAPE;
25.  }

26.  void unlock(txlock_t*mp) {
27.    BEGIN_ESCAPE;
28.      if (mp->mutex_owner == self) {
29. mp->rcount--;
30.        END_ESCAPE;
31.        return;
32.      }
33.      if (in_xact()) {
34.        register_commit_action(
35. txlock_unlock_impl,mp);
36.      } else {
37. txlock_unlock_impl(mp);
38.      }
39.    END_ESCAPE;
40.  }

a

a

a

a

a

a

b

c

d

d

a

Figure 7. Pseudocode for TxLocks’ lock and unlock func-
tions. The shaded areas are new code, and the letters distin-
guish code changes described in section 4.2.

deadlock from the full dependency graph of threads, includ-
ing both lock-based dependencies and transaction dependen-
cies, and decide how to resolve deadlocks. This resolves the
Deadlock pathology, because the contention manager can
ensure that a transaction waiting for lock does not prevent
the lock holder from executing.

Fourth, the lock implementation adds code to support the
block/abort protocol (set d: line 12). The lock routine checks
whether it was aborted while waiting, and if so exits the es-
cape action and aborts the current transaction. Additional
code for blocking is in thetxlock lock queue function
(not shown for brevity). Before suspending the thread, this
function calls the contention manager to check for dead-
locks. After returning from the kernel, this code checks to
see if it has been aborted. If so, it returns ABORT to the lock
function, which aborts the running transaction.

When a thread conflicts with a transaction that is blocked
in the kernel waiting for a lock, it cannot resolve the con-
flict by stalling. Therefore, LogTM-SE traps into the con-



tention manager when a thread conflicts with a suspended
transaction [21]. On such a conflict, the contention man-
ager suspends the thread and enqueues it behind the thread
with which it conflicts. When a thread conflicts with multi-
ple (reader) transactions, the thread waits on the thread with
the youngest transaction, which is likely to end its transac-
tion last. We implement blocking behind a transaction with
user-level sleep queues, similar to Zilles et al. [22].

4.3 Summary

TxLocks resolve the five locking pathologies by moving
locking code outside transactions (with escape actions)
and by invoking a software contention manager to detect
deadlocks and resolve conflicts. In the uncontended non-
transactional case, the only additional code is to store times-
tamp value (the calls to begin and end escape actions are
treated as no-ops). In the transactional case, the transaction
must register compensating and commit actions as well.

TxLocks bear a strong resemblance to cxspinlocks in
TxLinux [16]. The primary difference of the two lock prim-
itives is the programmer interface. With cxspinlocks, pro-
grammers must specify a lock (which could be a single
global lock) for all critical sections, and the cxspinlock
mechanism executes these regions with optimistic concur-
rency when possible. However, specifying a lock introduces
extra coherence traffic, which is unnecessary in the case
when optimistic regions do not compete with exclusive ones.
In addition, cxspinlocks requires special hardware, such as
thextest andxcas instructions, making the technique only
applicable to HTMs.

In contrast, TxLocks allow the programmer to program
using transactions that can acquire locks if needed. Although
programmers cannot achieve optimistic concurrency for the
regions protected by the lock, they can reap the productiv-
ity benefits of using transactions while still interacting with
lock-based code. In addition, TxLocks require no special
hardware and can therefore be used in a range of TM sys-
tems, including both hardware and software systems.

5. Preliminary Performance
We are currently developing workloads that require locks
and transactions to interact, and so we do not have com-
plete results on how TxLocks perform. However, we have
experimented with them in the BIND DNS server. Txlocks
allow the standard C runtime memory allocator to execute
correctly when called from a transaction. Prior to the devel-
opment of TxLocks, locks in the allocator caused deadlock
and allocator had to be pulled completely into an escape ac-
tion to execute correctly.

We measure the cost of TxLocks on the LogTM-SE sim-
ulator [21], which uses Wisconsin GEMS [11]. It models a
32-processor Sparc chip-multiprocessor with a single-issue
in-order pipeline and memory latencies similar to the Sun
T1 (Niagara) processor [10]. This simulator is not cycle-

Lock Cycles

Solaris adaptive mutex 61
TxLock non-transactional 89
TxLock transactional 185

Table 2. Cycles to acquire a lock.

accurate for short code sequences, but can measure approxi-
mate performance differences.

As we do not have a workload to explore the full per-
formance of TxLocks, we measure the overhead of support-
ing transactions in the uncontended case. TheLock-stress

program repeatedly acquires a native OpenSolaris adaptive
mutex outside a transaction, a TxLock outside a transaction,
or a TxLock inside a transaction. As there is only a single
thread, there is no contention. We measure the average num-
ber of cycles to acquire the lock.

Table 2 shows the results of our experiments. In the non-
transactional case, TxLocks add 45% to the native lock case.
This is due to the extra instructions for entering escape
actions and saving a timestamp. In the transactional case,
TxLocks add 300% to the native lock case. The additional
time is spent registering a compensating action to release
the lock on abort, which takes 79 cycles on LogTM-SE. This
cost could be further optimized to reduce locking overhead.

These results demonstrate that TxLocks add little to the
cost of locking for non-transactional code. The overhead for
acquiring TxLocks in transactions is higher, but provides
a substantial benefit by allowing transactions and lock to
interact correctly.

6. Conclusion
Many existing transactional memory systems do not inter-
act well with locks. We found five pathologies that may
arise, depending on the TM system design, when transac-
tions acquire locks:Blocking, Deadlock, Livelock, Early
Release, and Invisible Locking. The pathologies under
strong atomicity occur for two reasons. First, transaction
conflict resolution is unaware of locks, and may abort the
only transaction able to release a lock and allow further
progress. Second, lock variables may be locked both at the
memory level, by the TM system, and at a logical level, by
the lock itself. If these two levels conflict then deadlock or
livelock can arise. In weakly atomic systems, pathologies
arise because the system does not respect lock semantics
during abort and commit.

To address these problems, we designed TxLocks,
which prevent these pathologies with four techniques: non-
transactional lock operations, deferred release, lock-aware
conflict resolution, and a block/abort protocol. In testing, we
found that TxLocks add little performance overhead to the
common case of uncontended locking yet provide the bene-
fit of enabling transactions and locks to interact safely.
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