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Preface

This primer is intended for readers who have entmyed cache coherence and memory consistency
informally, but now want to understand what theyadnn more detail. This audience includes compuiti

industry professionals as well as junior graduaitdents.

We expect our readers to be familiar with the msit computer architecture. Remembering the
details of Tomasulo’s algorithm or similar detagdsunnecessary, but we do expect readers to uaderst
issues like architectural state, dynamic instrucioheduling (out-of-order execution), and how eacire

used to reduce average latencies to access stetragtures.

The primary goal of this primer is to provide reexdeith a basic understanding of coherence and con-
sistency. This understanding includes both theeisghat must be solved as well as a variety oftisois!.
We present both high-level concepts as well asifipeconcrete examples from real-world systems. A
secondary goal of this primer is to make reade@awf just how complicated coherence and congigten
are. If readers simply discover what it is thattdde not know—uwithout actually learning it—that cis/-
ery is still a substantial benefit. Furthermorecdiese these topics are so vast and so complidatied,
beyond the scope of this primer to cover them estiagly. It isnot a goal of this primer to cover all topics
in depth, but rather to cover the basics and apphis readers of what topics they may wish to puisu

more depth.

We owe many thanks for the help and support we heagived during the development of this primer.
We thank Blake Hechtman for implementing and tgstand debugging!) all of the coherence protoaols i
this primer. As the reader will soon discover, aelnee protocols are complicated, and we would ageh
trusted any protocol that we had not tested, si&eawork was tremendously valuable. Blake imple-
mented and tested all of these protocols using \fisconsin GEMS simulation infrastructure

[http://www.cs.wisc.edu/gems/].

For reviewing early drafts of this primer and falpful discussions regarding various topics within
the primer, we gratefully thank Trey Cain and MMNtartin. For providing additional feedback on the
primer, we thank Newsha Ardalani, Arkaprava BastadBBeckmann, Bob Cypher, Joe Devietti, Sandip
Govind Dhoot, Alex Edelsburg, Jayneel Gandhi, Dahs@n, Marisabel Guevara, Gagan Gupta, Blake
Hechtman, Derek Hower, Zachary Marzec, Hiran Maydkalph Nathan, Marc Orr, Vijay Sathish, Abhi-

rami Senthilkumaran, Simha Sethumadhavan, Venkttanavaradarajan, Derek Williams, and Meng



9
Zhang. While our reviewers provided great feedb#uoéy may or may not agree with all of the finah€o

tents of this primer.

This work is supported in part by the National &cie Foundation (CNS-0551401, CNS-0720565,
CCF-0916725, CCF-0444516, and CCF-0811290), Sdn@ia/(#¥MSN123960/DOE890426), Semicon-
ductor Research Corporation (contract 2009-HJ-1881d the University of Wisconsin (Kellett Award to
Hill). The views expressed herein are not necdgshiose of the NSF, Sandia, DOE, or SRC.

Dan thanks Deborah, Jason, and Julie for their &mgefor putting up with him taking the time to \wor
on another synthesis lecture. Dan thanks his UBaldor helping inspire him to be an engineer ia tinst
place. Lastly, Dan dedicates this book to the mgnodérRusty Sneiderman, a treasured friend of thirty

years who will be dearly missed by everyone who lweky enough to have known him.
Mark wishes to thank Sue, Nicole, and Gregory leirtlove and support.

David thanks his coauthors for putting up with té&adline-challenged work style, his parents Roger
and Ann Wood for inspiring him to be a second-gatien Computer Sciences professor, and Jane, Alex,

and Zach for helping me remember what life is béat.
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Chapter 1

Introduction to Consistency and Coherence

Many modern computer systems and most multicorpsclichip multiprocessors) support shared
memory in hardware. In a shared memory system, ebitte processor cores may read and write to-a sin
gle shared address space. These designs seeksvgaodness properties, such as high performanee, lo
power, and low cost. Of course, it is not valuablerovide these goodness properties without fiirsvid-
ing correctness. Correct shared memory seemsivi@uit a hand-wave level, but, as this lecture élip
show, there are subtle issues in even defining Wimaeans for a shared memory system to be cormasct,
well as many subtle corner cases in designing @ecbshared memory implementation. Moreover, these
subtleties must be mastered in hardware implementatvhere bug fixes are expensive. Even academics

should master these subtleties to make it moréylikat their proposed designs will work.

We and many others find it useful to separate sharemory correctness into two sub-isswesisis-
tency and coherence. Computer systems are not required to make tiparaéon, but we find it helps to
divide and conquer complex problems, and this sdjger prevails in many real shared memory imple-

mentations.

It is the job of consistency (memory consistencgmmory consistency model, or memory model) to
define shared memory correctness. Consistencyitiefis provide rules about loads and stores (or mem
ory reads and writes) and how they act upon menhdeglly, consistency definitions would be simphela
easy to understand. However, defining what it méanshared memory to behave correctly is morelsubt
than defining the correct behavior of, for examplsjngle-threaded processor core. The correctrnies
rion for a single processor core partitions behalbEtween one correct result and many incorreetradt
tives. This is because the processor’s architeanardates that the execution of a thread transfarms
given input state into a single well-defined outgtaite, even on an out-of-order core. Shared megwry
sistency models, however, concern the loads amdsstd multiple threads and usually allow many ectr
executions while disallowing many (more) incorrenes. The possibility of multiple correct execusios
due to the ISA allowing multiple threads to exeatdacurrently, often with many possible legal iteaw-

ings of instructions from different threads. Theltitwde of correct executions complicates the ey
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simple challenge of determining whether an exeauocorrect. Nevertheless, consistency must be mas

tered to implement shared memory, and, in somescésevrite correct programs that use it.

Unlike consistency, coherence (or cache coheraaa®ither visible to software nor required. How-
ever, as part of supporting a consistency modely#st majority of shared memory systems impleraent
coherence protocol that provides coherence. Coberseeks to make the caches of a shared-memory sys-
tem as functionally invisible as the caches innglg-core system. Correct coherence ensures that-a
grammer cannot determine whether and where a sysésncaches by analyzing the results of loads and
stores. This is because correct coherence endwaethe caches never enable new or diffefemttional

behavior. (Programmers may still be able to infexly cache structure usingming information.)

In most systems, coherence protocols play an irapbmole in providing consistency. Thus, even
though consistency is the first major topic of ghisner, we begin in Chapter 2 with a brief introtiac to
coherence. The goal of this chapter is to explaimugh about coherence to understand how consistency
models interact with coherent caches, but not faeg specific coherence protocols or implementestjo
which are topics we defer until the second portibthis primer in Chapter 6-Chapter 9. In Chapter &, w
define coherence using the single-writer-multiader (SWMR) invariant. SWMR requires that, at any
given time, a memory location is either cachedwating (and reading) at one cache or cached ooy f

reading at zero to many caches.

1.1 Consistency (a.k.a., Memory Consistency, Memory Consistency Model, or
Memory Model)

Consistency models define correct shared memoraehin terms of loads and stores (memory
reads and writes), without reference to cache®ber@nce. To gain some real-world intuition on wiey
need consistency models, consider a universitypbsts its course schedule online. Assume that tma-
puter Architecture course is originally scheduled¢ in Room 152. The day before classes beginyrthe
versity registrar decides to move the class to R86&h The registrar sends an email message adiéng t
web site administrator to update the online schedarid a few minutes later the registrar sendstartes-
sage to all registered students to check the neplbated schedule. It is not hard to imagine a sce-
nario—if, say, the web site administrator is toe¥yto post the update immediately—in which a ditige
student receives the text message, immediatelykshide online schedule, and still observes the) (old
class location Room 152. Even though the onlinedale is eventually updated to Room 252 and the reg
istrar performed the “writes” in the correct ordis diligent student observed them in a differerder

and thus went to the wrong room. A consistency rhddénes whether this behavior is correct (andsthu
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whether a user must take other action to achiexelésired outcome) or incorrect (in which casesife

tem must preclude these reorderings).

Although this contrived example used multiple medienilar behavior can happen in shared memory
hardware with out-of-order processor cores, writdrs, prefetching, and multiple cache banks. Twes
need to define shared memory correctness—thatighvwshared memory behaviors are allowed—so that

programmers know what to expect and implementoosvkime limits to what they can provide.

Shared memory correctness is specified by a mewamgistency model or, more simply, a memory
model. The memory model specifies the allowed bihaef multithreaded programs executing with
shared memory. For a multithreaded program exegutith specific input data, the memory model speci-
fies what values dynamic loads may return and \@hathe possible final states of memory. Unlikglksn
threaded execution, multiple correct behaviorsusrelly allowed, making understanding memory censis

tency models subtle.

Chapter 3 introduces the concept of memory consigterodels and presents sequential consistency
(SC), the strongest and most intuitive consistemoylel. The chapter begins by motivating the need to
specify shared memory behavior and precisely defivieat a memory consistency model is. It next delve
into the intuitive SC model, which states that dtittweaded execution should look like an interliegvof
the sequential executions of each constituent thras if the threads were time-multiplexed on @lsin
core processor. Beyond this intuition, the chaptemalizes SC and explores implementing SC with

coherence in both simple and aggressive ways, natng with a MIPS R10000 case study.

In Chapter 4, we move beyond SC and focus on theaneoonsistency model implemented by x86
and SPARC systems. This consistency model, callied $tore order (TSO), is motivated by the dewire
use first-in-first-out write buffers to hold thestdts of committed stores before writing the resudt the
caches. This optimization violates SC, yet promesesugh performance benefit to inspire architestiwe
define TSO, which permits this optimization. Instlthapter, we show how to formalize TSO from our SC

formalization, how TSO affects implementations, &gy SC and TSO compare.

Finally, Chapter 5 introduces “relaxed” or “weak” mery consistency models. It motivates these
models by showing that most memory orderings iongtrmodels are unnecessary. If a thread updates ten
data items and then a synchronization flag, programs usually do not care if the data items are tguda
in order with respect to each other but only tHahtata items are updated before the flag is uplate
Relaxed models seek to capture this increasedingdBexibility to get higher performance or a sil@p
implementation. After providing this motivation,ettchapter develops an example relaxed consistency

model, called XC, wherein programmers get ordey avthen they ask for it with a FENCE instruction



(e.g., a FENCE after the last data update but befa flag write). The chapter then extends thm&bié‘r%

of the previous two chapters to handle XC and dises how to implement XC (with considerable rearder
ing between the cores and the coherence protodod) chapter then discusses a way in which many pro-
grammers can avoid thinking about relaxed modetscty: If they add enough FENCESs to ensure their
program is data-race free (DRF), then most relawmedels will appear SC. With “SC for DRF,” program-
mers can get both the (relatively) simple corressmaodel of SC with the (relative) higher perforcanf

XC. For those who want to reason more deeply, tapter concludes by distinguishing acquires from
releases, discussing write atomicity and causgitynting to commercial examples (including an IBM

Power case study), and touching upon high-levejuage models (Java and C++).

Returning to the real-world consistency exampléhefclass schedule, we can observe that the combi-
nation of an email system, a human web administratod a text-messaging system represents an
extremely weak consistency model. To prevent tioblpm of a diligent student going to the wrong rgom
the university registrar needed to perform a FENfpEration after her email, to ensure that the enlin

schedule was updated before sending the text messag

1.2 Coherence (a.k.a., Cache Coherence)

Unless care is taken, a coherence problem canifinsdtiple actors (e.g., multiple cores) have esx
to multiple copies of a datum (e.g., in multiplelas) and at least one access is a write. Corgidexam-
ple that is similar to the memory consistency exiamfy student checks the online schedule of couases
observes that the Computer Architecture courseiisgoheld in Room 152 (reads the datum) and copies
this information into her notebook (caches the agtuSubsequently, the university registrar decies
move the class to Room 252 and updates the ordimedsile (writes to the datum). The student’s cdpy o
the datum is now stale, and we have an incoheiterati®n. If she goes to Room 152, she will faiffited
her class. Examples of incoherence from the wdrktbmputing, but not including computer architeetur

include stale Web caches and programmers usingpdated code repositories.

Access to stale data (incoherence) is preventetyusicoherence protocol, which is a set of rules
implemented by the distributed set of actors withisystem. Coherence protocols come in many variant

but follow a few themes, as developed in Chaptehéger 9.

Chapter 6 presents the big picture of cache coherpratocols and sets the stage for the subsequent
chapters on specific coherence protocols. Thistehaqpvers issues shared by most coherence pretocol
including the distributed operations of cache aaligrs and memory controllers and the common MOESI

coherence states: modified (M), owned (O), exckigi), shared (S), and invalid (I). Importantlyisth



chapter also presents our table-driven methodolmgypresenting protocols with both stablelfle.g.,
MOESI) and transient coherence states. Transiamésstare required in real implementations, because
modern systems rarely permit atomic transitionsifane stable state to another (e.g., a read mismie
Invalid will spend some time waiting for a datapesse before it can enter state Shared). Mucheofetal
complexity in coherence protocols hides in the diamt states, similar to how much of processor core

complexity hides in micro-architectural states.

Chapter 7 covers snooping cache coherence protagbish dominated the commercial market until
fairly recently. At the hand-wave level, snoopirrgtpcols are simple. When a cache miss occurstegsco
cache controller arbitrates for a shared bus anddmasts its request. The shared bus ensureditbaha
trollers observe all requests in the same ordertlamsl all controllers can coordinate their indivatjudis-
tributed actions to ensure that they maintain aalg consistent state. Snooping gets complicated,
however, because systems may use multiple busemaddrn buses do not atomically handle requests.
Modern buses have queues for arbitration and aaohr@sponses that are unicast, delayed by pipglioin
out-of-order. All of these features lead to moemntient coherence states. Chapter 7 concludes asth ¢
studies of the Sun UltraEnterprise E10000 and B\ Power5.

Chapter 8 delves into directory cache coherenceopotg that offer the promise of scaling to more
processor cores and other actors than snoopingqmistthat rely on broadcast. There is a joke #tlat
problems in computer science can be solved witkval lof indirection. Directory protocols supporisth
joke: A cache miss requests a memory location filmennext level cache (or memory) controller, which
maintains a directory that tracks which caches kdiith locations. Based on the directory entrytfor
requested memory location, the controller sendespanse message to the requestor or forwards the
request message to one or more actors currenthinrgathe memory location. Each message typicalyy ha
one destination (i.e., no broadcast or multicdsij,transient coherence states abound as trarssitiom
one stable coherence state to another stable angetgerate a number of messages proportional to the
number of actors in the system. This chapter stwitts a basic directory protocol and then refinewoi
handle the MOESI states E and O, distributed direed, less stalling of requests, approximate tnyc
entry representations, and more. The chapter alptores the design of the directory itself, inchugli
directory caching techniques. The chapter concluddéscase studies of the old SGI Origin 2000 amel t
newer AMD HyperTransport, HyperTransport Assist] &mel QuickPath Interconnect (QPI).

Chapter 9 deals with some, but not all, of the adedrtopics in coherence. For ease of explanation,
the prior chapters on coherence intentionally igstinemselves to the simplest system models netxled
explain the fundamental issues. Chapter 9 delvesniatre complicated system models and optimizations,

with a focus on issues that are common to both gingoand directory protocols. Initial topics inctud



15
dealing with instruction caches, multi-level cachesite-through caches, translation lookaside huffe
(TLBs), coherent direct memory access (DMA), vitteaches, and hierarchical coherence protocols.
Finally, the chapter delves into performance opations (e.g., targeting migratory sharing andefalsar-

ing) and directly maintaining the SWMR invarianthvtoken coherence.

1.3 A Consistency and Coherence Quiz
It can be easy to convince oneself that one’s kadge of consistency and coherence is sufficient and

that reading this primer is not necessary. Towémsther this is the case we offer this pop quiz.

Question 1: In a system that maintains sequentiasistency, a core must issue coherence requests in

program order. True or false? (Answer is in SecB@)

Question 2: The memory consistency model specifiesegal orderings of coherence transactions.

True or false? (Section 3.8)

Question 3: To perform an atomic read-modify-wristruction (e.g., test-and-set), a core must

always communicate with the other cores. True lsefa(Section 3.9)

Question 4: In a TSO system with multithreaded sottereads may bypass values out of the write buf-

fer, regardless of which thread wrote the valueeTor false? (Section 4.4)

Question 5: A programmer who writes properly syodized code relative to the high-level lan-
guage’s consistency model (e.g,. Java) does nat teeonsider the architecture’s memory consistency

model. True or false? (Section 5.9)

Question 6: In an MSI snooping protocol, a cacleelbimay only be in one of three coherence states.

True or false? (Section 7.2)

Question 7: A snooping cache coherence protocaiires|the cores to communicate on a bus. True or

false? (Section 7.6)

Even though the answers are provided later inghirmer, we encourage readers to try to answer the

guestions before looking ahead at the answers.

1.4 What thisPrimer DoesNOT Do

This lecture is intended to be a primer on cohereamd consistency. We expect this material could be
covered in a graduate class in about nine 75-miolateses, e.g., one lecture per Chapter 2 to Ch@pter

plus one lecture for advanced material).

For this purpose, there are many things the prianesnot cover. Some of these include:



« Synchronization. Coherence makes caches invistlmasistency can make shared memory Io](')(ls< like
a single memory module. Nevertheless, programmdtgpmbably need locks, barriers, and other
synchronization techniques to make their prograsegul.

» Commercial Relaxed Consistency Models. This pridwgs not cover all the subtleties of the ARM
and PowerPC memory models, but does describe wiéxthanisms they provide to enforce order.

« Parallel programming. This primer does not disqassllel programming models, methodologies, or

tools.



