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Abstract 1  Introduction
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Computer system designers often evaluate future design a
natives with detailed simulators that strive forfunctional
fidelity (to execute relevant workloads) andperformance
fidelity (to rank design alternatives). Trends toward mult
threaded architectures, more complex micro-architectur
and richer workloads, make authoring detailed simulato
increasingly difficult. To manage simulator complexity, thi
paper advocates decoupled simulator organizations that se
rate functional and performance concerns. Furthermore,
define an approach, calledtiming-first simulation, that uses an
augmented timing simulator to execute instructions importa
to performance in conjunction with a functional simulator t
insure correctness. This design simplifies software develo
ment, leverages existing simulators, and can model mic
architecture timing in detail.

We describe the timing-first organization and our experienc
implementing TFsim, a full-system multiprocessor perfo
mance simulator. TFsim models a pipelined, out-of-ord
micro-architecture in detail, was developed in less than o
person-year, and performs competitively with previousl
published simulators. TFsim’s timing simulator implemen
dynamically common instructions (99.99% of them), whil
avoiding the vast and exacting implementation efforts nec
sary to run unmodified commercial operating systems a
workloads. Virtutech Simics, a full-system functional simula
tor, checks and corrects the timing simulator’s execution, co
tributing 18-36% to the overall run-time. TFsim’s mostly
correct functional implementation introduces a worst-ca
performance error of 4.8% for our commercial workload
Some additional simulator performance is gained by verif
ing functional correctness less often, at the cost of some ad
tional performance error.
This work is supported in part by the National Science Founda
tion, with grants EIA-9971256, CDA-9623632, and CCR-
0105721, two Wisconsin Romnes Fellowships (Hill and Wood)
and donations from Compaq Computer Corporation, Intel Corpo
ration, IBM, and Sun Microsystems.
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Execution-driven simulation is the preeminent method com
puter architects use to evaluate trade-offs in future compu
system designs. Execution-driven simulators must meet t
challenges. First, they must model computer system archit
tures with sufficientfunctional fidelityto execute workloads
relevant to the system being designed. Second, they m
model future computer system micro-architectures with suf
cient performance fidelityto make meaningful performance
projections of design alternatives. Performance fideli
depends on simulation precision (detail) and accuracy (er
compared to real machines) [7].

Increasing challenges for execution-driven simulators.
Meeting the twin challenges of functional and performanc
fidelity is becoming more difficult due to architectural, micro
architectural, and workload trends.

Future system architectures will likely exploit thread-leve
parallelism implemented with traditional multiprocessing
chip multiprocessing, and/or hardware multithreadin
Thread-level parallelism permits multiple correct execution
depending on how threads interleave. In real systems,
actual interleaving depends on the system’s timing. F
instance, assume a lock is free, but cached (and owned)
processor 1. Even if processor 2 executes a lock instructio
few cycles before processor 1, P1 will win the lock as i
request will be seen at the cache first. To precisely mod
thesetiming-dependent outcomesin a simulator, the system’s
timing must determine the actual thread interleaving.

Future processor designs will likely grow in complexity, a
architects design with increasing transistor budgets. Curr
designs already exploit instruction-level parallelism wit
pipelined, superscalar, speculative, and out-of-order exe
tion. Processors speculatively execute (most) instructions t
either commit (to become part of functional behavior) or a
squashed (to affect performance only). As speculation c
significantly affect system performance, timing simulato
ordinarily model it in detail. Non-processor performanc
models, such as interconnects and memory, may also incre
in complexity, as their (already large) contribution to syste
performance grows.

For many years user-mode-dominated, single-thread p
grams, such as the SPEC benchmarks [26], were conside
sufficiently representative of end-users’ workloads, partic
larly in simulation environments. Going forward, many
designers are interested in the performance of applicatio
such as databases and web servers. These commercial w
loads spend up to one quarter of their total execution time
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the operating system [3]. Simulators with high functional
fidelity, called full-system simulators, can simulate OS code
because they precisely model devices (e.g., ethernet, disks).
Static full-system simulatorsplayback a recorded trace of sys-
tem operation, whiledynamic full-system simulatorsare exe-
cution-driven and allow system behavior to be affected by
timing (e.g., thread interleaving).

In summary, future execution-driven simulators must attain
greater functional and performance fidelity even as: thread-
level parallelism creates timing-dependent outcomes, micro-
architectures increase in complexity (potentially using more
speculation), and workload trends require more functionality.

Structuring execution-driven simulators. As functional and
performance models become more complex, execution-driven
simulators should be structured to manage complexity.
Figure 1 shows four possible simulator organizations, each
with a different type of coupling between its functional and
performance components.

An integrated simulator tightly-couples function and perfor-
mance models, literally modeling the operation of all the sys-
tem’s components. The challenge for the integrated approach
is to address the conflicting demands of precision, accuracy,
flexibility, and performance in one simulator. Integrated simu-
lators can be highly detailed, modeling speculative execution
(producing values and side-effects) and timing-dependent out-
comes. The flexibility of integrated simulators is hampered as
new devices and new performance models (e.g., modeling a
radically different micro-architecture) can potentially interact
with each other. Complexity and frequent modifications can
lead to functional bugs that are difficult to isolate and fix, as
their effect may be detected millions of cycles after they occur.

There are several decoupled organizations that address func-
tional and performance fidelity in separate code. The goal of
decoupling is to reduce complexity, thereby gaining more flex-
ibility and potentially other benefits (correctness checking or
faster development). However, decoupled designs introduce
redundancy that may reduce simulation performance. They
also typically make one simulator subordinate to the other and
make modeling interactions between function and perfor-
mance more difficult. Next we discuss two existing organiza-
tions—functional-first and timing-directed—and then
advocate a new organization calledtiming-first simulation.

A functional-first simulator uses a functional component t
produce a (logical) stream of committed instructions that a
fed to a timing component. Trace-driven simulators [28] a
well-known examples of functional-first simulation. Static
full-system simulators are functional-first simulators that us
traces that include OS code and device events. Unfortunat
functional-first simulators have difficulty modeling specula
tive execution and cannot model timing-dependent outcom
between threads. If the functional component is augmented
support speculation, this organization becomes similar to
timing-directed simulator.

A timing-directed simulator lets a timing simulator direct a
functional simulator to execute speculative paths and to sel
thread interleaving. This organization successfully mode
speculative execution and multithreading with two costs. Fir
the functional simulator must be augmented to execute ea
dynamic instruction in stages (e.g., fetch, ready, commit) a
to support speculation down multiple alternative paths. Se
ond, this design is more tightly-coupled than other designs
allow the timing simulator to choreograph partial functiona
execution (i.e., neither simulator is ordered before the othe
If coupling becomes too great, this organization becomes si
ilar to an integrated simulator.

Our contribution: Timing-First Simulation. Our first con-
tribution is to define the timing-first decoupled simulatio
approach, in which the timing simulator executes eac
dynamic instruction ahead of the functional simulator. Th
timing simulator models micro-architectural features wit
enough detail to model speculative execution and predict t
interleaving of inter-thread events. To do this, the timing sim
lator must also model architectural function mostly correctl
When the timing simulator commits instructions, it invoke
the functional simulator to verify if the timing simulator has
deviated from the functional simulator. On a deviation, th
timing simulator’s state is repaired to guarantee function
fidelity. If deviations are rare, timing-first can obtain good pe
formance fidelity. Timing-first can be viewed as an almost co
rect integrated simulator followed by a correct functiona
simulator checker.

Timing-first has several advantages relative to an integra
simulator. First, its timing simulator need not model compo
nents that minutely contribute to the total execution time b
are necessary for full-system simulation (e.g., PCI bus tran
fers and clock timer interrupts). Second, our experience is th
the timing-first approach reduces development time, as it c
leverage existing simulators, and provides immediate debu
ging feedback to the timing simulator. Third, timing-first sim
ulators can detect and recover from deviations, produci
approximate timing results in situations (like new workload
or timing model changes) where other simulators would cras
Relative to a functional-first organization, a timing-first simu
lator models speculation and timing-dependent outcom
more precisely. Relative to a timing-directed organization,
timing-first simulator is more decoupled and requires less fe
tures in its functional simulator (but require more features
its timing simulator).

Our second contribution is a description (Section 3) and ana
sis (Section 4) of TFsim, the first implementation of a full-sys
tem timing-first simulator. TFsim models a pipelined, out-o
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Figure 1. Simulator Organizations

Arrows indicate inter-simulator interactions per committed instruction.
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order micro-architecture in detail, as well as a cache-coherent
multiprocessor memory system. As its timing simulator only
implements a subset of all instructions, we measure how fre-
quently it deviates from the functional simulator and calculate
the performance error this could introduce in the timing
results. The overhead of the timing-first approach is the redun-
dant execution of instructions by the timing simulator. We
measure the overhead in TFsim to be 18-36% of the total exe-
cution time, and we explore a technique to reduce this over-
head by verifying bundles of instructions. We measure
TFsim’s absolute performance and find it to be comparable to
previously published simulator performance results. With its
development and debugging advantages, timing-first simula-
tion is a promising approach for building full-system perfor-
mance simulators.

2  Related Work
Table 1 compares TFsim to previous simulators that either
have a decoupled organization, have an out-of-order processor
model, or support dynamic full-system simulation. Table 1
does not include the many simulators that only model in-order
processors [8] or implement only static full-system simulators
(e.g., with system event traces).

Several previously published simulators are decoupled, but
they are not dynamic full-system simulators. The idea of
decoupling functionality from timing has its origins in trace-
driven methodologies. The Multiscalar [6], MASE [18], and
SimpleMP [22] simulators use decoupling as a development
tool, running a simple, in-order functional component to vali-
date a complex, out-of-order component. In these three simu-
lators, both components functionally execute the instructions.
Fastsim [24] and SimpleScalar’s sim-outorder [2] are func-
tional-first simulators that support modeling of speculative
wrong path execution. ASIM [14] is a decoupled simulation
framework. In one configuration, it uses a functional-first
decoupling to implement a static full-system simulator. In
another, it pioneers the timing-directed organization.

Conversely, several previously published simulators are
dynamic full-system simulators, but are not decoupled. g88
[4], gsim [19], and Talisman [5] are in-order functional simu-
lators for the 88000 processor, which can simulate a modified
version of UNIX. SimOS is a dynamic full-system simulator
that supports out-of-order processor models for the MIPS [23]
and Alpha instruction sets [3]. PharmSim is a dynamic full-
system simulator based on SimOS and SimpleMP with an out-
of-order processor model for the PowerPC instruction set [7].
Virtutech Simics [20] is a commercial simulator that supports
system-level simulation of five target architectures: Alpha, IA-
32 (x86), PowerPC, SPARC, and x86-64. Simics can boot
unmodified operating systems, and it can be extended for
cache timing simulations, but it only models simple (scalar, in-
order) instruction execution.

TFsim, introduced in this paper, uses Simics as its functional
component and is the first dynamic full-system timing-first
simulator.

3  Timing-First Simulation
Timing-first simulation is a decoupled organization in which
timing simulator runs ahead of a functional simulator. Th
timing simulator executes instructions using a mostly corre
functional implementation of the instruction set. This execu
tion is compared to, and corrected by, the functional simulat

3.1  Timing-First Mechanisms
In timing-first simulation, the timing simulator controls the
advance of each processor in the functional simulator. The
fore, it can create timing-dependent outcomes by advanc
one processor before another, but it does not modify the act
architected state of the functional simulator. This preserves
independent, correct execution of the functional simulato
This reflects a decoupling principle—the timing simulato
does not modify the functional simulator’s registers, memor
or devices. Therefore, the timing simulator sequences t
instructions in the system, but the functional simulator is th
ultimate authority on their register, memory, and I/O effects.

The timing simulator must verify its functional execution o
every instruction. This verification occurs as instructions com
mit (when they become non-speculative). The timing simul
tor retires an instruction, steps the functional simulator, a
checks that the two simulators’ architected states match.
most instructions only modify one register, one optimizatio
that we implement is to compare only the destination regis
(in addition to some control registers, such as the progra
counter). Instructions that pass this retirement check are cal
compliant, otherwise they are calleddeviant. When the timing
simulator detects a deviation, it reloads its architected sta
resets parts of its micro-architectural model, and restarts e
cution. To assure that subsequent instructions are execu
correctly, it eliminates all other speculative instructions (i.e
squashes its pipeline). This recovery does not affect memo
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Multiscalar Simulator [6] Yes Yes

FastSim [24] Yes Yes

SimpleScalar 3.0 [2] Yes Yes

MASE [18] Yes Yes

RSIM [15] Yes Yes

SimpleMP [22] Yes Yes Yes

ASIM [14] Yes Yes Yes

g88 [4] Yes†

gsim [19] Yes† Yes

Talisman [5] Yes† Yes

Simics [20] Yes Yes

PharmSim [7] Yes† Yes Yes

SimOS [23] Yes† Yes Yes

TFsim [This paper] Yes Yes Yes Yes

† indicates OS modifications are required.

Table 1. Summary of related simulators
3
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values, as no speculative data leaves the processor (similar to
real systems). However, the recovery changes the simulated
system’s timing, as the pipeline squash is a simulation artifact.
The simulated system’s timing is delayedn-cycles (wheren is
the length of the target micro-architecture’s pipeline), and not
all micro-architectural state is patched up on mispredictions
(e.g., there may be some pollution of the cache). If recoveries
are as infrequent as we observe in our implementation (only 3
per 100,000 instructions committed), their timing impact
should be small (as shown in Section 4.1).

The timing simulator in this organization does not model
devices. As such, it cannot model device accesses or inter-
rupts. However, the timing simulator is able to detect when
these events occur and correctly model their timing. Device
accesses cannot be speculatively executed in real machines, as
they have side-effects that can be non-recoverable (e.g., send-
ing a file to the printer). When the timing simulator detects
that an instruction is accessing a device (as its physical
address is in the I/O range), it delays producing a value until
retirement. At retirement, it copies the value from the func-
tional into the timing simulator, imitating the non-speculative
execution of a real system. Interrupts are similarly detected
and handled at retirement time.

The timing simulator models the micro-architecture and mem-
ory system, in addition to implementing the functional execu-
tion of most instructions. It does this by modeling out-of-order
execution precisely (e.g., renaming registers, passing values
using a physical register file), and executing code that imple-
ments the instruction set architecture independently of the
functional simulator. As the timing simulator can execute
instructions, speculation is implemented by literally making
predictions, executing based on the predictions, and validating
them before retirement. The following section describes our
implementation of a timing-first simulator in more detail.

3.2  Our Implementation: TFsim
TFsim is an implementation of a timing-first simulator that
combines a timing simulator with Virtutech Simics functional
simulator. TFsim’s timing simulator is a portable C++ pro-
gram that compiles under IA-32 (x86) or SPARC into a
dynamic library. It implements most user and privileged
instructions in the SPARC V9 instruction set, including parts
of the multimedia (VIS) extensions. It performs address trans-
lation, takes common traps (e.g., TLB misses, save and restore
traps), can execute both in both 32-bit and 64-bit addressing
modes, and models user and privileged control registers. How
TFsim models its timing and functional components is
detailed in Table 2.

TFsim’s timing simulator does not implement the complete
SPARC V9 instruction set, nor does it implement full-system
functionality. The UltraSparc User’s Manual [25] defines 183
instructions, whereas the timing simulator only uses 103 of
them in all of our workloads. The timing simulator does not
implement any of the devices necessary for dynamic full-sys-
tem simulation including: SCSI controllers and disks, PCI and
SBUS interfaces, interrupt and DMA controllers, and temper-
ature sensors (all of which are implemented by Simics).

The timing simulator uses Simics’s application programmin
interfaces (APIs) to advance a processor in Simics a giv
number of instructions and to access the architected state
given processor and its memory management unit (MMU).
uses these APIs to perform the retirement check by stepp
Simics and reading register values (for the check and recove
if necessary). The interfaces are established when the tim
simulator library is dynamically loaded.

TFsim’s timing simulator uses some structures in Simic
including the memory image and MMU state. Since all value
in memory are non-speculative, the timing simulator uses v
ues (for loads) from Simics’s memory image. It models spec
lative memory values by storing and forwarding them from a
object modeling the load/store queue. Finally, TFsim’s timin
simulator uses Simics’s MMU to perform address translatio
This models the timing of a real system that uses a non-spe
lative MMU.

TFsim’s timing simulator uses other Simics interfaces to pe
form some optimizations. For performance reasons, we cac
decoded instructions on a per-program basis. When a differ
program is scheduled, the timing simulator is notified b
Simics through a standard callback interface, so it knows
fetch instructions from a different address space. A simil
callback is used to detect when interrupts occur, so they can
handled without causing recoveries.

The timing of device events, such as disk accesses and cl
timer interrupts, is determined by Simics. Simics maintain
two queues, one for events in absolute times, and one
events relative to the number of instructions retired. These t
queues are directly related by the simulated processor f
quency. As the timing of the device layer is related to the num
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The timing simulator’s target is a shared-memory mul-
tiprocessor system with MIPS R10000-like out-of-
order processors [31] executing the SPARC V9
instruction set. Each processor models a 4-wide
machine, with a 64-entry instruction window and an
eleven-stage pipeline. The pipeline stages (and laten-
cies) are fetch (3), decode (3), schedule (1), execute (1
or more, depending on operation), and writeback (3).
TFsim models a 64-KB YAGS direct branch predictor
[13], a cascaded indirect branch predictor [11], and a
return-address stack predictor [16]. L1 caches model
64 KB, four-way set-associative split instruction and
data caches (with single cycle access times). The L2
cache models a unified 4 MB 4-way set-associative
exclusive cache (with a twelve cycle access time).
Main memory has an eighty-cycle access time. The
memory system models a MOSI broadcast snooping
protocol and a interconnection network composed of a
hierarchy of switches.
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We use Virtutech Simics [20] to model a Sun E6000-
like multiprocessor with one through sixteen proces-
sors using the SPARC V9 instruction set. Our target
machine runs unmodified Solaris 8 and commercial
workloads and has 2 GB of physical memory, multiple
SCSI disks, and ethernet.

Table 2. Implementation details of timing and functional
simulators
4
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ber of instructions that are retired in Simics, we believe that
high instruction per cycle (IPC) workloads will see device
events faster than low IPC workloads. To compensate for this,
Simics’s processor frequency could be divided by the IPC of a
given workload to normalize the frequency of device events.

Implementing a privileged-mode out-of-order simulation of
the SPARC V9 instruction set requires dealing with register
windows, global register sets, aliased floating-point registers,
traps, and control registers. Register windows allow faster
function calls and returns by allowing the program to see a
portion of a larger register file. To rename integer registers, we
maintain a speculative version of the current window pointer
(CWP) at fetch and rename a flattened view of the global and
integer register file. The floating-point register file has aliased
floating-point registers, in which single precision registers are
overlapped with double precision registers. To model this
aliasing, we rename on the single-precision granularity. Every
instruction can be tagged with an exception code that is
detected at commit to redirect control to trap handlers. Instruc-
tions that modify control registers rename all control registers
as a set, permitting more than one to be in-flight at once.

TFsim supports the ability to speculate past any number of
branches using predictors, and it implements a simple load-
value predictor. These two predictors show that the timing-first
organization can support different types of micro-architectural
speculation.

3.3  Software Development Time
TFsim’s development is the effort of one graduate student
working half-time over the course of a year and a half. The
implementation uses several pre-existing components, includ-
ing Virtutech Simics [20], a multiprocessor memory timing
simulator [21], and a user-level, out-of-order timing model for
the Alpha instruction set [32]. The majority of new develop-
ment involved converting the timing model to SPARC V9,
extending it to execute privileged instructions, and integrating
the components. While software development time reflects a
host of factors, including experience, planning, motivation,
desired features, and end quality, this is a remarkably short
time to develop a dynamic full-system, out-of-order timing
simulator. Leveraging existing simulators and the software
development and debugging advantages in decoupled simula-
tion greatly speeded the implementation of this system.

3.4  Memory Consistency Model Caveat
Timing-first simulators operate with memory values verified
by the functional simulator’s memory consistency model.
Memory consistency models constrain the order in which
memory operations appear to execute in a multiprocessor sys-
tem [9]. Sequential consistency (SC) requires that memory
accesses (appear to) execute in a total order that respects the
program order on each processor [17]. SPARC V9, the target
architecture for TFsim, supports total store order (TSO) [29].
TSO allows all SC executions, as well as additional executions
in which a processor’s store is ordered after some of the same
processor’s loads (but not after other stores). Thus, a TSO
implementation can employ a first-come-first-serve write
buffer to hold stores (that cache miss), even as subsequent
loads access the cache.

Timing-first simulators can model the timing performance o
many alternative memory consistency models. For examp
when modeling TSO, stores would complete in the timin
simulator when they enter the (non-speculative) write buffe
Nevertheless, the functional effects of stores will only becom
visible in program order. This is because most dynamic fu
system functional simulators maintain a single copy of mem
ory and interleave processor memory accesses, thereby im
menting sequential consistency. Therefore, timing-fir
simulators can model the performance of TSO for only S
memory interleavings. We are investigating ways to relax th
restriction.

4  Evaluation
We evaluate TFsim using a suite of commercial workloa
benchmarks to characterize its performance accuracy, ov
head, and simulator performance. As some instructions are
implemented by the timing simulator, we measure how ofte
TFsim’s execution deviates and discuss the worst-case per
mance error that could be introduced. We perform two sen
tivity analyses: one that characterizes the deviations a
performance error introduced in a less complete implemen
tion of the instruction set, and another that increases perf
mance by verifying bundles of instructions. Finally, we
present an absolute performance comparison between TF
and RSIM [15], a previously published out-of-order simulato

Table 3 presents the benchmarks we used to evaluate TFs
performance accuracy and overhead. Alameldeen et al.
contains a detailed description of these workloads, includi
their setup and configuration options. We simulate a total
200 million instructions in all runs except the OS boot (whic
is run for 1.2 billion instructions). For example, each proce
sor in a four processor system would execute approximat
50 million instructions.

4.1  Timing-First Performance Accuracy
Performance measurements done using a timing-first simu
tor may be less accurate than those done using a comple
correct integrated simulator. The reduction in performan
accuracy is related to the frequency of deviant instructions a

Name Description

OS Boot Boot of unmodified 64-bit Solaris 8, using a
reconfiguration option to detect the disks and
devices present. The first 1.2 billion instruc-
tions are simulated after skipping the first
50 million instructions.

OLTP On-line transaction processing based on the
TPC-C v 3.0 benchmark [27] using IBM DB2
version 7.2 EEE.

Dynamic
Web

An open-source dynamic web message posting
system used bywww.slashdot.com .

Static
Web

The open-source web server, Apache, serving
static web pages.

Barnes-
Hut

A scientific workload from the SPLASH-2 [30]
benchmark suite with 128K bodies.

Table 3. Summary of workloads
5
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the deviant instruction’s correct timing. Figure 2 shows the
number of deviations we observed per hundred thousand
instructions committed by TFsim. On average, there are only
three deviations per 100,000 instructions, representing 0.003%
of all dynamic instructions. Multiprocessor results tend to
have progressively more deviant instructions that are primarily
loads and atomic swaps.

The performance error introduced by these deviant instruc-
tions is the difference between their correct timing and the
timing provided by TFsim. The correct timing for these
instructions could be as little as zero cycles or as much as a
multi-hop memory miss, which we will estimate as two main
memory latencies (160 cycles). The timing impact of deviant
instructions in TFsim is a pipeline squash (11-cycles in our
model). We calculate the worst-case performance error for
these workloads to be 2.4% (149-cycle difference for 0.016%
of all instructions). With a sustained IPC of 2, the upper-bound
on the IPC error would be 4.8%. In practice, we believe the
actual performance error will be much less than this, because
the assumption that every deviant instruction is a multi-hop
memory miss is not likely to be true. Assuming deviant
instructions have average memory latencies (for instance,
twelve cycles), they introduce less than 1% IPC error. One
recent simulator validation study found a tuned simulator to
have an average IPC error of 2% on microbenchmarks, and
IPC errors ranging from -38% to 40% on macrobenchmarks,
compared to a real machine [10].

The performance error introduced by deviant instructions is
both stable and pessimistic. For a given workload, regardless
of how micro-architectural parameters are varied, the numbers
of deviant instructions at commit will be similar. Thus, the rel-
ative errors between two simulations will be much smaller
than the absolute errors. Second, the performance error is gen-
erally biased to be pessimistic, since most instructions execute
in less time than a pipeline flush. Thus when developing a tim-
ing simulator to evaluate a new microarchitectural idea, pre-
liminary timing results will underestimate final performance.
This has the desirable property that good preliminary perfor-
mance results get better as the simulator is refined.

4.2  Accuracy Sensitivity Analysis
Timing-first simulators can produce results before the timin
simulator’s implementation is complete. In this section, w
present a sensitivity analysis of the performance accuracy
these early simulators. We compare our full implementatio
with one that has some instructions disabled (representing
incomplete implementation), using the representative unipr
cessor OLTP benchmark. The decrease in performance ac
racy depends on the timing of the original instructions. W
disabled three classes of instructions, each with different tim
ing behaviors: excepting instructions (that always squas
floating-point instructions (that rarely squash), and save a
restore instructions1 (that sometimes squash). Deviant instruc
tions cause the pipeline to be squashed in the timing simula
(introducing an 11-cycle delay).

Figure 3 shows how these modifications increase the num
of deviant instructions observed in simulation. Figure 4 show
how these modifications affect the total (simulated) cycle tim
The observed bar is the percent increase in cycle time fou
by simulation, and the expected bar is the product of th
squash penalty and the number of new deviant instructions
a percent of the original total simulation cycle time.

Instructions that cause exceptions (that normally squash) h
the same timing if they are implemented or deviant. Fo
instructions which do not squash, like floating-point instruc
tions, the performance error introduced is identical to th
squash penalty. For instructions like saves and restores t
squash part of the time, the change in timing is less than t
expected change. This analysis shows that the performa
error introduced by deviant instructions ranges from zero
the pipeline squash penalty, depending on the instructio
correct timing behavior.
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1. SPARC has integer register windows. On function calls, ‘sav
allocates a new window context. On function returns, ‘restore’
pops the window context. These instructions raise exceptions o
window over- and under-flow conditions.
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4.3  Timing-First Overhead
Timing-first simulators redundantly execute instructions in
both the timing and functional simulators. We calculate over-
head, compared to an equivalent correct integrated simulator,
by dividing the functional simulator’s execution time by the
total simulation time. As in-order functional simulators are
much faster than out-of-order timing simulators, our intuition
is that timing-first simulation should be a low overhead tech-
nique. We instrumented the timing simulator to measure the
wall clock total simulation time and the time spent advancing
Simics. The overhead for uniprocessor benchmarks is between
12-21%, with an average of 18%. For multiprocessor bench-
marks, the average overhead increases from 18% for two pro-
cessors up to 36% for sixteen processors.

Timing-first simulators can verify more than a single instruc-
tion at a time. The main advantage to verifying bundles of
instructions is that it increases Simics’s performance. We
observed an order of magnitude increase in speed between
stepping Simics one instruction compared with hundreds of
instructions. Simics implements threaded-code simulation,
and the overhead of restarting the simulator thread is fixed
irrespective of the step size.

For the uniprocessor OLTP benchmark, Figure 5 plots the
speedup and performance error for verifying bundles of
instructions, relative to a simulation that verifies every instruc-
tion. By bundling instructions, simulation speeds up by 22%,
and the overhead due to Simics is reduced from 19% to 6%.
The reduction in overhead is responsible for speeding up the
simulation 15% (1/(1-0.13). We hypothesize the additional
improvement is due to better cache performance from the
reduced context-switching. The figure shows that reducing
verification to every eight instructions gives a speedup of
almost 1.2 at the cost of 3.4% in performance accuracy. This
technique could be used during initial state-space exploration
(reducing turn-around time) and then turned off for final
experiment runs.

The benefit of verifying bundles of instructions depends on the
relative speed of the functional and timing simulators. If the
timing simulator is faster, for example, on simple benchmarks
that commit a greater portion of their instructions, the speedup
is greater. We observed that for some SPLASH-2 kernels [30],

using a simple uniprocessor cache hierarchy, the overhe
from Simics could be as high as 42%. For these kernels, bu
dling is much more effective (enabling simulation to run up t
114% faster).

When multiple instructions are verified as a bundle, the fun
tional simulator does not provide any intermediate changes
the timing simulator. Instead, the timing simulator verifies th
the architected state of all registers written in the bundle mat
between simulators. If an instruction writes the incorrect valu
in a register, it may be masked by a later (correct) instructio
in the same bundle. Some optimizations, like detecting inte
rupts, are impossible to implement with bundled verificatio
Device accesses, like accesses to the MMU, cause the bun
to be verified immediately, as these instructions are functio
ally implemented by Simics. The timing simulator must als
track memory values for stores that have committed but ha
not been verified. We now examine the absolute performan
of TFsim compared to a previously published simulator.

4.4  Performance Comparison
Timing-first simulation trades some performance for the so
ware development advantages of decoupled simulation. In t
section, we compare TFsim’s performance to previously pu
lished results. A compelling simulator performance evaluatio
would compare TFsim with another dynamic full-system sim
ulator that has the same target system, host system, archi
ture, micro-architecture, and workload. Unfortunately, th
prime candidate for comparison, SimOS, models the MIP
architecture running the IRIX operating system, with pub
lished slowdown comparisons to a MIPS host. TFsim mode
a different target architecture (SPARC V9) running a differe
operating system (Solaris), and it is hosted cross-platform o
Pentium III system running Linux. This cross-architecture an
cross-platform hosting makes measuring slowdown vers
native execution measurements difficult. As no ideal compa
son is possible, we present the following limited comparison

We compare the absolute performance of TFsim and RSIM
terms of kilo-instructions executed per seconds (KIPS), usi
details from Durbhakula et al. [12]. The performance of RSIM
presented in Hughes et al. [15] is similar (an average of
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KIPS on a 16.5 SPECint95 machine). Both simulators model
the out-of-order execution of the SPARC V9 instruction set.
We configure TFsim’s micro-architectural parameters to
match RSIM’s as closely as possible. However, the micro-
architectural models are still quite different. TFsim models
address translation and an instruction cache, both of which are
not currently done in RSIM, and it uses a different branch pre-
diction scheme. We measured the wall clock time of TFsim to
simulate the same three kernels from the SPLASH-2 [30]
benchmark suite to completion on an unloaded 933 MHz Pen-
tium III system with RedHat Linux 7.2.

Table 4 presents the results of the performance comparison.
The RSIM base performance results are measured on a
250 MHz UltraSparc-II (SPARC V9) system [12]. To normal-
ize for host machine speed, we present RSIM results scaled by
a factor of 4.8 (the relative SPECInt95 ratings of the systems
are 9.75 and 46.8) [26]. MP TFsim presents performance
results using a detailed multiprocessor cache model (that mod-
els cache coherence and network traffic). Uniprocessor TFsim
does not model coherence, and verifies bundles of 100 instruc-
tions (introducing an average performance error of 4% com-
pared to unbundled execution). This cross-platform
comparison of simulators, using kernels as benchmarks, is
very limited. However, we believe it demonstrates that
TFsim’s absolute performance is comparable to previous sim-
ulators, making timing-first an attractive alternative organiza-
tion given its other benefits.

5  Conclusions
This paper defines and evaluates timing-first simulation, a
decoupled organization for building dynamic full-system per-
formance simulators. The organization decouples the high
functional fidelity requirements of dynamic full-system simu-
lators from the performance fidelity requirements of timing
simulators. The goal of this approach is to enable faster devel-
opment of flexible, stable, less complex simulators, and to
enable the exploration of radical alternative architectures. In
this organization, the timing simulator implements the func-
tional execution of instructions important to performance,
backed by a completely correct functional simulator.

TFsim, our implementation of a timing-first simulator, pre-
cisely models speculative execution of out-of-order processors
in a shared-memory multiprocessor, running commercial
workloads on an unmodified operating system. TFsim is
implemented using Virtutech Simics [20], an existing dynamic
full-system functional simulator. To our knowledge, TFsim is
the first dynamic full-system timing-first simulator. TFsim’s
timing simulator can functionally execute 99.997% of all

dynamic instructions seen in our commercial workloads, a
little performance error is introduced by the small number
deviations. The overhead of functional execution is 18% f
uniprocessors and can be reduced further at the cost of so
reduced performance accuracy. These results show that dec
pled timing-first simulation is a promising alternative for rapi
development of dynamic full-system timing simulators.
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