
Cache-Conscious Structure Layout
Trishul M. Chilimbi Mark D. Hill

Computer Sciences Department Computer Sciences Department
University of Wisconsin University of Wisconsin
1210 West Dayton St. 1210 West Dayton St.
Madison, WI 53706 Madison, WI 53706

chilimbi@cs.wisc.edu markhill@cs.wisc.edu

James R. Larus
Microsoft Research
One Microsoft Way

Redmond, WA 98052
larus@microsoft.com

ABSTRACT
Hardware trends have produced an increasing disparity between
processor speeds and memory access times. While a variety of tech-
niques for tolerating or reducing memory latency have been pro-
posed, these are rarely successful for pointer-manipulating
programs.

This paper explores a complementary approach that attacks the
source (poor reference locality) of the problem rather than its mani-
festation (memory latency). It demonstrates that careful data orga-
nization and layout provides an essential mechanism to improve the
cache locality of pointer-manipulating programs and consequently,
their performance. It explores two placement technique-luster-
ing and colorinet improve cache performance by increasing a
pointer structure’s spatial and temporal locality, and by reducing
cache-conflicts.

To reduce the cost of applying these techniques, this paper dis-
cusses two strategies-cache-conscious reorganization and cache-
conscious allocation--and describes two semi-automatic tools-
ccmorph and ccmalloc-that use these strategies to produce
cache-conscious pointer structure layouts. ccmorph is a transpar-
ent tree reorganizer that utilizes topology information to cluster and
color the structure. ccmalloc is a cache-conscious heap allocator
that attempts to co-locate contemporaneously accessed data ele-
ments in the same physical cache block. Our evaluations, with
microbenchmarks, several small benchmarks, and a couple of large
real-world applications, demonstrate that the cache-conscious
structure layouts produced by ccmorph and ccmalloc offer
large performance benefit-n most cases, significantly outper-
forming state-of-the-art prefetching.

Keywords
Cache-conscious data placement, clustering, coloring, cache-con-
scious allocation, cache-conscious reorganization

1. INTRODUCTION
The speed of microprocessors has increased 60% per year for
almost two decades. Yet, over the same period, the time to access
main memory only decreased at 10% per year [32]. The unfortu-
nate, but inevitable, consequence of these trends is a large, and
ever-increasing, processor-memory gap. Until recently, memory
caches have been the ubiquitous response to this problem [SO, 431.
In the beginning, a single cache sufficed, but the increasing gap

Permission to make digital or hard copies of all or part of this work for
personal or classroom usa is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on sarvers or to
redistribute to lists, requires prior specific permission and/or a fee.
SIGPLAN ‘99 IPLDI) 5/99 Atlanta, GA, USA
0 1999 ACM l-58113-083.X/99/0004...85.00

(now almost two orders of magnitude) requires a hierarchy of
caches, which introduces further disparities in memory-access
costs.

Many hardware and software technique-uch as prefetching [29,
9, 26, 381, multithreading [25, 441, non-blocking caches [20],
dynamic instruction scheduling, and speculative execution+ry to
reduce or tolerate memory latency. Even so, many programs’ per-
formance is dominated by memory references. Moreover, high and
variable memory access costs undercut the fundamental random-
access memory (RAM) model that most programmers use to under-
stand and design data structures and algorithms.

Over the same period, application workloads have also changed.
Predominately scientific applications have broadened into a richer
workload. With this shift came a change in data structure, from
arrays to a richer mix of pointer-based structures. Not surprisingly,
techniques for reducing or tolerating memory latency in scientific
applications are often ineffective for pointer manipulating programs
[7, 331. In addition, many techniques are fundamentally limited by
their focus on the manifestation of the problem (memory latency),
rather than its cause (poor reference locality).

In general, software reference locality can be improved either by
changing a program’s data access pattern or its data organization
and layout. The first approach has been successfully applied to
improve the cache locality of scientific programs that manipulate
dense matrices [S2, 10, 161. Two properties of array structures are
essential to this work: uniform, random access to elements, and a
number theoretic basis for statically analyzing data dependencies.
These properties allow compilers to analyze array accesses com-
pletely and to reorder them in a way that increases cache locality
(loop transformations) without affecting a program’s result.

Unfortunately, pointer structures share neither property. However,
they possess another, extremely powerful property of locational
transparency: elements in a structure can be placed at different
memory (and cache) locations without changing a program’s
semantics. Careti placement of structure elements provides the
mechanism to improve the cache locality of pointer manipulating
programs and, consequently, their performance. This paper
describes and provides an analytic framework for two placement
technique~lustering and colorin@t improve cache perfor-
mance on uniprocessor systems by increasing a data structure’s spa-
tial and temporal locality, and reducing cache conflicts.

Applying these techniques may require detailed knowledge of a
program’s code and data structures, architectural familiarity, and
considerable programmer effort. To reduce this cost, we discuss
two strategies-cache-conscious reorganization, and cache-con-
scious allocation-for applying these placement techniques to pro-
duce cache-conscious pointer structure layouts, and describe two
semi-automatic tools-ccmorph and ccmalloc-that embody
these strategies. Measurements demonstrate that cache-conscious
data layouts produced by ccmorph and ccmalloc offer large
performance benefits-in most cases, significantly outperforming

Figure 1. Subtree clustering.

state-of-the-art prefetching.

This paper makes the following contributions:

l Cache-conscious dataplacement techniques Section 2 shows
bow clustering and coloring can improve a pointer structure’s
cache performance. Clustering places structure elements likely
to be accessed contemporaneously in the same cache block.
Coloring segregates heavily and infrequently accessed element
in non-conflicting cache regions.

l Strategies for applying cache-conscious data placement tech-
niques. Section 3 describes two strategies-cache-conscious
reorganization and cache-conscious allocatio=for applying
placement techniques to produce cache-conscious data layouts.
Cache-conscious reorganization utilizes structure topology or
profile information about data access patterns to transform
pointer structure layouts. This approach is incorporated in
ccmorph, a utility that reorganizes tree-like structures, such
as trees, lists, and chained hash tables, by clustering and color-
ing the structure. A programmer need only supply a function
that helps traverse the data structure. Cache-conscious alloca-
tion improves on conventional heap allocators by attempting to
co-locate contemporaneously accessed data elements in the
same physical cache block. The section describes ccmalloc,
a memory allocator that implements this strategy. In this case,
a programmer only must specify an additional argument to
malloc- pointer to a structure element likely to be in con-
temporaneous use.

l Evaluation of cache-conscious data placement. Section 4
demonstrates the performance benefits of cache-conscious data
placement. In microbenchmarks, cache-conscious trees outper-
form their naive counterparts by a factor of 4-5, and even out-
perform B-trees by a factor of 1.5. For some pointer-intensive
programs in the Olden benchmark suite [36], semi-automatic
cache-conscious data placement improves performance 28-
194%, and even outperformed state-of-the-art prefetching by
3%194%. We applied the techniques to full application pro-
grams. RADIANCE [49], a widely used ray-tracing program,
showed a 42% speedup, and VIS [6], a model verification
package, improved by 27%. Significantly, applying ccmal-
lot to the 160,000 line VIS, required little application under-
standing, and took only a few hours.

l AnaIyticjFatnework. Section 5 presents an analytic framework
that quantities the performance benefits of cache-conscious
pointer-based data structures. A key part of this framework is a
data structure-centric cache model of a series of accesses that
traverse a pointer-based data structure. The model character-

izes the performance of a pointer-based data structure by its
amortized miss rate over a sequence of pointer-path accesses.
This paper applies the framework to cache-conscious trees and
validates its predictions with a microbenchmark.

2. CACHE-CONSCIOUS DATA
PLACEMENT TECHNIQUES
This section discusses two general data placement technique-
clustering and coloring-that can be combined in a wide variety of
ways to produce cache-efficient data structures. The running exam-
ple in this discussion is binary trees.

2.1 Clustering
Clustering attempts to pack data structure elements likely to be
accessed contemporaneously into a cache block. Clustering
improves spatial and temporal locality and provides implicit
prefetching.

An effective way to cluster a tree is to pack subtrees into a cache
block. Figure 1 illustrates subtree clustering for a binary tree. An
intuitive justification for binary subtree clustering is as follows
(detailed analysis is in Section 5.3). For a series of random tree
searches, the probability of accessing either child of a node is l/2.
With k nodes in a subtree clustered in a cache block, the expected
number of accesses to the block is the height of the subtree,
logZ(lc+l), which is greater than 2 for k > 3. Consider the altema-
tive of a depth-first clustering scheme, in which the k nodes in a
block form a single parent-child-grandchild-... chain. In this case,
the expected number of accesses to the block is:

l+lr;+lx~+...+lX
22

-& = 2x(l-(9k)S2

Of course, this analysis assumes a random access pattern. For spe-
cific access patterns, such as depth-first search, other clustering
schemes may be better. In addition, tree modifications can destroy
locality. However, our experiments indicate that for trees that
change infrequently, subtree clustering is far more efficient than
allocation-order clustering.

2.2 Coloring
Caches have finite associativity, which means that only a limited
number of concurrently accessed data elements can map to the
same cache block without incurring conflict misses. Coloring maps
contemporaneously-accessed elements to non-conflicting regions
of the cache. Figure 2 illustrates a 2-color scheme for a 2-way set-

2

associative cache (easily extended to multiple colors). A cache
with C cache sets (each set contains a = ussociativity blocks) is
partitioned into two regions, one containingp sets, and the other C
- p sets. Frequently accessed structure elements are uniquely
mapped to the first cache region and the remaining elements are
mapped to the other region. The mapping ensures that heavily
accessed data structure elements do not conflict among themselves
and are not replaced by infrequently accessed elements. For a tree,
the most heavily accessed elements are the nodes near the root of
the tree.

3. STRATEGIES FOR APPLYING CACHE-
CONSCIOUS DATA PLACEMENT
Designing cache-conscious data structures requires detailed
knowledge of a program’s code and data structures and consider-
able programming effort. This section explores two strategies
cache-conscious reorganization and cache-conscious allocation-
for applying placement techniques to produce cache-conscious
data layouts, and describes two semi-automatic tools-ccmorph
and ccmalloc-that implement these strategies. Both signifi-
cantly reduce the level of programming effort, knowledge, and
architectural familiarity.

3.1 Cache-Conscious Data Reorganization
A data structure is typically allocated memory with little concern
for a memory hierarchy. The resulting layout may interact poorly
with the program’s data access patterns, thereby causing unneces-
sary cache misses and reducing performance. Cache-conscious
data reorganization addresses this problem by specializing a struc-
ture’s layout to correspond to its access pattern. General, graph-
like structures require a detailed profile of a program’s data access
patterns for successful data reorganization [8, 111. However, a very
important class of structures (trees) possess topological properties
that permit cache-conscious data reorganization without profiling.
This section presents a transparent (semantic-preserving) cache-
conscious tree reorganizer (ccmorph) that applies the clustering
and coloring techniques described in the previous section.

3. I. I ccmorph
In a language, such as C, with unrestricted pointers, analytical
techniques cannot identify all pointers to a structure element. With-

out this knowledge, a system cannot move or reorder data struc-
tures without an application’s cooperation (as it can in a language
designed for garbage collection [l I]). However, if a programmer
guarantees the safety of the operation, ccmorph transparently
reorganizes a data structure to improve locality by applying the
clustering and coloring techniques from Section 2.1 and Section
2.2. Reorganization is appropriate for read-mostly data structures,
which are built early in a computation and subsequently heavily
referenced. With this approach, neither the construction or con-
sumption code need change, as the structure can be reorganized
between the two phases. Moreover, if the structure changes slowly,
ccmorph can be periodically invoked.

ccmorph operates on tree-like structures with homogeneous ele-
ments and without external pointers into the middle of the structure
(or any data structure that can be decomposed into components sat-
isfying this property). However, it allows a liberal definition of a
tree in which elements may contain a parent or predecessor pointer.
A programmer supplies ccmorph (which is templatized with
respect to the structure type) with a pointer to the root of a data
structure, a function to traverse the structure, and cache parame-
ters. For example, Figure 3 contains the code used to reorganize
the quadtree data structure in the Olden benchmark perimeter with
the programmer supplying the next-node function.

ccmorph copies a structure into a contiguous block of memory
(or a number of contiguous blocks for large structures). In the pro-
cess, it partitions a tree-like structure into subtrees that are laid out
linearly (Figure 1). The structure is also colored to map the first p
elements traversed to a unique portion of the cache (detennined by
the Color-const parameter) that will not conflict with other struc-
ture elements (Figure 2). ccmorph determines the values ofp and
size of subtrees from the cache parameters and structure element
size. In addition, it takes care to ensure that the gaps in the virtual
address space that implement coloring correspond to multiples of
the virtual memory page size.

The effectiveness of ccmorph is discussed in Section 5.

3.2 Cache-Conscious Heap Allocation
Although ccmorph requires little programming effort, it currently
only works for tree-like structures that can be moved. In addition,
incorrect usage of ccmorph can affect program correctness. A

P

C-P

I

Virtual Address Space

Figure 2. Coloring data structure elements to reduce cache conflicts.

main0 Quadtree next-node(Quadtree node, int i)
t I

. . . /* Valid values for i are -1,
root = maketree(4096,I. 1 . . . Max-kids */
ccmorph (root, next-node, Num-nodes, switch(i) {
Max-kids, Cache-sets, Cache-blk-size, case -1:

Cache-associativity, Color-const); returntnode ->parent);
. . . case 1:

I returntnode->nw);
case 2:

returnfnode->ne);
case 3:

return(node->sw);
case 4:

return(node->se);
I

Figure 3. cunorph: Transparent cache-conscious data reorganization.
complementary approach, which also requires little programming,
is to perform cache-conscious data placement when elements are
allocated. In general, a heap allocator is invoked many more times
than a data reorganizer, so it must use techniques that incur low
overhead. Another difference is that data reorganizers operate on
entire structures with global techniques, such as coloring, whereas
a heap allocator has an inherently local view of the structure. For
these reasons, our cache-conscious heap allocator (ccmalloc)
only performs local clustering. ccmalloc is also safe, in that
incorrect usage only affects program performance, and not correct-
ness.

3.2. I ccmalloc
ccmalloc is a memory allocator similar to malloc, which takes
an additional parameter that points to an existing data structure ele-
ment likely to be accessed contemporaneously (e.g., the parent of a
tree node). ccmalloc attempts to locate the new data item in the
same cache block as the existing item. Figure 4 contains code from
the Olden benchmark heal& which illustrates the approach. Our
experience with ccmal lot indicates that a programmer unfamil-
iar with an application can select a suitable parameter by local
examination of code surrounding the allocation statement and
obtain good results (see Section 5).

In a memory hierarchy, different cache block sizes means that data
can be co-located in different ways. ccmalloc focuses only on
L2 cache blocks. In our system (Sun UltraSPARC l), Ll cache
blocks are only 16 bytes (L2 blocks are 64 bytes) which severely
limits the number of objects that fit in a block. Moreover, the book-
keeping overhead in the allocator is inversely proportional to the
void addList (struct List *list,

struct Patient *patient)
i

struct List *b;
while (list != NULL) 1

b = list:
list = list->forward;

I
list = (struct List *)

ccmalloc(sizeof(struct List), b);
list->patient = patient;
list->back = b;
list-pforward = NULL:
b->forward = list;

I
Figure 4. ccmalloc: Cache-conscious heap allocation.

size of a cache block, so larger blocks are both more likely to be
successful and to incur less overhead.

An important issue is where to allocate a new data item if a cache
block is full. ccmal lot tries to put the new data item as close to
the existing item as possible. Putting the items on the same virtual
memory page is likely to reduce the program’s working set, and
improve TLB performance, by exploiting the strong hint from the
programmer that the two items are likely to be accessed together.
Moreover, putting them on the same page ensures they will not
conflict in the cache. There are several possible strategies to select
a block on the page. The closest strategy tries to allocate the new
element in a cache block as close to the existing block as possible.
The nav-block strategy allocates the new data item in an unused
cache block, optimistically reserving the remainder of the block for
future calls on ccmalloc. Thefirst-@ strategy uses a first-tit pol-
icy to find a cache block that has sufficient empty space. The next
section evaluates these strategies.

4. EVALUATION OF CACHE-CONSCIOUS
DATA PLACEMENT
To evaluate our cache-conscious placement techniques, we use a
combination of a microbenchmark, and two large, real-world
applications. In addition we performed detailed, cycle-by-cycle
simulations on four benchmarks from the Olden suite to break
down where the time is spent. The microbenchmark performed a
large number of random searches on different types of balanced
trees. The macrobenchmarks were a 60,000 line ray tracing pro-
gram and a 160,000 line formal verification system. The Olden
benchmarks are a variety of pointer-based applications written in
C.

4.1 Methodology
We ran the benchmarks on a Sun Ultraserver ESOOO, which con-
tained 12 167Mhz UltraSPARC processors and 2 GB of memory
running Solaris 2.51. This system has two levels of blocking
cache--a 16KB direct-mapped Ll data cache with 16 byte lines,
and a 1 MB direct-mapped L2 cache with 64 byte lines. A L 1 data
cache hit takes 1 cycle (i.e., fh = 1). A Ll data cache miss, with a
L2 cache hit, costs 6 additional cycles (i.e., tdl = 6). A L2 miss
typically results in an additional 64 cycle delay (i.e., tmL2 = 64). All
benchmarks were compiled with gee (version 2.7.1) at the -02
optimization level and run on a single processor of the E5000.

Figure 5. Binary tree microbenchmark.

4.2 Tree Microbenchmark extra space in tree nodes to handle insertion gracefully, and hence

This microbencbmark measures the performance of ccmorph on
a large binary search tree, which we call a transparent C-tree. We
compare its performance against an in-core B-tree, also colored to
reduce cache conflicts, and against random and depth-first clus-
tered binary trees. The microbenchmark does not perform inser-
tions or deletions. The tree contained 2,097,151 keys and
consumes 40 MB of memory (forty times the L2 cache’s size).
Since the Ll cache block size is 16 bytes and its capacity is 16K
bytes, it provides practically no clustering or reuse, and hence its
miss rate was very close to one. We measured the average search
time for a randomly selected element, while varying the number of
repeated searches to 1 million. Figure 5 shows that both B-trees
and transparent C-trees outperform randomly clustered binary trees
by up to a factor of 4-5, and depth-first clustered binary trees by up
to a factor of 2.5-3. Moreover, transparent C-trees outperform B-
trees by a factor of 1.5. The reason for this is that B-trees reserve

do not manage cache space as efficiently as transparent C-trees.
However, we expect B-trees to perform better than transparent C-
trees when trees change due to insertions and deletions.

4.3 Macrobenchmarks
We also studied the impact of cache-conscious data placement on
two real-world applications. RADIANCE is a tool for modeling
the distribution of visible radiation in an illuminated space [49]. Its
input is a three-dimensional geometric model of the space. Using
radiosity equations and ray tracing, it produces a map of spectral
radiance values in a color image. RADIANCE’s primary data
structure is an octree, which represents the scene to be modeled.
This structure is highly optimized. The program uses implicit
knowledge of the structure’s layout to eliminate pointers, much
like an implicit heap, and it lays out this structure in depth-first
order (consequently, it did not make sense to use ccmalloc in

Table 1: Simulation Parameters.

Issue Width 4
Functional Units 2 Int, 2 FP, 2 Addr. gen., 1 Branch
Integer Multiply, Divide 3,9 cycles
All Other Integer 1 cvcle

this case). We changed the octree to use subtree clustering and col-
ored the data structure to reduce cache conflicts. The performance
results includes the overhead of restructuring the octree.

VIS (Verification Interacting with Synthesis) is a system for formal
verification, synthesis, and simulation of finite state systems [6].
VIS synthesizes finite state systems and/or verifies properties of
these systems from Verilog descriptions. The fundamental data
structure used in VIS is a multi-level network of latches and com-
binational gates, which is represented by Binary Decision Dia-
grams (BDDs). Since BDDs are DAGs, ccmorph cannot be used.
However, we modified VIS to use our ccmalloc allocator with
the new-block strategy (since it consistently performed well, see
Section 4.4).

Figure 6 shows the results. Cache-conscious clustering and color-
ing produced a speedup of 42% for RADIANCE, and cache-con-
scious heap allocation resulted in a speedup of 27% for VIS. The
result for VIS demonstrates that cache-conscious data placement
can even improve the performance of graph-like data structures, h
which data elements have multiple parents. Significantly, very few
changes to these 60-160 thousand line programs produced large
performance improvements. In addition, the modifications to VIS
were accomplished in a few hours, with little understanding of the
application.

4.4 Olden Benchmarks
We performed detailed, cycle-by-cycle uniprocessor simulations of
the four Olden benchmarks using RSIM [30]. RSIM is an execu-
tion driven simulator that models a dynamically-scheduled, out-of-

order processor similar to the MIPS RlOOOO. Its aggressive mem-
ory hierarchy includes a non-blocking, multiported, and pipelined
L 1 cache, and a non-blocking and pipelined L2 cache. Table 1 con-
tains the simulation parameters.

Table 2 describes the four Olden benchmarks. We used the RSIM
simulator to perform a detailed comparison of our semi-automated
cache-conscious data placement implementations-ccmorph
(clustering onb, clustering and coloring), and ccmalloc (clos-
est, jirst-fit, and new-block strategies)-against other latency
reducing schemes, such as hardware prefetching (prefetching all
loads and stores currently in the reorder buffer) and software
prefetching (we implement Luk and Mowry’s greedy prefetching
scheme [26] by hand).

Figure 7 shows the results. Execution times are normalized against
the original, unoptimized code. We used a commonly applied
approach to attribute execution delays to various causes [31, 371.
If, in a cycle, the processor retires the maximum number of
instructions, that cycle is counted as busy time. Otherwise, the
cycle is charged to the stall time component corresponding to the
first instruction that could not be retired.

7’reeadd and perimeter both create their pointer-based structures
(trees) at program start-up and do not subsequently modify them.
Although cache-conscious data placement improves performance,
the gain is only IO-20% because structure elements are created in
the dominant traversal order, which produces a “natural” cache-
conscious layout. However, all cache-conscious data placement
implementations outperform hardware prefetching and are compet-
itive with software prefetching for trveadd, and outperform both

Table 2: Benchmark characteristics.

Name

TreeAdd
Health

Mst

Perimeter

Description

Sums the values stored in tree nodes
Simulation of Columbian health care
system
Computes minimum spanning tree of a
graph
Computes perimeter of regions in

Main Pointer-
Based Structures

Binary tree
Doubly linked lists

Array of singly
linked lists
Quadtree

Input Data Set

256 K nodes
max. level = 3, max.
time =3000
5 12 nodes

4K x 4K image

Memory
Allocated

4MB
828 KB

12 KB

64MB

6

software and hardware prefetching forperimeter. The ccmalloc-
new-block allocation policy requires 12% and 30% more memory
than closest and first-fit allocation policies, for treeadd and perime-
ter respectively (primarily due to leaf nodes being allocated in new
cache blocks).

Health’s primary data structure is linked lists, to which elements
are repeatedly added and removed. The cache-conscious version
periodically invoked ccmorph to reorganize the lists (no attempt
was made to determine the optimal interval between invocations).
Despite this overhead, ccmorph significantly outperformed both
software and hardware prefetching. Not surprisingly, the ccmal-

blocks to add new list elements, outperformed the other allocators,
at a cost of 7% additional memory.

Mst’s primary data structure is a hash table that uses chaining for
collisions. It constructs this structure at program start-up and it
does not change during program execution. As for health, the

impact since the lists were short. However, with short lists and no
locality between lists, incorrect placement incurs a high penalty.

prefetching schemes for all benchmarks, resulting in speedups of
28-138% over the base case, and 3-138% over prefetching. With

strategy alone produced speedups of 20-194% over prefetching. In

with the other allocations schemes, with low memory overhead
(with the exception of perimeter). To confirm that this perfor-

implementation, we ran a control experiment where we replaced

4.5 Discussion
Table 3 summarizes the trade-offs among the cache-conscious data

gram performance. In addition, the techniques in this paper focus
on single data structures. Real programs, of course, use multiple
data structures, though often references to one structure predomi-
nates. Our techniques can be applied to each structure in turn to
improve its performance. Future work will consider interactions
among different structures.

Our cache-conscious structure layout techniques place contempo-
raneously accessed elements in the same cache block. While this
will always improve uniprocessor cache performance, for multi-
processor systems, it depends on whether the data items are
accessed by same processor or by different processors. In the latter
case, co-locating the data elements could exacerbate false-sharing.

5. ANALYTIC FRAMEWORK
Although the cache-conscious data placement techniques can
improve a structure’s spatial and temporal locality, their descrip-
tion is ad hoc. The framework presented in this section addresses
this difficulty by quantifying their performance advantage. The
framework permits a priori estimation of the benefits of these tech-
niques. Its intended use is not to estimate the cache performance of
a data structure, but rather to compare the relative performance of a
structure with its cache-conscious counterpart. In addition, it pro-

Table 3: Summary of cache-conscious data placement techniques.

7

vides intuition for understanding the impact of data layout on
cache performance.

A key part of the framework is a data structure-centric cache model
that analyzes the behavior of a series of accesses that traverse
pointer-paths in pointer-based data s&uctures. A pointer-path
access references multiple elements of a data structure by travers-
ing pointers. Some examples are: searching for an element in a
tree, or traversing a linked list. To make the details concrete, this
paper applies the analytic framework to predict the steady-state
performance of cache-conscious trees.

5.1 Analytic Model
For a two level blocking cache configuration, the expected mem-
ory access time for a pointer-path access to an in-core pointer-
based data structure is given by

t menmy = 6h + mLI x &Ll + mLI x rnL2 x t&J x (Memory Refer-
ences)

th: level 1 cache access time

mLl, mL2: miss rates for the level 1 and level 2 caches respectively

tmLl, t&2: miss penalties for the level 1 and level 2 caches respec-
tively

A cache-conscious data structure should minimize this memory
access time. Since miss penalties are determined by hardware,
design and layout of a data structure can only attempt to minimize
its miss rate. We now develop a simple model for computing a data
structure’s miss rate. Since a pointer-path access to a data structure
can reference multiple structure elements, let m(i) represent the
miss rate for the i-th pointer-path access to the structure. Given a
sequence of p pointer-path accesses to the structure, we define the
amortized miss rate as

P

c m(i)

ma@) = i= 1
P

For a long, random sequence of pointer-path accesses, this amor-
tized miss rate can be shown to approach a steady-state value, m,
(in fact, the limit exists for all but the most pathological sequence
of values for m(i)). We define the amortized steady-state miss rate,
mS as

We examine this amortized miss rate for a cache configuration Cc
c, 6, a >, where c is the cache capacity in sets, b is the cache block
size in words, and a is the cache associativity. Consider a pointer-
based data structure consisting of II homogenous elements, sub-
jected to a random sequence of pointer-path accesses of the same
type. Let D be a pointer-path access function that represents the-
average number of unique references required to access an element

of the structure. D depends on the data structure, and the type of
pointer-path access (if the pointer-path accesses are not of the same
type, D additionally depends on the distribution of the different
access types). For example, D is log2(n+l) for a key search on a
balanced binary search tree. Let the size of an individual structure
element be e. If e C b, then Lb/eJ is the number of structure ele-
ments that fit in a cache block. Let K represent the average number
of structure elements residing in the same cache block that are
required for the current pointer-path access. K is a measure of a
data structure’s spatial locality for the access function, D. From the
definition of K it follows that

IlKl !!
11 e

Let R represent the number of elements of the data structure
required for the current pointer-path access that are already present
in the cache because of prior accesses. R(i) is the number of ele-
ments that are reused during the i-tb pointer-path access, and is a
measure of a data structure’s temporal locality. From the definition
of R it follows that

With these definitions, the miss rate for a single pointer-path
access can be written as

m(z) = (number of cache misses) / (total references)

D-R(i)
K

The reuse function R(i) is highly dependent on i, for small values
of i, because initially, a data structure suffers from cold start
misses. However, one is often interested in the steady-state perfor-
mance of a data structure once start-up misses are eliminated. If a
data structure is colored to reduce cache conflicts (see Section 2.2),
then R(i) will approach a constant value R, when this steady state is
reached. Since D and K are both independent of i, the amortized
steady-state miss rate m, of a data structure can be approximated
by its amortized miss rate m,(p), for a large, random sequence of
pointer-path accessesp, all of the same ty-pe, as follows

P

c 49 . R-
‘-5 mS = mJp)llarge p= y B K

This equation can be used to analyze the steady-state behavior of a
pointer-based data structure, and the previous equation to analyze
its transient start-up behavior.

5.2 Speedup Analysis
We use the model to derive an equation for speedup in terms of

(‘h + (“L l)Naive xt + (91 ’ mL2 ‘Naive xt)

Cache-conscious Speedup = (fh + (mL ,)cc x tz:: + (ML 1 x mL2)cc x tmLy2

Figure 8. Cache-conscious speedup.

8

l-
log2(c/2 x k x a + 1)

(log2(n + 1) -log2(c/2 x k x a + l))/(log2(k + 1))
ms =

l%$” + 1)
=

log2(n + 1) l%# + 1)

Figure 9. Cache-conscious binary tree.
cache miss rates that results from applying cache-conscious tech-
niques to a pointer-based data structure.This metric is desirable, as
speedup is often more meaningful than cache miss rate, and is eas-
ier to measure.

Cache-conscious speedup = (tmemoly)Naive / &twzrn~ry)Cache~o~ci~~

When only the structure layout is changed, the number of memory
references remains the same and the equation reduces to that in
Figure 8.

In the worst case, with pointer-path accesses to a data structure that
is laid out naively, K = 1 and R = 0 (i.e., each cache block contains
a single element with no reuse from prior accesses) and (mLl)N,iv,
= h~thhe = 1.

5.3 Steady-State Performance Analysis
This section demonstrates how to calculate the steady-state perfor-
mance of a cache-conscious tree (see Section 4.2) subjected to a
series of random key searches.

Consider a balanced, complete binary tree of n nodes. Let the size
of a node be e words. If the cache block size is b words and e c b,
up to Lb/e-i nodes can be clustered in a cache block. Let subtrees of
size k = Lb/eJ nodes tit in a cache block. The tree is colored so the
top (c/2 x Lb/eJ x a) nodes of the tree map uniquely to the first c/2
sets of the cache with no conflicts and the remaining nodes of the
tree map into next c/2 sets of the cache (other divisions of the
cache are possible).

Coloring subtree-clustered binary trees ensures that, in steady-
state, the top (c/2 x Lb/e-/ x a) nodes are present in the cache. A
binary tree search examines log2(n+1) nodes, and in the worst-case
(random searches on a large tree approximate this), the first
ZogZ((c/2 x Lb/eJ x a)+l) nodes will hit in the cache, and the
remaining nodes will miss. Since subtrees of size k = Lb/eJ nodes
are clustered in cache blocks, a single cache block transfer brings

in logz(k+l) nodes that are needed for the current search. If the
number of tree searches is large, we can ignore the start-up behav-
ior, and approximate the data structure’s performance by its amor-
tized steady-state miss rate as shown in Figure 9.

Comparing with the steady-state miss rate equation, we get K =
log2(k+l) and R, = logz(c/2 x k x a + 1). This result indicates that
cache-conscious trees have logarithmic spatial and temporal local-
ity functions, which intuitively appear to be the best attainable,
since the access function itself is logarithmic.

5.4 Model Validation
This section validates the model’s predictions of performance
improvement. The experimental setup is the same as before (see
Section 4.1). The tree microbenchmark is used for the experiments
of 1 million repeated searches for randomly generated keys in a
tree (Section 4.2). We apply the model to predict the performance
advantage of transparent C-trees, which use both subtree clustering
and coloring, over their naive counterpart. For the experiments,
subtrees of size 3 were clustered in a single cache block and 64 x
384 tree nodes (half the L2 cache capacity as 384 nodes fit in a 8K
page) were colored into a unique portion of the L2 cache. The tree
size was also increased from 262,144 to 4,194,304 nodes. The
results are shown in Figure 10. As the graph shows, the model has
good predictive power, underestimating the actual speedup by only
15% and accurately predicting the shape of the curve. Some rea-
sons for this systematic underestimation might be a lower Ll cache
miss rate (assumed 1 here) and TLB performance improvements
not captured by our model.

6. RELATED WORK
Previous research has attacked the processor-memory gap by reor-
dering computations to increase spatial and temporal locality [16,
52, lo]. Most of this work focused on regular array accesses. Gan-

L1 7.0
3

x 6.5
z v) 6.0

% 5.5
.-
z 5.0

; 4.5

; 4.0

Cache-conscious speedup for different tree sizes
I I I IfIll] I I1 IIII

I)----* Predicted speedup-

+----r

*Actual speedup

Tree size
Figure 10. Predicted and actual speedup for C-trees.

9

non et al. [16] studied an exhaustive approach that generated all
permutations of a loop nest and selected the best one using an eval-
uation function. Wolf and Lam [52] developed a loop transforma-
tion theory, based on unimodular matrix transformations, and used
a heuristic to select the best combination of loop transformations.
Carr et. al [lo] used a simple model of spatial and temporal reuse
of cache lines to select compound loop transformations. This work
considers an entirely different class of data structures. Pointer-
based structures do not support random access, and hence chang-
ing a program’s access pattern is impossible in general.

Database researchers long ago faced a similar performance gap
between main memory and disk speeds. They designed specialized
data structures, such as B-trees [4, 131, to bridge this gap. In addi-
tion, databases use clustering [3, 48, 15, 51 and compression [13]
to improve virtual memory performance. Clustering has also been
used to improve virtual memory performance of Smalltalk and
LISP systems [28, 46, 51, 21, 141 by reorganizing data structures
during garbage collection.

Seidl and Zom [40] combined profiling with a variety of different
information sources present at the time of object allocation to pre-
dict an object’s reference frequency and lifetime. They showed that
program references to heap objects are highly predictable. These
studies focused on a program’s paging behavior, not its cache
behavior. Our work differs, not only because of the vast difference
in cost between a cache miss and a page fault, but also because
cache blocks are far smaller than memory pages.

Recently Chilimbi and Lams [1 l] used a generational garbage col-
lector to implement cache-conscious data placement. They collect
low-overhead, real-time profiling information about data access
patterns and applied a new copying algorithm that uses this infor-
mation to produce a cache-conscious object layout. That work
relies on properties of object-oriented programs and requires copy-
ing garbage collection, whereas this paper focuses on C programs.

A more recent paper by Chilimbi et al. [12] describes two tech-
niques-structure splitting and field reorganization-for cache-
conscious structure definition, and demonstrates performance
improvements for C and Java. Truong et al. [47] also suggest field
reorganization for C structures. These works complement this one,
as they are concerned with improving the cache performance of a
data structure by reorganizing its internal layout, while the orthog-
onal techniques in this paper improve performance by arranging
collections of structures.

Calder et al. [8] applied placement techniques developed for
instruction caches [17, 34, 271 to data. They use a compiler-
directed approach that creates an address placement for the stack
(local variables), global variables, heap objects, and constants in
order to reduce data cache misses. Their technique, which requires
a training run to gather profile data, shows little improvement for
heap objects but significant gains for stack objects and globals. By
contrast, we provide tools for cache-conscious heap layout that
produce significant improvement without profiling. In addition,
they used an entirely different allocation strategy, based on a his-
tory of the previously allocated object, rather than the program-
mer-supplied hint that ccmalloc uses to co-locate objects.

Researchers have also used empirical models of program behavior
[2,39,45] to analyze cache performance [35,42,18]. These efforts
tailor the analysis to specific cache parameters, which limits their
scope. Two exceptions are Agarwal’s comprehensive cache model
[l] and Singh’s model [41]. Agarwal’s model uses a large number
of parameters, some of which appear to require measurements to
calibrate. He provides performance validation that shows that the

model’s predictions are quite accurate. However, the model’s com-
plexity and large number of parameters, makes it difficult to gain
insight into the impact of different cache parameters on perfor-
mance. Singh presents a technique for calculating the cache miss
rate for fully associative caches from a mathematical model of
workload behavior. His technique requires fewer parameters than
Agarwal’s model, but again measurements appear necessary to cal-
ibrate them. The model’s predictions are accurate for large, fully
associative caches, but are not as good for small caches. Hill [191
proposed the simple 3C model, which classifies cache misses into
three categoric-ompulsory, capacity, and conflict. The model
provides an intuitive explanation for the causes of cache misses,
but it lacks predictive power. These models focus on analyzing and
predicting a program’s cache performance, while we focus on the
cache performance of individual in-core pointer structures.

Lam et al. [22] developed a theoretical model of data conflicts in
the cache and analyzed the implications for blocked array algo-
rithms. They showed that cache interference is highly sensitive to
the stride of data accesses and the size of blocks, which can result
in wide variation in performance for different matrix sizes. Their
cache model captures loop nests that access arrays in a regular
manner, while our model focuses on series of pointer-path accesses
to in-core pointer-based data structures.

LaMarca and Ladner [23, 241 explored the interaction of caches
and sorting algorithms. In addition, they constructed a cache-con-
scious heap structure that clustered and aligned heap elements.
Their “collective analysis” models an algorithm’s behavior for
direct-mapped caches and obtains accurate predictions. Their
framework relies on the “independence reference assumption” [2],
and is algorithm-centric, whereas ours is data structure-centric, and
specifically targets correlations between multiple accesses to the
same data structure.

7. CONCLUSIONS
Traditionally, m-core pointer-based data structures were designed
and programmed as if memory access costs were uniform. Increas-
ingly expensive memory hierarchies open an opportunity to
achieve significant performance improvements by redesigning data
structures to use caches more effectively. While techniques such as
clustering, and coloring can improve the spatial and temporal
locality of pointer-based data structures, applying them to existing
codes may require considerable effort. This paper shows that
cache-conscious techniques can be packaged into easy-to-use
tools. Our structure reorganizer, ccmorph, and cache-conscious
memory allocator, ccmalloc, greatly reduce the programming
effort and application knowledge required to improve cache per-
formance.

While the cache-conscious structure layout tools described in this
paper are fairly automated, they still require programmer assis-
tance to identify tree-structures that can be moved, and suitable
candidates for cache block co-location. Future work can explore
two directions to reduce the amount of programmer effort: static
program analyses and profiling. Finally, we believe that compilers
and run-time systems can help close the processor-memory perfor-
mance gap.

8. ACKNOWLEDGEMENTS
The authors would like to thank Thomas Ball, Brad Calder, Bob
Fitzgerald, Anoop Gupta, Manoj Plakal, Thomas Reps, and the
anonymous referees for their useful comments. This research is
supported by NSF NY1 Award CCR-9357779, with support from
Sun Microsystems, and NSF Grant MIP-9625558.

10

9.
VI

PI

[31

141

[A

161

I.71

PI

r93

1101

[Ill

WI

REFERENCES
A. Agarwal, M. Horowitz, and J. Hennessy. “An analytical
cache model.” ACM Transactions on Computer Systems,
7(2):184-215,1989.
A. V. Aho, P. J. Denning, and J. D. Ullman. “Principles of
optimal page replacement.” Journal of the ACM, 18(1):80-
93, 1971.
J. Banerjee, W. Kim, and J. F. Garza. “Clustering a DAG for
CAD databases.” ZEEE Transactions on Software Engineer-
ing, 14(11):1684-1699, 1988.
R. Bayer and C. McCreight. “Organization and maintenance
of large ordered indexes.” Acta Znformatica, l(3): 173-189,
1972.
Veronique Benzaken and Claude Delobel. “Enhancing perfor-
mance in a persistent object store: Clustering strategies in
02.” In Technical Report 50-90, Altair, Aug. 1990.
R. K. Brayton, G D. Hachtel, A. S. Vincentelli, F. Somenzi,
A. Aziz, S. Cheng, S. Edwards, S. Khatri, Y. Kukimoto,
A. Pardo, S. Qadeer, R. Ranjan, S. Sarwary, T. R. Shilpe,
G Swamy, and T. Villa. “VIS: a system for verification and
synthesis.” In Proceedings of the Eight International Confer-
ence on Computer Aided V&ntcation, July 1996.
Doug Burger, James R. Goodman, and Alain Kagi. “Memory
bandwidth limitations of future microprocessors.” In Pm-
ceedings of the 23rd Annual International Symposium on
Computer Architecture, pages 78-89, May 1996.
Brad Calder, Chandra Krintz, Simmi John, and Todd Austin.
“Cache-conscious data placement.” In Proceedings of the
Eight International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
VIII), pages 139-149, Oct. 1998.
David Callahan, Ken Kennedy, and Allan Poterfield. “Sofi-
ware prefetching.” In Proceedings of the Fourth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS Iv), pages 40-52,
April 1991.
Steve Carr, Kathryn S. McKinley, and Chau-Wen Tseng.
“Compiler optimizations for improving data locality.” In Pro-
ceedings of the Sixth International Conference on Architec-
tural Support for Programming Languages and Operating
Systems (ASPLOS VQ, pages 252-262, Oct. 1994.
Trishul M. Chilimbi, and James R. Lams. “Using generational
garbage collection to implement cache-conscious data place-
ment.” In Proceedings of the 1998 International Symposium
on Memory Management, Oct. 1998.
Trishul M. Chilimbi, Bob Davidson, and James R. Lams.
“Cache-conscious structure definition.” In Proceedings of the
ACM SZGPLAN’99 Conference on Programming Language
Design and Implementation, May 1999.

[131 Douglas Comer. “The ubiquitous B-tree.” ACM Computing
Surveys, 11(2):121-137, 1979.

[141 R. Courts. “Improving locality of reference in a garbage-col-
lecting memory management system.” Communications of
the ACM, 3 l(9): 1128-I 138, 1988.

[151 P. Drew and R. King. “The performance and utility of the
Cactis implementation algorithms.” In Pmceedings of the
16th VLDR Conference, pages 135-147, 1990.

[16] Dennis Gannon, William Jalby, and K. Gallivan. “Strategies
for cache and local memory management by global program
transformation.” Journal of Parallel and Distributed Comput-
ing, 5587-616, 1988.

[17] N. Gloy, T. Blackwell, M. D. Smith, and B. Calder. “Proce-
dure placement using temporal ordering information.” In Pro-
ceedings of MICRO-30, Dec. 1997.

[I81 I. J. Ha&ala. “Cache hit ratios with geometric task switch
intervals.” In Proceedings of the 11th Annual International
Symposium on Computer Architecture, pages 364-371, June
1984.

[191 Mark D. Hill and Alan Jay Smith. “Evaluating associativity in
CPU caches.” IEEE Transactions on Computers, C-
38(12):1612-1630, December 1989.

[20] David Krofi. “Lockup-free instruction fetch/prefetch cache
organization.” In The 8th Annual Zntemational Symposium on
Computer Architecture, pages 81-87, May 1981.

[21] M. S. Lam, P. R. Wilson, and T. G Moher. “Object type
directed garbage collection to improve locality.” In Proceed-
ings of the International Workshop on Memory Management,
pages 16-18, Sept. 1992.

[22] Monica S. Lam, Edward E. Rothberg, and Michael E. Wolf.
“The cache performance and optimizations of blocked algo-
rithms.” In Proceedings of the Fourth International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems, pages 63-74, Santa Clara, California,
1991.

[23] Anthony LaMarca and Richard E. Ladner. “The influence of
caches on the performance of heaps.” ACM Journal of Exper-
imental Algonuhmics, 1, 1996.

[24] Anthony LaMarca and Richard E. Ladner. “The influence of
caches on the performance of sorting.” In Eight Annual ACM-
SlAMSymposium on D&Crete Algon’thms, Jan. 1997.

[25] James Laudon, Anoop Gupta, and Mark Horowitz. “Interleav-
ing: A multithreading technique targeting multiprocessors and
workstations.” In Proceedings of the Sixth International Con-
ference on Architectural Support for Pmgramming Lan-
guages and Operating Systems, pages 308-318, San Jose,
California, 1994.

[26] Chi-Keung Luk and Todd C. Mowry. “Compiler-based
prefetching for recursive data structures.” In Proceedings of
the Seventh International Conference on Architectural Sup-
port for Programming Languages and Operating *stems
(ASPLOS VII), pages 222-233, Oct. 1996.

[27] Scott McFarling. “Program optimiition for instruction
caches.” In Proceedings of the Third Zntemational Confer-
ence on Architectural Support for Pmgramming Languages
and Operating Systems, pages 183-191,1989.

[28] D. A. Moon. “Garbage collection in a large LISP system.” In
Conference Record of the 1984 Symposium on LZSP and
Functional Programming, pages 235-246, Aug. 1984.

[29] Todd C. Mowry, Monica S. Lam, and Anoop Gupta. “Design
and evaluation of a compiler algorithm for prefetching.” In
Proceedings of the FjIh International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS VI, pages 62-73, October 1992.

[30] V! S. Pai, P. Ranganathan, and S. V. Adve. ‘RSIM reference
manual version 1 .O.” In Technical Report 9705, Dept. of Elec-
meal and Computer Engineering, Rice Universi% Aug.
1997.

[31] V, S. Pai, P. Ranganathan, S. V. Adve, and T. Harton. “An
evaluation of memory consistency models for shared-memory
systems with ILP processors.” In Proceedings of the Seventh
Zntemational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS VZZk
pages 12-23, Oct. 1996.

11

[32] David Patterson, Thomas Anderson, Neal Cardwell, Richard
Fromm, Kimberly Keaton, Christoforos Kazyrakis, Randi
Thomas, and Katherine Yellick. “A case for intelligent
RAM.” In IEEE Micro, pages 34+l, Apr 1997.

[33] Sharon E. Per1 and Richard L. Sites. “Studies of Windows NT
performance using dynamic execution traces.” In Second
Symposium on Operating Systems Design and Implementa-
tion, Oct. 1996.

[34] Karl Pettis and Robert C. Hansen. “Profile guided code posi-
tioning.” SIGPLAN Notices, 25(6):1&27, June 1990. Pro-
ceedings of the ACM SIGPLAN’90 Conference on
Programming Language Design and Implementation.

[35] G. S. Rao. “Performance analysis of cache memories.” Jour-
nal of the ACM, 25(3):37%395, 1978.

[36] A. Rogers, M. Carlisle, J. Reppy, and L. Hendren. “Support-
ing dynamic data structures on distributed memory
machines.” ACM Transactions on Programming Languages
and Systems, 17(2), 1995.

[37] M. Rosenblum, E. Bugnion, S. A. Herrod, E. Witchel, and
A. Gupta. “The impact of architectural trends on operating
system performance.” In Proceedings of the 15th ACM Sym-
posium on Operating System Principles (SOSP), pages 285-
298, Dec. 1995.

[38] A. Roth, A. Moshovos, and GS. Sohi. “Dependence based
prefetching for linked data structures.” In Proceedings of the
Eight International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS
VIII), pages 115126, Oct. 1998.

[39] J. H. Saltzer. “A simple linear model of demand paging per-
formance.” Communications of the ACM, 17(4): 18 l-l 86,
1974.

[40] M. L. Seidl, and B. G Zom “Segregating heap objects by ref-
erence behavior and lifetime.” In Proceedings of the Eight
International Conference on Architectural Support for Prv-
gramming Languages and Operating Systems (ASPLOS VIII),
pages 12-23, Oct. 1998.

[41] Jaswinder Pal Singh, Harold S. Stone, and Dominique F.
Thiebaut. “A model of workloads and its use in miss-rate pre-
diction for fully associative caches.” IEEE Transactions on
Computers, 41(7):81 l-825, 1992.

[42] A. J. Smith. “A comparative study of set associative memory
mapping algorithms and their use for cache and main mem-
osy.” IEEE Trans. on Sofhare Engineering, 4(2): 121-130,
1978.

[43] Alan J. Smith. “Cache memories.” ACM Computing Surveys,
14(3):47>530, 1982.

[44] Burton J. Smith. “Architecture and applications of the HEP
multiprocessor computer system.” In Real-nine Signal Pro-
cessing IV pages 24 l-248, 198 1.

[45] J. R. Spim, editor. Program Behavior: Models and Measure-
ments. Operating and Programming System Series, Elsevier,
New York, 1977.

[46] J. W. Stamos. “Static grouping of small objects to enhance
performance of a paged virtual memory.” ACM Transactions
on Programming Languages and Systems, 2(2):155-180,
1984.

[47] Dan N. Truong, Francois Bodin, and Andre Seznec. “Improv-
ing cache behavior of dynamically allocated data structures.”
In International Conference on Parallel Architectures and
Compilation Techniques, Oct. 1998.

[48] M. N. Tsangaris and J. Naughton. “On the performance of

object clustering techniques.” In Proceedings of the 1992
ACM SIGMOD Intl. Conf on Management of Data, pages
144-153, June 1992.

[49] G J. Ward. “The RADIANCE lighting simulation and render-
ing system.” In Pnxeedings of SIGGRAPH ‘94, July 1994.

[50] M. V. Wilkes. “Slave memories and dynamic storage alloca-
tion.” In IEEE Trans. on Electronic Computers, pages 270-
271, April 1965.

[51] Paul R. Wilson, Michael S. Lam, and Thomas G Moher.
“Effective “static-graph” reorganization to improve locality in
garbage-collected systems.” SIGPLAN Notices, 26(6): 177-
19 1, June 199 1. Proceedings of the ACM SIGPLAN’91 Con-

ference on Programming Language Design and Implementa-
tion.

[52] Michael E. Wolf and Monica S. Lam. “A data locality opti-
mizing algorithm.” SIGPLAN Notices, 26(6):304%, June
1991. Proceedings of the ACM SIGPLAN’91 Conference on
Programming Language Design and Implementation.

12

