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ABSTRACT 
Hardware trends have produced an increasing disparity between 
processor speeds and memory access times. While a variety of tech- 
niques for tolerating or reducing memory latency have been pro- 
posed, these are rarely successful for pointer-manipulating 
programs. 

This paper explores a complementary approach that attacks the 
source (poor reference locality) of the problem rather than its mani- 
festation (memory latency). It demonstrates that careful data orga- 
nization and layout provides an essential mechanism to improve the 
cache locality of pointer-manipulating programs and consequently, 
their performance. It explores two placement technique-luster- 
ing and colorinet improve cache performance by increasing a 
pointer structure’s spatial and temporal locality, and by reducing 
cache-conflicts. 

To reduce the cost of applying these techniques, this paper dis- 
cusses two strategies-cache-conscious reorganization and cache- 
conscious allocation--and describes two semi-automatic tools- 
ccmorph and ccmalloc-that use these strategies to produce 
cache-conscious pointer structure layouts. ccmorph is a transpar- 
ent tree reorganizer that utilizes topology information to cluster and 
color the structure. ccmalloc is a cache-conscious heap allocator 
that attempts to co-locate contemporaneously accessed data ele- 
ments in the same physical cache block. Our evaluations, with 
microbenchmarks, several small benchmarks, and a couple of large 
real-world applications, demonstrate that the cache-conscious 
structure layouts produced by ccmorph and ccmalloc offer 
large performance benefit-n most cases, significantly outper- 
forming state-of-the-art prefetching. 

Keywords 
Cache-conscious data placement, clustering, coloring, cache-con- 
scious allocation, cache-conscious reorganization 

1. INTRODUCTION 
The speed of microprocessors has increased 60% per year for 
almost two decades. Yet, over the same period, the time to access 
main memory only decreased at 10% per year [32]. The unfortu- 
nate, but inevitable, consequence of these trends is a large, and 
ever-increasing, processor-memory gap. Until recently, memory 
caches have been the ubiquitous response to this problem [SO, 431. 
In the beginning, a single cache sufficed, but the increasing gap 
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(now almost two orders of magnitude) requires a hierarchy of 
caches, which introduces further disparities in memory-access 
costs. 

Many hardware and software technique-uch as prefetching [29, 
9, 26, 381, multithreading [25, 441, non-blocking caches [20], 
dynamic instruction scheduling, and speculative execution+ry to 
reduce or tolerate memory latency. Even so, many programs’ per- 
formance is dominated by memory references. Moreover, high and 
variable memory access costs undercut the fundamental random- 
access memory (RAM) model that most programmers use to under- 
stand and design data structures and algorithms. 

Over the same period, application workloads have also changed. 
Predominately scientific applications have broadened into a richer 
workload. With this shift came a change in data structure, from 
arrays to a richer mix of pointer-based structures. Not surprisingly, 
techniques for reducing or tolerating memory latency in scientific 
applications are often ineffective for pointer manipulating programs 
[7, 331. In addition, many techniques are fundamentally limited by 
their focus on the manifestation of the problem (memory latency), 
rather than its cause (poor reference locality). 

In general, software reference locality can be improved either by 
changing a program’s data access pattern or its data organization 
and layout. The first approach has been successfully applied to 
improve the cache locality of scientific programs that manipulate 
dense matrices [S2, 10, 161. Two properties of array structures are 
essential to this work: uniform, random access to elements, and a 
number theoretic basis for statically analyzing data dependencies. 
These properties allow compilers to analyze array accesses com- 
pletely and to reorder them in a way that increases cache locality 
(loop transformations) without affecting a program’s result. 

Unfortunately, pointer structures share neither property. However, 
they possess another, extremely powerful property of locational 
transparency: elements in a structure can be placed at different 
memory (and cache) locations without changing a program’s 
semantics. Careti placement of structure elements provides the 
mechanism to improve the cache locality of pointer manipulating 
programs and, consequently, their performance. This paper 
describes and provides an analytic framework for two placement 
technique~lustering and colorin@t improve cache perfor- 
mance on uniprocessor systems by increasing a data structure’s spa- 
tial and temporal locality, and reducing cache conflicts. 

Applying these techniques may require detailed knowledge of a 
program’s code and data structures, architectural familiarity, and 
considerable programmer effort. To reduce this cost, we discuss 
two strategies-cache-conscious reorganization, and cache-con- 
scious allocation-for applying these placement techniques to pro- 
duce cache-conscious pointer structure layouts, and describe two 
semi-automatic tools-ccmorph and ccmalloc-that embody 
these strategies. Measurements demonstrate that cache-conscious 
data layouts produced by ccmorph and ccmalloc offer large 
performance benefits-in most cases, significantly outperforming 



Figure 1. Subtree clustering. 

state-of-the-art prefetching. 

This paper makes the following contributions: 

l Cache-conscious dataplacement techniques Section 2 shows 
bow clustering and coloring can improve a pointer structure’s 
cache performance. Clustering places structure elements likely 
to be accessed contemporaneously in the same cache block. 
Coloring segregates heavily and infrequently accessed element 
in non-conflicting cache regions. 

l Strategies for applying cache-conscious data placement tech- 
niques. Section 3 describes two strategies-cache-conscious 
reorganization and cache-conscious allocatio=for applying 
placement techniques to produce cache-conscious data layouts. 
Cache-conscious reorganization utilizes structure topology or 
profile information about data access patterns to transform 
pointer structure layouts. This approach is incorporated in 
ccmorph, a utility that reorganizes tree-like structures, such 
as trees, lists, and chained hash tables, by clustering and color- 
ing the structure. A programmer need only supply a function 
that helps traverse the data structure. Cache-conscious alloca- 
tion improves on conventional heap allocators by attempting to 
co-locate contemporaneously accessed data elements in the 
same physical cache block. The section describes ccmalloc, 
a memory allocator that implements this strategy. In this case, 
a programmer only must specify an additional argument to 
malloc- pointer to a structure element likely to be in con- 
temporaneous use. 

l Evaluation of cache-conscious data placement. Section 4 
demonstrates the performance benefits of cache-conscious data 
placement. In microbenchmarks, cache-conscious trees outper- 
form their naive counterparts by a factor of 4-5, and even out- 
perform B-trees by a factor of 1.5. For some pointer-intensive 
programs in the Olden benchmark suite [36], semi-automatic 
cache-conscious data placement improves performance 28- 
194%, and even outperformed state-of-the-art prefetching by 
3%194%. We applied the techniques to full application pro- 
grams. RADIANCE [49], a widely used ray-tracing program, 
showed a 42% speedup, and VIS [6], a model verification 
package, improved by 27%. Significantly, applying ccmal- 
lot to the 160,000 line VIS, required little application under- 
standing, and took only a few hours. 

l AnaIyticjFatnework. Section 5 presents an analytic framework 
that quantities the performance benefits of cache-conscious 
pointer-based data structures. A key part of this framework is a 
data structure-centric cache model of a series of accesses that 
traverse a pointer-based data structure. The model character- 

izes the performance of a pointer-based data structure by its 
amortized miss rate over a sequence of pointer-path accesses. 
This paper applies the framework to cache-conscious trees and 
validates its predictions with a microbenchmark. 

2. CACHE-CONSCIOUS DATA 
PLACEMENT TECHNIQUES 
This section discusses two general data placement technique- 
clustering and coloring-that can be combined in a wide variety of 
ways to produce cache-efficient data structures. The running exam- 
ple in this discussion is binary trees. 

2.1 Clustering 
Clustering attempts to pack data structure elements likely to be 
accessed contemporaneously into a cache block. Clustering 
improves spatial and temporal locality and provides implicit 
prefetching. 

An effective way to cluster a tree is to pack subtrees into a cache 
block. Figure 1 illustrates subtree clustering for a binary tree. An 
intuitive justification for binary subtree clustering is as follows 
(detailed analysis is in Section 5.3). For a series of random tree 
searches, the probability of accessing either child of a node is l/2. 
With k nodes in a subtree clustered in a cache block, the expected 
number of accesses to the block is the height of the subtree, 
logZ(lc+l), which is greater than 2 for k > 3. Consider the altema- 
tive of a depth-first clustering scheme, in which the k nodes in a 
block form a single parent-child-grandchild-... chain. In this case, 
the expected number of accesses to the block is: 

l+lr;+lx~+...+lX 
22 

-& = 2x(l-(9k)S2 

Of course, this analysis assumes a random access pattern. For spe- 
cific access patterns, such as depth-first search, other clustering 
schemes may be better. In addition, tree modifications can destroy 
locality. However, our experiments indicate that for trees that 
change infrequently, subtree clustering is far more efficient than 
allocation-order clustering. 

2.2 Coloring 
Caches have finite associativity, which means that only a limited 
number of concurrently accessed data elements can map to the 
same cache block without incurring conflict misses. Coloring maps 
contemporaneously-accessed elements to non-conflicting regions 
of the cache. Figure 2 illustrates a 2-color scheme for a 2-way set- 
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associative cache (easily extended to multiple colors). A cache 
with C cache sets (each set contains a = ussociativity blocks) is 
partitioned into two regions, one containingp sets, and the other C 
- p sets. Frequently accessed structure elements are uniquely 
mapped to the first cache region and the remaining elements are 
mapped to the other region. The mapping ensures that heavily 
accessed data structure elements do not conflict among themselves 
and are not replaced by infrequently accessed elements. For a tree, 
the most heavily accessed elements are the nodes near the root of 
the tree. 

3. STRATEGIES FOR APPLYING CACHE- 
CONSCIOUS DATA PLACEMENT 
Designing cache-conscious data structures requires detailed 
knowledge of a program’s code and data structures and consider- 
able programming effort. This section explores two strategies 
cache-conscious reorganization and cache-conscious allocation- 
for applying placement techniques to produce cache-conscious 
data layouts, and describes two semi-automatic tools-ccmorph 
and ccmalloc-that implement these strategies. Both signifi- 
cantly reduce the level of programming effort, knowledge, and 
architectural familiarity. 

3.1 Cache-Conscious Data Reorganization 
A data structure is typically allocated memory with little concern 
for a memory hierarchy. The resulting layout may interact poorly 
with the program’s data access patterns, thereby causing unneces- 
sary cache misses and reducing performance. Cache-conscious 
data reorganization addresses this problem by specializing a struc- 
ture’s layout to correspond to its access pattern. General, graph- 
like structures require a detailed profile of a program’s data access 
patterns for successful data reorganization [8, 111. However, a very 
important class of structures (trees) possess topological properties 
that permit cache-conscious data reorganization without profiling. 
This section presents a transparent (semantic-preserving) cache- 
conscious tree reorganizer (ccmorph) that applies the clustering 
and coloring techniques described in the previous section. 

3. I. I ccmorph 
In a language, such as C, with unrestricted pointers, analytical 
techniques cannot identify all pointers to a structure element. With- 

out this knowledge, a system cannot move or reorder data struc- 
tures without an application’s cooperation (as it can in a language 
designed for garbage collection [l I]). However, if a programmer 
guarantees the safety of the operation, ccmorph transparently 
reorganizes a data structure to improve locality by applying the 
clustering and coloring techniques from Section 2.1 and Section 
2.2. Reorganization is appropriate for read-mostly data structures, 
which are built early in a computation and subsequently heavily 
referenced. With this approach, neither the construction or con- 
sumption code need change, as the structure can be reorganized 
between the two phases. Moreover, if the structure changes slowly, 
ccmorph can be periodically invoked. 

ccmorph operates on tree-like structures with homogeneous ele- 
ments and without external pointers into the middle of the structure 
(or any data structure that can be decomposed into components sat- 
isfying this property). However, it allows a liberal definition of a 
tree in which elements may contain a parent or predecessor pointer. 
A programmer supplies ccmorph (which is templatized with 
respect to the structure type) with a pointer to the root of a data 
structure, a function to traverse the structure, and cache parame- 
ters. For example, Figure 3 contains the code used to reorganize 
the quadtree data structure in the Olden benchmark perimeter with 
the programmer supplying the next-node function. 

ccmorph copies a structure into a contiguous block of memory 
(or a number of contiguous blocks for large structures). In the pro- 
cess, it partitions a tree-like structure into subtrees that are laid out 
linearly (Figure 1). The structure is also colored to map the first p 
elements traversed to a unique portion of the cache (detennined by 
the Color-const parameter) that will not conflict with other struc- 
ture elements (Figure 2). ccmorph determines the values ofp and 
size of subtrees from the cache parameters and structure element 
size. In addition, it takes care to ensure that the gaps in the virtual 
address space that implement coloring correspond to multiples of 
the virtual memory page size. 

The effectiveness of ccmorph is discussed in Section 5. 

3.2 Cache-Conscious Heap Allocation 
Although ccmorph requires little programming effort, it currently 
only works for tree-like structures that can be moved. In addition, 
incorrect usage of ccmorph can affect program correctness. A 
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Figure 2. Coloring data structure elements to reduce cache conflicts. 



main0 Quadtree next-node(Quadtree node, int i) 
t I 

. . . /* Valid values for i are -1, 
root = maketree(4096, . . . . . ..I. 1 . . . Max-kids */ 
ccmorph (root, next-node, Num-nodes, switch(i) { 
Max-kids, Cache-sets, Cache-blk-size, case -1: 

Cache-associativity, Color-const); returntnode ->parent); 
. . . case 1: 

I returntnode->nw); 
case 2: 

returnfnode->ne); 
case 3: 

return(node->sw); 
case 4: 

return(node->se); 
I 

Figure 3. cunorph: Transparent cache-conscious data reorganization. 
complementary approach, which also requires little programming, 
is to perform cache-conscious data placement when elements are 
allocated. In general, a heap allocator is invoked many more times 
than a data reorganizer, so it must use techniques that incur low 
overhead. Another difference is that data reorganizers operate on 
entire structures with global techniques, such as coloring, whereas 
a heap allocator has an inherently local view of the structure. For 
these reasons, our cache-conscious heap allocator (ccmalloc) 
only performs local clustering. ccmalloc is also safe, in that 
incorrect usage only affects program performance, and not correct- 
ness. 

3.2. I ccmalloc 
ccmalloc is a memory allocator similar to malloc, which takes 
an additional parameter that points to an existing data structure ele- 
ment likely to be accessed contemporaneously (e.g., the parent of a 
tree node). ccmalloc attempts to locate the new data item in the 
same cache block as the existing item. Figure 4 contains code from 
the Olden benchmark heal& which illustrates the approach. Our 
experience with ccmal lot indicates that a programmer unfamil- 
iar with an application can select a suitable parameter by local 
examination of code surrounding the allocation statement and 
obtain good results (see Section 5). 

In a memory hierarchy, different cache block sizes means that data 
can be co-located in different ways. ccmalloc focuses only on 
L2 cache blocks. In our system (Sun UltraSPARC l), Ll cache 
blocks are only 16 bytes (L2 blocks are 64 bytes) which severely 
limits the number of objects that fit in a block. Moreover, the book- 
keeping overhead in the allocator is inversely proportional to the 
void addList (struct List *list, 

struct Patient *patient) 
i 

struct List *b; 
while (list != NULL) 1 

b = list: 
list = list->forward; 

I 
list = (struct List *) 

ccmalloc(sizeof(struct List), b); 
list->patient = patient; 
list->back = b; 
list-pforward = NULL: 
b->forward = list; 

I 
Figure 4. ccmalloc: Cache-conscious heap allocation. 

size of a cache block, so larger blocks are both more likely to be 
successful and to incur less overhead. 

An important issue is where to allocate a new data item if a cache 
block is full. ccmal lot tries to put the new data item as close to 
the existing item as possible. Putting the items on the same virtual 
memory page is likely to reduce the program’s working set, and 
improve TLB performance, by exploiting the strong hint from the 
programmer that the two items are likely to be accessed together. 
Moreover, putting them on the same page ensures they will not 
conflict in the cache. There are several possible strategies to select 
a block on the page. The closest strategy tries to allocate the new 
element in a cache block as close to the existing block as possible. 
The nav-block strategy allocates the new data item in an unused 
cache block, optimistically reserving the remainder of the block for 
future calls on ccmalloc. Thefirst-@ strategy uses a first-tit pol- 
icy to find a cache block that has sufficient empty space. The next 
section evaluates these strategies. 

4. EVALUATION OF CACHE-CONSCIOUS 
DATA PLACEMENT 
To evaluate our cache-conscious placement techniques, we use a 
combination of a microbenchmark, and two large, real-world 
applications. In addition we performed detailed, cycle-by-cycle 
simulations on four benchmarks from the Olden suite to break 
down where the time is spent. The microbenchmark performed a 
large number of random searches on different types of balanced 
trees. The macrobenchmarks were a 60,000 line ray tracing pro- 
gram and a 160,000 line formal verification system. The Olden 
benchmarks are a variety of pointer-based applications written in 
C. 

4.1 Methodology 
We ran the benchmarks on a Sun Ultraserver ESOOO, which con- 
tained 12 167Mhz UltraSPARC processors and 2 GB of memory 
running Solaris 2.51. This system has two levels of blocking 
cache--a 16KB direct-mapped Ll data cache with 16 byte lines, 
and a 1 MB direct-mapped L2 cache with 64 byte lines. A L 1 data 
cache hit takes 1 cycle (i.e., fh = 1). A Ll data cache miss, with a 
L2 cache hit, costs 6 additional cycles (i.e., tdl = 6). A L2 miss 
typically results in an additional 64 cycle delay (i.e., tmL2 = 64). All 
benchmarks were compiled with gee (version 2.7.1) at the -02 
optimization level and run on a single processor of the E5000. 



Figure 5. Binary tree microbenchmark.

4.2 Tree Microbenchmark extra space in tree nodes to handle insertion gracefully, and hence

This microbencbmark measures the performance of ccmorph on
a large binary search tree, which we call a transparent C-tree. We
compare its performance against an in-core B-tree, also colored to
reduce cache conflicts, and against random and depth-first clus-
tered binary trees. The microbenchmark does not perform inser-
tions or deletions. The tree contained 2,097,151 keys and
consumes 40 MB of memory (forty times the L2 cache’s size).
Since the Ll cache block size is 16 bytes and its capacity is 16K
bytes, it provides practically no clustering or reuse, and hence its
miss rate was very close to one. We measured the average search
time for a randomly selected element, while varying the number of
repeated searches to 1 million. Figure 5 shows that both B-trees
and transparent C-trees outperform randomly clustered binary trees
by up to a factor of 4-5, and depth-first clustered binary trees by up
to a factor of 2.5-3. Moreover, transparent C-trees outperform B-
trees by a factor of 1.5. The reason for this is that B-trees reserve

do not manage cache space as efficiently as transparent C-trees.
However, we expect B-trees to perform better than transparent C-
trees when trees change due to insertions and deletions.

4.3 Macrobenchmarks
We also studied the impact of cache-conscious data placement on
two real-world applications. RADIANCE is a tool for modeling
the distribution of visible radiation in an illuminated space [49]. Its
input is a three-dimensional geometric model of the space. Using
radiosity equations and ray tracing, it produces a map of spectral
radiance values in a color image. RADIANCE’s primary data
structure is an octree, which represents the scene to be modeled.
This structure is highly optimized. The program uses implicit
knowledge of the structure’s layout to eliminate pointers, much
like an implicit heap, and it lays out this structure in depth-first
order (consequently, it did not make sense to use ccmalloc in



Table 1: Simulation Parameters. 

Issue Width 4 
Functional Units 2 Int, 2 FP, 2 Addr. gen., 1 Branch 
Integer Multiply, Divide 3,9 cycles 
All Other Integer 1 cvcle 

this case). We changed the octree to use subtree clustering and col- 
ored the data structure to reduce cache conflicts. The performance 
results includes the overhead of restructuring the octree. 

VIS (Verification Interacting with Synthesis) is a system for formal 
verification, synthesis, and simulation of finite state systems [6]. 
VIS synthesizes finite state systems and/or verifies properties of 
these systems from Verilog descriptions. The fundamental data 
structure used in VIS is a multi-level network of latches and com- 
binational gates, which is represented by Binary Decision Dia- 
grams (BDDs). Since BDDs are DAGs, ccmorph cannot be used. 
However, we modified VIS to use our ccmalloc allocator with 
the new-block strategy (since it consistently performed well, see 
Section 4.4). 

Figure 6 shows the results. Cache-conscious clustering and color- 
ing produced a speedup of 42% for RADIANCE, and cache-con- 
scious heap allocation resulted in a speedup of 27% for VIS. The 
result for VIS demonstrates that cache-conscious data placement 
can even improve the performance of graph-like data structures, h 
which data elements have multiple parents. Significantly, very few 
changes to these 60-160 thousand line programs produced large 
performance improvements. In addition, the modifications to VIS 
were accomplished in a few hours, with little understanding of the 
application. 

4.4 Olden Benchmarks 
We performed detailed, cycle-by-cycle uniprocessor simulations of 
the four Olden benchmarks using RSIM [30]. RSIM is an execu- 
tion driven simulator that models a dynamically-scheduled, out-of- 

order processor similar to the MIPS RlOOOO. Its aggressive mem- 
ory hierarchy includes a non-blocking, multiported, and pipelined 
L 1 cache, and a non-blocking and pipelined L2 cache. Table 1 con- 
tains the simulation parameters. 

Table 2 describes the four Olden benchmarks. We used the RSIM 
simulator to perform a detailed comparison of our semi-automated 
cache-conscious data placement implementations-ccmorph 
(clustering onb, clustering and coloring), and ccmalloc (clos- 
est, jirst-fit, and new-block strategies)-against other latency 
reducing schemes, such as hardware prefetching (prefetching all 
loads and stores currently in the reorder buffer) and software 
prefetching (we implement Luk and Mowry’s greedy prefetching 
scheme [26] by hand). 

Figure 7 shows the results. Execution times are normalized against 
the original, unoptimized code. We used a commonly applied 
approach to attribute execution delays to various causes [31, 371. 
If, in a cycle, the processor retires the maximum number of 
instructions, that cycle is counted as busy time. Otherwise, the 
cycle is charged to the stall time component corresponding to the 
first instruction that could not be retired. 

7’reeadd and perimeter both create their pointer-based structures 
(trees) at program start-up and do not subsequently modify them. 
Although cache-conscious data placement improves performance, 
the gain is only IO-20% because structure elements are created in 
the dominant traversal order, which produces a “natural” cache- 
conscious layout. However, all cache-conscious data placement 
implementations outperform hardware prefetching and are compet- 
itive with software prefetching for trveadd, and outperform both 

Table 2: Benchmark characteristics. 

Name 

TreeAdd 
Health 

Mst 

Perimeter 

Description 

Sums the values stored in tree nodes 
Simulation of Columbian health care 
system 
Computes minimum spanning tree of a 
graph 
Computes perimeter of regions in 

Main Pointer- 
Based Structures 

Binary tree 
Doubly linked lists 

Array of singly 
linked lists 
Quadtree 

Input Data Set 

256 K nodes 
max. level = 3, max. 
time =3000 
5 12 nodes 

4K x 4K image 

Memory 
Allocated 

4MB 
828 KB 

12 KB 

64MB 
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software and hardware prefetching forperimeter. The ccmalloc-
new-block allocation policy requires 12% and 30% more memory
than closest and first-fit allocation policies, for treeadd and perime-
ter respectively (primarily due to leaf nodes being allocated in new
cache blocks).

Health’s primary data structure is linked lists, to which elements
are repeatedly added and removed. The cache-conscious version
periodically invoked ccmorph to reorganize the lists (no attempt
was made to determine the optimal interval between invocations).
Despite this overhead, ccmorph  significantly outperformed both
software and hardware prefetching. Not surprisingly, the ccmal-

blocks to add new list elements, outperformed the other allocators,
at a cost of 7% additional memory.

Mst’s primary data structure is a hash table that uses chaining for
collisions. It constructs this structure at program start-up and it
does not change during program execution. As for health, the

impact since the lists were short. However, with short lists and no
locality between lists, incorrect placement incurs a high penalty.

prefetching schemes for all benchmarks, resulting in speedups of
28-138% over the base case, and 3-138% over prefetching. With

strategy alone produced speedups of 20-194% over prefetching. In

with the other allocations schemes, with low memory overhead
(with the exception of perimeter). To confirm that this perfor-

implementation, we ran a control experiment where we replaced

4.5 Discussion
Table 3 summarizes the trade-offs among the cache-conscious data

gram performance. In addition, the techniques in this paper focus
on single data structures. Real programs, of course, use multiple
data structures, though often references to one structure predomi-
nates. Our techniques can be applied to each structure in turn to
improve its performance. Future work will consider interactions
among different structures.

Our cache-conscious structure layout techniques place contempo-
raneously accessed elements in the same cache block. While this
will always improve uniprocessor cache performance, for multi-
processor systems, it depends on whether the data items are
accessed by same processor or by different processors. In the latter
case, co-locating the data elements could exacerbate false-sharing.

5. ANALYTIC FRAMEWORK
Although the cache-conscious data placement techniques can
improve a structure’s spatial and temporal locality, their descrip-
tion is ad hoc. The framework presented in this section addresses
this difficulty by quantifying their performance advantage. The
framework permits a priori estimation of the benefits of these tech-
niques. Its intended use is not to estimate the cache performance of
a data structure, but rather to compare the relative performance of a
structure with its cache-conscious counterpart. In addition, it pro-

Table 3: Summary of cache-conscious data placement techniques.
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vides intuition for understanding the impact of data layout on 
cache performance. 

A key part of the framework is a data structure-centric cache model 
that analyzes the behavior of a series of accesses that traverse 
pointer-paths in pointer-based data s&uctures. A pointer-path 
access references multiple elements of a data structure by travers- 
ing pointers. Some examples are: searching for an element in a 
tree, or traversing a linked list. To make the details concrete, this 
paper applies the analytic framework to predict the steady-state 
performance of cache-conscious trees. 

5.1 Analytic Model 
For a two level blocking cache configuration, the expected mem- 
ory access time for a pointer-path access to an in-core pointer- 
based data structure is given by 

t menmy = 6h + mLI x &Ll + mLI x rnL2 x t&J x (Memory Refer- 
ences) 

th: level 1 cache access time 

mLl, mL2: miss rates for the level 1 and level 2 caches respectively 

tmLl, t&2: miss penalties for the level 1 and level 2 caches respec- 
tively 

A cache-conscious data structure should minimize this memory 
access time. Since miss penalties are determined by hardware, 
design and layout of a data structure can only attempt to minimize 
its miss rate. We now develop a simple model for computing a data 
structure’s miss rate. Since a pointer-path access to a data structure 
can reference multiple structure elements, let m(i) represent the 
miss rate for the i-th pointer-path access to the structure. Given a 
sequence of p pointer-path accesses to the structure, we define the 
amortized miss rate as 

P 

c m(i) 

ma@) = i= 1 
P 

For a long, random sequence of pointer-path accesses, this amor- 
tized miss rate can be shown to approach a steady-state value, m, 
(in fact, the limit exists for all but the most pathological sequence 
of values for m(i)). We define the amortized steady-state miss rate, 
mS as 

We examine this amortized miss rate for a cache configuration Cc 
c, 6, a >, where c is the cache capacity in sets, b is the cache block 
size in words, and a is the cache associativity. Consider a pointer- 
based data structure consisting of II homogenous elements, sub- 
jected to a random sequence of pointer-path accesses of the same 
type. Let D be a pointer-path access function that represents the- 
average number of unique references required to access an element 

of the structure. D depends on the data structure, and the type of 
pointer-path access (if the pointer-path accesses are not of the same 
type, D additionally depends on the distribution of the different 
access types). For example, D is log2(n+l) for a key search on a 
balanced binary search tree. Let the size of an individual structure 
element be e. If e C b, then Lb/eJ is the number of structure ele- 
ments that fit in a cache block. Let K represent the average number 
of structure elements residing in the same cache block that are 
required for the current pointer-path access. K is a measure of a 
data structure’s spatial locality for the access function, D. From the 
definition of K it follows that 

IlKl !! 
11 e 

Let R represent the number of elements of the data structure 
required for the current pointer-path access that are already present 
in the cache because of prior accesses. R(i) is the number of ele- 
ments that are reused during the i-tb pointer-path access, and is a 
measure of a data structure’s temporal locality. From the definition 
of R it follows that 

With these definitions, the miss rate for a single pointer-path 
access can be written as 

m(z) = (number of cache misses) / (total references) 

D-R(i) 
K 

The reuse function R(i) is highly dependent on i, for small values 
of i, because initially, a data structure suffers from cold start 
misses. However, one is often interested in the steady-state perfor- 
mance of a data structure once start-up misses are eliminated. If a 
data structure is colored to reduce cache conflicts (see Section 2.2), 
then R(i) will approach a constant value R, when this steady state is 
reached. Since D and K are both independent of i, the amortized 
steady-state miss rate m, of a data structure can be approximated 
by its amortized miss rate m,(p), for a large, random sequence of 
pointer-path accessesp, all of the same ty-pe, as follows 

P 

c 49 . R- 
‘-5 mS = mJp)llarge p= y B K 

This equation can be used to analyze the steady-state behavior of a 
pointer-based data structure, and the previous equation to analyze 
its transient start-up behavior. 

5.2 Speedup Analysis 
We use the model to derive an equation for speedup in terms of 

(‘h + (“L l)Naive xt + (91 ’ mL2 ‘Naive xt ) 

Cache-conscious Speedup = (fh + (mL ,)cc x tz:: + (ML 1 x mL2)cc x tmLy2 

Figure 8. Cache-conscious speedup. 
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l- 
log2(c/2 x k x a + 1) 

(log2(n + 1) -log2(c/2 x k x a + l))/(log2(k + 1)) 
ms = 

l%$” + 1) 
= 

log2(n + 1) l%# + 1) 

Figure 9. Cache-conscious binary tree. 
cache miss rates that results from applying cache-conscious tech- 
niques to a pointer-based data structure.This metric is desirable, as 
speedup is often more meaningful than cache miss rate, and is eas- 
ier to measure. 

Cache-conscious speedup = (tmemoly)Naive / &twzrn~ry)Cache~o~ci~~ 

When only the structure layout is changed, the number of memory 
references remains the same and the equation reduces to that in 
Figure 8. 

In the worst case, with pointer-path accesses to a data structure that 
is laid out naively, K = 1 and R = 0 (i.e., each cache block contains 
a single element with no reuse from prior accesses) and (mLl)N,iv, 
= h~thhe = 1. 

5.3 Steady-State Performance Analysis 
This section demonstrates how to calculate the steady-state perfor- 
mance of a cache-conscious tree (see Section 4.2) subjected to a 
series of random key searches. 

Consider a balanced, complete binary tree of n nodes. Let the size 
of a node be e words. If the cache block size is b words and e c b, 
up to Lb/e-i nodes can be clustered in a cache block. Let subtrees of 
size k = Lb/eJ nodes tit in a cache block. The tree is colored so the 
top (c/2 x Lb/eJ x a) nodes of the tree map uniquely to the first c/2 
sets of the cache with no conflicts and the remaining nodes of the 
tree map into next c/2 sets of the cache (other divisions of the 
cache are possible). 

Coloring subtree-clustered binary trees ensures that, in steady- 
state, the top (c/2 x Lb/e-/ x a) nodes are present in the cache. A 
binary tree search examines log2(n+1) nodes, and in the worst-case 
(random searches on a large tree approximate this), the first 
ZogZ((c/2 x Lb/eJ x a)+l) nodes will hit in the cache, and the 
remaining nodes will miss. Since subtrees of size k = Lb/eJ nodes 
are clustered in cache blocks, a single cache block transfer brings 

in logz(k+l) nodes that are needed for the current search. If the 
number of tree searches is large, we can ignore the start-up behav- 
ior, and approximate the data structure’s performance by its amor- 
tized steady-state miss rate as shown in Figure 9. 

Comparing with the steady-state miss rate equation, we get K = 
log2(k+l) and R, = logz(c/2 x k x a + 1). This result indicates that 
cache-conscious trees have logarithmic spatial and temporal local- 
ity functions, which intuitively appear to be the best attainable, 
since the access function itself is logarithmic. 

5.4 Model Validation 
This section validates the model’s predictions of performance 
improvement. The experimental setup is the same as before (see 
Section 4.1). The tree microbenchmark is used for the experiments 
of 1 million repeated searches for randomly generated keys in a 
tree (Section 4.2). We apply the model to predict the performance 
advantage of transparent C-trees, which use both subtree clustering 
and coloring, over their naive counterpart. For the experiments, 
subtrees of size 3 were clustered in a single cache block and 64 x 
384 tree nodes (half the L2 cache capacity as 384 nodes fit in a 8K 
page) were colored into a unique portion of the L2 cache. The tree 
size was also increased from 262,144 to 4,194,304 nodes. The 
results are shown in Figure 10. As the graph shows, the model has 
good predictive power, underestimating the actual speedup by only 
15% and accurately predicting the shape of the curve. Some rea- 
sons for this systematic underestimation might be a lower Ll cache 
miss rate (assumed 1 here) and TLB performance improvements 
not captured by our model. 

6. RELATED WORK 
Previous research has attacked the processor-memory gap by reor- 
dering computations to increase spatial and temporal locality [16, 
52, lo]. Most of this work focused on regular array accesses. Gan- 

L1 7.0 
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Figure 10. Predicted and actual speedup for C-trees. 

9 



non et al. [16] studied an exhaustive approach that generated all 
permutations of a loop nest and selected the best one using an eval- 
uation function. Wolf and Lam [52] developed a loop transforma- 
tion theory, based on unimodular matrix transformations, and used 
a heuristic to select the best combination of loop transformations. 
Carr et. al [lo] used a simple model of spatial and temporal reuse 
of cache lines to select compound loop transformations. This work 
considers an entirely different class of data structures. Pointer- 
based structures do not support random access, and hence chang- 
ing a program’s access pattern is impossible in general. 

Database researchers long ago faced a similar performance gap 
between main memory and disk speeds. They designed specialized 
data structures, such as B-trees [4, 131, to bridge this gap. In addi- 
tion, databases use clustering [3, 48, 15, 51 and compression [13] 
to improve virtual memory performance. Clustering has also been 
used to improve virtual memory performance of Smalltalk and 
LISP systems [28, 46, 51, 21, 141 by reorganizing data structures 
during garbage collection. 

Seidl and Zom [40] combined profiling with a variety of different 
information sources present at the time of object allocation to pre- 
dict an object’s reference frequency and lifetime. They showed that 
program references to heap objects are highly predictable. These 
studies focused on a program’s paging behavior, not its cache 
behavior. Our work differs, not only because of the vast difference 
in cost between a cache miss and a page fault, but also because 
cache blocks are far smaller than memory pages. 

Recently Chilimbi and Lams [ 1 l] used a generational garbage col- 
lector to implement cache-conscious data placement. They collect 
low-overhead, real-time profiling information about data access 
patterns and applied a new copying algorithm that uses this infor- 
mation to produce a cache-conscious object layout. That work 
relies on properties of object-oriented programs and requires copy- 
ing garbage collection, whereas this paper focuses on C programs. 

A more recent paper by Chilimbi et al. [12] describes two tech- 
niques-structure splitting and field reorganization-for cache- 
conscious structure definition, and demonstrates performance 
improvements for C and Java. Truong et al. [47] also suggest field 
reorganization for C structures. These works complement this one, 
as they are concerned with improving the cache performance of a 
data structure by reorganizing its internal layout, while the orthog- 
onal techniques in this paper improve performance by arranging 
collections of structures. 

Calder et al. [8] applied placement techniques developed for 
instruction caches [17, 34, 271 to data. They use a compiler- 
directed approach that creates an address placement for the stack 
(local variables), global variables, heap objects, and constants in 
order to reduce data cache misses. Their technique, which requires 
a training run to gather profile data, shows little improvement for 
heap objects but significant gains for stack objects and globals. By 
contrast, we provide tools for cache-conscious heap layout that 
produce significant improvement without profiling. In addition, 
they used an entirely different allocation strategy, based on a his- 
tory of the previously allocated object, rather than the program- 
mer-supplied hint that ccmalloc uses to co-locate objects. 

Researchers have also used empirical models of program behavior 
[2,39,45] to analyze cache performance [35,42,18]. These efforts 
tailor the analysis to specific cache parameters, which limits their 
scope. Two exceptions are Agarwal’s comprehensive cache model 
[l] and Singh’s model [41]. Agarwal’s model uses a large number 
of parameters, some of which appear to require measurements to 
calibrate. He provides performance validation that shows that the 

model’s predictions are quite accurate. However, the model’s com- 
plexity and large number of parameters, makes it difficult to gain 
insight into the impact of different cache parameters on perfor- 
mance. Singh presents a technique for calculating the cache miss 
rate for fully associative caches from a mathematical model of 
workload behavior. His technique requires fewer parameters than 
Agarwal’s model, but again measurements appear necessary to cal- 
ibrate them. The model’s predictions are accurate for large, fully 
associative caches, but are not as good for small caches. Hill [ 191 
proposed the simple 3C model, which classifies cache misses into 
three categoric-ompulsory, capacity, and conflict. The model 
provides an intuitive explanation for the causes of cache misses, 
but it lacks predictive power. These models focus on analyzing and 
predicting a program’s cache performance, while we focus on the 
cache performance of individual in-core pointer structures. 

Lam et al. [22] developed a theoretical model of data conflicts in 
the cache and analyzed the implications for blocked array algo- 
rithms. They showed that cache interference is highly sensitive to 
the stride of data accesses and the size of blocks, which can result 
in wide variation in performance for different matrix sizes. Their 
cache model captures loop nests that access arrays in a regular 
manner, while our model focuses on series of pointer-path accesses 
to in-core pointer-based data structures. 

LaMarca and Ladner [23, 241 explored the interaction of caches 
and sorting algorithms. In addition, they constructed a cache-con- 
scious heap structure that clustered and aligned heap elements. 
Their “collective analysis” models an algorithm’s behavior for 
direct-mapped caches and obtains accurate predictions. Their 
framework relies on the “independence reference assumption” [2], 
and is algorithm-centric, whereas ours is data structure-centric, and 
specifically targets correlations between multiple accesses to the 
same data structure. 

7. CONCLUSIONS 
Traditionally, m-core pointer-based data structures were designed 
and programmed as if memory access costs were uniform. Increas- 
ingly expensive memory hierarchies open an opportunity to 
achieve significant performance improvements by redesigning data 
structures to use caches more effectively. While techniques such as 
clustering, and coloring can improve the spatial and temporal 
locality of pointer-based data structures, applying them to existing 
codes may require considerable effort. This paper shows that 
cache-conscious techniques can be packaged into easy-to-use 
tools. Our structure reorganizer, ccmorph, and cache-conscious 
memory allocator, ccmalloc, greatly reduce the programming 
effort and application knowledge required to improve cache per- 
formance. 

While the cache-conscious structure layout tools described in this 
paper are fairly automated, they still require programmer assis- 
tance to identify tree-structures that can be moved, and suitable 
candidates for cache block co-location. Future work can explore 
two directions to reduce the amount of programmer effort: static 
program analyses and profiling. Finally, we believe that compilers 
and run-time systems can help close the processor-memory perfor- 
mance gap. 
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