
Border Control: Sandboxing Accelerators

Lena E. Olson Jason Power Mark D. Hill David A. Wood
University of Wisconsin-Madison Computer Sciences Department

{lena, powerjg, markhill, david}@cs.wisc.edu

ABSTRACT
As hardware accelerators proliferate, there is a desire to
logically integrate them more tightly with CPUs through
interfaces such as shared virtual memory. Although this
integration has programmability and performance ben-
efits, it may also have serious security and fault isolation
implications, especially when accelerators are designed
by third parties. Unchecked, accelerators could make
incorrect memory accesses, causing information leaks,
data corruption, or crashes not only for processes run-
ning on the accelerator, but for the rest of the system
as well. Unfortunately, current security solutions are in-
sufficient for providing memory protection from tightly
integrated untrusted accelerators.

We propose Border Control, a sandboxing mechanism
which guarantees that the memory access permissions in
the page table are respected by accelerators, regardless
of design errors or malicious intent. Our hardware im-
plementation of Border Control provides safety against
improper memory accesses with a space overhead of
only 0.006% of system physical memory per accelera-
tor. We show that when used with a current highly
demanding accelerator, this initial Border Control im-
plementation has on average a 0.15% runtime overhead
relative to the unsafe baseline.

Categories
•Security and privacy → Hardware attacks and
countermeasures; •Computer systems organiza-
tion→ Processors and memory architectures; Reliabil-
ity;

Keywords
accelerators, memory protection, hardware sandboxing

Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
MICRO-48 December 05 - 09, 2015, Waikiki, HI, USA
Copyright is held by the owner/author(s). Publication rights licensed to
ACM.
ACM 978-1-4503-4034-2/15/12...$15.00
DOI: http://dx.doi.org/10.1145/2830772.2830819.

1. INTRODUCTION

‘[B]order control’ means the activity carried out at a border
. . . in response exclusively to an intention to cross or the act
of crossing that border, regardless of any other consideration,
consisting of border checks and border surveillance.

Article 2, Section 9 of the Schengen Borders Code [1]

With the breakdown of Dennard scaling, specialized
hardware accelerators are being hailed as one way to
improve performance and reduce power. Computations
can be offloaded from the general-purpose CPU to spe-
cialized accelerators, which provide higher performance,
lower power, or both. Consequently there is a prolifer-
ation of proposals for accelerators. Examples include
cryptographic accelerators, GPUs, GPGPUs, accelera-
tors for image processing, neural and approximate com-
puting, database accelerators, and user reconfigurable
hardware [2–7].

Some of this plethora of accelerators may be custom-
designed by third parties, and purchased as soft or firm
intellectual property (IP). For example, third-party de-
signers such as Imagination Technologies provide accel-
erator IP (e.g., for GPUs) to companies such as Apple
for inclusion in their devices. 3D die stacking allows
dies fabricated in different manufacturing processes to
be packaged together, increasing the opportunity for
tightly integrated third-party accelerators [8]. Consumer
electronic manufacturers may not have introspection ca-
pabilities into the third-party IP. For instance, with soft
IP the netlist may be encrypted by the hardware IP de-
signers to protect their research investment, which com-
plicates verification and increases the likelihood of bugs
and other errors. However, the consumer-facing com-
pany still must guarantee performance, stability, and
consumer privacy. We expect that SoC designers will
increasingly need methods to sandbox on-die and on-
package third-party accelerators.

Accelerators increasingly resemble first-class proces-
sors in the way they access memory. Models such as
Heterogeneous System Architecture (HSA) [9] adopt a
shared virtual address space and cache coherence be-
tween accelerators and the CPU. This has a variety
of benefits including the elimination of manual data
copies, “pointer-is-a-pointer” semantics, increased per-
formance of fine-grained sharing, and behavior famil-
iar to programmers. Recently, FUSION [10] investi-

gated the performance and energy improvements pos-
sible by using coherent accelerator caches rather than
DMA transfers. Many systems today have tightly inte-
grated accelerators which share a coherent unified vir-
tual address space with CPU cores, including Microsoft’s
Xbox One and AMD Kaveri [11–14]. Much of the cur-
rent support for tightly integrated accelerators is in
first-party designs, but there is some initial support for
third-party accelerators: for example, ARM Accelerator
Coherency Port (ACP) [15] and Coherent Accelerator
Processor Interface (CAPI) from IBM [12].

Allowing accelerators access to system memory has
security and fault isolation implications that have yet
to be fully explored, especially with third-party accel-
erators. In particular, designs where the accelerator is
able to make memory requests directly by physical ad-
dress introduce security concerns. There has been spec-
ulation about the existence of malicious hardware [16],
and even unintentional hardware bugs can be exploited
by an attacker (e.g., a bug in the MIPS R4000 allowed
a privilege escalation attack [17]). A malicious or com-
promised accelerator that is allowed to make arbitrary
memory requests could read sensitive information such
as buffers storing encryption keys. It could then exfil-
trate this data by writing it to any location in memory.

A buggy accelerator could cause a system crash by
erroneously corrupting OS data structures. Buggy ac-
celerators may be more common in the future with user-
programmable hardware on package, such as the Xilinx
Zync [7, 18]. In addition, more complex accelerators
will be harder to perfectly verify, as evidenced by the
errata released by even trusted CPU and GPU man-
ufacturers. Design errors such as the AMD Phenom
TLB bug and other errata relating to TLBs show that
even first-party designs may incorrectly translate mem-
ory addresses [19–21].

A number of approaches have been used by indus-
try to make accelerators more programmable and safer.
However, these approaches have focused either on safety
or high performance, but not both. For example, ap-
proaches such as the I/O Memory Management Unit

Accel

TLB

$ $

Untrusted

third-party

Accel

TLB

CPU

TLB

$ $

AccelCPU

TLB

$ $ $ $

Trusted first-party Untrusted

third-party

Untrusted

third-party

Memory

Border

Control

Current Solutions Border Control

(b)

Unsafe

(a)

Safe

(c)

Safe & high perf.

Memory

IOMMU or

CAPI

CPU

TLB

$ $

Figure 1: An example system with untrusted third-
party accelerators interacting with the system in
three ways: a safe but slow IOMMU (a), a fast but
unsafe direct access (b), and Border Control, which
is safe and high performance (c).

(IOMMU) [22–24] and CAPI [12, 25] provide safety by
requiring that every memory request be translated and
checked by a trusted hardware interface (Figure 1a).
However, they prevent the accelerator from implement-
ing TLBs or coherence-friendly physically addressed caches.
This may be acceptable for accelerators with regular
memory access patterns or low performance require-
ments, but some accelerators require higher performance.

In contrast, other approaches prioritize high perfor-
mance over safety (Figure 1b). Some current high-
performance GPU configurations use the IOMMU for
translation, but allow the accelerator to store physi-
cal addresses in an accelerator TLB and caches [22–24].
The accelerator is then able to bypass the IOMMU and
make requests directly to memory by physical address,
and there are no checks of whether the address is legit-
imate. There are also orthogonal security techniques,
such as ARM TrustZone, which protects sensitive data
but provides little protection between processes.

We propose Border Control, which allows accelera-
tors to use performance optimizations such as TLBs and
physical caches, while guaranteeing that memory access
permissions are respected by accelerators, regardless of
design errors or malicious intent. To enforce this se-
curity property, we check the physical address of each
memory request as it crosses the trusted-untrusted bor-
der from the accelerator to the memory system (Fig-
ure 1c). If the accelerator attempts an improper mem-
ory access, the access is blocked and the OS is notified.
We build upon the existing process abstraction, using
the permissions set by the OS as stored in the page ta-
ble, rather than inventing a new means of determining
access permissions.

We present a low-overhead implementation of Border
Control, which provides security via a per-accelerator
flat table stored in physical memory called the Protec-
tion Table, and a small cache of this table called the
Border Control Cache. The Protection Table holds cor-
rect, up-to-date permissions for any physical address
legitimately requested by the accelerator. We mini-
mize storage overhead with the insight that translation
and permission checking can be decoupled. For a cur-
rent high-performance accelerator, the general-purpose
GPU, this design has negligible performance overhead
(on average 0.15% with an 8KB Border Control cache).
This shows we can provide security with a simple design
and low overheads for performance and storage.

This paper proactively addresses a class of accelera-
tor security threats (rather than react after systems are
designed and deployed), making the following contribu-
tions:
• We describe an emerging security threat to systems

which use third-party accelerators.
• We propose Border Control : a comprehensive means

of sandboxing and protecting system memory from
misbehaving accelerators.
• We present a hardware design of Border Control and

quantitatively evaluate its performance and space over-
heads, showing that they are minimal for even a high-
performance accelerator.

2. GOALS AND CURRENT COMMERCIAL
APPROACHES

We first define the threat model Border Control ad-
dresses and the scope of the threat model, and then
discuss current commercial approaches.

2.1 Threat Model
The goal of Border Control is to provide sandboxing,

a technique first proposed to provide isolation and pro-
tection from third-party software modules [26]. Rather
than protecting against incorrect software modules, Bor-
der Control applies to incorrect hardware accelerators.

The threat model we address is an untrusted accel-
erator violating the confidentiality and integrity of the
trusted host system physical memory via a read/write
request to a physical memory location in violation of
the permissions set by the trusted OS. More formally,
The threat vector is:

An untrusted accelerator, which may be buggy or ma-
licious, that contains arbitrary logic and has direct
access to physical memory.

The addressed threats are:
Violation of confidentiality of host memory, if the
untrusted accelerator reads a host physical address
to which it is not currently granted read permission
by the trusted OS.
Violation of integrity of host memory, if the un-
trusted accelerator writes a host physical address to
which it is not currently granted write permission
by the trusted OS.

There are several cases where accelerators might vio-
late confidentiality or integrity of the host memory by
making incorrect memory accesses. Non-malicious ac-
celerators may send memory requests to incorrect ad-
dresses due to design flaws. For example, in an acceler-
ator with a TLB, an incorrect implementation of TLB
shootdown could result in memory requests made with
stale translations. A malicious programmer could ex-
ploit these flaws (as in the MIPS R4000 [17]) to read
and write addresses to which they do not have access
permissions. An accelerator that contains malicious
hardware—for example, one that contains a hardware
trojan—poses an even greater threat, because it can
send arbitrary memory requests.

Incorrect memory accesses can cause a number of se-
curity and reliability problems for the system. In non-
malicious cases, wild writes can corrupt data includ-
ing OS structures, resulting in information loss, unre-
liability, and crashes. Allowing arbitrary reads to host
memory can compromise sensitive information stored
in memory, such as data stored in keyboard or network
buffers, private keys, etc. The attacker can then exfil-
trate this data through a variety of means, including
writing it to locations belonging to other processes or
enqueueing network packets to send to the Internet. In
essence, the ability to make arbitrary memory requests
provides full control of the system.

Note that these risks apply to any accelerator that
can make physical memory accesses, even accelerators
designed for non-critical tasks. For example, a video de-

coding accelerator may seem harmless from a security
perspective if the videos it decodes are neither sensi-
tive nor critical. However, the ability to access system
memory means that these seemingly unimportant accel-
erators can have major implications for system security.

The Principle of Least Privilege [27] states that any
part of a system should “operate using the least amount
of privilege necessary to complete the job.” Border Con-
trol enforces this by leveraging the fine-grained memory
access permissions of virtual memory. Virtual memory
has provided isolation and safety between processes for
over 40 years, and Border Control extends this support
to the burgeoning accelerator ecosystem by providing
the OS with a mechanism to enforce permissions for
untrusted accelerators. Current systems use the pro-
cess construct as their container for isolation and pro-
tection, and we believe it is important to extend this
isolation to computational engines other than the CPU.
Whether a process (or an accelerator kernel invoked by
the process) is running on the CPU or an accelerator,
it should be subject to the same process memory per-
missions. Border Control’s memory sandboxing allows
system designers to tightly incorporate untrusted third-
party or user-programmed accelerators into their de-
vices while keeping the safety and isolation provided by
virtual memory.

2.2 Threat Model Scope
There are a number of threats that are outside the

scope of this threat model including the following:
• incorrect behavior internal to the accelerator.
• the accelerator violating the confidentiality or integrity

of data to which it has been granted access by the OS.
• the OS providing incorrect permissions.

In particular, Border Control treats the accelerator as
a black box, and therefore cannot control what it does
internally. That is, a process that uses an accelerator
assumes the same level of trust as a process that in-
vokes a third-party software module. When a program
calls a library, the OS does not ensure that the library
is performing the functionality it advertises; it is pos-
sible that the library is buggy or malicious. However,
it does prevent the library from accessing other pro-
cesses’ memory or other users’ files. Similarly, Border
Control does not monitor the operations the accelerator
is performing for correctness or place limits on its ac-
cess to the process’s memory. It instead allows the OS
to enforce memory access permissions, preventing the
accelerator from accessing memory unassociated with
the process it is executing. In analogy to the function
of border control between countries in the real world,
a country can inspect and block traffic entering at its
border, but cannot interfere with or observe activity in
neighboring countries.

2.3 Existing Commercial Approaches
There have been a number of previous approaches

to preventing hardware from making bad memory re-
quests. We discuss existing commercial approaches here
(summarized in Table 1) and defer discussion of other

Provides Protection Direct Access
Between to physical

For OS Processes memory
ATS-only IOMMU 7 7 3
Full IOMMU 3 3 7
IBM CAPI 3 3 7
ARM TrustZone 3 7 3
Border Control 3 3 3

Table 1: Comparison of Border Control with other
approaches.

approaches and conceptually similar work to Section 6.
Unlike CPUs, accelerators cannot perform page ta-

ble walks, and rely on the Address Translation Service
(ATS), often provided by the IOMMU [22–24]. The
ATS takes a virtual address, walks the page table on
behalf of the accelerator, and returns the physical ad-
dress.

High-performance accelerators may cache the physi-
cal addresses returned by the ATS in accelerator TLBs.
This lets them maintain physical caches to reduce access
latency and more easily handle synonyms, homonyms,
and coherence requests. In this design, the accelera-
tor makes memory requests by physical address, either
directly to the memory or by sending them through
the IOMMU as “pre-translated” requests, which are not
checked for correctness [22].

Other accelerators use only virtual addresses, and
send requests via the IOMMU, which translates them
and passes them on to memory. In this case, the IOMMU
provides full protection in an analogous manner to how
the CPU TLB provides protection between software
programs. Translating every request at the IOMMU
provides safety but degrades performance. It also pre-
vents the accelerator from maintaining physical caches.

A similar approach to the IOMMU is IBM CAPI [12,
25], which allows FPGA accelerators to access system
memory coherently. The CAPI interface implements
TLBs and coherent, physical caches in the trusted hard-
ware. This provides complete memory safety from in-
correct accelerators. However, accelerator designers are
unable to optimize the caches and TLB for the needs of
their accelerator, and the loose coupling may result in
longer TLB and cache access times.

An orthogonal approach to providing protection from
untrusted hardware components is ARM TrustZone [28].
This approach divides hardware and software into the
Secure world and the Normal world. Although this ap-
proach could be used to prevent untrusted accelerators
from accessing host memory belonging to the OS, it is
coarse-grained and cannot enforce protection between
Normal world processes. For example, with TrustZone
a misbehaving accelerator could access memory belong-
ing to other users. In addition, TrustZone involves large
hardware and OS modifications.

3. BORDER CONTROL
Border Control sandboxes accelerators by checking

the access permissions for every memory request cross-
ing the untrusted-to-trusted border (Figure 1). If the
accelerator makes a read request (e.g., on a cache miss),

Border Control checks that the process running on the
accelerator has read permission for that physical page.
If the accelerator makes a write request (e.g., on an ac-
celerator cache writeback), the accelerator process must
have write permission for that page. If the accelerator
attempts to access a page for which it does not have suf-
ficient permission, the access is not allowed to proceed
and the OS is notified. In a correct accelerator design,
these incorrect accesses should never occur. Detecting
one therefore indicates that there is a problem with the
accelerator hardware.

We first give an overview of the structures used for
Border Control, then describe the actions that occur on
various accelerator events. We then discuss how Border
Control deals with multiprocess accelerators, as well as
some accelerator design considerations.

3.1 Border Control Structures
Border Control sits between the physical caches im-

plemented on the accelerator and the rest of the memory
hierarchy—at the border between the untrusted accel-
erator and the trusted system (left side of Figure 2).
Border Control checks coherence requests sent from the
accelerator to the memory system. It is important for
our approach to be light-weight and able to support
high request rates.

Our design consists of two pieces: the Protection Ta-
ble and the Border Control Cache (BCC) (right side
of Figure 2). The Protection Table contains all relevant
permission information and is sufficient for a correct de-
sign. The BCC is simply a cache of the Protection Table
to reduce Border Control latency, memory traffic, and
energy by caching recently used permission information.

3.1.1 Protection Table Design
The Protection Table contains all information about

physical page permissions needed to provide security.
We rely upon the insight that it is not necessary to know
the mapping from physical to virtual page number to
determine page permissions; instead, we simply need to
know whether there exists a mapping from a physical
page to a virtual page with sufficient permissions in the
process’s address space. This drastically reduces the
storage overhead per page—from 64 bits in the process
page table entry to 2 bits in the Protection Table.

We implement the Protection Table as a flat table in
physical memory, with a read permission bit and write
permission bit for each physical page number (PPN) (Fig-
ure 2). The Protection Table is physically indexed (in
contrast to the process page table, which is virtually in-
dexed), because lookups are done by physical address.
There is one Protection Table per active accelerator; de-
tails for accelerators executing multiple processes con-
currently are in Section 3.3. The Protection Table does
not store execute permissions, because once a block is
within the accelerator, Border Control cannot monitor
or enforce whether the block is read as data or executed
as instructions (see Section 2.2).

Because the minimum page size is 4KB, this implies
a memory storage overhead of approximately 0.006% of

Memory

Accel

TLB

ATS

CPU

TLB

$ $

M
M

U

Accel

TLB

CPU

TLB

$ $

M
M

U

$ $ $ $

Trusted first-party Untrusted

third-party

Untrusted

third-party

Border

Control

Border Control Design

System Overview Border Control Cache

Protection table base register Protection table bounds register

0 1 2 3 4 5 6

BCC tag R W R W R W R W R W R W R W R W R W

PPN offset
510 511

page permissions

page permissions

page permissions

page permissions

BCC tag

BCC tag

BCC tag

BCC tag

0

1

2

3

63

(per accelerator, e.g. 8 KB)

Protection table
per accelerator, in main-memory,

e.g. 1 MB for 16 GB system

PPN

R W R W R W R W R W R W R W R W R W

0 128 256 384 512 640 1048448Byte offset

128 129 130 131 132 133 134 191190

Figure 2: Implementation of Border Control. Left shows Border Control in the system. Right shows the
Border Control design with a Protection Table in memory and a Border Control Cache between the accelerator
caches and the shared memory system.

the physical address space per active accelerator. Thus,
a system with 16GB of physical memory would require
only 1MB for each accelerator’s Protection Table. The
flat layout guarantees that all permission lookups can
be completed with a single memory access, which can
proceed in parallel with read requests. Section 3.4.4
discusses handling large/huge pages.

The Protection Table is initialized to zero, indicating
no access permissions. The Protection Table is updated
on each accelerator request to the ATS (Address Trans-
lation Service). This occurs whether or not the accel-
erator caches the translation in a local TLB. The Pro-
tection Table is thus guaranteed to contain up-to-date
permissions for any legitimate memory request from the
accelerator—that is, any request where the physical ad-
dress was originally supplied by the ATS.

When the accelerator makes a request for a physical
address not first obtained from the ATS, we consider
the behavior undefined and seek only to provide secu-
rity. Since the accelerator is misbehaving, we do not at-
tempt to provide the “true” page permissions as stored
in the process page table. Thus, in some cases Border
Control may report an insufficient permissions error al-
though the process page table contains a mapping with
sufficient permissions. However, safety is always pre-
served, and incorrect permissions are seen only when
the accelerator misbehaves.

We expect the Protection Table will often be sparsely
populated and an alternate structure could be more spa-
tially efficient (e.g., a tree), or it could be stored in sys-
tem virtual memory and allocated upon demand. How-
ever, the flat layout has small enough overhead that we
do not evaluate alternate layouts.

3.1.2 Border Control Cache Design
While the Protection Table provides a correct im-

plementation of Border Control, it requires a memory
read for every request from the accelerator to memory,
wasting memory bandwidth and energy. In addition,

Border Control is on the critical path for accelerator
cache misses. We therefore add a Border Control Cache
(BCC) to store recently accessed page permissions.

The BCC caches the Protection Table and is tagged
by PPN. To take advantage of spatial locality across
physical pages [29], we store information for multiple
physical pages in the same entry, similar to a subblock
TLB [30]. This reduces the tag overhead per entry.
We fetch an entire block at a time from memory; in
our memory system the block size is 128 bytes, which
corresponds to read/write permission for 512 pages per
block. This gives our BCC a large reach—a 64-entry
BCC contains permissions for 32K 4KB pages, for a
total reach of 128MB. This cache is explicitly managed
by the Border Control hardware and does not require
hardware cache coherence, simplifying its design.

3.2 Border Control Operation
In this section, we describe the various actions that

occur on several important events. The information is
summarized in Figure 3. We discuss actions taken by
Border Control when (a) a process starts executing on
the accelerator, (b) the ATS completes a translation,
(c) a memory request reaches the Border Control, (d)
the page table changes, and (e) the process releases the
accelerator upon termination.

3.2.1 Process Initialization (Figure 3a)
When a process starts executing on the accelerator,

the OS sets up the ATS for the process by pointing it to
the appropriate page table. If the accelerator was previ-
ously idle, the OS sets up the Protection Table by pro-
viding Border Control with a base register pointing to
a zeroed region of physical memory. The OS also sets a
bounds register to indicate the size of physical memory.
If the accelerator was already running another process,
the table will have already been allocated. Rather than
setting the permissions for all pages at process initializa-
tion, Border Control initially assumes no permissions,

Accelerator Memory Request

(c)

Process Completion

(e)

Process Initialization

(a)

Setup ATS

Setup accelerator

In use by another

process?
no yes

Incr. use count

Set base and limit

registers

Allocate and zero

protection table

Incr. use count

Memory Mapping Update

(d)

Zero

protection table
Flush accelerator

caches

Protection Table Insertion

(b)

Valid Border

Control Cache entry?

no yes

Write-through

entry to protect. table

Update entry
Load entry

from protect. table

Valid Border

Control Cache entry?

no yes

Load entry

from protect. table

Protection check

passes?

Forward requestRaise exception

no yes

Update ATS

Decr. use count

Deallocate

protection table

clear base and

limit registers

Zero

protection table

Flush accelerator caches

Use count 0?

no yes

Figure 3: Actions taken by Border Control on different events. Follows Section 3.2.

then lazily updates the table. This avoids the overhead
of having to populate the entire large table at startup.
However, the Protection Table always satisfies the in-
variant that no page ever has read or write permission
in the Protection Table if it does not have it according
to the process page table.

3.2.2 Protection Table Insertion (Figure 3b)
When the accelerator has a TLB miss, it requests an

address translation from the ATS, which performs the
translation and sends the result to both the accelerator
TLB and Border Control. The ATS checks that the ad-
dress space ID provided by the accelerator corresponds
to a process running on the accelerator.

If there is an entry for this page in the BCC and it has
the correct permissions, no action is taken. If there is an
entry with fewer permissions (most commonly, because
the entry contains information about many pages and
this particular page has never been seen before), the
entry is updated in the BCC, and the change is written
back to the Protection Table. Otherwise, on a BCC
miss, a new entry is allocated, and the BCC fetches
the corresponding bits from the Protection Table and
updates the permissions for the inserted page.

Updating the permissions stored at Border Control
upon address translation reduces the complexity and
overhead of our implementation. In a correctly func-
tioning accelerator, the accelerator always receives a
VPN-to-PPN translation from the ATS before making
a memory request to that PPN. Thus, assuming zero
permissions until a Protection Table insertion results
in correct behavior without the overhead of determin-
ing and storing permissions for all entries in the process
page table upon process initialization.

3.2.3 Accelerator Memory Request (Figure 3c)
Every accelerator memory request is checked by Bor-

der Control before it reaches the host memory system.
Border Control first looks up the PPN in the BCC. On a
BCC hit for the PPN, the permission bits are retrieved
from the BCC entry. On a BCC miss, Border Con-
trol allocates an entry for the page, and fills it with
the corresponding bits from the Protection Table. The
Protection Table is only checked after ensuring that the
physical address is within the bounds register.

If the request requires permissions not indicated in
the BCC or Protection Table, Border Control notifies
the OS. The OS can act accordingly by terminating the
process or disabling the accelerator. In addition, any
requested read data from the page is not returned to
the accelerator, and any write request does not proceed.

3.2.4 Memory Mapping Update (Figure 3d)
During process execution, the page table may be up-

dated for several reasons. If a new translation from
virtual to physical page number is added, the Border
Control takes no action (similar to the TLB). This case
occurs frequently, because the OS lazily allocates phys-
ical pages to virtual pages.

When an existing virtual-to-physical mapping changes,
a TLB shootdown occurs, and Border Control also needs
to take action. In a TLB shootdown, the TLB either
has the offending entry invalidated, or the entire TLB
is flushed. In either case, no further action is needed
on a CPU or trusted accelerator. The TLB will obtain
a new entry from the page walk, and any dirty blocks
in the caches are stored by physical address and can be
correctly written back to memory upon eviction.

With Border Control, any dirty cache blocks from
the affected page must be written back to memory be-
fore the Protection Table and BCC are updated on per-
mission downgrades. Otherwise, if the accelerator is
caching dirty copies of data from that page—even if it
was legal for the accelerator to write to those addresses
at the time—Border Control will report an error and
block the subsequent writeback.

If a mapping changes and the page had read-only per-
mission, the Protection Table and BCC entry can sim-
ply be updated, because no cached lines from the page
can be dirty. If the page has a writable permission bit
set in the Protection Table, then it has previously been
accessed by the accelerator and the accelerator’s caches
may contain dirty blocks from the page. The accelerator
can flush all blocks in its caches, or, as an optimization,
selectively flush only blocks from the affected page.

Once the cache flush is complete, the corresponding
entry in the BCC and the Protection Table should be
updated. Alternately, if the entire accelerator cache is
flushed, the Protection Table can be zeroed and the

BCC and accelerator TLB can be invalidated; these are
equivalent in terms of correctness.

Mapping updates resulting in TLB shootdowns com-
monly occur for a few reasons: context switches, process
termination, swapping, memory compaction, and copy-
on-write. Context switches, process termination, mem-
ory compaction, and swapping are expected to be in-
frequent and slow operations. For copy-on-write pages,
the mapping change will not incur an accelerator cache
flush, because the page was previously read-only and
thus could not have been dirty. Copy-on-write thus in-
curs no extra overhead over the trusted accelerator case.
In our workloads, we never encountered a permission
downgrade. We evaluate permission downgrade over-
heads in 5.2.4.

Even if the accelerator ignores the request to flush its
caches, there is no security vulnerability. If the cache
contains dirty blocks that are not flushed, they will be
caught later when the accelerator cache attempts to
write them back to memory. This will raise a permission
error, and the writeback will be blocked.

3.2.5 Process Completion (Figure 3e)
When a process finishes executing on an accelerator,

the accelerator caches should be flushed, all entries in
the BCC and accelerator TLB invalidated, and the Pro-
tection Table zeroed. This ensures that all dirty data
is written back to memory, and access permissions for
that process are revoked from the accelerator. If the
accelerator is not running any other processes, the OS
can reclaim the memory from the Protection Table.

3.3 Multiprocess Accelerators
Border Control allows accelerators to safely use phys-

ically tagged caches, making it straightforward to run
multiple processes simultaneously. The overhead of Bor-
der Control is per-accelerator and thus is not higher for
multiprocess accelerators. When an accelerator is run-
ning multiple processes simultaneously, Border Control
checks whether at least one process is able to access
a page when determining permissions; the permissions
we use are the union of those for all processes currently
running on the accelerator.

Although this design choice may seem to weaken the
safety properties of Border Control, we argue that this
is not the case. The purpose of Border Control is to
protect the rest of the system from incorrect accelerator
memory accesses. Just as Border Control does not in-
spect the computations internal to the black box of the
accelerator, it cannot prevent a buggy accelerator from
allowing incorrect accesses to data stored in accelerator
caches by other co-scheduled processes. For example, if
a process exposes sensitive data to the accelerator, the
accelerator can immediately leak the data to another
process address space to which it has write access, or
store it internally and leak it later. The accelerator is
sandboxed from the rest of the system, but interference
between processes within the sandbox is possible in an
incorrectly implemented accelerator.

The OS can deal with security threats internal to the

accelerator by simply not running sensitive or critical
processes on untrusted accelerators. Dealing with mis-
behavior internal to the black box of the accelerator is
outside the scope of our threat model.

3.4 Border Control Design Considerations
We briefly discuss several considerations with our Bor-

der Control implementation, including other permission
sources than the page table, constraints on cache orga-
nization, and dealing with different page sizes.

3.4.1 Alternate Permission Sources
The access permissions stored in the process page ta-

bles are generally a good source of permission informa-
tion for Border Control. However, in some cases, al-
ternate sources may provide more fine-grained control.
In particular, the OS might run an accelerator kernel
directly. Because the OS has access to every page in
the system, this would eliminate the memory protec-
tion from the accelerator. A simple way to handle this
case is for the OS to provide an alternate (shadow) page
table for the accelerator. This can already be done in
implementations of the ATS as part of the IOMMU and
requires no changes to the Border Control hardware.

Border Control can also be extended to work with al-
ternate permission systems, provided that permissions
correspond to physical addresses. For example, in Mon-
driaan Memory Protection [31], the accelerator keeps a
Protection Lookaside Buffer (PLB) rather than a TLB.
On a PLB miss, Border Control can update the Protec-
tion Table, just as it would on a TLB miss.

Capabilities are another access control method [32].
The accelerator cannot be allowed to directly access ca-
pability metadata, or it could forge capabilities. How-
ever, if the capabilities correspond to physical addresses
and can be cached in a structure at the accelerator, the
Protection Table and BCC can store and verify these
permissions. For permissions at finer granularities than
4KB pages, an alternate format for Border Control’s
Protection Table and BCC may be more appropriate,
to reduce storage overhead.

3.4.2 Virtualization
We have defined Border Control to operate with an

unvirtualized trusted OS. Border Control can also op-
erate with a trusted Virtual Machine Monitor (VMM)
below guest OSes. In this case, the VMM allocates
the Protection Table in (host physical) memory that
is inaccessible to guest OSes. The present implemen-
tation works unchanged because table indexing uses
“bare-metal” physical addresses: unvirtualized or host.

3.4.3 Cache Organization Requirements
Our implementation of Border Control places minor

constraints on accelerator cache organizations. One in-
variant Border Control requires of cache coherence is
that an untrusted cache should never provide data for
a block for which it does not have write permission.
This is simple to enforce in an inclusive or non-inclusive
M(O)(E)SI cache: the ownership of non-writable blocks

should always remain with the directory or the trusted
cache hierarchy—for example, by not allowing a read-
only request to be answered with an owned E state.

For exclusive caches, this invariant requires exclusive
cache behavior to be slightly modified. Specifically,
when a block is sent from a shared cache to the pri-
vate accelerator cache, it is normally invalidated at the
shared cache, so that there is at most one level of the
cache hierarchy holding the block. If the block was dirty
when sent to the accelerator, the copy in memory will
be stale and the accelerator will need to write back data
for a block for which it does not have write permission,
violating the above invariant. A solution is to require
that any dirty block requested by the accelerator with
read-only permissions first be written back to memory.

3.4.4 Page Size
We assumed above that page size is 4KB, which is the

minimum page size on most systems. However, some
workloads see significant performance benefits when us-
ing larger page sizes. Our implementation of Border
Control works with larger page sizes. When inserting
a new translation for a large page, we can update the
Protection Table and BCC entries for every 4KB page
covered by the large page. Thus, for a 2MB page, Bor-
der Control updates the entries for 512 entries. This is
the size of a single BCC entry or one memory block in
our system with 128 byte blocks, so using 2MB pages
does not cause any difficulties. More complex and effi-
cient mechanisms may be required if future accelerators
commonly use large pages.

4. BORDER CONTROL FAQ
We seek to anticipate and answer questions readers

may have regarding Border Control and its alternatives.

Why not perfectly verify accelerator hardware?
Perfect verification of accelerator hardware would elim-

inate the problems associated with malicious or buggy
hardware design. However, accelerators that wish to
access shared memory are likely to be too complex to
easily validate, especially in the presence of die stacking
and/or malicious hardware which is intended to be dif-
ficult to detect [33, 34]. Even first-party hardware has
bugs, as shown by the errata released by companies such
as Intel and AMD [17,19–21,35]. Border Control makes
perfect verification unnecessary by sandboxing memory
errors, so that they can only affect processes running on
the imperfect accelerator.

Why not eschew third-party accelerators?
Using only trusted (first-party) hardware could pre-

vent the accelerator from generating incorrect memory
requests, as all generation and propagation of physical
addresses would occur in trusted hardware. However,
we hypothesize that with the increasing prevalence of
accelerators, there will be economic benefits to being
able to purchase IP from third parties.

Why not forbid use of physical addresses?
Instead of disallowing all caches, Border Control can

also be implemented by preventing the accelerator from

using physical addresses, but letting it use caches with
virtual addresses. Then the virtual-to-physical transla-
tion occurs at the border, giving the accelerator no way
to access physical pages belonging to other processes.

There are a number of known drawbacks to virtual
caches [36, 37], including problems with synonyms and
homonyms. In particular, implementing coherence is
significantly more difficult, especially because current
CPU caches use physical addresses only. Recently pro-
posed designs with virtual accelerator caches require
modifications to the CPU coherence protocol (VIPS-
M [38]), or do not allow homonyms or synonyms in the
accelerator caches (FUSION [10]). Border Control al-
lows standard cache coherence using physical addresses,
including handling homonyms and synonyms.

Why not limit to “safe” memory ranges?
The system could use static regions and mark ranges

of physical addresses which the accelerator is allowed
to access, requiring applications to (either explicitly or
implicitly) copy data into the accelerator address space.
However, copying data between address spaces incurs a
performance penalty, and it may be difficult to deter-
mine a priori which memory the accelerator will use.
Also, limiting data to a contiguous range may also re-
quire rearranging the layout of data and updating point-
ers accordingly. Border Control allows full shared vir-
tual memory between the accelerator and CPU.

Why not allow caches and TLBs and do address
translation again at the border to verify?

Border Control could be implemented by doing a back-
wards translation from physical to virtual addresses and
checking permissions with the process page table. Both
Linux and Windows contain OS structures to perform
reverse translation for swapping. However, these struc-
tures are OS-specific, and thus not good candidates for
being accessed by hardware. Instead, this would require
frequent traps into the OS, which may have performance
impacts both on the accelerator process and host pro-
cesses. Our implementation of Border Control relies on
the insight that performing a reverse translation not
required to determine access permissions.

5. EVALUATION

5.1 Methodology
Border Control aims to provide safety without signif-

icant performance or storage overheads. We quantita-
tively evaluate Border Control and several other safety
approaches on the GPGPU, a high-performance acceler-
ator which is capable of high memory traffic rates and
irregular memory reference patterns. A GPGPU is a
stress-test for memory safety mechanisms.

We summarize the configurations for each approach
in Table 2 and describe them in detail below. We evalu-
ate five approaches to memory safety. We use the unsafe
ATS-only IOMMU as a baseline, where the IOMMU
serves only to perform initial address translation but
the GPU uses physical addresses in its TLB and caches.
This enables the GPU to use all performance optimiza-

Safe? L1 $ L1 TLB L2 $ BCC
ATS-only

7 3 3 3 N/A
IOMMU
Full

3 — — — N/A
IOMMU

CAPI-like 3 — — 3 N/A

Border
3 3 3 3 —

Control-noBCC
Border

3 3 3 3 3
Control-BCC

Table 2: Comparison of configurations under study.

tions, and is the norm in coherent integrated GPUs to-
day, but does not satisfy our security goal.

The full IOMMU configuration is a simple approach
to safety, appropriate for low-performance accelerators.
For the IOMMU to enforce safety, the accelerator must
issue every memory request as a virtual address to the
IOMMU, which performs translation and permissions
checking. We therefore remove the accelerator caches
and accelerator TLB, but leave the L2 TLB because the
IOMMU caches translations. Although this configura-
tion is unrealistic for high-performance, high-bandwidth
accelerators like GPUs, we include it to illustrate the
challenges of providing safety using existing mechanisms.

The CAPI-like configuration is modeled on the phi-
losophy of IBM CAPI, where the accelerator caches and
TLB are implemented in the trusted system. Thus, they
are more distant and less tightly integrated with the ac-
celerator. We model the longer latency to the trusted
accelerator cache by including only a shared L2 cache.

We evaluate two Border Control configurations. First,
Border Control-noBCC includes the Protection Table
for safety but does not include the BCC, to show the
impact of caching the permission information. Border
Control allows standard GPU performance optimiza-
tions: accelerator L1 and L2 caches and accelerator
TLBs. The Border Control-BCC configuration adds in
the BCC for higher performance.

To explore the varying pressures different accelera-
tors put on Border Control, we evaluate two GPU con-
figurations, a highly threaded GPU and a moderately
threaded GPU. The highly threaded GPU is similar to a
modern integrated GPU (e.g., AMD Kaveri [14]) with
eight compute units, each with many execution con-
texts. This configuration is a proxy for a high-per-
formance, latency-tolerant accelerator. The moderately
threaded GPU has a single compute unit and can exe-
cute a single workgroup (thread block) at a time, but it
executes multiple wavefronts (execution contexts). This
configuration is a proxy for a more latency-sensitive ac-
celerator.

We use a variety of workloads to explore a diverse set
of high-performance accelerator behaviors. We evaluate
Border Control with workloads from the Rodinia bench-
mark suite [39], including machine-learning, bioinfor-
matics, graph, and scientific workloads. These work-
loads range from regular memory access patterns (e.g.,
lud) to irregular, data-dependent accesses (e.g., bfs).
They use a unified address space between the CPU and
GPU rather than explicit memory copies.

CPU
CPU Cores 1
CPU Caches 64KB L1, 2MB L2
CPU Frequency 3 GHz

GPU
Cores (highly threaded) 8
Cores (moderately threaded) 1
Caches (highly threaded) 16KB L1, shared 256KB L2
Caches (moderately threaded) 16KB L1, shared 64KB L2
L1 TLB 64 entries
Shared L2 TLB (trusted) 512 entries
GPU Frequency 700 MHz

Memory System
Peak Memory Bandwidth 180 GB/s

Border Control
BCC Size 8KB
BCC Access Latency 10 cycles
Protection Table Size 196KB
Protection Table Access La-
tency

100 cycles

Table 3: Simulation configuration details.

To simulate our system, we use the open-source gem5-
gpu simulator [40], which combines gem5 [41] and GPGPU-
Sim [42]. We integrated our Border Control implemen-
tation into the coherence protocol. Table 3 contains the
details of the system we simulated. We use a MOESI
cache coherence protocol with a null directory for coher-
ence between the CPU and the GPU. Within the GPU,
we use a simple write-through coherence protocol. This
system is similar to current systems with an integrated
GPU (e.g., AMD Kaveri [14]), and has increased mem-
ory bandwidth to simulate future systems.

5.2 Results
To better understand the tradeoff between perfor-

mance and safety, we evaluate the runtime overheads
of Border Control and the other approaches to safety
compared to the unsafe baseline (ATS-only IOMMU).
Figure 4 shows the runtime overhead of the approaches
we evaluate, for both GPU configurations.

ATS-only IOMMU The ATS-only IOMMU has no
overhead, and all other configurations are normalized to
it. However, it does not provide any safety guarantees.

Full IOMMU The first bar (red) in Figure 4 shows
the impact of the full IOMMU: geometric mean of 374%
runtime overhead for the highly threaded case and 85%
for moderately threaded. The overhead is higher in
the highly threaded case because the 8 core GPU is
capable of issuing a high bandwidth of requests, and
without the L2 to filter some of this bandwidth, the
DRAM is overwhelmed and performance suffers. The
moderately threaded case does not saturate the DRAM
bandwidth and sees less performance degradation, but
runtime overhead is still impractically high.

CAPI-Like (second, blue bar of Figure 4). The av-
erage runtime overhead for the CAPI-like configuration
is only 3.81% in the highly threaded case. There are
a few benchmarks (e.g., pathfinder, hotspot) that show
almost no performance degradation. This is not sur-
prising, as the GPU is designed to tolerate high mem-
ory latency. However, the moderately threaded case has
higher overhead, at 16.5% on average. This is because

bac
kpr
op bfs

hot
spo
t lud nn nw

pat
hfin

der
0%

10%

20%

30%

40%

50%
Ru
nt
im
e
ov
er
he
ad

143% 983% 160% 898% 176% 814% 215%

(a) Highly threaded GPU

Full
IOMMU

CAPI-like

Border
Control
-noBCC
Border
Control
-BCC

bac
kpr

op bfs
hot

spo
t lud nn nw

pat
hfin

der
0%

10%

20%

30%

40%

50%

Ru
nt
im

e
ov

er
he

ad

80% 253% 82% 178% 55%

(b) Moderately threaded GPU

Figure 4: Runtime overhead compared to ATS-only IOMMU (which has 0% overhead).

back-
prop

bfs hot-
spot

lud nn nw path-
finder

AVG
0.00
0.05
0.10
0.15
0.20
0.25
0.30

Re
qu

es
ts
 p
er
 C
yc
le

Figure 5: Number of requests per cycle checked by
Border Control for the highly threaded GPU.

the moderately threaded GPU does not have enough
execution contexts to hide the increased memory la-
tency. The CAPI-like configuration has lower overhead
than the full IOMMU, but may still cause significant
performance degradation, especially for more latency-
sensitive accelerators.

Border Control-noBCC (third, purple bar of Fig-
ure 4). Border Control without a BCC has on average
2.04% runtime overhead for highly threaded and 7.26%
for moderately threaded. Similarly to the CAPI-like
configuration, the extra latency and bandwidth from ac-
cessing the protection table affects the the moderately
threaded GPU more than the highly threaded GPU.
Even without a BCC, Border Control reduces execu-
tion overhead compared to the IOMMU and CAPI-like
configurations.

Border Control-BCC (fourth, green bar of Fig-
ure 4). Border Control with a BCC has an average
runtime overhead for the highly threaded GPU of just
0.15%, and 0.84% for the moderately threaded case.
The BCC eliminates the additional memory access on
each accelerator memory access, improving performance.

In summary, Border Control with a BCC provides
safety with almost no overhead over the unsafe baseline.
For the highly threaded case, Border Control attains
an average of 4.74× speedup over the full IOMMU and
1.04× over the CAPI-like configuration. For the moder-
ately threaded case, Border Control is on average 1.83×
faster than the full IOMMU and 1.16× faster than the
CAPI-like configuration.

5.2.1 Border Control Requests
Figure 5 shows the number of requests per cycle checked

0 200 400 600 800 1000
BCC size (bytes)

0.0

0.2

0.4

0.6

0.8

1.0

BC
C
M
is
s
Ra

tio

1 pages/entry
2 pages/entry
32 pages/entry
512 pages/entry

Figure 6: BCC miss ratio when varying BCC size
and number of pages per entry.

by Border Control for the highly threaded GPU. On av-
erage, we saw approximately 0.11 requests per cycle, but
there is significant variability: from 0.025 for backprop
to 0.29 for bfs. From this data, we conclude that band-
width at Border Control is not a bottleneck. This is not
surprising since the private accelerator caches provide
good bandwidth filtering for the rest of the system.

5.2.2 BCC Sensitivity Analysis
We show the results of a sensitivity analysis of BCC

size in Figure 6, which gives the miss ratio at the BCC as
size increases. Each line represents a different BCC en-
try size, from 1 page/entry (2 bits) up to 512 pages/entry
(1024 bits) with the addition of a 36-bit tag per entry.
The miss ratio is averaged over the benchmarks.

For the workloads we evaluate, storing multiple pages
per entry shows a large benefit, especially when storing
512 pages (a reach of 2MB) per entry. Since there is
spatial locality, larger entries reduce the per-page tag
overhead. For a 1KB BCC with 512 pages/entry, the
average BCC miss rate is below 0.1% for our workloads.
However, we conservatively use an 8KB BCC, as it is
still a small area overhead and may be more appropriate
for larger, future workloads.

5.2.3 Area and Memory Storage Overheads
Our Border Control mechanism has minimal space

overhead. The Protection Table uses 0.006% of physical
memory capacity per active accelerator. The BCC was
effective for our workloads with 64 entries of 128 bytes
each, for a total of 8KB.

0 200 400 600 800 1000
Permission downgrades per second

0.0%

0.1%

0.2%

0.3%

0.4%

0.5%
Ru

nt
im

e
ov

er
he

ad

Linux
Scheduling

Rate

Border Control-BCC Highly threaded
Border Control-BCC Moderately threaded
ATS-only IOMMU Highly threaded
ATS-only IOMMU Moderately threaded

Figure 7: Runtime overhead with varying frequen-
cies of page permission downgrades.

5.2.4 Sensitivity to Memory Mapping Updates
When memory mappings are updated and page per-

missions are downgraded, any accelerator must finish
all outstanding requests (where most of the downgrade
time is spent), invalidate its TLB entries, and the ATS
must flush its caches. These actions occur even with
trusted accelerators. Our implementation of Border
Control maintains safety and correctness by also flush-
ing the accelerator caches, the Protection Table, and
the BCC, which incurs additional overhead (details dis-
cussed in Section 3.2.4). Figure 7 shows that the over-
head for permission downgrades is negligible (approxi-
mately 0.02%) in the most common case of downgrades
today, context switches (10–200 downgrades per sec-
ond). Additionally, the overhead for permission down-
grades continues to be small even when the rate of
downgrades is much higher, as may be common in fu-
ture systems. Figure 7 also shows that Border Control
incurs roughly twice the overhead of the unsafe ATS-
only IOMMU. This increased overhead is mostly due
to writing back dirty data in the accelerator L2 cache
(highly threaded) or compulsory cache misses (moder-
ately threaded).

6. RELATED WORK
Some previous work is similar to Border Control in in-

tent or mechanism. Current commercial approaches to
protection against bad memory accesses were discussed
in Section 2.3. We briefly discuss other work below.

rIOMMU [43] decreases IOMMU overheads for high-
bandwidth I/O devices such as NICs and PCIe SSD
drives. It drastically reduces IOMMU overheads while
ensuring safety, but relies on the device using ring buffers,
which are accessed in a predictable fashion. rIOMMU is
not intended for devices that make unpredictable fine-
grained memory accesses.

Hardware Information Flow Tracking (IFT) can pro-
vide comprehensive system safety guarantees though
tracking untrusted data at the gate level [44]. How-
ever, this protection incurs large overheads relative to
unsafe systems. Border Control focuses on one specific
safety guarantee, but works with existing systems with
very low overhead.

Hive [45] is an operating system designed for the
Stanford FLASH [46] to provide fault containment. It

protects against wild writes to remote memory by using
permission vectors, to simplify recovery in the presence
of hardware and software faults. Hive assumes that the
hardware is correctly implemented but may have (non-
Byzantine) software or hardware faults.

Intel’s noDMA table and AMD’s Device Exclusive
Vector (DEV) were designed to protect against buggy
or misconfigured devices by allowing the system to des-
ignate some addresses as not accessible by devices, and
have been subsumed by the IOMMU.

Some previous work decouples translation and pro-
tection for all memory accesses. HP’s PA-RISC and the
single address space operating system [47,48] and Mon-
driaan memory protection [31] have some similarities to
our implementation of Border Control, but with differ-
ent assumptions and goals. The single address space
OS attempts to simplify sharing and increase cache ac-
cess speed. Mondriaan provides fine-grained (word or
even byte-level) permissions, enabling fine-grained shar-
ing and zero-copy networking. These approaches are
replacements for the current page-based memory pro-
tection system, and rely on correct hardware. Border
Control can use permissions from these approaches to
provide memory protection.

Some approaches use metadata to enforce safety guar-
antees. The IBM System/360 and successors associate
protection keys with each physical page [49] and check
them before writes for software (but not hardware) se-
curity. The SPARC M7 provides Realtime Application
Data Integrity (ADI) to help prevent buffer overflows
and stale memory references [5], requiring pointers to
have correct version numbers. However, version num-
bers may be guessable by the accelerator.

Intel Trusted Execution Technology is a hardware ex-
tension that protects against attacks by malicious soft-
ware and firmware [50]. It protects the launch stack and
boot process from threats, but not against malicious or
buggy hardware components in the system.

7. CONCLUSION
Specialized hardware accelerators, including ones that

directly access host system memory, are becoming more
prevalent and more powerful, leading to new security
and reliability challenges. In particular, incorrect mem-
ory accesses from accelerators can cause leaks, corrup-
tion, or crashes even for processes not running on the
accelerator. Border Control provides full protection
against incorrect memory accesses while maintaining
high performance, and with low storage overhead.

8. ACKNOWLEDGEMENTS
We would like to thank Arka Basu, Tony Nowatzki,

Marc Orr, Guri Sohi, Mike Swift, and Hongil Yoon for
feedback on this work. This work is supported in part
by the National Science Foundation (CCF-1218323, CNS-
1302260, CCF-1438992, CCF-1533885), Cisco Systems
Distinguished Graduate Fellowship, John P. Morgridge
Chair, Google, and the University of Wisconsin–Madison
(Named Professorship). Hill and Wood have a signifi-
cant financial interest in AMD and Google.

9. REFERENCES
[1] “Regulation (EC) No 562/2006 of the European Parliament

and of the Council of 15 March 2006 establishing a
Community Code on the rules governing the movement of
persons across borders (Schengen Borders Code),” 2006.

[2] W.-C. Park, H.-J. Shin, B. Lee, H. Yoon, and T.-D. Han,
“RayChip: Real-time ray-tracing chip for embedded
applications,” in Hot Chips 26, 2014.

[3] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger,
“Neural acceleration for general-purpose approximate
programs,” in MICRO-45, 2012.

[4] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and
P. Ranganathan, “Meet the walkers: Accelerating index
traversals for in-memory databases,” in MICRO-46, 2013.

[5] S. Phillips, “M7: Next generation SPARC,” in Hot Chips
26, 2014.

[6] K. Atasu, R. Polig, C. Hagleitner, and F. R. Reiss,
“Hardware-accelerated regular expression matching for
high-throughput text analytics,” in FPL 23, 2013.

[7] V. Rajagopalan, “All programmable devices: Not just an
FPGA anymore,” MICRO-45, 2013. Keynote presentation.

[8] B. Black, “Die stacking is happening!.” MICRO-45, 2013.
Keynote presentation., Dec. 2013.

[9] P. Rogers, “Heterogeneous system architecture overview,” in
Hot Chips 25, 2013.

[10] S. Kumar, A. Shriraman, and N. Vedula, “Fusion : Design
tradeoffs in coherent cache hierarchies for accelerators,” in
ISCA 42, 2015.

[11] J. Sell and P. O’Connor, “The Xbox One system on a chip
and Kinect sensor,” IEEE Micro, vol. 34, Mar. 2014.

[12] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel,
“Capi: A coherent accelerator processor interface,” IBM
Journal of Research and Development, vol. 59, pp. 7:1–7:7,
Jan. 2015.

[13] P. Hammarlund, “4th generation Intel core processor,
codenamed haswell,” in Hot Chips 26, 2014.

[14] AMD, “AMD’s most advanced APU ever.”
http://www.amd.com/us/products/desktop/processors/a-
series/Pages/nextgenapu.aspx.

[15] J. Goodacre, “The evolution of the ARM architecture
towards big data and the data-centre.”
http://virtical.upv.es/pub/sc13.pdf, Nov. 2013.

[16] US Department of Defense, “Defense science board task
force on high performance microchip supply,” 2005.

[17] M. T. Inc, MIPS R4000PC/SC Errata, Processor Revision
2.2 and 3.0. May 1994.

[18] “Zynq-7000 all programmable SoC.”
http://www.xilinx.com/products/silicon-
devices/soc/zynq-7000.html, 2014.

[19] A. L. Shimpi, “AMD’s B3 stepping Phenom previewed,
TLB hardware fix tested,” Mar. 2008.

[20] I. Corporation, “Intel Core i7-900 desktop processor
extreme edition series and Intel Core i7-900 desktop
processor series specification update.”
http://download.intel.com/design/processor/specupdt/320836.pdf,
May 2011.

[21] Intel Xeon Processor E5 Family: Specification Update, Jan.
2014.

[22] AMD I/O Virtualization Technology (IOMMU)
Specification, Revision 2.00, Mar. 2011.

[23] Intel Virtualization Technology for Directed I/O, Revision
2.3, Oct. 2014.

[24] ARM System Memory Management Unit Architecture
Specification, SMMU architecture version 2.0, 2012-2013.

[25] J. Stuecheli, “Power8,” in Hot Chips 25, 2013.

[26] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham,

“Efficient software-based fault isolation,” in SOSP 14, 1993.

[27] J. Saltzer and M. Schroeder, “The protection of information
in computer systems,” Proc. of the IEEE, vol. 63, Sept
1975.

[28] ARM Security Technology: Building a Secure System using
TrustZone Technology.

[29] M. Gorman, “Understanding the Linux virtual memory
manager,” 2004.

[30] M. Talluri and M. D. Hill, “Surpassing the TLB
performance of superpages with less operating system
support,” in ASPLOS VI, 1994.

[31] E. Witchel, J. Cates, and K. Asanovic, “Mondrian memory
protection,” in ASPLOS X, 2002.

[32] H. M. Levy, Capability-Based Computer Systems. Digital
Press, 1984.

[33] A. Waksman and S. Sethumadhavan, “Silencing hardware
backdoors,” in SP, 2011.

[34] C. Sturton, M. Hicks, D. Wagner, and S. T. King,
“Defeating UCI: Building stealthy and malicious hardware,”
in SP, 2011.

[35] D. Price, “Pentium FDIV flaw-lessons learned,” Micro,
IEEE, vol. 15, pp. 86–88, Apr. 1995.

[36] M. Cekleov and M. Dubois, “Virtual-address caches part 1:
Problems and solutions in uniprocessors,” IEEE Micro,
vol. 17, Sept 1997.

[37] M. Cekleov and M. Dubois, “Virtual-address caches, part 2:
Multiprocessor issues,” IEEE Micro, vol. 17, Nov 1997.

[38] S. Kaxiras and A. Ros, “A new perspective for efficient
virtual-cache coherence,” in ISCA 40, 2013.

[39] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H.
Lee, and K. Skadron, “Rodinia: A benchmark suite for
heterogeneous computing,” in IISWC, 2009.

[40] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A.
Wood, “gem5-gpu: A heterogeneous cpu-gpu simulator,”
Computer Architecture Letters, vol. 13, no. 1.

[41] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt,
A. Saidi, A. Basu, J. Hestness, D. R. Hower, T. Krishna,
S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D.
Hill, and D. A. Wood, “The gem5 simulator,” CAN, 2011.

[42] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and
T. M. Aamodt, “Analyzing CUDA workloads using a
detailed GPU simulator,” in ISPASS, 2009.

[43] M. Malka, N. Amit, M. Ben-Yehuda, and D. Tsafrir,
“rIOMMU: Efficient IOMMU for I/O devices that employ
ring buffers,” in ASPLOS 20, 2015.

[44] M. Tiwari, J. K. Oberg, X. Li, J. Valamehr, T. Levil,
B. Hardekopf, R. Kastner, F. T. Chong, and T. Sherwood,
“Crafting a usable microkernel, processor, and I/O security
system with strict and provable information flow security,”
in ISCA 38, 2011.

[45] J. Chapin, M. Rosenblum, S. Devine, T. Lahiri,
D. Teodosiu, and A. Gupta, “Hive: Fault containment for
shared-memory multiprocessors,” in SOSP 15, 1995.

[46] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Simoni,
K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter,
M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy,
“The Stanford FLASH multiprocessor,” in ISCA 21, 1994.

[47] E. J. Koldinger, J. S. Chase, and S. J. Eggers,
“Architectural support for single address space operating
systems,” in ASPLOS V, 1992.

[48] J. Wilkes and B. Sears, “A comparison of protection
lookaside buffers and the PA-RISC protection architecture,”
Tech. Rep. HPL-92-55, Hewlett Packard Labs, 1992.

[49] G. M. Amdahl, G. A. Blaauw, and F. P. Brooks,
“Architecture of the IBM System/360,” IBM Journal of
Research and Development, vol. 8, pp. 87–101, Apr. 1964.

[50] J. Greene, “Intel trusted execution technology,” Intel
Technology Whitepaper, 2012.

http://www.amd.com/us/products/desktop/processors/a-series/Pages/nextgenapu.aspx
http://www.amd.com/us/products/desktop/processors/a-series/Pages/nextgenapu.aspx
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

	Introduction
	Goals and Current Commercial Approaches
	Threat Model
	Threat Model Scope
	Existing Commercial Approaches

	Border Control
	Border Control Structures
	Protection Table Design
	Border Control Cache Design

	Border Control Operation
	Process Initialization (Figure 3a)
	Protection Table Insertion (Figure 3b)
	Accelerator Memory Request (Figure 3c)
	Memory Mapping Update (Figure 3d)
	Process Completion (Figure 3e)

	Multiprocess Accelerators
	Border Control Design Considerations
	Alternate Permission Sources
	Virtualization
	Cache Organization Requirements
	Page Size

	Border Control FAQ
	Evaluation
	Methodology
	Results
	Border Control Requests
	BCC Sensitivity Analysis
	Area and Memory Storage Overheads
	Sensitivity to Memory Mapping Updates

	Related Work
	Conclusion
	Acknowledgements
	References

