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Abstract— Virtualization provides value for many workloads, 
but its cost rises for workloads with poor memory access locali-
ty. This overhead comes from translation lookaside buffer 
(TLB) misses where the hardware performs a 2D page walk 
(up to 24 memory references on x86-64) rather than a native 
TLB miss (up to only 4 memory references). The first dimen-
sion translates guest virtual addresses to guest physical ad-
dresses, while the second translates guest physical addresses to 
host physical addresses. This paper proposes new hardware 
using direct segments with three new virtualized modes of op-
eration that significantly speed-up virtualized address transla-
tion. Further, this paper proposes two novel techniques to ad-
dress important limitations of original direct segments. First, 
self-ballooning reduces fragmentation in physical memory, and 
addresses the architectural input/output (I/O) gap in x86-64. 
Second, an escape filter provides alternate translations for 
exceptional pages within a direct segment (e.g., physical pages 
with permanent hard faults). 

We emulate the proposed hardware and prototype the 
software in Linux with KVM on x86-64. One mode—VMM 
Direct—reduces address translation overhead to near-native 
without guest application or OS changes (2% slower than na-
tive on average), while a more aggressive mode—Dual Direct—
on big-memory workloads performs better-than-native with 
near-zero translation overhead. 

Keywords-virtual memory; virtual machines; virtualization; 
translation lookaside buffer. 

I.  INTRODUCTION 
Virtual machine monitors (VMMs)—such as KVM [33], 

Xen [6], and VMware [52]—provide an abstraction layer 
between operating systems (OSes) and hardware. The bene-
fits of virtualization include resource management, server 
consolidation, security, and fault tolerance. Virtualization in 

the cloud provides the added benefit of on-demand access to 
hardware. To this end, cloud vendors like Amazon EC2 pro-
vide VMMs with up to 244GB memory and 32 cores [5]. 

    Motivation: Virtualization’s benefits, however, come with 
overheads in processing, I/O, and memory. Fortunately, 
hardware advances in virtualization [11,40,41] (e.g., virtual-
izing I/O in hardware), have reduced these overheads sub-
stantially. However, overheads for virtualizing memory are 
not universally low. To quote a recent VMware paper: 

We will show that the increase in translation lookaside buff-
er (TLB) miss handling costs due to the hardware-assisted 
memory management unit (MMU) is the largest contributor 
to the performance gap between native and virtual servers.  
—Buell et al., 2013 [16] 

Our results corroborate Buell et al. and show that virtual-
ization degrades performance in workloads that use substan-
tial memory. Figure 1 provides a preview of the overheads 
associated with virtual memory for the native case (bar: 4K) 
and the virtualized case with the guest OS using 4KB pages 
and the VMM using 4KB, 2MB and 1GB (bars: 4K+4K, 
4K+2M, and 4K+1G, respectively). We observe that over-
heads increase drastically with virtualization and remain high 
even with larger VMM pages. This overhead makes virtual-
ization less attractive for big-memory workloads that refer-
ence vast memory with poor locality, such as key-value 
stores and databases. Our proposed design (bars: DD and 
4K+VD) mitigates these overheads. 

The goal of our work is to make virtualization’s benefits 
efficient for all workloads. To this end, we build on current 
x86-64 hardware support for memory virtualization [11,41] 
that logically performs two address translations on every 
memory reference: 
gVAgPA: guest virtual address to guest physical address 
translation via a per-process guest OS page table (gPT)  
gPAhPA: guest physical address to host physical address 
via a per-virtual machine nested page table (nPT). 

Virtualized address translation performance depends crit-
ically on memory locality. In the best case, a TLB entry di-
rectly translates gVA to hPA with no overhead. In the worst 
case, a TLB miss performs a 2D page walk that “multiplies” 
overhead vis-à-vis native, because accesses to the gPT also 
require translation by the nPT. Figure 2 depicts how x86-64 
page-table memory references can grow from a native 4 to a 
virtualized 24 references: 5 references to translate the root 
and each of 4 levels of the guest page table plus 4 references 

 
Figure 1  Overheads associated with virtual memory for selected work-

loads and configurations 
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Figure 3  Native and virtualized address translation modes supported by 

proposed hardware 

to obtain the final hPA: 5*4+4 references. Both levels of 
translation require a 4-level page table in x86-64, since each 
address space can potentially be as large as 256TB (248). 

 Proposed Design: We propose new hardware that supports 
three new virtualized modes to lower the overheads of virtu-
alized address translation. It extends direct segments [9], 
which were proposed to reduce TLB misses in unvirtualized 
(native) systems. As reviewed in Section II.B, a direct seg-
ment maps most of a process’s linear virtual address space 
with a segment, while mapping the rest with page tables.  

Figure 3 depicts the two base modes (native and virtual-
ized), one unvirtualized direct segment mode (shaded) and 
three new virtualized modes (shaded). Large rectangular 
boxes represent an x86-64 page table walk, small squares 
represent direct segment accesses (used throughout the pa-
per), and thick arrows depict the expected path of most trans-
lations. The left two modes show native (unvirtualized) 1D 
translation with and without direct segments. The right four 
modes are virtualized two-level translations with the existing 
2D page walk (base virtualized) and our three new virtual-
ized modes, representing different combinations of direct 
segments in the guest and nested address spaces. Note that 
Figure 3 shows nested translation linearly to simplify the 
illustration. 

Dual Direct mode achieves almost zero translation over-
heads for big-memory workloads with modest changes to the 
VMM, guest OS, and applications. It uses direct segments to 
map directly from gVA to hPA, bypassing both dimensions 

of virtualized address translation. 
VMM Direct mode achieves near-native performance for 

arbitrary workloads with modifications confined to only the 
VMM. It uses a direct segment to map most of a guest’s 
physical memory to host physical memory (2nd dimension: 
gPAhPA). 

Guest Direct mode provides near-native performance for 
big-memory workloads while using nested page tables in the 
VMM to facilitate services like live migration. It uses a di-
rect segment to map most guest virtual addresses to guest 
physical addresses (1st dimension: gVAgPA). 

Unvirtualized Direct Segment mode provides identical 
behavior as the original direct segment proposal [9], but with 
less intrusive hardware. 

To increase the flexibility of direct segments, we propose 
two novel techniques to address their limitations. First, a VM 
may lack contiguous physical memory needed to create a 
direct segment due to fragmentation. We address this with 
self-ballooning, which uses ballooning [52] and memory 
hotplug [38] to create contiguous physical guest memory 
from fragmented guest physical memory. Ballooning re-
moves the fragmented memory from use and hotplug adds it 
back as contiguous guest physical memory that can be used 
to create a guest direct segment. We extend self-ballooning 
to further increase the amount of contiguous guest physical 
memory by relocating memory before the x86-64 I/O gap to 
contiguous memory at the end. 

Second, we address the concern that a single faulty phys-
ical page can prevent the creation of a contiguous direct 
segment with an escape filter that allows holes in direct seg-
ments. The escape filter allows the OS to remap a few faulty 
pages within a direct segment through conventional paging. 
We find a 256-bit escape filter retains the performance 
gained by direct segments even in the presence of 16 faulty 
pages. 

We emulate our proposed hardware and prototype our 
proposed software in the Linux® operating system with 
KVM/QEMU as the VMM on x86-64. We evaluate our de-
signs with big-memory workloads (graph500, memcached, 
NPB:CG), the micro-benchmark GUPS, and compute work-
loads (SPEC® 2006 and PARSEC). VMM and Guest Direct 
modes reduce translation overheads (page walk times) to 
near-native, while Dual Direct mode makes overheads negli-
gible.  

This work is one of the first to study the memory over-
head of virtualization for virtual machines with a large 
amount of memory. Our contributions are: 
1. a quantitative analysis of address translation overheads 

for large virtualized workloads, 
2. a new virtualized address translation design using direct 

segments with three new virtualized modes for reducing 
overhead to make virtualization more attractive, 

3. a self-ballooning technique to increase contiguity of 
guest physical address, and 

4. an escape filter to handle physical memory faults that 
may exist in a direct segment. 
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Figure 2  Concept of two-level nested page table walk state machine. 
The nested page tables are rotated by 90° 
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Figure 4  Address space layout using direct segment 

II. BACKGROUND 

A. Virtualization and Memory Management 
Virtualization has been used since the 1970s [25] to run 

multiple OSes on a single machine by introducing a layer of 
indirection between hardware and operating systems called a 
hypervisor or VMM. Virtualization's renaissance began with 
Disco in 1996 [17] and progressed without hardware support 
[1,6] (e.g., dynamic binary translation [1,3]) and, after gain-
ing popularity, with hardware support [11,41]. 

Virtualization of memory management units followed the 
same software-to-hardware progression. The key software-
only technique is shadow paging [52]: the VMM uses the 
guest page table (gVAgPA) and nested page table 
(gPAhPA) to build a new shadow page table 
(gVAhPA). It points hardware to the shadow page table, 
so that TLB hits perform the translation (gVAhPA) and 
TLB misses do a standard 1D page walk. However, changes 
to guest or host page tables incur substantial performance 
overhead to keep the shadow page table coherent [1]. All 
x86-64 processors now support the 2D page walk 
(gVAgPA & gPAhPA) in hardware [11,41], as depicted 
in Figure 2. Hence, the rest of the paper assumes this sup-
port. We compare against shadow paging in Section IX.D. 

B. Direct Segments 
Direct segments use a form of segmentation along with 

paging to largely eliminate virtual memory overhead for big-
memory workloads on unvirtualized (native) hardware [9]. A 
direct segment maps a portion of a process’s linear address 
space with a segment rather than paging. Thus, a large chunk 
of a contiguous virtual address space can be mapped to con-
tiguous physical addresses with only three registers per 
hardware context: BASE, LIMIT and OFFSET where BASE 
and LIMIT are the start and end of contiguous virtual address 
space and OFFSET is the difference between the virtual ad-
dresses and physical addresses of the direct segment. For 
compatibility, the rest of the linear address space is mapped 
using conventional paging. On a memory reference, the pro-
cessor consults the segment registers and L1 TLB in parallel, 
with at most one match. A virtual address V within a direct 
segment (BASE ≤ V < LIMIT) gets translated to physical 

address V+OFFSET via simple addition avoiding the possi-
bility of a TLB miss. Figure 4 illustrates an example address 
space mapping. Basu et al. showed that direct segments can 
eliminate 99% of address translation overhead for native big-
memory applications. 

To expose this hardware to programs, Basu et al. propose 
the primary region abstraction, which is a contiguous chunk 
of virtual address space that is mapped with the same access 
permissions. A primary region can be mapped fully or par-
tially by a direct segment (shown in Figure 4). 

III. HARDWARE DESIGN AND SOFTWARE SUPPORT 
The hardware proposed supports two levels of segment 

registers that can be controlled independently by the VMM 
and guest OS and used alone, together, or not at all. The 
hardware design we propose is shown in Figure 5. This 
hardware design supports three new virtualized modes, as 
was specified in Section I. At any point in time, each guest 
process (address space) uses one mode. We next explain the 
workings of each mode using the hardware proposed, along 
with the software support required for, each mode. 

A. Dual Direct mode 
Dual Direct mode seeks a zero-D (0D) page walk. It uses 

two layers of direct segments: one, called the guest segment, 
for (most of) the first level of address translation 
(gVAgPA) and the other, called the VMM segment, for 
(most of) the second-level of translation (gPAhPA). Most 
L1 TLB misses are translated by segment registers and hence 
do not need to perform a page walk (a zero-D walk), which 
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Figure 5  (a) Address translation flow chart (b) Steps of page walk state machine for various supported modes 



gVA

gPA

hPA

Guest Direct Segment

nPT

gPT

VMM Direct Segment

 
Figure 6  Memory layout for Dual Direct mode. 

achieves better-than-base-native execution. However, this 
mode suits big-memory applications with moderate guest OS 
and VMM changes. 

Figure 6 shows the layout for gVA, gPA, and hPA ad-
dress spaces with a guest segment in yellow and a VMM 
segment in green. The direct segments can be of different 
sizes, but here the guest segment is shown as a subset of the 
VMM segment. 

Hardware Operation: Dual Direct performs the first level 
of address translation (gVAgPA) with guest segment reg-
isters BASEG, LIMITG and OFFSETG. Next, Dual Direct 
performs a second level of address translation (gPAhPA) 
with segment registers BASEV, LIMITV, and OFFSETV. 
These registers are like those of unvirtualized direct seg-
ments (Section II.B), but for both levels of translation (see 
Figure 5 (a)). 

A guest address can be in one of four categories in Dual 
Direct mode based on in which segment(s) it lies in. This is 
decided based on segment checks in hardware, BASEG ≤ 
gVA < LIMITG and BASEV ≤ gPA < LIMITV. TABLE I 
shows the translation steps in each of the categories. In the 
best case, the guest address lies in both segments (Case: 
“Both”) for which a L1 TLB miss will have a 0D page walk. 

On VM-exit/entry, hardware must save/restore registers 
BASEV, LIMITV and OFFSETV along with other VM state. 

Software Support: For Dual Direct mode, both the VMM 
and guest segments need modest software support. The 
VMM requires two key changes: (a) it must request contigu-
ous host physical memory, and (b) it must set/clear segment 
registers when switching between guest VMs. The value of 
the BASEV, LIMITV, and OFFSETV, registers are the start 
and end of the guest physical contiguous memory region, 
and the difference between the guest and host physical ad-
dresses of the region. 

Support for guest segments for the first level of transla-
tion (gVAgPA) follows unvirtualized direct segments 

(Section II.B), (i.e., suiting big-memory applications with a 
primary region and OS support for allocating contiguous 
physical addresses). The guest segment register values are 
set per guest process and must be set during guest OS con-
text switches. With Dual Direct, however, the OS becomes 
the guest OS and the physical address range is a gPA range. 
Like direct segments, restrictions imposed on primary re-
gions make this less useful for compute workloads. 

B. VMM Direct mode 
VMM Direct mode seeks a 1D (faster than 2D) page 

walk with no application or guest OS changes. It uses paging 
for the first level of address translation (gVAgPA) and a 
direct segment for (most of) the second (gPAhPA). This 
allows applications to use a dense or sparse gVA space, and 
leaves the guest OS unchanged with standard paging. Figure 
7 shows the memory layout for gVA, gPA, and hPA address 
spaces with a VMM segment in green. 

Hardware Operation: For VMM Direct mode, BASEG is 
set equal to LIMITG to nullify the effect of the dashed boxes 
labeled Dual Direct and Guest Direct mode in Figure 5.  

A guest address can be in one of two categories based on 
whether the guest address is in the VMM segment or not. 
The translation in each case is covered by the “VMM seg-
ment only” and “Neither” respectively from TABLE I. 

The key advantage of VMM Direct mode is that TLB 
misses take only up to 4 memory accesses and 5 calculations, 
because guest page-table accesses (gPA) are translated with 
the direct segments rather than the nPT. 

On VM-exit/entry, hardware must save/restore registers 
BASEV, LIMITV and OFFSETV along with other VM state. 

Software Support: VMM Direct mode requires no appli-
cation or guest OS changes, but only VMM support. VMM 
Direct requires only the two key VMM changes that were 
described for Dual Direct mode. With small guest OS chang-
es, better performance can be achieved. 

The x86-64 architecture has a gap in the physical address 

TABLE I  STEPS IN ADDRESS TRANSLATION OF A GUEST VIRTUAL ADDRESS IN DUAL DIRECT MODE. 
Steps of 

Translation 
Guest Virtual Address in Guest Segment or VMM Segment? 

Both VMM segment only  Guest segment only Neither 
L1 TLB Hit Translation complete Translation complete Translation complete Translation complete 

L1 TLB Miss hPA=gVA+OFFSETG+OFFSETV     
Insert L1 TLB entry 

L2 TLB lookup L2 TLB lookup L2 TLB lookup 

L2 TLB Hit — Insert L1 TLB entry Insert L1 TLB entry Insert L1 TLB entry 
L2 TLB Miss — Invoke PTW Invoke PTW Invoke PTW 

PTW: 
gVAgPA 

— Walk guest OS page table gPA=gVA+OFFSETV  Walk guest page table  

PTW: 
gPAhPA 

— For each gPA, 
hPA=gPA+OFFSETV or walk 

nested page table 

Walk nested page table For each gPA, walk nest-
ed page table 

PTW: End — Insert L1 TLB entry Insert L1 TLB entry Insert L1 TLB entry 
 

gVA

gPA

hPA

VMM Direct Segment
nPT

gPT

 
Figure 7  Memory layout for VMM Direct mode 



space between 3-4GB for memory-mapped I/O [29]. In Sec-
tion IV, we describe how a simple OS extension can relocate 
memory before the gap to create a larger contiguous region 
above the gap. Moreover, the guest OS must allocate page 
tables within the VMM direct segment, which can be 
achieved with a guest kernel module like VMware Tools. 

C. Guest Direct mode 
Guest Direct mode seeks a 1D page walk while support-

ing features like page sharing and live migration that depend 
on 4KB nested pages. It uses a guest segment for (most of) 
the first level of translation (gVAgPA) and nested paging 
for the second (gPAhPA). This mode retains nested page 
table in the VMM while providing near-base-native speeds. 
It suits big-memory workloads along with small guest-OS 
changes. Figure 8 shows the memory layout for gVA, gPA, 
and hPA address spaces with a guest segment in yellow. 

Hardware Operation: For Guest Direct mode, BASEV is 
set equal to LIMITV thus nullifying the effect of dashed box 
labeled Dual Direct mode and VMM Direct mode in Figure 
5. A guest address can be in one of two categories based on 
whether the guest address is in a Guest segment or not.  
These are covered by the cases “Guest segment only” and 
“Neither” respectively from TABLE I. 

The key advantage of Guest Direct mode is that TLB 
misses make 4 memory accesses and 1 calculation, which 
costs closer to a native 1D page walk (4 accesses and 0 cal-
culations) and much less than the 24-access 2D page walk. 

On every guest OS context switch, hardware must save 
and restore BASEG, LIMITG, and OFFSETG, along with oth-
er guest process state. 

Software Support: Guest Direct mode does not require 
any changes to the VMM, but requires the guest OS support 
proposed for Dual Direct mode. 

D. Unvirtualized Direct Segment mode 
Direct segment mode operates just like the original direct 

segments [9] but with less intrusive hardware. The key ad-
vantage of Direct Segment mode is that TLB misses make 
only 1 calculation, as compared to a native 1D page walk (up 
to 4 accesses). 

This mode is supported by using only guest segment reg-
isters to translate from VAPA in parallel with the L2 TLB 
and introduces a L1 TLB entry. This hardware support is less 
intrusive than the originally proposed design [9], as it per-
forms the segment calculation in parallel with the L2 TLB 
lookup instead of L1 TLB lookup, where it could affect pipe-
line timing. The software support remains the same. 

E. Summary 
The new hardware for virtualized direct segments logi-

cally resides in two places. On the L1 TLB miss path, Dual 
Direct-mode hardware consults segment registers to bypass 
the page walk entirely. We also modify the page-walk hard-
ware to flatten one or two dimensions of the walk based on 
the mode. The hardware along with software support allows 
switching between modes dynamically during execution. 

TABLE II summarizes the tradeoffs among the modes. 
The modes can achieve faster page walks at the cost of addi-
tional changes or restrictions. Dual Direct provides only lim-
ited support for memory overcommit, as it uses direct seg-
ments at both address translation levels. VMM Direct sup-
ports guest swapping whereas Guest Direct also supports 
page sharing, ballooning, and VMM swapping. All tech-
niques can always be used for memory outside direct seg-
ments with all three modes. 

IV. REDUCING MEMORY FRAGMENTATION 
Guest and host physical memory fragmentation can pre-

vent creation of direct segments at one or both levels. More-
over, the x86-64 architecture fragments the physical memory 
for memory-mapped I/O. We discuss few ways to reduce 
memory fragmentation to enable creation of direct segments. 

Self-ballooning: To handle guest physical memory frag-
mentation and facilitate quick creation of guest segments, we 
propose a novel software optimization: self-ballooning. 

The goal of this technique is to provide contiguous guest 
physical memory quickly from fragmented free guest physi-
cal memory without the cost of memory compaction. Self-
ballooning applies to Guest Direct mode and creates contig-
uous memory in two steps: 

First, our balloon driver runs in the guest OS, and like a 
standard balloon driver [52], asks the guest OS for a set of 
pages that can be reclaimed by the VMM. The balloon driver 
pins and reserves this memory so it cannot be used by guest 
applications nor swapped out. 

Second, the balloon driver passes these pages to the 
VMM, which uses memory hotplug to add the same amount 
of memory back to the VM. Memory hotplug [38] is de-
signed for hot swapping or powering off memory chips. The 
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Figure 8  Memory layout for Guest Direct mode 

TABLE II  TRADE-OFFS IN VARIOUS VIRTUALIZED DESIGNS. 
Properties Base  

Virtualized 
Dual  

Direct 
VMM 
Direct 

Guest  
Direct 

Page walk  
dimensions 

2D 0D 1D 1D 

# of memory  
accesses for 

most page walks 

24 0 4 4 

# of base-bound 
checks for page 

walks 

0 1 5 1 

Guest OS  
modifications 

none required none required 

VMM  
modifications 

none required required none 

Application  
category 

any big 
memory 

any big 
memory 

Page sharing unrestricted limited limited unrestricted 
Ballooning unrestricted limited limited unrestricted 

Guest swapping unrestricted limited unrestricted limited 
VMM swapping unrestricted limited limited unrestricted 

 



newly added contiguous guest physical memory can now 
serve as the guest segment in the VM. Thus, the VMM can 
create contiguous guest physical memory from an assortment 
of pages. Figure 9 illustrates self-ballooning. 

While designed for Guest Direct segments, self-
ballooning can also work with standard nested page tables to 
create more large pages in a guest OS. 

Reclaiming I/O gap memory: A second source of frag-
mentation is architectural. The x86-64 architecture has an 
I/O gap, which is a ~1GB region at the high-end of the 32-bit 
(4GB) physical address space reserved for memory-mapped 
I/O [29]. This gap splits the addresses backed by physical 
memory to about 3GB before the I/O gap and the rest after, 
and prevents a single direct segment from mapping all guest 
physical memory. Normally, the chipset remaps contiguous 
physical memory to introduce the I/O gap. 

We mitigate this effect with a variation of self-ballooning 
using hot-unplug instead of ballooning to remove the guest 
physical memory. We unplug most guest physical memory 
before the I/O gap and extend memory by the same amount. 
We use hot-unplug instead of ballooning because it supports 
removing specific addresses (those before the I/O gap), ra-
ther than an arbitrary set chosen by the kernel. Moving the 
memory allows a single direct segment to map almost all 
guest physical memory. More details on implementation can 
be found in Section VI.C. This technique is effective for both 
VMM Direct and Dual Direct. 

Memory compaction: To address host physical memory 
fragmentation, we leverage the slower technique of memory 
compaction which slowly relocates pages and creates a 
VMM segment. Compaction is supported in many OSes in-
cluding Linux® [20]. Dual Direct and VMM Direct modes 
can start without a VMM segment in Guest Direct mode and 
Base Virtualized mode respectively. Once the compaction 
daemon provides enough contiguous physical memory to 
create a VMM segment, the VMM can create a VMM seg-
ment achieving higher performance through Dual Direct. 

Summary: TABLE III summarizes the modes used in frag-
mented systems. 

V. ESCAPE FILTER 
Commodity OSes commonly put faulty pages on a bad-

page list to prevent their use [26]. However, with direct seg-
ments, a single bad page can prevent creation of a large di-
rect segment. We introduce a novel hardware technique, an 
escape filter that allows holes in direct segment. If an ad-
dress is in a hole, it “escapes” segment-based translation to 
use conventional paging. Hence, the VMM or OS can still 
use paging to remap escaped pages to functioning memory. 

We implement the escape filter using a hardware Bloom 
filter that is checked in parallel with the VMM’s segment 

registers (in Dual or VMM direct modes) and the guest seg-
ment registers (in Direct Segment mode). In Guest Direct 
mode, the VMM still uses nested pages tables and can remap 
faulty pages. The VMM (or OS for Direct Segment mode) 
adds escaped pages to the Bloom filter and creates PTEs to 
map those pages. As the Bloom filter may have false posi-
tives (non-escaped pages that are falsely considered es-
caped), the VMM must create mappings for these pages as 
well. With an escape filter, an address is translated with di-
rect segments if it lies within the direct segment, but not the 
filter. The filter is part of the context state and must be 
saved/restored with segment registers. However, it can be 
small: to tolerate 16 faulty pages, we show that a 256-bit 
filter has almost zero overhead from false positives.  

The escape filter can also implement a limited number of 
pages with different protection, such as guard pages. For 
such uses, it may be useful to have escape filters at both lev-
els of translation so the guest OS can escape pages as well. 

VI. PROTOTYPE IMPLEMENTATION 
We design our prototype system for the Linux® operating 

system (x86-64) with LTS kernel v3.12.13 using QEMU 
v1.4.1 with KVM as the VMM. Our implementation has 
three pieces: (1) allocating contiguous physical memory, (2) 
emulating segmentation behavior, and (3) prototyping self-
ballooning. 

A. Contiguous Allocation 
To allocate contiguous physical memory, the OS reserves 

memory immediately after startup. We target machines run-
ning a stable set of long-lived virtual machines allowing us 
to use the mechanism naturally. The size of the virtual ma-
chine and memory requirements of big-memory applications 
[9] are often known a priori through their configuration pa-
rameters and allow us to reserve the required memory. 

B. Emulating Segments 
The hardware design described in Section III requires 

TABLE III  VARIOUS MODES UTILIZED IN FRAGMENTED SYSTEMS. 
Applica-

tions 
VM State Modes utilized 

Big-
memory 

workloads 

Host physical memory 
fragmented 

Guest Direct mode slowly 
converted to Dual Direct mode 
with host memory compaction 

Guest physical 
memory fragmented 

Dual Direct mode with self-
balloon support 

Host+Guest physical 
memory fragmented 

Guest Direct mode with self-
balloon support slowly con-
verted to Dual Direct mode 
with host memory compaction 

Compute 
workloads 

Host physical memory 
fragmented 

Base Virtualized mode slowly 
converted to VMM Direct 
mode with host memory com-
paction 

Guest physical 
memory fragmented 

VMM Direct mode 

Host+Guest physical 
memory fragmented 

Base Virtualized mode slowly 
converted to VMM Direct 
mode with host memory com-
paction 

 

Free memory
Ballooned out memory
Memory allocated

ballooned out memory  Hot-add memory
To use for guest segment

Before    
self-balloon

After
self-balloon

 
Figure 9  Illustration of guest physical memory with self-ballooning. 



new hardware support. To evaluate this design on current 
hardware, we follow a previously proposed technique [9] and 
emulate direct-segment functionality by mapping segments 
with 4KB pages. We modify the Linux page fault handler 
both in the VMM and guest OS. These changes identify page 
faults to direct segments, and compute physical addresses 
using segment offset. These computed addresses are added to 
the respective page tables by the fault handler. Thus, direct 
segments are mapped using dynamically computed PTEs. 

This approach provides a functionally correct implemen-
tation of our designs on current hardware. However, it does 
not provide any performance improvement without new 
hardware. As described in Section VII, we count events to 
predict performance with new hardware. 

C. Self-Ballooning Prototype 
We implemented self-ballooning in KVM. Each guest 

VM has an associated KVM process, which runs as a user-
space process on the host OS. The guest physical addresses 
of a VM are mapped on to the host virtual addresses of the 
KVM process, and the host Linux maps host virtual address-
es of the KVM process to host physical addresses. Figure 10 
shows a typical address space mapping in x86-64 using 
KVM. The KVM kernel component, called the KVM mod-
ule, creates nested page tables by computing combined 
gPAhVAhPA translations. The mapping gPAhVA is 
handled through memory slots. A memory slot is a contigu-
ous range of guest physical addresses that are mapped to 
contiguous virtual memory in the KVM process. There are 
only two large slots in KVM: one between 0-4GB, and an-
other for 4GB and beyond. 

Fragmented memory: We modify QEMU-KVM [33] and 
the virtio balloon driver [35] to prototype self-ballooning 
with the KVM hypervisor. KVM currently does not support 
hot-adding memory to guest OSes. Instead, we extend the 
second KVM slot by the largest amount of memory (96GB 
for our machine) that can be used for self-ballooning when 
required. This extra guest physical memory is ballooned out 
during startup and cannot be used by the guest OS. 

The guest OS invokes the modified balloon driver when 
it cannot create a guest segment due to fragmentation. The 
driver removes the required amount of memory and provides 
that to the VMM. The VMM in return informs the driver to 
release the memory from the reserved portion of guest physi-
cal memory. The guest OS can now create a guest segment 
from the newly released guest physical memory. 

I/O gap: We modify the guest OS to remove as much 
memory as possible from the first KVM slot using hotplug 

[38]. Using hotplug is similar to ballooning, and causes the 
guest OS to ignore the removed addresses. We extend the 
second KVM slot by the same amount of memory. Our ex-
periments show that 256MB is enough to boot Linux correct-
ly and the rest (3.1 GB) can be removed from the first KVM 
slot. This gives us a long address range in the gPA starting at 
4GB that can be mapped using a single segment to hPA, and 
a small 256MB range for the kernel mapped using pages. 

Memory compaction: We use the memory compaction 
daemon present in Linux [20] to aggressively perform com-
paction when required to create a direct segment. 

VII. EVALUATION METHODOLOGY 
We evaluate the proposed hardware using VMM and 

kernel modifications and hardware performance counters 
since workload size and duration makes full-system simula-
tion less appropriate. We use the counters to measure the 
number of TLB misses in native (Mn) and virtual (Mv) envi-
ronments, and the page walk cycles spent on TLB misses. 
This provides us with page walk cycles spent per TLB miss 
(Cn and Cv, respectively) for each program. We modify the 
guest OS kernel to capture all TLB misses using BadgerTrap 
[24], a tool that instruments all DTLB misses, as these 
DTLB misses benefit from our proposed hardware. 

We instrument the guest OS to extract gVA and gPA for 
a DTLB miss to determine if the address lies in a VMM or 
guest segment. We classify the miss depending on the mode 
used to calculate DTLB misses affected by a direct segment. 

Native/Virtualized baseline: We run the workloads 
(TABLE V) to completion on native hardware and in a virtual 
machine described in TABLE VI and use Linux® perf [34] to 
collect the performance counter data. By fixing the amount 
of work done by the programs, we compare cycles across 
different configurations. For each proposed mode, we devel-
oped linear models to predict its performance (TABLE IV). 

Direct Segment: To compare with native direct segments, 
we developed a model to determine the unvirtualized per-
formance. We find the fraction of TLB misses (FDS) that lie 
in the direct segment [9], which would be eliminated. 

VMM Direct/Guest Direct: We determine the fraction of 
TLB misses that lie in the respective direct segment (FVD or 
FGD). This fraction of TLB misses would spend near-native 
cycles per TLB miss. We estimate the cycles per TLB miss 
of this fraction as (Cn+Δ) where Δ represent the overhead of 
performing base-bounds check in addition to cycles per TLB 
miss on native hardware (Cn). As an estimate, we use 1 cycle 
per base-bound check, thus ΔVD=5 for VMM Direct and 
ΔGD=1 for Guest Direct modes. The rest of the TLB misses 
would suffer Cv cycles per TLB miss due to 2D page walk. 

Guest Page 
Table

Memory Slots 
(KVM)

gVA

gPA

hVA

Host Page Table

hPA

Guest Page 
Table

gVA

gPA

hPA

Nested 
Page Table

 
Figure 10  KVM memory slots to nested page tables. 

TABLE IV  LINEAR MODEL FOR CYCLES SPENT ON PAGE WALK. 
Design Model 

Direct Segment Cn*(1-FDS) * Mn 
Dual Direct [(Cn+ΔVD)*FVD + (Cn+ΔGD)*FGD +  

Cv*(1-FGD- FVD-FDD)]*Mn 
VMM Direct [(Cn+ΔVD)*FVD + Cv*(1-FVD)]*Mn 
Guest Direct [(Cn+ΔGD)*FGD + Cv*(1-FGD)]*Mn 

 



Dual Direct: We split the TLB misses in 4 ways according 
to TABLE I: 
1. The fraction of misses that lie in both direct segments 

(FDD). These page walks are eliminated by Dual Direct. 
2. The fraction of misses that lie only in VMM segment 

and not in guest segment (FVD). These misses are sped 
up by VMM Direct mode. 

3. The fraction of misses that lie only in guest segment and 
not in VMM direct segment (FGD). These misses are 
sped up by Guest Direct mode. 

4. The rest of the TLB misses suffer Cv cycles per TLB 
miss for the 2D page walk. 

The cycles per TLB miss for Dual Direct Design can be 
calculated by adding the above four categories. Since we 
cannot measure cycles spent accessing L1 and L2 TLBs, our 
model does not account for improvements due to faster L2 
hits when using the Dual Direct design or pollution of the L2 
TLB from pages in a direct segment. 

VIII. COST OF VIRTUALIZATION 
We show that the cost of virtualization can be very high 

and corroborate some of the findings of Buell et al. [16]. 
Similar earlier studies used much smaller virtual machines 
running desktop applications [4,14,41]. Our study quantifies 
how applications behave in large virtualized environments. 

Our experimental setup is as follows: 
 We use several multithreaded big-memory workloads, a 

GUPS micro-benchmark, and some SPEC2006 and 
PARSEC work-loads (TABLE V). The big-memory 
workloads were executed with 60-75GB datasets on vir-
tual machines with 80GB of guest physical memory. 

 We run the workloads on an x86-64 system (TABLE VI), 
both natively and in a Linux KVM virtual machine. 

 We examine four native configurations. For big memory 
workloads, it is straightforward to have big-memory ap-
plications explicitly request 4KB, 2MB, or 1GB pages. 
Since SPEC and PARSEC are less suited to these 
changes, we use 4KB pages and enable transparent huge 
pages (THP) [19], which seeks to dynamically promote 
aligned groups of 512 4KB pages to a 2MB page. 

 We examine eight virtualized configurations that vary 
both guest and VMM page sizes (e.g., 4K+2M means 
the guest uses 4KB pages and the VMM uses 2MB pag-
es). 

Figure 11 and Figure 12 present execution time over-
heads for address translation for base-native (hashed bars) 
and virtualized (solid). If an execution E runs in time TE, we 
calculate its address-translation overhead as  
(TE–T2Mideal)/T2Mideal, where T2Mideal is the same benchmark’s 
native execution time with 2MB pages minus the time the 
2MB run spends in page table walks. TLB misses may be 
overlapped with other processor stalls, so for workloads with 
very high miss rates, subtracting page walk time from total 
execution time may be inaccurate. We try to minimize this 
effect by using as our base execution time, the 2MB results 
(T2Mideal), but cannot remove it completely. Note that execu-
tion times include the effects of all TLBs and page walk 
caches. The GUPS micro-benchmark uses the scaled right-
hand y-axis and is shaded separately. 

We make the following observations: 
1. Native address translation overheads with 4KB pages 

can be high and grow drastically when virtualized. [e.g., 
the overheads for graph500 goes up from 28% in native 
to 113% under virtualization (bar 4K vs 4K+4K)]. The 
geometric mean increase with virtualization is ~3.6x. 

2. Virtualization overheads can be reduced by using 2MB 
pages to map gPA to hPA at the VMM. However, over-
heads can still be large. Even with 2MB pages at both 
levels of translation, overheads are substantially higher 
than native execution with 2MB pages (e.g., bar 
4K+2M: 53% vs bar 4K+4K: 113% and bar 2M: 6% vs. 
bar 2M+2M: 13% for graph500). 

3. Even with 1GB pages at guest OS and VMM, the over-
head does not reduce greatly as compared to 2MB pag-
es and are higher than native execution with 1GB pages. 
In addition, using 1GB pages in the VMM can also hurt 
performance due to limited 1GB TLB entries (e.g., for 
graph500, bar 1G: 3% vs. bar 1G+1G: 11% and 13% 
overhead with bar 2M+2M and 14% with bar 2M+1G). 

4. Similar trends are observed in compute workloads. Cac-
tusADM and mcf have high overheads even with trans-
parent huge pages (THP). 

These observations demonstrate that many workloads 
suffer substantial virtualization overheads, rendering virtual-
ization less attractive today. Moreover, we conjecture that 
overheads will get considerably worse with larger datasets 
and virtual machines [9]. This analysis corroborates a recent-
ly published study from VMware[16]. 

TABLE V  WORKLOAD DESCRIPTION. 
Workload Description 

Graph500 
Generation, compression and breadth-first search 
(BFS) of very large graphs, as often used in social 
networking analytics and HPC computing. 

Memcached In-memory key-value cache widely used by large web-
sites, for low-latency data retrieval. 

NPB:CG NASA’s high performance parallel benchmark suite. 
CG workload from the suite. 

GUPS Random access benchmark defined by the High Per-
formance Computing Challenge. 

SPEC® 2006 Compute single-threaded workloads: cactusADM, 
GemsFDTD, mcf, omnetpp (ref inputs) 

PARSEC3.0 Compute multi-threaded workloads: canneal, 
streamcluster (native input set) 

TABLE VI  DETAILS OF THE NATIVE AND VIRTUALIZED SYSTEMS. 
Native System 

Processor Dual-socket Intel Xeon E5-2430 
(SandyBridge) 6 cores/socket, 2 threads/core, 
2.2 GHz 

Physical Memory 96 GB DDR3 1066MHz 
Operating System Fedora-20 (Linux LTS Kernel v3.12.13) 

L1 Data TLB 4KB: 64 entries 4-way associative 
2MB: 32 entries 4-way associative 
1GB: 4-entry fully associative 

L2 TLB 4KB: 512 entries 4-way associative 
Fully-Virtualized System with KVM 

VMM QEMU (with KVM) v1.4.1, 24vCPUs 
Physical Memory 85GB 
Operating System Fedora-20 (Linux LTS Kernel v3.12.13) 
EPT TLB/NTLB Shares the TLB (no separate structure) 

 



IX. EVALUATION OF NEW DESIGN 
In this section we discuss the various benefits of our pro-

posed hardware with its various modes of operation. 

A. Performance Analysis 
Performance benefits: Figure 11 and Figure 12 depict 

execution time overheads for address translation for our new 
designs in green. Recall that our models are pessimistic due 
to our assumption of flat ΔVD = 5 cycles and ΔGD = 1 based 
on the number of base-and-bound calculations. This over-
head will be reduced by techniques like translation caching 
[7] and shared MMU caches [12] that store intermediate 
translations by reducing the computations required. 

 From Figure 11 and Figure 12, we conclude: 
1. For our big-memory and compute workloads, VMM 

Direct achieves overheads close to native execution. 
[e.g., graph500 suffers 30% (bar 4K+VD) overhead, 
close to the native overhead of 28% (bar 4K). Overall, 
VMM Direct is only 2% slower than native execution 
(geo mean)]. 

2. Similarly, Guest Direct is able to achieve native perfor-
mance for big-memory workloads (bar 4K+GD). 

3. Dual Direct achieves negligible address translation 
overheads for big-memory workloads, similar to unvir-
tualized direct segments. Dual Direct mode reduces ad-
dress translation overheads to at most 0.17% (bar DD). 

The performance benefits of VMM Direct are further en-
hanced by using 2MB (bar 2M+VD) or 1GB pages (bar 
1G+VD) or THP to translate from gVA to gPA. We do not 

evaluate these due to lack of support for large pages in our 
prototype. Guest Direct can also be enhanced similarly. 

Performance Breakdown: We analyzed two key factors 
affecting the translation overheads: 1) number of TLB miss-
es and 2) avg. cycles spent per TLB miss.  

We make two observations about execution under virtu-
alization vs. executing natively. First, we expect the TLB 
misses for a given application to remain the same across exe-
cution under virtualization and native execution. However, 
we found that virtualization can lead to a significant in-
crease in the number of TLB misses. For example, TLB 
misses 4K+4K increased by 1.38x for graph500, 1.62x for 
memcached, 1.41x for GUPS, 1.33x for canneal, and 1.29x 
for streamcluster. The extra misses occur because nested 
TLB entries (gPAhPA) share the same physical structure 
as the normal TLB entries, reducing the effective capacity of 
the TLB. We confirmed the behavior with a micro-
benchmark. Second, as expected for all workloads, the aver-
age cycles per TLB miss grows significantly with virtualiza-
tion due to 2D page walks. For example, it can be as high as 
3.5x for NPB:CG with 4K+4K. On average, cycles-per-miss 
increase 2.4x, 1.5x, 1.6x for 4K+4K, 4K+2M, and 4K+1G, 
respectively. 

With our proposed hardware, we find that VMM Direct 
and Guest Direct achieve cycles per TLB miss close to na-
tive execution. A TLB miss costs only 13% higher (on aver-
age) with VMM direct and 3% higher (on average) with 
Guest Direct compared to native 4K. In contrast, Dual Direct 
gets most of its benefits from reduction in L2 TLB misses 
(~99.9% reduction in L2 TLB misses). 

 
Figure 11  Virtual memory overhead for each configuration per big-memory workload. 

 
Figure 12  Virtual memory overhead for each configuration per compute workload. 
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B. Energy Discussion 
Alternate address translation modes affect system energy 

in two ways. Most importantly, if the mechanism reduces 
execution time by some percentage X, it can reduce whole-
system static energy by about X%. For example, Dual Direct 
reduces execution time by 11-89% compared to 4K+2M 
pages (Figure 11 and Figure 12) across our benchmarks and 
thus reduces system static energy by a similar fraction. 

Second, the translation mechanism itself uses energy, 
(e.g., 20-38% of L1 cache dynamic energy [10] and a smaller 
fraction of whole system energy). Page-based address trans-
lation uses dynamic energy to: (a) access the L1 TLB, (b) on 
an L1 TLB miss, accesses the L2 TLB, and (c) on an L2 
TLB miss, accesses the page walker and MMU cache. 

Our new virtualized design: (a) leaves the L1 TLB access 
unchanged; (b) on an L1 TLB miss, accesses the L2 TLB as 
well as small virtualized direct-segment hardware; and (c) on 
a L2 TLB miss and on a miss in the both direct segments, 
accesses the modified page walker and MMU cache. We 
expect the reduction in term (c) dominates the small cost 
increase to term (b), thus potentially reducing address trans-
lation dynamic energy as compared to virtualized baseline. 

The original direct segment design uses energy to: (a) ac-
cess the L1 TLB as well as small direct-segment hardware, 
(b) on a L1 TLB miss and on a miss in the direct-segment, 
accesses the L2 TLB, and (c) on L2 TLB miss, accesses the 
page walk hardware and MMU cache. If the reduction in the 
term (b) dominates the small cost increase to term (a), then 
the original direct segment hardware further improves on 
address translation dynamic energy compared to the new 
virtualized design. 

If this improvement is important, our design can be mod-
ified to perform the base-bound check for Dual Direct with 
its two comparators in parallel with L1 TLB lookup. We do 
not advocated this design, because it affects the timing criti-
cal L1 TLB hit path (a drawback of the original design). 

C. Escape Filter 
Our proposed escape filter enables a few pages within a 

direct segment to escape to page-based translation. We use 
this mechanism to retain most of a direct segment’s perfor-
mance benefits even when 1-16 pages have hard faults. 

We studied the impact of using a 256-bit hardware paral-
lel bloom filter with four H3 hash functions [44]. For each 
number of bad pages (1-16), we ran each application with 30 
different random sets of bad pages. Figure 13 depicts execu-
tion time overhead (compared to Dual Direct mode with no 
bad pages), as well as 95% confidence intervals. 

Dual Direct mode retains almost all its performance 
benefits even with some hard faults. With a pessimistic 16 
faults, execution impact is less than 0.06% (except micro-
benchmark GUPS 0.5%). We observe similar trends with 
compute workloads running in VMM Direct mode. 

D. Shadow Paging: An Alternative 
Shadow paging offers a way to eliminate 2D page walks, 

but we observe that it works well for only some of our work-
loads, while our new design works for all. Recall that with 
shadow paging (Section II.A), the VMM uses the guest page 

table (gVAgPA) and nested page table (gPAhPA) to 
build a shadow page table (gVAhPA) walked by the 
hardware, and changes to guest or host page tables incur 
substantial performance overheads. 

We use shadow paging by disabling extended page tables 
in KVM. We measure the slowdown in execution time com-
pared to native execution for shadow paging using 4KB and 
2MB pages (both guest and VMM). 

We observe that our workloads fall in two categories: 
1. Workloads for which shadow paging incurs high virtual-

ization overheads: memcached (4K: 29.2%, 2M: 
11.1%), GemsFDTD (4K: 12.2%, 2M: 4.9%), omnetpp 
(4K: 8.7%, 2M: 3.4%), and canneal (4K: 6.63%, 2M: 
2.5%). The increase in execution time corresponds to 
extra VMexits to keep shadow page tables coherent. 

2. Workloads for which shadow paging incurs relatively 
low overheads. For all other workloads, we observed 
slow-down of less than 5% for both page sizes.  

Shadow paging does well due to the static nature of 
memory allocation in workloads from the second category. 
For workloads with frequent memory allocations and deallo-
cations (first category), shadow paging provides poor per-
formance due to frequent updates to guest page tables [53].  

In contrast, VMM Direct allows page table updates to 
proceed without any VMM intervention. Thus, our tech-
niques provide near-native performance for both sets of 
workloads. Shadow paging can be up to 29.2% slower, 
whereas VMM Direct is only up to 7.3% slower than the 
native execution. With small guest OS and application 
changes, Dual Direct provides much lower overhead than 
shadow paging. 

E. Content-Based Page Sharing 
Content-based page sharing saves memory for compute 

workloads, but we observe that it provides less benefit for 
our big-memory workloads. Content-based page sharing 
scans memory to find pages with identical contents. When 
such pages are found, the VMM can reclaim all but one copy 
and maps the others using copy-on-write [52]. 

We studied the impact of content-based page sharing, 
since VMM segments preclude page sharing. We co-
scheduled two smaller instances (40 GB) of KVM, each run-
ning one of our big-memory workloads (all possible pairs) to 
measure the potential memory saving from page sharing. 

We observed that page sharing does not save more than 
3% memory for our big-memory workloads since the bulk of 

 
Figure 13  Normalized execution time for big-memory workloads in pres-

ence of bad pages 
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memory is for data structures unique to the workload. These 
include OS code pages that can be easily shared with our 
modes, as they are mapped with pages. Thus, restricting 
page sharing may be less important when virtualizing big-
memory workloads than others. 

For compute workloads, earlier studies have shown page 
sharing to be useful when there are large numbers of VMs. 

X. RELATED WORK 
Performance Impact of Virtualization: Since the resur-

gence of virtualization [17], the overheads of virtualization 
have been decreasing [1,11]. Hardware support for virtual-
ization has greatly reduced the number and the latency of 
VMM interventions [11,36,41]. Binary translation can re-
duce these interventions further [3]. A recent study shows 
that workloads may have high virtualization overheads [16]. 

Flat Page Table: Ahn et al. [4] proposed replacing x86-
64's four-level nested page table (gPAhPA) with a flat 
one-level nested page table. This closely related work reduc-
es the number of nested page table accesses from 4 to 1 and a 
2D page walk (gVAgPA & gPAhPA) from 24 to 8 ac-
cesses. While this is promising for the small virtual machines 
they studied, it may be less suited for big-memory work-
loads. Our design reduces 2D page walks from 24 accesses 
to 4 or 0, which is better than 8 with the flat nested page ta-
ble. 

Virtual Memory: TLBs can cause performance degrada-
tion on native machines [9,10,11,13,14,37]. This is exacer-
bated when the workload is running in a virtualized system 
[1,4,11,16]. There have been two classical approaches to 
reducing overheads of virtual memory: reducing TLB miss 
latency and reducing TLB misses. 

Reducing TLB miss latency: To reduce TLB miss latency, 
PTEs are cached in data caches [7,11,39] or TLB miss laten-
cy is hidden [13,15]. Prefetching PTEs can also improve 
performance [11,31,32]. A special structure was proposed to 
cache the nested translations (gPAhPA) to reduce the la-
tency of a TLB miss with virtualization [11,41]. Translation 
caching [7] and Large-Reach MMU caches [12] improved 
performance by caching any intermediate translation. 

Some ISAs like SPARC use software managed TLBs and 
use a software-defined translation buffer (TSB) to service 
TLB misses faster [39]. Intel Itanium had a software man-
aged section in TLB to pin critical address translations [27]. 
A recent proposal supported virtualization with software-
managed TLBs [18]. We focus on hardware managed TLBs. 

Reducing TLB misses: Large-pages improve TLB cover-
age, thus reducing TLB misses [22,23,47,49,50,51]. Most 
processors support multiple page sizes today [30]. However, 
applications and OS have been slow to support multiple page 
sizes [23,50]. Hardware support for large pages is difficult to 
design [8,48,50]. Coalescing contiguous or clustered PTEs 
have been shown to improve effective TLB size [42,43]. 

The other common approach for reducing TLB misses is 
virtual caching [10,31,45,46,54]. However, big-memory 
workloads often have poor cache performance, so virtual 
caching merely moves, but does not solve the problem. 

Segmentation: Segmentation has been used in various 
processors. In general, it is used without any paging like in 
the early 8086 [28], or on top of paging, as in IA-32 [30] and 
MULTICS [21]. Segmentation on top of paging in x86-64 
has been used with virtual machines [2]. A flat memory was 
also used in Blue Gene Linux for HPC workloads [55]. We 
use segmentation along with paging, but never for the same 
address. Segmentation in virtualized systems has been men-
tioned, but without any hardware design or evaluation [9]. 

XI. SUMMARY 
This paper brings low-overhead virtualization to work-

loads with poor memory access locality. This is achieved 
with three new virtualized modes that improve on 2D page 
walks and direct segments. In addition, we propose two nov-
el optimizations that greatly enhance the flexibility of direct 
segments. This design can greatly lower memory virtualiza-
tion overheads for big-memory and compute workloads. 

ACKNOWLEDGMENT 
We thank our anonymous reviewers, shepherd, K. 

McKinley, D. Gibson, and S. Reinhardt for their insightful 
comments and feedback on the paper. We thank Wisconsin 
Computer Architecture Affiliates and B. Serebrin for their 
feedback on an early version of the work. We thank R. Ad-
dai-Mununkum for proof-reading our drafts. 

This work is supported in part by the National Science 
Foundation (CNS-1117280, CCF-1218323, CNS-1302260 
and CCF-1438992), Google, and the University of Wiscon-
sin (Kellett award and Named professorship to Hill). A. 
Basu’s contribution to the paper occurred while at UW-
Madison. 

AMD, the AMD Arrow logo, and combinations thereof 
are trademarks of Advanced Micro Devices, Inc. Linux is a 
registered trademark of Linus Torvalds.  SPEC is a registered 
trademark of the Standard Performance Evaluation Corpora-
tion. Other names used herein are for identification purposes 
only and may be trademarks of their respective companies. 

REFERENCES 
[1] Adams, K. and Agesen, O. A comparison of software and hardware 

techniques for x86 virtualization. Proceedings of the 12th Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems, (2006), pp. 2–13. 

[2] Agesen, O., Garthwaite, A., Sheldon, J., and Subrahmanyam, P. 
The evolution of an x86 virtual machine monitor. SIGOPS Oper. 
Syst. Rev. 44, 4 (2010), pp. 3–18. 

[3] Agesen, O., Mattson, J., Rugina, R., and Sheldon, J. Software tech-
niques for avoiding hardware virtualization exits. Proceedings of 
the 2012 USENIX conference on Annual Technical Conference, 
USENIX Association (2012), pp. 35–35. 

[4] Ahn, J., Jin, S., and Huh, J. Revisiting Hardware-Assisted Page 
Walks for Virtualized Systems. Proceedings of the 39th Annual In-
ternational Symposium on Computer Architecture, (2012). 

[5] Amazon Elastic Compute Cloud (Amazon EC2), Cloud Computing 
Servers. http://aws.amazon.com/ec2/. 

[6] Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., 
Neugebauer, R., Pratt, I., and Warfield, A. Xen and the Art of Vir-
tualization. Proceedings of the nineteenth ACM symposium on Op-
erating systems principles and practice (SOSP ’03), (2003), pp. 
164–177. 

[7] Barr, T.W., Cox, A.L., and Rixner, S. Translation caching: skip, 
don’t walk (the page table). Proceedings of the 37th Annual Inter-
national Symposium on Computer Architecture, (2010). 

[8] Barr, T.W., Cox, A.L., and Rixner, S. SpecTLB: a mechanism for 
speculative address translation. Proceedings of the 38th Annual In-



ternational Symposium on Computer Architecture, (2011). 
[9] Basu, A., Gandhi, J., Chang, J., Hill, M.D., and Swift, M.M. Effi-

cient Virtual Memory for Big Memory Servers. Proceedings of the 
40th Annual International Symposium on Computer Architecture, 
IEEE Computer Society (2013). 

[10] Basu, A., Hill, M.D., and Swift, M.M. Reducing Memory Refer-
ence Energy With Opportunistic Virtual Caching. ISCA ’12: Pro-
ceedings of the 39th annual international symposium on Computer 
architecture, (2012), pp. 297–308. 

[11] Bhargava, R., Serebrin, B., Spadini, F., and Manne, S. Accelerating 
two-dimensional page walks for virtualized systems. Proceedings 
of the 13th International Conference on Architectural Support for 
Programming Languages and Operating Systems, (2008). 

[12] Bhattacharjee, A. Large-Reach Memory Management Unit Caches. 
Proceedings of the 2013 46th Annual IEEE/ACM International 
Symposium on Microarchitecture, IEEE Computer Society (2013). 

[13] Bhattacharjee, A., Lustig, D., and Martonosi, M. Shared last-level 
TLBs for chip multiprocessors. Proceedings of the 2011 IEEE 17th 
International Symposium on High Performance Computer Archi-
tecture, IEEE Computer Society (2011), pp. 62–63. 

[14] Bhattacharjee, A. and Martonosi, M. Characterizing the TLB Be-
havior of Emerging Parallel Workloads on Chip Multiprocessors. 
Proceedings of the 2009 18th International Conference on Parallel 
Architectures and Compilation Techniques, IEEE Computer Socie-
ty (2009), pp. 29–40. 

[15] Bhattacharjee, A. and Martonosi, M. Inter-core cooperative TLB 
for chip multiprocessors. Proceedings of the 15th International 
Conference on Architectural Support for Programming Languages 
and Operating Systems, (2010). 

[16] Buell, J., Hecht, D., Heo, J., Saladi, K., and Taheri, R.H. Method-
ology for Performance Analysis of VMware vSphere under Tier-1 
Applications. VMware Technical Journal, Summer 2013. 

[17] Bugnion, E., Devine, S., Govil, K., and Rosenblum, M. Disco: 
Running Commodity Operating Systems on Scalable Multiproces-
sors. ACM Transactions on Computer Systems 15, 4 (1997), pp. 
319–349. 

[18] Chang, X., Franke, H., Ge, Y., Liu, T., Wang, K., Xenidis, J., Chen, 
F., and Zhang, Y. Improving virtualization in the presence of soft-
ware managed translation lookaside buffers. Proceedings of the 
40th Annual International Symposium on Computer Architecture, 
ACM (2013), pp. 120–129. 

[19] Corbet, J. Transparent huge pages. 2011. 
www.lwn.net/Articles/423584/. 

[20] Corbet, J. Memory compaction. http://lwn.net/Articles/368869/. 
[21] Daley, R.C. and Dennis, J.B. Virtual memory, processes, and shar-

ing in Multics. Proceedings of the first ACM symposium on Operat-
ing System Principles, ACM (1967), 12.1–12.8. 

[22] Fang, Z., Zhang, L., Carter, J.B., Hsieh, W.C., and McKee, S.A. 
Reevaluating Online Superpage Promotion with Hardware Support. 
Proceedings of the 7th International Symposium on High-
Performance Computer Architecture, IEEE Computer Society 
(2001), pp. 63–. 

[23] Ganapathy, N. and Schimmel, C. General purpose operating system 
support for multiple page sizes. Proceedings of the annual confer-
ence on USENIX Annual Technical Conference, USENIX Associa-
tion (1998), pp. 8–8. 

[24] Gandhi, J., Basu, A., Swift, M.M., and Hill, M.D. BadgerTrap: A 
Tool to Instrument x86-64 TLB Misses. SIGARCH Computer Ar-
chitecture News, (2014). 

[25] Goldberg, R.P. Survey of virtual machine research. Computer 7, 9 
(1974), pp. 34–45. 

[26] Hwang, A.A., Ioan A. Stefanovici, and Schroeder, B. Cosmic rays 
don’t strike twice: understanding the nature of DRAM errors and 
the implications for system design. Proceedings of the seventeenth 
international conference on Architectural Support for Program-
ming Languages and Operating Systems, (2012), pp. 111–122. 

[27] Intel® Itanium® Architecture Developer’s Manual, Vol. 2. 
http://www.intel.com/content/www/us/en/processors/itanium/itaniu
m-architecture-software-developer-rev-2-3-vol-2-manual.html. 

[28] Intel 8086 - Wikipedia, the free encyclopedia. 
http://en.wikipedia.org/wiki/Intel_8086. 

[29] Intel Corp. Intel Chipset 4GB System Memory Support. 2005. 
http://www.polywell.com/us/support/faq/4gb_rev1.pdf. 

[30] Jacob, B. and Mudge, T. Virtual Memory in Contemporary Micro-
processors. IEEE Micro 18, 4 (1998), pp. 60–75. 

[31] Jacob, B. and Mudge, T. Uniprocessor Virtual Memory without 
TLBs. IEEE Trans. Comput. 50, 5 (2001), pp. 482–499. 

[32] Kandiraju, G.B. and Sivasubramaniam, A. Going the distance for 

TLB prefetching: an application-driven study. Proceedings of the 
29th Annual International Symposium on Computer Architecture, 
(2002). 

[33] Kivity, A., Kamay, Y., Laor, D., Lublin, U., and Liguori, A. kvm: 
the Linux Virtual Machine Monitor. Proceedings of the Linux Sym-
posium, (2007), pp. 225–230. 

[34] Linux Perf Wiki. https://perf.wiki.kernel.org/index.php/Main_Page. 
[35] Linux Virtio Balloon Driver. http://lxr.free-

electrons.com/source/drivers/virtio/virtio_balloon.c. 
[36] Lowe, S. SPCS001: Intel Next-Generation Haswell Microarchitec-

ture. http://blog.scottlowe.org/2012/09/11/spcs001-intel-next-
generation-haswell-microarchitecture. 

[37] Lustig, D., Bhattacharje, A., and Martonosi, M. TLB Improvements 
for Chip Multiprocessors: Inter-Core Cooperative Prefetchers and 
Shared Last-Level TLBs. ACM Transactions on Architecture and 
Code Optimization, (2013). 

[38] Memory Hotplug. 
https://www.kernel.org/doc/Documentation/memory-hotplug.txt. 

[39] Microsystems, S. UltraSPARC T2TM Supplement to the Ul-
traSPARC Architecture 2007. 2007. 

[40] PCI-SIG SR-IOV Primer: An Introduction to SR-IOV Technology. 
2011. http://www.intel.com/content/www/us/en/pci-express/pci-
sig-sr-iov-primer-sr-iov-technology-paper.html. 

[41] VMware. Performance Evaluation of Intel EPT Hardware Assist.  
2008. 

[42] Pham, B., Bhattacharjee, A., Eckert, Y., and Loh, G.H. Increasing 
TLB reach by exploiting clustering in page translations. 2014 IEEE 
20th International Symposium on High Performance Computer Ar-
chitecture (HPCA), (2014), pp. 558–567. 

[43] Pham, B., Vaidyanathan, V., Jaleel, A., and Bhattacharjee, A. 
CoLT: Coalesced Large-Reach TLBs. Proceedings of the 2012 
45th Annual IEEE/ACM International Symposium on Microarchi-
tecture, IEEE Computer Society (2012), pp. 258–269. 

[44] Sanchez, D., Yen, L., Hill, M.D., and Sankaralingam, K. Imple-
menting Signatures for Transactional Memory. Proceedings of the 
40th Annual IEEE/ACM International Symposium on Microarchi-
tecture, (2007). 

[45] Sembrant, A., Hagersten, E., and Black-Schaffer, D. The Direct-to-
Data (D2D) Cache: Navigating the Cache Hierarchy with a Single 
Lookup. Proceeding of the 41st Annual International Symposium 
on Computer Architecuture, IEEE Press (2014), pp. 133–144. 

[46] Sembrant, A., Hagersten, E., and Black-Shaffer, D. TLC: A Tag-
less Cache for Reducing Dynamic First Level Cache Energy. Pro-
ceedings of the 46th Annual IEEE/ACM International Symposium 
on Microarchitecture, ACM (2013), pp. 49–61. 

[47] Seznec, A. Concurrent Support for Multiple Page Sizes on a 
Skewed Associative TLB. IEEE Transactions on Computers 53(7), 
(2004), pp. 924–927. 

[48] Subramanian, I., Mather, C., Peterson, K., and Raghunath, B. Im-
plementation of Multiple Pagesize Support in HP-UX. Proceedings 
of the Annual Conference on USENIX Annual Technical Confer-
ence, USENIX Association (1998), 9–9. 

[49] Swanson, M., Stoller, L., and Carter, J. Increasing TLB Reach 
Using Superpages Backed by Shadow Memory. Proceedings of the 
25th Annual International Symposium on Computer Architecture, 
IEEE Computer Society (1998), pp. 204–213. 

[50] Talluri, M. and Hill, M.D. Surpassing the TLB performance of 
superpages with less operating system support. Proceedings of the 
6th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, (1994). 

[51] Talluri, M., Kong, S., Hill, M.D., and Patterson, D.A. Tradeoffs in 
Supporting Two Page Sizes. Proceedings of the 19th Annual Inter-
national Symposium on Computer Architecture, (1992). 

[52] Waldspurger, C.A. Memory Resource Management in VMware 
ESX Server. Proceedings of the 2002 Symposium on Operating 
Systems Design and Implementation, (2002). 

[53] Wang, X., Zang, J., Wang, Z., Luo, Y., and Li, X. Selective hard-
ware/software memory virtualization. Proceedings of the 7th ACM 
SIGPLAN/SIGOPS international conference on Virtual execution 
environments, ACM (2011), pp. 217–226. 

[54] Wood, D.A., Eggers, S.J., Gibson, G., Hill, M.D., and Pendleton, 
J.M. An in-cache address translation mechanism. Proceedings of 
13th annual international symposium on Computer architecture, 
(1986). 

[55] Yoshii, K., Iskra, K., Naik, H., Beckman, P., and Broekema, P. 
Characterizing the Performance of “Big Memory” on Blue Gene 
Linux. International Conference on Parallel Processing Work-
shops, 2009. ICPPW ’09, (2009), pp. 65–72.  

 


