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ABSTRACT 
In multicore processor systems, last-level caches (LLCs) play a 
crucial role in reducing system energy by i) filtering out expensive 
accesses to main memory and ii) reducing the time spent 
executing in high-power states. Cache compression can increase 
effective cache capacity and reduce misses, improve performance, 
and potentially reduce system energy. However, previous 
compressed cache designs have demonstrated only limited 
benefits due to internal fragmentation and limited tags. 

In this paper, we propose the Decoupled Compressed Cache 
(DCC), which exploits spatial locality to improve both the 
performance and energy-efficiency of cache compression. DCC 
uses decoupled super-blocks and non-contiguous sub-block 
allocation to decrease tag overhead without increasing internal 
fragmentation. Non-contiguous sub-blocks also eliminate the need 
for energy-expensive re-compaction when a block’s size changes. 
Compared to earlier compressed caches, DCC increases 
normalized effective capacity to a maximum of 4 and an average 
of 2.2 for a wide range of workloads. A further optimized 
Co-DCC (Co-Compacted DCC) design improves the average 
normalized effective capacity to 2.6 by co-compacting the 
compressed blocks in a super-block. Our simulations show that 
DCC nearly doubles the benefits of previous compressed caches 
with similar area overhead. We also demonstrate a practical DCC 
design based on a recent commercial LLC design. 

Categories and Subject Descriptors 

B.3.2 [Design Styles]: Cache Memories.  

General Terms 
Performance, Design. 

Keywords 
Compression, Cache Design, Multicore, Energy Efficiency. 

1. INTRODUCTION 
Future computer systems face continuing power and energy 
challenges as the power per transistor scales more slowly than 
transistor density  [12]. Caches, long used to reduce effective 

memory latency and increase effective bandwidth, play an 
increasingly important role in reducing memory system energy. 
Keckler  [21] shows that last-level caches (LLCs) are especially 
important, since obtaining operands of a double-precision 
multiply-add from off-chip memory requires approximately 200x 
the energy of the operation. Thus improving effective cache 
utilization is important not only for system performance, but also 
for system energy. 

Increasing LLC size can improve performance for most 
workloads, but comes at significant area cost. For example, the 
well-known “square root” power law  [18] predicts that doubling 
LLC size will reduce misses by ~30%, on average. But it 
obviously doubles LLC area, which already accounts for 15–30% 
of the die area of most processors  [10]. 

Cache compression seeks to increase effective cache size—by 
compressing and compacting cache blocks—while incurring 
smaller area overheads  [2] [5] [9] [22]. For example, previously 
proposed techniques have the potential to double effective LLC 
capacity, while increasing LLC area by only ~8%. Unfortunately, 
as summarized in Table 1 (simulation and workload details in 
Section  6), previous compressed cache designs (i.e., FixedC and 
VSC-2X, described below) fail to achieve this potential, 
increasing normalized effective capacity by only 1.5–1.7, on 
average, compared to the same size conventional LLC (Baseline). 

FixedC and VSC-2X perform less well than doubling LLC size 
for two main reasons. First, internal fragmentation results from 
the way blocks are mapped to sets and, importantly, how 
compressed blocks are compacted within a set. For example, fixed 
compression designs (denoted FixedC) only compact two 
compressed blocks if each can fit in half the space of an 
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Baseline 0 1 1 1 1 1 

FixedC ~8% 2 1.5 0.91 0.96 0.96 

VSC-2X ~8% 2 1.7 0.89 0.95 0.97 

2X Baseline 100% 2 1.9 0.87 0.93 0.94 

DCC ~8% 4 2.2 0.82 0.90 0.92 

Co-DCC ~18% 4 2.6 0.75 0.86 0.88 

 

Table 1. Summary of results of the compressed caches 



uncompressed block  [9] [22]. Variable size compression (VSC-
2X) compacts compressed blocks into a variable number of sub-
blocks, e.g., 0–4 16-byte sub-blocks  [2]. VSC-2X reduces internal 
fragmentation (within a set), since all blocks in a set share the 
same pool of sub-blocks. Table 1 shows that VSC-2X’s better 
compaction improves average normalized capacity from 1.5 to 
1.7. Second, to limit area overhead, both FixedC and VSC-2X 
only double the number of tags (plus some additional metadata) 
and thus can at most double effective cache capacity. Thus, on 
average, VSC-2X’s effective capacity is significantly less than a 
double-sized conventional LLC (labeled 2X Baseline). Note that 
doubling LLC size only increases effective capacity by 1.9 times, 
since some workloads do not fully utilize the larger cache. 

In this paper, we propose Decoupled Compressed Cache (DCC). 
DCC uses decoupled super-blocks (also known as sectors [31])1 
to increase the maximum effective capacity to four times the 
uncompressed capacity, while using comparable area overhead to 
previous cache compression techniques. DCC uses super-
blocks—four aligned contiguous cache blocks that share a single 
address tag—to reduce tag overhead. Each 64-byte block in a 
super-block is compressed and then compacted into 0–4 16-byte 
sub-blocks. DCC decouples the address tags—allowing any sub-
block in a set to map to any tag in that set—to reduce 
fragmentation within a super-block [31]. Decoupling also allows 
sub-blocks of a block to be non-contiguous, eliminating the re-
compaction overheads of previous variable size compressed 
caches [2]. An optimized Co-DCC design further reduces internal 
fragmentation (and increases effective capacity) by compacting 
the compressed blocks from a super-block into the same set of 
sub-blocks.  

Using the GEMS full-system simulator  [26] to model an 8-core 
multicore system with a baseline 8MB LLC, we show that DCC 
can improve average performance and system energy by 10% and 
8%, respectively. Importantly, this is better than a conventional 
LLC of twice the capacity, and uses only 8% more area than 
Baseline. In comparison with FixedC and VSC-2X, DCC nearly 
doubles the performance and energy benefits for comparable area 
overheads. Co-DCC further reduces runtimes and system energy, 
but at the cost of some additional complexity. 

This paper makes the following contributions: 

• DCC uses decoupled super-blocks to increase the 
effective number of tags with low overhead and little 
internal fragmentation. 

• DCC stores compressed data in non-contiguous 
sub-blocks to eliminate re-compaction overheads when a 
block’s compressed size changes. 

• Co-DCC further reduces internal fragmentation by 
compacting the blocks of a super-block into the same set 
of sub-blocks. 

• DCC and Co-DCC provide more effective capacity, on 
average, than a conventional cache of twice the size, while 
increasing cache area by only 8% and 18%, respectively. 

• We present a concrete design for (Co-)DCC and show 
how it can be integrated into a recent commercial LLC 

                                                                 
1 This paper uses the unambiguous terms super-block, block, and 

sub-block, rather than the original, but sometimes confusing 
terms sectors, blocks, and segments. 

design (AMD Bulldozer LLC) with little additional 
complexity. 

In the rest of the paper, we present the background on compressed 
caches in Section 2, show the potential in exploiting spatial 
locality for improving compression effectiveness in Section 3, 
present DCC design in Section 4, describe hardware complexities 
in Section 5, describe the evaluation methodology and 
experimental results in Section 6, discuss the related work in 
Section 7, and conclude the paper in Section 8. 

2. BACKGROUND ON COMPRESSED 
CACHES 
Data compression has the potential to increase the effective 
capacity of every level of the memory hierarchy  [1] [2] [15]. 
Compression is widely used to increase the capacity of disk 
storage systems. IBM’s MXT effectively doubles main memory 
capacity  [1]. Cache compression has been studied for every level 
of the cache hierarchy to increase effective capacity, reduce miss 
rates, improve performance  [2] [9] [16] [24] and reduce 
energy  [22] [23]. Cache compression is harder than other levels of 
the memory hierarchy, since performance is sensitive to cache 
latency, especially for L1 and L2 caches. But as multicore systems 
move to having three or more levels of cache, the sensitivity to 
LLC latency decreases allowing systems to consider more 
effective, longer latency (de-)compression algorithms. 

Figure 1(a) illustrates the trade-off between decompression 
latency and compression ratio (i.e., original size over compressed 
size) for three compression algorithms. A simple zero-block 
detection algorithm (denoted ZERO) has single-cycle 
decompression latency, but only achieves an average compression 
ratio of 1.5 and only really benefits a few workloads  [14]. Adding 
a more complex significance-based compression algorithm 
(denoted FPC+Z), works for a broader range of workloads and 
improves the average compression ratio to 2.8, but increases 
decompression latency to five cycles  [2]. Finally, adding 
dictionary-based compression (denoted CPACK+Z), increases the 
average compression ratio to 3.9 and the decompression latency to 
9 cycles (see section  5.1)  [9]. However, because multi-megabyte 
LLCs already have relatively long access times (e.g., 30 cycles) 
and very high miss penalties (e.g., greater than 150 cycles and ~60 
nJ), the benefit of higher compression ratio has the potential to 
outweigh the longer decompression pipeline. In the remainder of 
this paper, we use CPACK+Z, which combines the C-PACK 
algorithm  [9] with zero-block detection  [14]. In Section  5, we 
describe these compression algorithms in detail. 

Such a high compression ratio suggests the potential for a 
similarly large normalized effective cache capacity; that is, the 
number of compressed blocks stored divided by maximum 
number of uncompressed blocks that could be stored. 
Unfortunately, compressed caches fail to achieve this potential for 
three main reasons. First, all hardware caches map blocks into 
sets, introducing an internal fragmentation problem since a 
compressed block must (at least in current designs) be stored 
entirely within one set. In Figure 1(b), the BytePack column 
represents an idealized compressed cache with infinite tags that 
compacts compressed blocks on arbitrary byte boundaries. 
BytePack degrades average normalized effective capacity to 3.1, 
on average. Second, practical compressed caches introduce a 
second internal fragmentation problem by compacting compressed 
blocks into one or more sub-blocks, rather than storing 
compressed data on arbitrary byte boundaries. The column labeled 



VSC-Inf in Figure 1(b) illustrates that compacting compressed 
blocks into 0–4 16-byte sub-blocks (but with infinite tags per set) 
degrades normalized effective capacity from 3.1 to 2.6, on 
average. Finally, compressed caches have a fixed number of tags 
per set. The remaining columns in Figure 1(b) illustrates that 
reducing the number of tags from infinite to a more practical 
twice Baseline, degrades the normalized effective capacity from 
2.6 to 1.7, on average. 

Figure 1(b) results suggest two approaches to unlocking the 
potential of cache compression. First, reduce the internal 
fragmentation within a set. However, this must also be done with 
care in today’s energy constrained environment. VSC-2X relaxes 
the mapping constraint between tags and data and compacts 
compressed blocks into a variable number of contiguous sub-
blocks  [2]. VSC-2X can compact more blocks in the cache than a 
simple FixedC compressed cache, which only compacts 
compressed blocks into half blocks (i.e., 32-byte sub-blocks).  
However, VSC needs to repack the sub-blocks in a set whenever a 
block’s size changes to make contiguous free space. This can 
significantly increase the cache bank occupancy and dynamic 
energy. Figure 1(c) shows the average number of accessed bytes 
at LLC normalized to Baseline. FixedC decreases the average 
number of accessed bytes by 36% compared to Baseline due to 
accessing shorter compressed blocks. On the other hand, VSC-2X 
increases the number of accessed bytes at LLC by nearly a factor 
of three since it needs to repack sets (copying almost half a set, on 
average). This significantly increases LLC dynamic energy, as 
discussed in Section  6. 

The second approach to improving cache compression is to 
increase the number of tags per set. Figure 1(b) shows that 
increasing the tags from twice the baseline to four times the 
baseline increases the normalized effective capacity from 1.7 to 
2.3, on average. However, done naively, this significantly 

increases the area overhead. Figure 2 shows the area overhead 
(compared to Baseline) versus normalized effective capacity. A 
variable size compression cache (VSC-2X) with twice as many 
tags as Baseline  [2] increases LLC area by 8%. However, 
quadrupling the number of tags (VSC-4X) increases LLC area by 
~21%, which would increase total die size by 3–6%. 

In summary, we seek a new LLC compressed cache design that 
(a) increases the number of tags per set, without significantly 
increasing the metadata overhead and (b) improves the energy 
efficiency of compacting compressed blocks to reduce internal 
fragmentation. 

3. EXPLOITING SPATIAL LOCALITY 
Although current multicore caches typically support a single block 
size, most workloads exhibit spatial locality at multiple 
granularities. Figure 3 shows the distribution of neighboring 
blocks in a conventional LLC with a tag per 64-byte block 
(workloads and simulation parameters described in Section  6). 
Neighboring blocks are defined as those in a 4-block aligned 
super-block (i.e., aligned 256-byte region). The graph shows the 
fraction of blocks that are part of a Quad (all four blocks in a 
super-block co-reside in the cache), Trios (three blocks out of four 
co-reside), Pairs (two blocks out of four co-reside), and Singletons 
(only one block out of four resides in the cache). Pairs and Trios 
are not necessarily contiguous blocks, but represent two or three 
blocks, respectively, that could share a super-block tag. Although 
access patterns differ, the majority of cache blocks reside as part 
of a Quad, Trio, or Pair. For applications with streaming access 
patterns (e.g. mgrid) Quads account for essentially all the blocks. 
Other workloads exhibit up to 29% singletons (canneal), but 
Quads or Trios account for over 50% of blocks for all but two of 
our workloads (canneal and gcc). 

Figure 2. LLC area overhead vs. Norm LLC capacity 
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Super-blocks (also known as sectors  [31]) have long exploited 
coarser-grain spatial locality to reduce tag 
overhead  [25] [30] [31] [39]. Super-blocks associate one address tag 
with multiple cache blocks, replicating only the per-block 
metadata such as coherence state. Figure 4(a) shows one set of a 
4-way-associative super-block cache (SC), with 4-block super-
blocks. Using 4-block super-blocks reduces tag area by 70% 
compared to a conventional cache. However, Figure 4(a) 
illustrates that Singletons, Pairs, and Trios—such as, super-blocks 
D, C, and A, respectively—result in internal fragmentation, which 
can lead to significantly higher miss rates  [31]. 

Seznec showed that decoupling super-block tags from data blocks 
helps reduce internal fragmentation  [31]. Decoupled super-block 
caches (DSC) increase the number of super-block tags per set and 
use per-block back pointers to identify the corresponding tag. 
Figure 4(b) illustrates how decoupling can reduce fragmentation 
by allowing two Singletons (i.e., blocks F1 and G3) to share the 
same super-block. DSC uses more tag space than SC, but less than 
a conventional cache since back pointers are small.  

In this work, we use decoupled super-block tags to improve cache 
compression in two ways. First, super-blocks reduce tag overhead, 
permitting more tags per set for comparable overhead. Second, 
decoupling tags and data reduces internal fragmentation and, 
importantly, eliminates re-compaction when the size of a 
compressed block changes. 

4. DECOUPLED COMPRESSED CACHE 
In this section, we describe Decoupled Compressed Cache (DCC) 
and Co-Compacted DCC (Co-DCC) designs in detail. While these 
designs may be applicable to other levels of the cache hierarchy, 
we target LLC in this work. 

4.1 DCC Architecture 
Figure 5 shows DCC architecture. To improve compression 
effectiveness at LLC, DCC exploits super-blocks and manages the 
cache at three granularities:  coarse-grain super-blocks, single 
cache blocks, and fine-grain sub-blocks. DCC tracks super-blocks, 
which are groups of aligned, contiguous cache blocks (Figure 5 
(d)), while it compresses and stores single cache blocks as 
variable number of sub-blocks. Figure 5 (a) shows the key 
components of DCC architecture for a small 2-way-set associative 
cache with 4-block super-blocks, 64-byte blocks, and 16-byte sub-
blocks. DCC consists of Tag Array, Sub-Blocked Back Pointer 
Array, and Sub-Blocked Data Array.  DCC is indexed using the 
super-block address bits (Set Index in Figure 5 (e)). Note that like 
all super-block caches, this index uses higher order bits. In this 
way, all blocks of the same super-block are mapped to the same 
data set. 

DCC tracks super-blocks to fit more compressed blocks in the 
cache while limiting tag area overhead. DCC explicitly tracks 
super-blocks through the tag array. The tag array is a largely 
conventional super-block tag array. Figure 5 (b) shows one tag 
entry that consists of one tag per super-block (Super-block tag) 
and coherence state (CState) and compression status (Comp) for 
each block of the super-block. Since blocks of a super-block share 
a tag address, the tag array can map more blocks compared to the 
same size conventional cache without incurring high area 
overhead. DCC holds as many super-block tags as the maximum 
number of uncompressed blocks that could be stored. For 
example, in Figure 5, for a 2-way-associative cache, it holds two 
super-block tags in each set of the tag array. In this way, each set 
in the tag array can map eight blocks (i.e., 2 super-blocks * 4 

blocks/super-block), while maximum of two uncompressed blocks 
can fit in each set. In the worst case scenario, when there is no 
spatial locality (i.e., all singletons) or cached data is 
uncompressible, DCC can still utilize all the cache data space, for 
example, by tracking two singletons per set in Figure 5 (a).  

DCC compresses and compacts cache blocks into variable number 
of data sub-blocks. It dynamically allocates these sub-blocks in 
the sub-blocked data array. The data array is a mostly 
conventional cache data array, organized in sub-blocks. In Figure 
5 (a), it provides eight 16-byte sub-blocks per set, for a total of 
128 bytes. This is only one quarter of the data space mapped by 
each set in the tag array (i.e., 2 super-blocks * 4 blocks/super-
block * 64 bytes/block = 512). Thus using this configuration the 
tag array has the potential to map four times as many blocks as 
can fit in the same size uncompressed data array.  

DCC decouples sub-blocks from the address tag to eliminate the 
expensive re-compaction when a block’s size changes. DCC 
allocates sub-blocks of a block in the data array not necessarily in 
contiguous space (unlike VSC  [2]) but in order. For example, in 
Figure 5 (a), block A0 is compressed into two sub-blocks (A0.1 
and A0.0) that are stored in the sub-block #5 and the sub-block #1 
in the data array. DCC uses the sub-blocked back pointer array as 
one level of indirection to identify sub-blocks of a block. Each 
back pointer entry (BPE) in the sub-blocked back pointer array 
corresponds to one data sub-block in the data array and identifies 
the owner block. A BPE stores its corresponding block’s tag ID 
and block ID (Figure 5 (c)). Tag ID (e.g., 1 bit for a 2-way-
associative cache) refers to the super-block tag entry matching 
this block in the same set of the tag array (e.g., 1 in Figure 5 (a)). 
(Co-)DCC derives Block ID (e.g., 2 bits for a 4-block super-
block) from the address of the accessing block (Blk# in Figure 5 
(e)). The back pointer array slightly increases LLC area (discussed 
in Section  6.2); however, it enables low overhead variable size 
compression. In the next sub-section, we explain how blocks are 
allocated and looked up in DCC in detail. 

4.2 DCC Lookup Process 
Figure 6 shows DCC lookup procedure for different scenarios. On 
a cache lookup, both the tag array and the back pointer array are 
accessed in parallel. In the common case of a cache hit, both the 
block and its corresponding super-block are found available (i.e., 
tag matched and block is valid). In the event of a cache hit, the 
result of the tag array and the back pointer array lookup 
determines which sub-blocks of the data array belong to the 
accessing block. On a read, those sub-blocks are read out next, 
and the corresponding tag entry and BPEs are updated. In Figure 
5, for example, on a read access to block A0, Tag A, Index A, and 
block ID (e.g., #0) are derived from the address (Figure 5 (e)). 
The corresponding set of the tag array and the back pointer array 
(indexed by Index A) are read out. The tag match and sub-block 
selection logic then identify whether the block is available and 
where its sub-blocks locate in the data array. For instance, the tag 

Figure 4. (a) Sectored Cache (b) Decoupled Sectored Cache 
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entry #1 in the tag array matches super-block A, and its block #0 
is available (CState #0 is valid). The sub-block selection logic 
finds the matched BPEs (BPEs #5 and #1 for A0) using the 
matched tag ID (e.g., 1 for A) and the block ID (e.g., 0 for A0). 
Since there is a one-to-one correspondence between BPEs and 
data sub-blocks, the corresponding sub-blocks are then read out of 
the data array (e.g., the sub-blocks #5 and #1 for A0) and 
decompressed.  

On the other hand, in case of a cache miss, DCC allocates the 
compressed block in the data array. A cache miss occurs when the 
block is not available in the cache even if its super-block is 
available. If its super-block is available (Block Miss in Figure 6), 
the accessing block will be allocated in the data array, and its 
corresponding tag entry and BPEs will be updated. This might 
need replacing one or more cache blocks to make enough space 
for this block. If its super-block is not available (Super-Block 
Miss in Figure 6), we might need to replace another super-block 
(e.g., the least recently used one). In this case, the blocks 
belonging to the victim super-block are evicted from LLC as well. 
We handle the eviction process in the background by storing the 
victim super-blocks in a small buffer until all of their blocks are 
evicted from the cache. In this way, their tag entries can be 
released to allocate the new super-blocks. 

Unlike conventional caches, on a write (or update) to a 
compressed cache, the new compressed size could be different. To 
fit a larger block, (Co-)DCC might need more sub-blocks, which 
may force a block (or a super-block) eviction. On the other hand, 
if the new compressed size is smaller, (Co-)DCC would deallocate 
the unused sub-blocks, and update the corresponding tag entry and 
BPEs. 

When (Co-)DCC allocates a block or updates an existing block, it 
allocates from a list of free sub-blocks in the corresponding set. In 
the presented design, free sub-blocks are those pointing to invalid 
blocks. Since both the tag array and the back pointer array are 
accessed in parallel on a cache lookup, the cache controller gets 
the list of free data sub-blocks by finding those whose 
corresponding BPEs are pointing to invalid blocks. Thus, the 
cache controller always makes sure free sub-blocks are pointing to 
invalid blocks. An alternative design is to use an extra bit per BPE 
representing its validity, which might slightly increase area. 

 

4.3 Co-DCC: Dynamically Co-Compacting 
Super-Blocks 
To further improve cache compression, we present Co-DCC that 
optimizes DCC to reduce internal fragmentation. DCC, similar to 
previous variable size compressed caches  [2] [16], compresses and 
compacts small cache blocks into one or more sub-blocks, leading 
to internal fragmentation in sub-blocks (e.g., a 16-byte sub-block 
is allocated for an 8-byte compressed block). Compressing cache 
blocks and compacting them to byte granularity (BytePack) 
eliminates internal fragmentation but at the cost of higher 
hardware overheads (discussed in Section  6.2). Using larger block 
sizes can also help reducing internal fragmentation by packing 
more data in the same space. However, increasing cache block 
size can lead to cache pollution and higher energy overheads  [38].  
Since for many applications, neighboring blocks co-reside at LLC, 
by managing cache at super-block granularity, super-blocks (e.g., 
a quad) can be treated as one large block.  Co-DCC exploits this 
opportunity and dynamically compacts compressed blocks of one 
super block into the same set of sub-blocks. By co-compacting 
super-blocks, Co-DCC can get some of the benefits of BytePack 
with much lower overheads, as shown in Section  6. In the next 
sub-section, we show how Co-DCC works, and how it can be 
integrated to DCC design with small changes. 

4.3.1 Co-DCC Design 
Co-DCC operates mostly similar to DCC, except for 
co-compacting super-blocks. When allocating a block to an 
existing super-block, Co-DCC compacts and stores the 
compressed block with the existing blocks of the same super-
block. Figure 7 shows an example of how Co-DCC works for the 
same configuration used in Figure 5. In this example, Co-DCC 
stores and co-compacts A0, A1 and A2, which belong to the 
super-block A, in chronological order in a 2-way set associative 
data set. When allocating block A1, since it fits in less than a sub-
block, it shares a sub-block with A0 (in the sub-block #5). When 
A2 is allocated, A2 can also share some space (A2.0) with A0 and 
A1 in the sub-block #5. Its remaining sub-blocks (A2.1 and A2.2) 
need to be allocated in free sub-blocks of the set. In this example, 
there is not enough in-order space available for A2 if we want to 
share sub-block #5 among these blocks. Therefore, unlike DCC 
that stores the sub-blocks of a block in order, Co-DCC stores them 
not necessarily in order but in a round-robin fashion (e.g., block 

Figure 5. DCC cache design 
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A2 in Figure 7). In this way, it will not need to move blocks if 
there is not enough in-order space available when co-compacting 
them. However, this design can slightly increase access latency 
(described in Section  5).  

Co-DCC can be integrated with DCC design with some small 
changes in the tag array and the back pointer array. Figure 8 
shows one Co-DCC tag entry and one BPE for the same 
configuration used in Figure 5. Since the first byte of a 
compressed block can be stored anywhere in a data sub-block 
(e.g., A2.0 in Figure 7), Co-DCC tracks each block’s starting byte 
separately in its corresponding tag entry (e.g., 7-bit Begin0 in 
Figure 8(a)). Co-DCC also tracks the last occupied byte of each 
super-block in its corresponding tag entry (7-bit End in Figure 
8(a)). When allocating a new block to an existing super-block, 
Co-DCC stores it next to this last byte if there is free space in that 
sub-block, and updates this pointer.  

Unlike DCC, where each data sub-block belongs to only one 
block, Co-DCC can share one sub-block among multiple blocks of 
the same super-block. For example, A0.1, A1, and A2.0 share the 
sub-block #5 in Figure 7. Therefore, each Co-DCC BPE tracks its 
sharers by storing a small bit-vector (e.g., 4-bit Sharers in Figure 
8(b)). Each bit of the sharers bit-vector shows if its corresponding 
block shares that sub-block. This information will slightly 
increase LLC area (Section  6.2), but allows Co-DCC to fit more 
blocks in the cache by reducing internal fragmentation. 

5. HARDWARE COMPLEXITIES 
In this section, we first describe the compression algorithms we 
have used throughout this paper. We then describe how (Co-)DCC 
can be integrated with a modern cache design. 

5.1 Compression Algorithms 
Multiple compression algorithms have been proposed for cache 
compression, which have reasonably low 
overheads  [2] [9] [14] [22] [29] [35] [37]. (Co-)DCC is mainly 
independent of compression algorithm in use. Therefore, in this 
paper, we study three representative algorithms:  

ZERO (Z): ZERO detects blocks containing all zeros (i.e., null 
data) and stores only a tag for those blocks  [14]. This technique 
has very simple (de-)compression hardware  [14]. Since zeros are 
common in cached data  [14], all the algorithms in this paper 
detect zero blocks. 

FPC+Z: FPC is a significance-based compression algorithm  [2] 
that exploits the fact that many values are small and do not require 

the full space allocated for them (e.g., small integers). FPC also 
compacts zeros and repeated bytes. FPC+Z detects zero blocks as 
well. FPC decompresses a 64-byte line in five cycles, has 0.183 
𝒎𝒎𝟐 area, and 0.273 W power consumption in 45nm  [11].  

C-PACK+Z: C-PACK is a pattern-based partial dictionary match 
compression algorithm  [9]. It compresses data by both statically 
(for fixed data patterns) and dynamically (using a 16-entry 
dictionary) detecting frequently appearing data. The original 
paper  [9] presented a compressor that is designed as a 3-stage 
pipeline, and an un-pipelined decompressor. They showed that C-
PACK runs at 1.2GHz in 65nm  [9]. We extend C-PACK with 
zero block detection (C-PACK+Z). To make C-PACK+Z run at 
3.2GHz in 32nm, we doubled the pipeline depth (decompression 
from un-pipelined to a 2-stage pipeline). C-PACK(+Z) takes 16 
bytes as input and produces 8 bytes as output per cycle. Table 2 
summarizes C-PACK+Z overheads in 32nm, which are scaled 
from 65nm  [9] using ITRS  [20] and include the overhead of 
deeper pipelines. The critical loop in both compression and 
decompression involves reading and updating the dictionary. 
Pipelining this operation requires classical register bypass logic to 
forward dependent updates. We conservatively assumed 1.5X 
larger area and power due to extra pipe registers and bypass 
circuits. We use C-PACK+Z in this paper, since it has higher 
compression ratio, low overheads and a more practical design  [9].  

5.2 Cache Design Complexities 
(Co-)DCC can be integrated into LLC of a recent commercial 
design with relatively little additional complexity and more 
importantly no need for an alignment network. The AMD 
Bulldozer implements an 8MB LLC that is broken into four 2MB 
sub-caches, each sub-cache consists of four banks that can 
independently service cache accesses  [34].  Figure 9 illustrates the 
data array of one bank in LLC and shows how it is divided into 4 
sequential regions (SR). Each sequential region runs one phase 
(i.e., half a cycle) behind the previous region and contains a 
quarter of a cache block (i.e., 16 bytes). Figure 9 shows how block 
A0’s four 16-byte sub-blocks (e.g., A0.0–A0.3) are distributed to 
the same row in each sequential region. Each subsequent 
sequential region receives the address a half cycle later and takes 
a half cycle longer to return the data. Thus, a 64-byte block is 
returned in a burst of four cycles on the same data bus. For 
example, A0.1 is returned one cycle after A0.0 in Figure 10(a). 

DCC requires only a small change to the data array to allow non-
contiguous sub-blocks. In Figure 9, block B1 is compressed into 2 
sub-blocks (B1.0 and B1.1), stored in sequential regions #1 and 
#2, but not in the same row. To select the correct sub-block, DCC 
must send additional address lines (i.e., 4 bits for a 16-way-
associative cache) to each sequential region (illustrated by the 
dotted lines in Figure 9). DCC must also enforce the constraint 
that a compressed block’s sub-blocks are allocated to different 
sequential regions to prevent sequential region conflicts.  

Figure 10(b) illustrates DCC timing when reading block B1. As 
described in Section  4, the back pointer array is accessed in 
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Table 2. C-PACK+Z Overheads 

Parameters Compressor Decompressor 
Pipeline Depth 
Latency (cycles) 
Area (𝒎𝒎𝟐) 
Power Consumption (mW) 

6 
16 
0.016 
25.84 

2 
9 
0.016 
19.01 

   

Figure 7. Co-DCC co-compaction example 
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parallel with the tag array. The sub-block selection logic finds the 
BPEs corresponding to this block using its block ID (derived from 
its address) and the matched tag ID, which is found by the tag 
match logic. The sub-block selection logic can only be partially 
overlapped with the tag match logic since it needs the matched tag 
ID. To calculate the latency overhead of the sub-block selection, 
we implemented the tag match and the sub-selection logic in 
Verilog, synthesized in 45nm and scaled to 32nm  [20]. The sub-
block selection logic adds less than half a cycle to the critical 
path, which we conservatively assume increases the access 
latency by one cycle. Figure 10(b) shows how the matching sub-
blocks are returned and fed directly into the decompression logic, 
which accepts 16-byte per cycle and has a small FIFO buffer to 
rate match. Decompression starts as soon as the first sub-block 
arrives (e.g., B1.0), which depends upon which sequential region 
it resides in. Since sub-block B1.0 resides in sequential region 1, 
there is one extra cycle (worst case is 3 cycles). Note that because 
the decompression latency is deterministic (9 cycles), DCC can 
determine at the end of sub-block selection when the data will be 
ready and whether the decompression hardware can be bypassed. 
Thus, even though completion times vary, DCC has ample time to 
arbitrate for the response network.  

Figure 9 also shows how block C3 is allocated by Co-DCC. 
Co-DCC also stores sub-blocks of a block in different regions, but 
allocates them in round-robin fashion and not necessarily in order. 
Therefore, Co-DCC cannot necessarily start decompression as 
soon as it reads the first sub-block (e.g., C3.1 will be read out first 
before C3.0).  To handle these cases, Co-DCC must buffer the 
sub-blocks and pass them to the decompression logic in order. 
The decompression logic must also pre-align the first sub-block, 
since the compressed block doesn’t necessarily start in the first 
byte. The reordering and pre-alignment add up to 3 additional 
cycles compared to DCC. 

6. EVALUATION 
6.1 Experimental Methodology 
We evaluate (Co-)DCC using a full-system simulator based on 
GEMS  [26]. We model a multicore system with three levels of 
cache hierarchy (Table 3)  [10]. We use an 8MB LLC that is 
broken into 8 banks, each divided into 4 sequential regions. Note 
that although we use a different cache configuration than AMD 
Bulldozer LLC, we model the timing and allocation constraints of 
sequential regions at LLC in detail, as discussed in Section  5. We 
use CACTI  [19] to model power at 32nm. We also use a detailed 
DRAM power model developed based on the Micron Corporation 
power model  [27] with energy per operation listed in Table 3. In 
this section, we report total system energy that include energy 

consumption of processors (cores + caches), on-chip network, and 
off-chip memory.  

Table 4 shows the configurations we use. For (Co-)DCC, we use 
4-block super-blocks, 64-byte blocks, and 16-byte sub-blocks. 
With these parameters, DCC has similar area overhead as FixedC 
and VSC-2X (Section  6.2). Alternative super-block and sub-block 
sizes can be used. We use 4-block super-blocks, since not all 
workloads would benefit from larger super-blocks due to their 
limited spatial locality. Using smaller sub-blocks also potentially 
improves compression effectiveness by reducing internal 
fragmentation, but at the cost of higher hardware complexities and 
overheads (discussed in Section  6.2). 

Our evaluations use representative multi-threaded and multi-
programmed workloads from Commercial workloads  [3], SPEC-
OMP  [6], PARSEC  [8], and mixes of SPEC CPU2006 
benchmarks, summarized in Table 5. We evaluate eight multi-
programmed workloads with different mixes of compute-bound 
and memory intensive benchmarks. Each workload consists of 8 
threads evenly divided among the named Spec2006 benchmarks. 
For example, cactus-mcf-milc-bwaves runs two copies of each of 
the four benchmarks.   

Figure 11 shows the sensitivity of our workloads to LLC capacity 
and LLC access latency. Compressed caches in general benefit 
cache capacity sensitive workloads by providing higher effective 
cache capacity. On the other hand, they might hurt cache latency 
sensitive workloads due to the decompression latency. We 
categorize our workloads as cache latency sensitive if they 
observe more than 1% runtime slowdown compared to Baseline 
when we use the same size cache with 9 extra LLC access latency, 
which represents the decompression latency. Many of our 
workloads (e.g., freqmine and oltp) are sensitive to cache latency 
and observe up to 6% (for oltp) slow down with the slower cache. 
We also categorize our workloads that observe more than 2% 
speedup with double LLC capacity (with the same access latency 
as Baseline) as cache capacity sensitive. Our workloads have a 
wide range of sensitivity to cache capacity (maximum 22% 
speedup for apache). Among our workloads, ammp, applu, 
blackscholes, and libquantum are cache insensitive. We run each 
workload for approximately 500M instructions with warmed up 
caches. We use a work-related metric, run each workload for a 
fixed number of transactions/iterations and report the average over 
multiple runs to address workload variability  [4].  

6.2 (Co-)DCC Area and Power Overheads 
Compressed caches can increase cache area due to their extra 
metadata. Table 6 shows the quantitative area overheads of DCC, 
Co-DCC, FixedC and VSC-2X over the same size conventional 

Figure 9. (Co-)DCC Data Array Organization 
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cache (16-way-associative 8MB LLC) with the parameters in 
Table 3 and Table 4. DCC uses the same number of tags as 
Baseline, but almost doubles the per-block metadata largely due to 
the back pointers. However, since the data array is much larger 
than the tag array, Cacti calculates the overall LLC area overhead 
as about ~6%  [9]. DCC’s area overhead is similar to FixedC and 
VSC-2X, which track twice as many tags per set (e.g., 32 tags per 
16 blocks). Co-DCC increases metadata stored per block, as 
discussed in Section  4.3, resulting to 16% area overhead 
compared to Baseline. Co-DCC still has less area overhead than 
naively quadrupling the number of tags (VSC-4X). It also incurs 
much lower overhead compared to a DCC configuration with no 
packing constraint (DCC-BytePack). BytePack can increase 
compression effectiveness by reducing internal fragmentation 
(Figure 1(b)). However, using 1-byte sub-blocks requires 16 times 
more BPEs per set than (Co-)DCC with 16-byte sub-blocks. 
BytePack would also require a complex alignment network to 
compact the bytes into 16-byte sub-blocks before passing them to 
the decompression hardware. Table 6 also includes the area 
overhead of (de-)compression units. Since C-PACK+Z’s 
decompressors produce 8 bytes per cycle, we match the cache 
bandwidth by considering two decompressors per cache bank. 
Since compression is not on the critical path, we consider one 
compressor per bank. For LLC configuration in Table 3, we need 
8 compressors and 16 decompressors resulting to an extra 1.8% 

area overhead. 

Compressed caches can also increase LLC per-access dynamic 
power and LLC static power due to their extra metadata. DCC, 
similar to FixedC and VSC-2X, increases LLC per-access 
dynamic power by 2% and LLC static power by 6%. Co-DCC 
also incurs 6% overhead on LLC per-access dynamic power and 
16% LLC static power overhead  [19]. We model these overheads 
as well as the power overheads of (de-)compression in detail. 

6.3 Improved Cache Efficiency 
Result 1: By exploiting spatial locality, DCC achieves on average 
2.2 times (up to 4 times) higher LLC effective capacity compared 
to Baseline, resulting to 18% lower LLC miss rate on average and 
up to 38% lower LLC miss rate. 

Result 2: Co-DCC further improves the effective cache capacity 
by co-compacting the blocks in a super-block. It achieves on 
average 2.6 times and up to 4 times higher effective capacity and 
on average 24% and up to 42% lower LLC miss rate. 

Result 3: (Co)-DCC provides significantly higher effective cache 
capacity and lower miss rate than FixedC and VSC-2X. 
(Co-)DCC also performs on average better than 2X Baseline with 
much lower area overhead. 

Compressed caches improve the cache effective capacity by 

Table 6. LLC area overheads of different compressed caches over the conventional cache 

Components DCC Co-DCC FixedC/VSC-2X VSC-3X VSC-4X DCC-BytePack 

Tag Array 
Back Pointer Array 

Compressors 
Decompressors 

2.1% 
4.4% 
0.6% 
1.2% 

11.3% 
5.4% 
0.6% 
1.2% 

6.3% 
0% 

0.6% 
1.2% 

12.7% 
0% 

0.6% 
1.2% 

18.8% 
0% 

0.6% 
1.2% 

2.1% 
70.6% 
0.6% 
1.2% 

Total Area Overhead 8.3% 18.5% 8.1% 14.5% 20.6% 74.5% 
   

Figure 11. Cache sensitivity of our workloads 
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 Table 5. Workloads 

Table 3. Simulation parameters Table 4. Configurations 
Baseline Conventional 16-way-associative 8MB LLC. 
2X Baseline Conventional 32-way-associative 16MB LLC. 

FixedC 2x tags per set (i.e., 32 tags per set). Each cache block is 
compressed to half if compressible. 

VSC-2X 2x tags per set (i.e., 32 tags per set). A block is 
compressed into 0-4 16-byte sub-blocks.  

DCC 
Same number of tags per set (i.e., 16 tags per set). Each 
tag tracks up to 4 blocks (4-block Super-Blocks). Blocks 
are compressed individually to 0-4 16-byte sub-blocks. 

Co-DCC Similar to DCC, except it dynamically co-compacts blocks 
of the same super-blocks. 
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fitting more blocks in the same space. They can achieve the 
benefits of larger cache sizes with lower area and power 
overheads. Figure 12(a) and Figure 12(b) plot LLC effective 
capacity and LLC miss rate of different techniques normalized to 
Baseline. We calculate the effective cache capacity by counting 
valid LLC cache blocks periodically. We measure LLC miss rate 
as the total number of misses per kilo executed instructions 
(MPKI). Figure 12(b) also plots the average LLC miss rate 
reduction predicted with power law for miss rate  [18] in dashed 
lines. This model  [18] predicts the cache miss rate to be inversely 
proportional to the increased capacity with an scaling factor 
typically set to 0.5 (i.e., “square root” power law), 0.3, or 0.7 (the 
higher the scaling factor, the lower the predicted miss rate). The 
average improvement we found for our workloads is less than 
what these models predict, since our workloads represent a wide 
range of cache sensitivities and we are not picking only highly 
cache sensitive ones. 

DCC can significantly improve LLC effective capacity and LLC 
miss rate for many applications by fitting more compressed 
blocks. On average, DCC provides 2.2x (i.e., 17.6MB) higher 
effective capacity and 18% lower LLC miss rate compared to 
Baseline. DCC benefits differ per workload, depending on its 
sensitivity to cache capacity, compression ratio, and spatial 
locality. It achieves highest benefits for cache sensitive workloads 
with good compressibility and spatial locality (e.g., apache and 
omnetpp-lbm/m8). Workloads with low spatial locality (e.g., 
canneal) or low compression ratio (e.g., wupwise) observe lower 

improvements. Cache insensitive workloads (e.g., blackscholes) 
also do not benefit from compression.  

Co-DCC further improves compression effectiveness by reducing 
internal fragmentation within data sets. Co-DCC achieves, on 
average, 2.6x higher effective capacity (i.e., 20.8MB) and 24% 
lower miss rate than Baseline. By fitting more compressed blocks 
in the cache, compared to DCC, Co-DCC can further reduce LLC 
miss rate for almost half of our workloads, including commercial 
workloads (e.g., 18% lower miss rate for jbb), canneal, and some 
of our Spec2006 mixes (e.g., 19% lower miss rate for libquantum-
bzip2/m2). By co-compacting super-blocks, Co-DCC gets some 
of the benefits of the idealized BytePack (Figure 1(b)) with much 
lower hardware overheads, as discussed in Section  6.2. 

Compared to FixedC and VSC-2X, (Co-)DCC provides higher 
LLC effective capacity and lower miss rate. Both FixedC and 
VSC-2X can at most double effective cache capacity compared to 
Baseline (i.e., 16MB). FixedC achieves on average 1.5x higher 
effective capacity and 8% lower miss rate than Baseline. VSC-2X 
provides slightly higher benefits (1.7x effective capacity, and 10% 
lower miss rate). Increasing VSC tag space can improve its 
benefits. For example, VSC-4X has similar miss rate reduction as 
DCC, but with 2.6x higher area overhead. 

Compared to 2X Baseline, (Co-)DCC effectively more than 
doubles cache capacity with lower overheads. DCC achieves 
higher LLC effective capacity than 2X-Baseline for majority of 
our workloads. It provides lower LLC miss rate reduction than 
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2X-Baseline (within 27%) for apache, jbb, oltp and gcc, which 
have lower compression ratio and spatial locality compared to 
other workloads. For these workloads, Co-DCC provides similar 
or better LLC miss rate reduction than 2X-Baseline by reducing 
internal fragmentation. 

6.4 Overall Performance and Energy 
Result 4: DCC and Co-DCC improve LLC efficiency and boost 
system performance by 10% (up to 29%) and 14% (up to 38%) on 
average, respectively. 

Result 5: DCC and Co-DCC save on average 8% (up to 24%) and 
12% (up to 39%) of system energy, respectively, due to shorter 
runtime and fewer accesses to the main memory. 

Result 6: DCC and Co-DCC achieve respectively 2.5x and 3.5x 
higher performance improvements, and 2.2x and 3.3x higher 
system energy improvements compared to FixedC and VSC-2X. 

Result 7: (Co-)DCC also improves LLC dynamic energy by about 
50% on average due to accessing fewer bytes. On the other hand, 
VSC-2X hurts LLC dynamic energy for majority of our 
workloads due to its need for energy-expensive re-compactions. 

By improving LLC utilization and reducing accesses to the main 
memory (i.e., the lower LLC miss rate), (Co-)DCC significantly 
improves system performance over Baseline. Figure 12(c) plots 
runtime of different techniques normalized to Baseline. DCC and 
Co-DCC improve performance by 10% (up to 29% for omnetpp-
lbm/m8) and 14% (up to 38% for libquantum-bzip2/m3) on 
average, respectively. For cache sensitive applications with 
medium-to-high compressibility and medium-to-high spatial 
locality (e.g., apache and zeus), (Co-)DCC achieves significant 
performance improvements by fitting more blocks in the cache. 
They provide lower improvements for applications with low 
spatial locality and low compression ratio (e.g., canneal and gcc). 
On the other hand, compressed caches, including (Co-)DCC, can 
hurt performance of workloads sensitive to LLC access latency 
(e.g., freqmine) due to the decompression latency. (Co-)DCC 
hurts performance by less than 3% (for freqmine). Cache 
insensitive workloads also do not benefit from compressed 
caches. An adaptive technique can be employed to further reduce 
these overheads  [2], which is orthogonal to our proposals.  

(Co-)DCC significantly outperforms FixedC, VSC-2X and 2X-
Baseline by effectively more than doubling the cache capacity. 
FixedC and VSC-2X limit compression effectiveness in 
improving system performance, achieving on average 4% and 5% 
performance improvements, respectively. (Co-)DCC outperforms 
2X-Basline for majority of our workloads. 2X-Baseline performs 
better than DCC for six of our workloads (within 11% for 
canneal). These workloads have lower spatial locality (e.g. 
canneal), lower compression ratio (e.g., jbb), or higher sensitivity 
to cache latency (e.g., freqmine) than the rest of our workloads. 
Co-DCC improves performance for more workloads, providing 
slightly lower performance than 2X-Baseline only for three 
workloads (within 3% for freqmine). 

(Co-)DCC improves system energy both due to shorter runtime 
and fewer accesses to the main memory. Figure 12(d) shows the 
total system energy of different techniques. DCC and Co-DCC 
reduce the total system energy by 8% (up to 24% for omnetpp-
lbm/m8) and 12% (up to 39% for libquantum-bzip/m2) on 
average, respectively. Figure 12(e) plots the main memory 
dynamic energy for these techniques. (Co-)DCC significantly 
reduces the main memory dynamic energy by reducing the 

number of cache misses. This contributes to (Co-)DCC higher 
system energy improvements as well. Compared to FixedC and 
VSC-2X, (Co-)DCC achieves higher energy savings. Although 
VSC-2X provides slightly higher performance and lower main 
memory dynamic energy consumption than FixedC, its system 
energy saving is less due to its high overheads on LLC dynamic 
energy. Figure 12(f) shows the dynamic energy of different 
compressed caches normalized to Baseline. FixedC, DCC and 
Co-DCC improve LLC dynamic energy by 27%, 52% and 46% on 
average over Baseline, respectively. On the other hand, VSC-2X 
significantly increases LLC dynamic energy (about 3x) by 
increasing the number of cache accesses (Figure 1(c)). 

We also measured the sensitivity of (Co-)DCC to different design 
parameters including decompression latency and LLC access 
latency. Our simulations (not shown here) show that reducing 
decompression latency (for the same C-PACK+Z algorithm) from 
9 cycles to 3 cycles only slightly increases (Co-)DCC 
performance. It achieves on average 1% and up to 3% higher 
performance than the results shown in Figure 12(c). We also 
studied the sensitivity of (Co-)DCC to LLC cache access latency. 
Our simulation results (not shown here) show that even reducing 
LLC access latency to 20 cycles (33% faster LLC) does not 
significantly impact (Co-)DCC results. 

7. RELATED WORK 
Exploiting Spatial Locality in Caches. This work builds upon 
previous dual-grain caches namely the Region Tracker  [39], the 
sectored cache  [25], sector pool cache  [30], and the decoupled-
sectored cache  [31], mostly discussed in Section  3. RegionTracker 
also manages cache at dual-granularities of memory regions (e.g., 
1KB) and cache blocks  [39]. Unlike our proposal, Region 
Tracker  [39] aims facilitating collection of coarse-grain 
information. 

Cache Compression. In Section  2, we described some of related 
work on compressed caches. Hallnor et al. extend their earlier 
indirect index cache  [17] to support compression (IIC-C)  [16].  
IIC-C uses a software-managed hash table to provide full 
associativity and forward pointers to associate tags with variable 
number of sub-blocks anywhere in the data array  [16], eliminating 
the need for repacking. However, for an 8MB LLC with 64-byte 
blocks, 16-byte sub-blocks, and doubled number of tags, their 
scheme incurs about 24% area overhead (26% considering 
(de-)compressors), while it at most doubles effective capacity. 
Further increasing the number of tags will make its area overhead 
even worse. J. S. Lee, et al.  [24] compress block pairs and store 
them in a single line if both lines compress by 50% or more. In 
this way, they free a cache block in an adjacent set; however, they 
need to check two sets for a potential hit on every access, which 
increases power overheads. In addition, their technique limits 
compressibility by failing to take advantage of lines that compress 
by less than 50%. Naffziger and Kover’s patent  [28] describes a 
compressed cache design that uses forward pointers to associate 
tags with data sub-blocks. The overhead is less than IIC-C  [16], 
since pointers only refer to sub-blocks within a set (not the entire 
cache) and are thus much smaller. In one embodiment they also 
serialize the sub-block accesses. However, as far as we can tell, 
this scheme has never been evaluated in the public literature. 

Some techniques aim reducing cache dynamic power 
consumption by compression. For example, Dynamic zero 
compression (DZC)  [33] only stores non-zero bytes in the cache. 
It reduces L1 cache dynamic power, but does not increase cache 



effective size. Similarly, FVC  [35] reduces cache dynamic power 
by accessing half of the block if compressed. Significance-
compression  [22] helps both cache power and system energy by 
accessing half of the cache block if compressed, and packing 
more blocks in the cache. In a recent work, Residue cache  [23] 
aims reducing L2 cache area and power in single processor 
embedded systems. They compress cache blocks and store them in 
half size in L2 cache. For uncompressed cache blocks, they store 
another half in a small cache, called residue cache.  

S. Baek, et al.  [7] proposes a size-aware compressed cache 
management to improve the performance of compressed caches. 
Their proposal is orthogonal to ours, and can be integrated with 
(Co-)DCC. G. Pekhimenko, et al.  [29] also proposes a new 
compression algorithm with lower complexities than previously 
proposed ones, but requires an adder per word. (Co-)DCC is 
mainly independent of compression algorithms, and can use their 
proposed algorithm as well. 

Compression is also used at main memory  [1] [15]. The decoupled 
zero-compressed memory  [13] manages the main memory as a 
decoupled sectored set-associative cache. It detects null blocks to 
improve performance, which is more limited than compression-
based schemes. 

8. CONCLUSIONS 
In this paper, we propose Decoupled Compressed Cache that 
exploits spatial locality to improve both the performance and 
energy-efficiency of cache compression. DCC manages the cache 
at three granularities, tracking super-blocks while dynamically 
compressing and allocating single blocks as variable number of 
sub-blocks. It addresses the issues with conventional compressed 
caches, and achieves significantly higher LLC effective cache 
capacity while incurring low area overheads. It also decouples 
sub-blocks from the address tag to eliminate energy-expensive re-
compaction when a block’s size changes. A further optimized 
design (Co-DCC) reduces internal fragmentation in the cache by 
co-compacting super-blocks. We show that on average, DCC and 
Co-DCC reduce system energy by 8% and 12%, respectively, and 
improve performance by 10% and 14%, respectively, compared to 
the same size conventional cache. (Co-)DCC nearly doubles 
compression benefits compared to previous proposals with 
comparable overheads. 
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