
Decoupled Compressed Cache: Exploiting Spatial Locality
for Energy-Optimized Compressed Caching

Somayeh Sardashti
Computer Sciences Department
University of Wisconsin-Madison

somayeh@cs.wisc.edu

David A. Wood
Computer Sciences Department
 University of Wisconsin-Madison

david@cs.wisc.edu

ABSTRACT
In multicore processor systems, last-level caches (LLCs) play a
crucial role in reducing system energy by i) filtering out expensive
accesses to main memory and ii) reducing the time spent
executing in high-power states. Cache compression can increase
effective cache capacity and reduce misses, improve performance,
and potentially reduce system energy. However, previous
compressed cache designs have demonstrated only limited
benefits due to internal fragmentation and limited tags.

In this paper, we propose the Decoupled Compressed Cache
(DCC), which exploits spatial locality to improve both the
performance and energy-efficiency of cache compression. DCC
uses decoupled super-blocks and non-contiguous sub-block
allocation to decrease tag overhead without increasing internal
fragmentation. Non-contiguous sub-blocks also eliminate the need
for energy-expensive re-compaction when a block’s size changes.
Compared to earlier compressed caches, DCC increases
normalized effective capacity to a maximum of 4 and an average
of 2.2 for a wide range of workloads. A further optimized
Co-DCC (Co-Compacted DCC) design improves the average
normalized effective capacity to 2.6 by co-compacting the
compressed blocks in a super-block. Our simulations show that
DCC nearly doubles the benefits of previous compressed caches
with similar area overhead. We also demonstrate a practical DCC
design based on a recent commercial LLC design.

Categories and Subject Descriptors

B.3.2 [Design Styles]: Cache Memories.

General Terms
Performance, Design.

Keywords
Compression, Cache Design, Multicore, Energy Efficiency.

1. INTRODUCTION
Future computer systems face continuing power and energy
challenges as the power per transistor scales more slowly than
transistor density [12]. Caches, long used to reduce effective

memory latency and increase effective bandwidth, play an
increasingly important role in reducing memory system energy.
Keckler [21] shows that last-level caches (LLCs) are especially
important, since obtaining operands of a double-precision
multiply-add from off-chip memory requires approximately 200x
the energy of the operation. Thus improving effective cache
utilization is important not only for system performance, but also
for system energy.

Increasing LLC size can improve performance for most
workloads, but comes at significant area cost. For example, the
well-known “square root” power law [18] predicts that doubling
LLC size will reduce misses by ~30%, on average. But it
obviously doubles LLC area, which already accounts for 15–30%
of the die area of most processors [10].

Cache compression seeks to increase effective cache size—by
compressing and compacting cache blocks—while incurring
smaller area overheads [2] [5] [9] [22]. For example, previously
proposed techniques have the potential to double effective LLC
capacity, while increasing LLC area by only ~8%. Unfortunately,
as summarized in Table 1 (simulation and workload details in
Section 6), previous compressed cache designs (i.e., FixedC and
VSC-2X, described below) fail to achieve this potential,
increasing normalized effective capacity by only 1.5–1.7, on
average, compared to the same size conventional LLC (Baseline).

FixedC and VSC-2X perform less well than doubling LLC size
for two main reasons. First, internal fragmentation results from
the way blocks are mapped to sets and, importantly, how
compressed blocks are compacted within a set. For example, fixed
compression designs (denoted FixedC) only compact two
compressed blocks if each can fit in half the space of an

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
MICRO-46, December 07 - 11 2013, Davis, CA, USA
Copyright 2013 ACM 978-1-4503-2638-4/13/12…$15.00.

L
L

C
 A

re
a

O

ve
rh

ea
d

(%
)

N
or

m
 M

ax

C
ap

ac
ity

N

or
m

C

ap
ac

ity

N
or

m
 L

L
C

M

is
s R

at
e

N
or

m

R
un

tim
e

N
or

m
 S

ys
te

m

E
ne

rg
y

Baseline 0 1 1 1 1 1

FixedC ~8% 2 1.5 0.91 0.96 0.96

VSC-2X ~8% 2 1.7 0.89 0.95 0.97

2X Baseline 100% 2 1.9 0.87 0.93 0.94

DCC ~8% 4 2.2 0.82 0.90 0.92

Co-DCC ~18% 4 2.6 0.75 0.86 0.88

Table 1. Summary of results of the compressed caches

uncompressed block [9] [22]. Variable size compression (VSC-
2X) compacts compressed blocks into a variable number of sub-
blocks, e.g., 0–4 16-byte sub-blocks [2]. VSC-2X reduces internal
fragmentation (within a set), since all blocks in a set share the
same pool of sub-blocks. Table 1 shows that VSC-2X’s better
compaction improves average normalized capacity from 1.5 to
1.7. Second, to limit area overhead, both FixedC and VSC-2X
only double the number of tags (plus some additional metadata)
and thus can at most double effective cache capacity. Thus, on
average, VSC-2X’s effective capacity is significantly less than a
double-sized conventional LLC (labeled 2X Baseline). Note that
doubling LLC size only increases effective capacity by 1.9 times,
since some workloads do not fully utilize the larger cache.

In this paper, we propose Decoupled Compressed Cache (DCC).
DCC uses decoupled super-blocks (also known as sectors [31])1
to increase the maximum effective capacity to four times the
uncompressed capacity, while using comparable area overhead to
previous cache compression techniques. DCC uses super-
blocks—four aligned contiguous cache blocks that share a single
address tag—to reduce tag overhead. Each 64-byte block in a
super-block is compressed and then compacted into 0–4 16-byte
sub-blocks. DCC decouples the address tags—allowing any sub-
block in a set to map to any tag in that set—to reduce
fragmentation within a super-block [31]. Decoupling also allows
sub-blocks of a block to be non-contiguous, eliminating the re-
compaction overheads of previous variable size compressed
caches [2]. An optimized Co-DCC design further reduces internal
fragmentation (and increases effective capacity) by compacting
the compressed blocks from a super-block into the same set of
sub-blocks.

Using the GEMS full-system simulator [26] to model an 8-core
multicore system with a baseline 8MB LLC, we show that DCC
can improve average performance and system energy by 10% and
8%, respectively. Importantly, this is better than a conventional
LLC of twice the capacity, and uses only 8% more area than
Baseline. In comparison with FixedC and VSC-2X, DCC nearly
doubles the performance and energy benefits for comparable area
overheads. Co-DCC further reduces runtimes and system energy,
but at the cost of some additional complexity.

This paper makes the following contributions:

• DCC uses decoupled super-blocks to increase the
effective number of tags with low overhead and little
internal fragmentation.

• DCC stores compressed data in non-contiguous
sub-blocks to eliminate re-compaction overheads when a
block’s compressed size changes.

• Co-DCC further reduces internal fragmentation by
compacting the blocks of a super-block into the same set
of sub-blocks.

• DCC and Co-DCC provide more effective capacity, on
average, than a conventional cache of twice the size, while
increasing cache area by only 8% and 18%, respectively.

• We present a concrete design for (Co-)DCC and show
how it can be integrated into a recent commercial LLC

1 This paper uses the unambiguous terms super-block, block, and

sub-block, rather than the original, but sometimes confusing
terms sectors, blocks, and segments.

design (AMD Bulldozer LLC) with little additional
complexity.

In the rest of the paper, we present the background on compressed
caches in Section 2, show the potential in exploiting spatial
locality for improving compression effectiveness in Section 3,
present DCC design in Section 4, describe hardware complexities
in Section 5, describe the evaluation methodology and
experimental results in Section 6, discuss the related work in
Section 7, and conclude the paper in Section 8.

2. BACKGROUND ON COMPRESSED
CACHES
Data compression has the potential to increase the effective
capacity of every level of the memory hierarchy [1] [2] [15].
Compression is widely used to increase the capacity of disk
storage systems. IBM’s MXT effectively doubles main memory
capacity [1]. Cache compression has been studied for every level
of the cache hierarchy to increase effective capacity, reduce miss
rates, improve performance [2] [9] [16] [24] and reduce
energy [22] [23]. Cache compression is harder than other levels of
the memory hierarchy, since performance is sensitive to cache
latency, especially for L1 and L2 caches. But as multicore systems
move to having three or more levels of cache, the sensitivity to
LLC latency decreases allowing systems to consider more
effective, longer latency (de-)compression algorithms.

Figure 1(a) illustrates the trade-off between decompression
latency and compression ratio (i.e., original size over compressed
size) for three compression algorithms. A simple zero-block
detection algorithm (denoted ZERO) has single-cycle
decompression latency, but only achieves an average compression
ratio of 1.5 and only really benefits a few workloads [14]. Adding
a more complex significance-based compression algorithm
(denoted FPC+Z), works for a broader range of workloads and
improves the average compression ratio to 2.8, but increases
decompression latency to five cycles [2]. Finally, adding
dictionary-based compression (denoted CPACK+Z), increases the
average compression ratio to 3.9 and the decompression latency to
9 cycles (see section 5.1) [9]. However, because multi-megabyte
LLCs already have relatively long access times (e.g., 30 cycles)
and very high miss penalties (e.g., greater than 150 cycles and ~60
nJ), the benefit of higher compression ratio has the potential to
outweigh the longer decompression pipeline. In the remainder of
this paper, we use CPACK+Z, which combines the C-PACK
algorithm [9] with zero-block detection [14]. In Section 5, we
describe these compression algorithms in detail.

Such a high compression ratio suggests the potential for a
similarly large normalized effective cache capacity; that is, the
number of compressed blocks stored divided by maximum
number of uncompressed blocks that could be stored.
Unfortunately, compressed caches fail to achieve this potential for
three main reasons. First, all hardware caches map blocks into
sets, introducing an internal fragmentation problem since a
compressed block must (at least in current designs) be stored
entirely within one set. In Figure 1(b), the BytePack column
represents an idealized compressed cache with infinite tags that
compacts compressed blocks on arbitrary byte boundaries.
BytePack degrades average normalized effective capacity to 3.1,
on average. Second, practical compressed caches introduce a
second internal fragmentation problem by compacting compressed
blocks into one or more sub-blocks, rather than storing
compressed data on arbitrary byte boundaries. The column labeled

VSC-Inf in Figure 1(b) illustrates that compacting compressed
blocks into 0–4 16-byte sub-blocks (but with infinite tags per set)
degrades normalized effective capacity from 3.1 to 2.6, on
average. Finally, compressed caches have a fixed number of tags
per set. The remaining columns in Figure 1(b) illustrates that
reducing the number of tags from infinite to a more practical
twice Baseline, degrades the normalized effective capacity from
2.6 to 1.7, on average.

Figure 1(b) results suggest two approaches to unlocking the
potential of cache compression. First, reduce the internal
fragmentation within a set. However, this must also be done with
care in today’s energy constrained environment. VSC-2X relaxes
the mapping constraint between tags and data and compacts
compressed blocks into a variable number of contiguous sub-
blocks [2]. VSC-2X can compact more blocks in the cache than a
simple FixedC compressed cache, which only compacts
compressed blocks into half blocks (i.e., 32-byte sub-blocks).
However, VSC needs to repack the sub-blocks in a set whenever a
block’s size changes to make contiguous free space. This can
significantly increase the cache bank occupancy and dynamic
energy. Figure 1(c) shows the average number of accessed bytes
at LLC normalized to Baseline. FixedC decreases the average
number of accessed bytes by 36% compared to Baseline due to
accessing shorter compressed blocks. On the other hand, VSC-2X
increases the number of accessed bytes at LLC by nearly a factor
of three since it needs to repack sets (copying almost half a set, on
average). This significantly increases LLC dynamic energy, as
discussed in Section 6.

The second approach to improving cache compression is to
increase the number of tags per set. Figure 1(b) shows that
increasing the tags from twice the baseline to four times the
baseline increases the normalized effective capacity from 1.7 to
2.3, on average. However, done naively, this significantly

increases the area overhead. Figure 2 shows the area overhead
(compared to Baseline) versus normalized effective capacity. A
variable size compression cache (VSC-2X) with twice as many
tags as Baseline [2] increases LLC area by 8%. However,
quadrupling the number of tags (VSC-4X) increases LLC area by
~21%, which would increase total die size by 3–6%.

In summary, we seek a new LLC compressed cache design that
(a) increases the number of tags per set, without significantly
increasing the metadata overhead and (b) improves the energy
efficiency of compacting compressed blocks to reduce internal
fragmentation.

3. EXPLOITING SPATIAL LOCALITY
Although current multicore caches typically support a single block
size, most workloads exhibit spatial locality at multiple
granularities. Figure 3 shows the distribution of neighboring
blocks in a conventional LLC with a tag per 64-byte block
(workloads and simulation parameters described in Section 6).
Neighboring blocks are defined as those in a 4-block aligned
super-block (i.e., aligned 256-byte region). The graph shows the
fraction of blocks that are part of a Quad (all four blocks in a
super-block co-reside in the cache), Trios (three blocks out of four
co-reside), Pairs (two blocks out of four co-reside), and Singletons
(only one block out of four resides in the cache). Pairs and Trios
are not necessarily contiguous blocks, but represent two or three
blocks, respectively, that could share a super-block tag. Although
access patterns differ, the majority of cache blocks reside as part
of a Quad, Trio, or Pair. For applications with streaming access
patterns (e.g. mgrid) Quads account for essentially all the blocks.
Other workloads exhibit up to 29% singletons (canneal), but
Quads or Trios account for over 50% of blocks for all but two of
our workloads (canneal and gcc).

Figure 2. LLC area overhead vs. Norm LLC capacity

0%

8%

16%

24%

1.0 1.5 2.0 2.5

LL
C

Ar
ea

 O
ve

rh
ea

d
(%

)

Normalized Avg Effective LLC Capacity

FixedC

VSC-2X

VSC-3X

VSC-4X

Baseline

1

2

3

4

5

BytePack VSC-Inf VSC-4X VSC-3X VSC-2X

N
or

m
. L

LC
 C

ap
ac

ity

8 8

0
1
2
3
4
5

Baseline FixedC VSC-2X

N
or

m
 N

um
 o

f
Ac

ce
ss

ed
 B

yt
es

 a
t L

LC

8

1

2

3

4

5

1 5 9

ZERO FPC+Z C-PACK+Z

Co
m

pr
es

si
on

 R
at

io

6 8 8

(a) (b) (c)

Figure 1. (a) Compression ratio of different algorithms (b) Normalized LLC effective capacity of different compressed caches
(c) VSC overhead on the number of LLC accessed bytes

apache jbb oltp zeus ammp applu equake
mgrid wupwise black canneal freqmine m2 m3
m4 m5 m6 m7 m8 GEOMEAN

Figure 3. Distribution of LLC cache blocks

0%

20%

40%

60%

80%

100%

ap
ac

he jb
b

ol
tp

ze
us

am
m

p
ap

pl
u

eq
ua

ke
m

gr
id

w
up

w
is

e
bl

ac
k

ca
nn

ea
l

fr
eq

m
in

e
m

1
m

2
m

3
m

4
m

5
m

6
m

7
m

8
G

EO
M

EA
N

LL
C

Ca
pa

ci
ty

 D
is

tr
ib

ut
io

n

Singleton: Pairs: Trios: Quads:

Super-blocks (also known as sectors [31]) have long exploited
coarser-grain spatial locality to reduce tag
overhead [25] [30] [31] [39]. Super-blocks associate one address tag
with multiple cache blocks, replicating only the per-block
metadata such as coherence state. Figure 4(a) shows one set of a
4-way-associative super-block cache (SC), with 4-block super-
blocks. Using 4-block super-blocks reduces tag area by 70%
compared to a conventional cache. However, Figure 4(a)
illustrates that Singletons, Pairs, and Trios—such as, super-blocks
D, C, and A, respectively—result in internal fragmentation, which
can lead to significantly higher miss rates [31].

Seznec showed that decoupling super-block tags from data blocks
helps reduce internal fragmentation [31]. Decoupled super-block
caches (DSC) increase the number of super-block tags per set and
use per-block back pointers to identify the corresponding tag.
Figure 4(b) illustrates how decoupling can reduce fragmentation
by allowing two Singletons (i.e., blocks F1 and G3) to share the
same super-block. DSC uses more tag space than SC, but less than
a conventional cache since back pointers are small.

In this work, we use decoupled super-block tags to improve cache
compression in two ways. First, super-blocks reduce tag overhead,
permitting more tags per set for comparable overhead. Second,
decoupling tags and data reduces internal fragmentation and,
importantly, eliminates re-compaction when the size of a
compressed block changes.

4. DECOUPLED COMPRESSED CACHE
In this section, we describe Decoupled Compressed Cache (DCC)
and Co-Compacted DCC (Co-DCC) designs in detail. While these
designs may be applicable to other levels of the cache hierarchy,
we target LLC in this work.

4.1 DCC Architecture
Figure 5 shows DCC architecture. To improve compression
effectiveness at LLC, DCC exploits super-blocks and manages the
cache at three granularities: coarse-grain super-blocks, single
cache blocks, and fine-grain sub-blocks. DCC tracks super-blocks,
which are groups of aligned, contiguous cache blocks (Figure 5
(d)), while it compresses and stores single cache blocks as
variable number of sub-blocks. Figure 5 (a) shows the key
components of DCC architecture for a small 2-way-set associative
cache with 4-block super-blocks, 64-byte blocks, and 16-byte sub-
blocks. DCC consists of Tag Array, Sub-Blocked Back Pointer
Array, and Sub-Blocked Data Array. DCC is indexed using the
super-block address bits (Set Index in Figure 5 (e)). Note that like
all super-block caches, this index uses higher order bits. In this
way, all blocks of the same super-block are mapped to the same
data set.

DCC tracks super-blocks to fit more compressed blocks in the
cache while limiting tag area overhead. DCC explicitly tracks
super-blocks through the tag array. The tag array is a largely
conventional super-block tag array. Figure 5 (b) shows one tag
entry that consists of one tag per super-block (Super-block tag)
and coherence state (CState) and compression status (Comp) for
each block of the super-block. Since blocks of a super-block share
a tag address, the tag array can map more blocks compared to the
same size conventional cache without incurring high area
overhead. DCC holds as many super-block tags as the maximum
number of uncompressed blocks that could be stored. For
example, in Figure 5, for a 2-way-associative cache, it holds two
super-block tags in each set of the tag array. In this way, each set
in the tag array can map eight blocks (i.e., 2 super-blocks * 4

blocks/super-block), while maximum of two uncompressed blocks
can fit in each set. In the worst case scenario, when there is no
spatial locality (i.e., all singletons) or cached data is
uncompressible, DCC can still utilize all the cache data space, for
example, by tracking two singletons per set in Figure 5 (a).

DCC compresses and compacts cache blocks into variable number
of data sub-blocks. It dynamically allocates these sub-blocks in
the sub-blocked data array. The data array is a mostly
conventional cache data array, organized in sub-blocks. In Figure
5 (a), it provides eight 16-byte sub-blocks per set, for a total of
128 bytes. This is only one quarter of the data space mapped by
each set in the tag array (i.e., 2 super-blocks * 4 blocks/super-
block * 64 bytes/block = 512). Thus using this configuration the
tag array has the potential to map four times as many blocks as
can fit in the same size uncompressed data array.

DCC decouples sub-blocks from the address tag to eliminate the
expensive re-compaction when a block’s size changes. DCC
allocates sub-blocks of a block in the data array not necessarily in
contiguous space (unlike VSC [2]) but in order. For example, in
Figure 5 (a), block A0 is compressed into two sub-blocks (A0.1
and A0.0) that are stored in the sub-block #5 and the sub-block #1
in the data array. DCC uses the sub-blocked back pointer array as
one level of indirection to identify sub-blocks of a block. Each
back pointer entry (BPE) in the sub-blocked back pointer array
corresponds to one data sub-block in the data array and identifies
the owner block. A BPE stores its corresponding block’s tag ID
and block ID (Figure 5 (c)). Tag ID (e.g., 1 bit for a 2-way-
associative cache) refers to the super-block tag entry matching
this block in the same set of the tag array (e.g., 1 in Figure 5 (a)).
(Co-)DCC derives Block ID (e.g., 2 bits for a 4-block super-
block) from the address of the accessing block (Blk# in Figure 5
(e)). The back pointer array slightly increases LLC area (discussed
in Section 6.2); however, it enables low overhead variable size
compression. In the next sub-section, we explain how blocks are
allocated and looked up in DCC in detail.

4.2 DCC Lookup Process
Figure 6 shows DCC lookup procedure for different scenarios. On
a cache lookup, both the tag array and the back pointer array are
accessed in parallel. In the common case of a cache hit, both the
block and its corresponding super-block are found available (i.e.,
tag matched and block is valid). In the event of a cache hit, the
result of the tag array and the back pointer array lookup
determines which sub-blocks of the data array belong to the
accessing block. On a read, those sub-blocks are read out next,
and the corresponding tag entry and BPEs are updated. In Figure
5, for example, on a read access to block A0, Tag A, Index A, and
block ID (e.g., #0) are derived from the address (Figure 5 (e)).
The corresponding set of the tag array and the back pointer array
(indexed by Index A) are read out. The tag match and sub-block
selection logic then identify whether the block is available and
where its sub-blocks locate in the data array. For instance, the tag

Figure 4. (a) Sectored Cache (b) Decoupled Sectored Cache

A B C D A0

A1

A2

B0

B1

B2
B3

C0

C2

D3

A0 C0B0H0

A1 E1 F1 B1
C2

D3 E3

H2 A2

G3

B2
B3

A B C D E F G H

A:<A2,A1,A0>
B:<B3,B2,B1,B0>
C:<C2,C0>
D:<D3>

E:<E3,E1>
F:<F1>
G:<G3>
H:<H2,H0>

Tag Array Data Array Tag Array Data Array

Unused space Re-used space(a) (b)

entry #1 in the tag array matches super-block A, and its block #0
is available (CState #0 is valid). The sub-block selection logic
finds the matched BPEs (BPEs #5 and #1 for A0) using the
matched tag ID (e.g., 1 for A) and the block ID (e.g., 0 for A0).
Since there is a one-to-one correspondence between BPEs and
data sub-blocks, the corresponding sub-blocks are then read out of
the data array (e.g., the sub-blocks #5 and #1 for A0) and
decompressed.

On the other hand, in case of a cache miss, DCC allocates the
compressed block in the data array. A cache miss occurs when the
block is not available in the cache even if its super-block is
available. If its super-block is available (Block Miss in Figure 6),
the accessing block will be allocated in the data array, and its
corresponding tag entry and BPEs will be updated. This might
need replacing one or more cache blocks to make enough space
for this block. If its super-block is not available (Super-Block
Miss in Figure 6), we might need to replace another super-block
(e.g., the least recently used one). In this case, the blocks
belonging to the victim super-block are evicted from LLC as well.
We handle the eviction process in the background by storing the
victim super-blocks in a small buffer until all of their blocks are
evicted from the cache. In this way, their tag entries can be
released to allocate the new super-blocks.

Unlike conventional caches, on a write (or update) to a
compressed cache, the new compressed size could be different. To
fit a larger block, (Co-)DCC might need more sub-blocks, which
may force a block (or a super-block) eviction. On the other hand,
if the new compressed size is smaller, (Co-)DCC would deallocate
the unused sub-blocks, and update the corresponding tag entry and
BPEs.

When (Co-)DCC allocates a block or updates an existing block, it
allocates from a list of free sub-blocks in the corresponding set. In
the presented design, free sub-blocks are those pointing to invalid
blocks. Since both the tag array and the back pointer array are
accessed in parallel on a cache lookup, the cache controller gets
the list of free data sub-blocks by finding those whose
corresponding BPEs are pointing to invalid blocks. Thus, the
cache controller always makes sure free sub-blocks are pointing to
invalid blocks. An alternative design is to use an extra bit per BPE
representing its validity, which might slightly increase area.

4.3 Co-DCC: Dynamically Co-Compacting
Super-Blocks
To further improve cache compression, we present Co-DCC that
optimizes DCC to reduce internal fragmentation. DCC, similar to
previous variable size compressed caches [2] [16], compresses and
compacts small cache blocks into one or more sub-blocks, leading
to internal fragmentation in sub-blocks (e.g., a 16-byte sub-block
is allocated for an 8-byte compressed block). Compressing cache
blocks and compacting them to byte granularity (BytePack)
eliminates internal fragmentation but at the cost of higher
hardware overheads (discussed in Section 6.2). Using larger block
sizes can also help reducing internal fragmentation by packing
more data in the same space. However, increasing cache block
size can lead to cache pollution and higher energy overheads [38].
Since for many applications, neighboring blocks co-reside at LLC,
by managing cache at super-block granularity, super-blocks (e.g.,
a quad) can be treated as one large block. Co-DCC exploits this
opportunity and dynamically compacts compressed blocks of one
super block into the same set of sub-blocks. By co-compacting
super-blocks, Co-DCC can get some of the benefits of BytePack
with much lower overheads, as shown in Section 6. In the next
sub-section, we show how Co-DCC works, and how it can be
integrated to DCC design with small changes.

4.3.1 Co-DCC Design
Co-DCC operates mostly similar to DCC, except for
co-compacting super-blocks. When allocating a block to an
existing super-block, Co-DCC compacts and stores the
compressed block with the existing blocks of the same super-
block. Figure 7 shows an example of how Co-DCC works for the
same configuration used in Figure 5. In this example, Co-DCC
stores and co-compacts A0, A1 and A2, which belong to the
super-block A, in chronological order in a 2-way set associative
data set. When allocating block A1, since it fits in less than a sub-
block, it shares a sub-block with A0 (in the sub-block #5). When
A2 is allocated, A2 can also share some space (A2.0) with A0 and
A1 in the sub-block #5. Its remaining sub-blocks (A2.1 and A2.2)
need to be allocated in free sub-blocks of the set. In this example,
there is not enough in-order space available for A2 if we want to
share sub-block #5 among these blocks. Therefore, unlike DCC
that stores the sub-blocks of a block in order, Co-DCC stores them
not necessarily in order but in a round-robin fashion (e.g., block

Figure 5. DCC cache design

Sub-Blocked
Back Pointer

Array

Sub-Blocked Data
Array

Index A

Set
Index Blk#

6b

Byte
Tag ID Blk#

(c) One BPE:
...

Super-Block Size
(d) Address Space:

(e) Address:

{Tag #1, Blk #0}

Tag Array

Tag A,
Blk #0

A0.1

Super-Block
Tag

(a) DCC Cache Layout:

15

Super-Block
Tag Cs

ta
te

3

3b 1b

Co
m

p3
Cs

ta
te

2

3b 1b

Co
m

p2
Cs

ta
te

1

3b 1b

Co
m

p1
Cs

ta
te

0

3b 1b

Co
m

p0

1b 2b

A0.0

1 5 1

(b) One Tag Entry:

{Tag A,(I,N), (I,N), (I,N), (VALID,COMP)}

Tag Match and Sub-Block
Selection

Figure 6. DCC cache lookup

YES

YES

Read? Write?

Replace
Victim BlocksNO

NO

Super-Block
Miss

Tag Match?

Valid Block?
Block Miss

Read Sub-blocks
and Decompress

Compress and
Write Sub-blocks

Lookup
Back Pointer Array

Replace Victim
Super-Block

Lookup
Tag Array

Update LRU, Tag, and BPEs

A2 in Figure 7). In this way, it will not need to move blocks if
there is not enough in-order space available when co-compacting
them. However, this design can slightly increase access latency
(described in Section 5).

Co-DCC can be integrated with DCC design with some small
changes in the tag array and the back pointer array. Figure 8
shows one Co-DCC tag entry and one BPE for the same
configuration used in Figure 5. Since the first byte of a
compressed block can be stored anywhere in a data sub-block
(e.g., A2.0 in Figure 7), Co-DCC tracks each block’s starting byte
separately in its corresponding tag entry (e.g., 7-bit Begin0 in
Figure 8(a)). Co-DCC also tracks the last occupied byte of each
super-block in its corresponding tag entry (7-bit End in Figure
8(a)). When allocating a new block to an existing super-block,
Co-DCC stores it next to this last byte if there is free space in that
sub-block, and updates this pointer.

Unlike DCC, where each data sub-block belongs to only one
block, Co-DCC can share one sub-block among multiple blocks of
the same super-block. For example, A0.1, A1, and A2.0 share the
sub-block #5 in Figure 7. Therefore, each Co-DCC BPE tracks its
sharers by storing a small bit-vector (e.g., 4-bit Sharers in Figure
8(b)). Each bit of the sharers bit-vector shows if its corresponding
block shares that sub-block. This information will slightly
increase LLC area (Section 6.2), but allows Co-DCC to fit more
blocks in the cache by reducing internal fragmentation.

5. HARDWARE COMPLEXITIES
In this section, we first describe the compression algorithms we
have used throughout this paper. We then describe how (Co-)DCC
can be integrated with a modern cache design.

5.1 Compression Algorithms
Multiple compression algorithms have been proposed for cache
compression, which have reasonably low
overheads [2] [9] [14] [22] [29] [35] [37]. (Co-)DCC is mainly
independent of compression algorithm in use. Therefore, in this
paper, we study three representative algorithms:

ZERO (Z): ZERO detects blocks containing all zeros (i.e., null
data) and stores only a tag for those blocks [14]. This technique
has very simple (de-)compression hardware [14]. Since zeros are
common in cached data [14], all the algorithms in this paper
detect zero blocks.

FPC+Z: FPC is a significance-based compression algorithm [2]
that exploits the fact that many values are small and do not require

the full space allocated for them (e.g., small integers). FPC also
compacts zeros and repeated bytes. FPC+Z detects zero blocks as
well. FPC decompresses a 64-byte line in five cycles, has 0.183
𝒎𝒎𝟐 area, and 0.273 W power consumption in 45nm [11].

C-PACK+Z: C-PACK is a pattern-based partial dictionary match
compression algorithm [9]. It compresses data by both statically
(for fixed data patterns) and dynamically (using a 16-entry
dictionary) detecting frequently appearing data. The original
paper [9] presented a compressor that is designed as a 3-stage
pipeline, and an un-pipelined decompressor. They showed that C-
PACK runs at 1.2GHz in 65nm [9]. We extend C-PACK with
zero block detection (C-PACK+Z). To make C-PACK+Z run at
3.2GHz in 32nm, we doubled the pipeline depth (decompression
from un-pipelined to a 2-stage pipeline). C-PACK(+Z) takes 16
bytes as input and produces 8 bytes as output per cycle. Table 2
summarizes C-PACK+Z overheads in 32nm, which are scaled
from 65nm [9] using ITRS [20] and include the overhead of
deeper pipelines. The critical loop in both compression and
decompression involves reading and updating the dictionary.
Pipelining this operation requires classical register bypass logic to
forward dependent updates. We conservatively assumed 1.5X
larger area and power due to extra pipe registers and bypass
circuits. We use C-PACK+Z in this paper, since it has higher
compression ratio, low overheads and a more practical design [9].

5.2 Cache Design Complexities
(Co-)DCC can be integrated into LLC of a recent commercial
design with relatively little additional complexity and more
importantly no need for an alignment network. The AMD
Bulldozer implements an 8MB LLC that is broken into four 2MB
sub-caches, each sub-cache consists of four banks that can
independently service cache accesses [34]. Figure 9 illustrates the
data array of one bank in LLC and shows how it is divided into 4
sequential regions (SR). Each sequential region runs one phase
(i.e., half a cycle) behind the previous region and contains a
quarter of a cache block (i.e., 16 bytes). Figure 9 shows how block
A0’s four 16-byte sub-blocks (e.g., A0.0–A0.3) are distributed to
the same row in each sequential region. Each subsequent
sequential region receives the address a half cycle later and takes
a half cycle longer to return the data. Thus, a 64-byte block is
returned in a burst of four cycles on the same data bus. For
example, A0.1 is returned one cycle after A0.0 in Figure 10(a).

DCC requires only a small change to the data array to allow non-
contiguous sub-blocks. In Figure 9, block B1 is compressed into 2
sub-blocks (B1.0 and B1.1), stored in sequential regions #1 and
#2, but not in the same row. To select the correct sub-block, DCC
must send additional address lines (i.e., 4 bits for a 16-way-
associative cache) to each sequential region (illustrated by the
dotted lines in Figure 9). DCC must also enforce the constraint
that a compressed block’s sub-blocks are allocated to different
sequential regions to prevent sequential region conflicts.

Figure 10(b) illustrates DCC timing when reading block B1. As
described in Section 4, the back pointer array is accessed in

Tag
ID Sh

ar
er

s

4b

Super-
Block Tag Cs

ta
te

3
Co

m
p3

Cs
ta

te
2

Co
m

p2

Be
gi

n3

7b

Be
gi

n2
Cs

ta
te

1
Co

m
p1

Cs
ta

te
0

Co
m

p0

Be
gi

n1

Be
gi

n0

EN
D

7b3b 1b 1b7b3b1b 7b3b 1b 7b3b1b(a) (b)
Figure 8. (a) One Co-DCC tag entry (b) One Co-DCC BPE

Table 2. C-PACK+Z Overheads

Parameters Compressor Decompressor
Pipeline Depth
Latency (cycles)
Area (𝒎𝒎𝟐)
Power Consumption (mW)

6
16
0.016
25.84

2
9
0.016
19.01

Figure 7. Co-DCC co-compaction example

A2.1

A: <A2,A1,A0>
A-ENDA1-Begin

Sub-block 7

…
Sub-block 6 Sub-block 5

…
Sub-blocks 4-2

A0.0

Sub-block 1 Sub-block 0

A0-Begin

A2.2A0.1A1A2.0

parallel with the tag array. The sub-block selection logic finds the
BPEs corresponding to this block using its block ID (derived from
its address) and the matched tag ID, which is found by the tag
match logic. The sub-block selection logic can only be partially
overlapped with the tag match logic since it needs the matched tag
ID. To calculate the latency overhead of the sub-block selection,
we implemented the tag match and the sub-selection logic in
Verilog, synthesized in 45nm and scaled to 32nm [20]. The sub-
block selection logic adds less than half a cycle to the critical
path, which we conservatively assume increases the access
latency by one cycle. Figure 10(b) shows how the matching sub-
blocks are returned and fed directly into the decompression logic,
which accepts 16-byte per cycle and has a small FIFO buffer to
rate match. Decompression starts as soon as the first sub-block
arrives (e.g., B1.0), which depends upon which sequential region
it resides in. Since sub-block B1.0 resides in sequential region 1,
there is one extra cycle (worst case is 3 cycles). Note that because
the decompression latency is deterministic (9 cycles), DCC can
determine at the end of sub-block selection when the data will be
ready and whether the decompression hardware can be bypassed.
Thus, even though completion times vary, DCC has ample time to
arbitrate for the response network.

Figure 9 also shows how block C3 is allocated by Co-DCC.
Co-DCC also stores sub-blocks of a block in different regions, but
allocates them in round-robin fashion and not necessarily in order.
Therefore, Co-DCC cannot necessarily start decompression as
soon as it reads the first sub-block (e.g., C3.1 will be read out first
before C3.0). To handle these cases, Co-DCC must buffer the
sub-blocks and pass them to the decompression logic in order.
The decompression logic must also pre-align the first sub-block,
since the compressed block doesn’t necessarily start in the first
byte. The reordering and pre-alignment add up to 3 additional
cycles compared to DCC.

6. EVALUATION
6.1 Experimental Methodology
We evaluate (Co-)DCC using a full-system simulator based on
GEMS [26]. We model a multicore system with three levels of
cache hierarchy (Table 3) [10]. We use an 8MB LLC that is
broken into 8 banks, each divided into 4 sequential regions. Note
that although we use a different cache configuration than AMD
Bulldozer LLC, we model the timing and allocation constraints of
sequential regions at LLC in detail, as discussed in Section 5. We
use CACTI [19] to model power at 32nm. We also use a detailed
DRAM power model developed based on the Micron Corporation
power model [27] with energy per operation listed in Table 3. In
this section, we report total system energy that include energy

consumption of processors (cores + caches), on-chip network, and
off-chip memory.

Table 4 shows the configurations we use. For (Co-)DCC, we use
4-block super-blocks, 64-byte blocks, and 16-byte sub-blocks.
With these parameters, DCC has similar area overhead as FixedC
and VSC-2X (Section 6.2). Alternative super-block and sub-block
sizes can be used. We use 4-block super-blocks, since not all
workloads would benefit from larger super-blocks due to their
limited spatial locality. Using smaller sub-blocks also potentially
improves compression effectiveness by reducing internal
fragmentation, but at the cost of higher hardware complexities and
overheads (discussed in Section 6.2).

Our evaluations use representative multi-threaded and multi-
programmed workloads from Commercial workloads [3], SPEC-
OMP [6], PARSEC [8], and mixes of SPEC CPU2006
benchmarks, summarized in Table 5. We evaluate eight multi-
programmed workloads with different mixes of compute-bound
and memory intensive benchmarks. Each workload consists of 8
threads evenly divided among the named Spec2006 benchmarks.
For example, cactus-mcf-milc-bwaves runs two copies of each of
the four benchmarks.

Figure 11 shows the sensitivity of our workloads to LLC capacity
and LLC access latency. Compressed caches in general benefit
cache capacity sensitive workloads by providing higher effective
cache capacity. On the other hand, they might hurt cache latency
sensitive workloads due to the decompression latency. We
categorize our workloads as cache latency sensitive if they
observe more than 1% runtime slowdown compared to Baseline
when we use the same size cache with 9 extra LLC access latency,
which represents the decompression latency. Many of our
workloads (e.g., freqmine and oltp) are sensitive to cache latency
and observe up to 6% (for oltp) slow down with the slower cache.
We also categorize our workloads that observe more than 2%
speedup with double LLC capacity (with the same access latency
as Baseline) as cache capacity sensitive. Our workloads have a
wide range of sensitivity to cache capacity (maximum 22%
speedup for apache). Among our workloads, ammp, applu,
blackscholes, and libquantum are cache insensitive. We run each
workload for approximately 500M instructions with warmed up
caches. We use a work-related metric, run each workload for a
fixed number of transactions/iterations and report the average over
multiple runs to address workload variability [4].

6.2 (Co-)DCC Area and Power Overheads
Compressed caches can increase cache area due to their extra
metadata. Table 6 shows the quantitative area overheads of DCC,
Co-DCC, FixedC and VSC-2X over the same size conventional

Figure 9. (Co-)DCC Data Array Organization

B
Ph

as
e

Fl
op

A
Ph

as
e

Fl
op

A
Ph

as
e

Fl
op

B
Ph

as
e

Fl
op

A0: uncompressed; B1 and C2 are compressed to 2 sub-blocks

SR0SR 1SR 2SR3

A0.3
C3.0

A0.2

B1.1

A0.1
B1.0

A0.0
C3.1

N
Set Addr

4
SR0 Addr

SR3 Addr

4

4
4

SR1 Addr
SR2 Addr

Read Data

Figure 10. Timing of a conventional cache (a) and DCC (b)

Access Data
Array

t cycles d cycles

SR0
A0.0

Access
Tag Array

Tag
Match

m cycles 1

Access
BPA

SR1
A0.1

1

SR2
A0.2

1

SR3
A0.3

1

(a)

Access Data
Array

t cycles d cycles

SR0Access
Tag Array

Tag
Match

m cycles 1

SR1
B1.0

1

SR2
B1.1

1

SR3

9 cycles

(b)
Sub-Block
Selection

1

Decompression

cache (16-way-associative 8MB LLC) with the parameters in
Table 3 and Table 4. DCC uses the same number of tags as
Baseline, but almost doubles the per-block metadata largely due to
the back pointers. However, since the data array is much larger
than the tag array, Cacti calculates the overall LLC area overhead
as about ~6% [9]. DCC’s area overhead is similar to FixedC and
VSC-2X, which track twice as many tags per set (e.g., 32 tags per
16 blocks). Co-DCC increases metadata stored per block, as
discussed in Section 4.3, resulting to 16% area overhead
compared to Baseline. Co-DCC still has less area overhead than
naively quadrupling the number of tags (VSC-4X). It also incurs
much lower overhead compared to a DCC configuration with no
packing constraint (DCC-BytePack). BytePack can increase
compression effectiveness by reducing internal fragmentation
(Figure 1(b)). However, using 1-byte sub-blocks requires 16 times
more BPEs per set than (Co-)DCC with 16-byte sub-blocks.
BytePack would also require a complex alignment network to
compact the bytes into 16-byte sub-blocks before passing them to
the decompression hardware. Table 6 also includes the area
overhead of (de-)compression units. Since C-PACK+Z’s
decompressors produce 8 bytes per cycle, we match the cache
bandwidth by considering two decompressors per cache bank.
Since compression is not on the critical path, we consider one
compressor per bank. For LLC configuration in Table 3, we need
8 compressors and 16 decompressors resulting to an extra 1.8%

area overhead.

Compressed caches can also increase LLC per-access dynamic
power and LLC static power due to their extra metadata. DCC,
similar to FixedC and VSC-2X, increases LLC per-access
dynamic power by 2% and LLC static power by 6%. Co-DCC
also incurs 6% overhead on LLC per-access dynamic power and
16% LLC static power overhead [19]. We model these overheads
as well as the power overheads of (de-)compression in detail.

6.3 Improved Cache Efficiency
Result 1: By exploiting spatial locality, DCC achieves on average
2.2 times (up to 4 times) higher LLC effective capacity compared
to Baseline, resulting to 18% lower LLC miss rate on average and
up to 38% lower LLC miss rate.

Result 2: Co-DCC further improves the effective cache capacity
by co-compacting the blocks in a super-block. It achieves on
average 2.6 times and up to 4 times higher effective capacity and
on average 24% and up to 42% lower LLC miss rate.

Result 3: (Co)-DCC provides significantly higher effective cache
capacity and lower miss rate than FixedC and VSC-2X.
(Co-)DCC also performs on average better than 2X Baseline with
much lower area overhead.

Compressed caches improve the cache effective capacity by

Table 6. LLC area overheads of different compressed caches over the conventional cache

Components DCC Co-DCC FixedC/VSC-2X VSC-3X VSC-4X DCC-BytePack

Tag Array
Back Pointer Array

Compressors
Decompressors

2.1%
4.4%
0.6%
1.2%

11.3%
5.4%
0.6%
1.2%

6.3%
0%

0.6%
1.2%

12.7%
0%

0.6%
1.2%

18.8%
0%

0.6%
1.2%

2.1%
70.6%
0.6%
1.2%

Total Area Overhead 8.3% 18.5% 8.1% 14.5% 20.6% 74.5%

Figure 11. Cache sensitivity of our workloads

Cores OOO, 3.2 GHz, 4-wide issue, 128-entry
Instruction Window.

L1I$/L1D$ Private, 32-KB, 8-way, 2 cycles, HP
transistors.

L2 $ Private, 256-KB, 8-way, 10 cycles, HP
transistors.

L3 $ Shared, 8-MB, 16-way, 8 banks, 30
cycles, LSTP transistors.

Main
Memory

4GB, 16 Banks, 800 MHz bus frequency
DDR3, 60.35 nJ per Read, 66.5 nJ per
Write, and 4.25W static power.

 Table 5. Workloads

Table 3. Simulation parameters Table 4. Configurations
Baseline Conventional 16-way-associative 8MB LLC.
2X Baseline Conventional 32-way-associative 16MB LLC.

FixedC 2x tags per set (i.e., 32 tags per set). Each cache block is
compressed to half if compressible.

VSC-2X 2x tags per set (i.e., 32 tags per set). A block is
compressed into 0-4 16-byte sub-blocks.

DCC
Same number of tags per set (i.e., 16 tags per set). Each
tag tracks up to 4 blocks (4-block Super-Blocks). Blocks
are compressed individually to 0-4 16-byte sub-blocks.

Co-DCC Similar to DCC, except it dynamically co-compacts blocks
of the same super-blocks.

Suite Workloads
Commercial apache, jbb, oltp, zeus
SPEC-OMP

ammp, applu, equake, mgrid,
wupwise

PARSEC

blackscholes, canneal, freqmine

Spec2006
(denoted as m1-m8)

bzip2, libquantum-bzip2,
libquantum, gcc, astar-bwaves,
cactus-mcf-milc-bwaves, gcc-
omnetpp-mcf-bwaves-lbm-
milc-cactus-bzip, omnetpp-lbm

0%

1%

2%

3%

0% 1% 2% 3% 4% 5%

Sl
ow

 D
ow

n
du

e
to

 H
ig

he
r

La
te

nc
y

Speedup due to Double Capacity

apache jbb

oltp zeus

ammp applu

equake mgrid

wupwise black

canneal freqmine

m1 m2

m3 m4

m5 m6

m7 m8

>

>

6%

22%

fitting more blocks in the same space. They can achieve the
benefits of larger cache sizes with lower area and power
overheads. Figure 12(a) and Figure 12(b) plot LLC effective
capacity and LLC miss rate of different techniques normalized to
Baseline. We calculate the effective cache capacity by counting
valid LLC cache blocks periodically. We measure LLC miss rate
as the total number of misses per kilo executed instructions
(MPKI). Figure 12(b) also plots the average LLC miss rate
reduction predicted with power law for miss rate [18] in dashed
lines. This model [18] predicts the cache miss rate to be inversely
proportional to the increased capacity with an scaling factor
typically set to 0.5 (i.e., “square root” power law), 0.3, or 0.7 (the
higher the scaling factor, the lower the predicted miss rate). The
average improvement we found for our workloads is less than
what these models predict, since our workloads represent a wide
range of cache sensitivities and we are not picking only highly
cache sensitive ones.

DCC can significantly improve LLC effective capacity and LLC
miss rate for many applications by fitting more compressed
blocks. On average, DCC provides 2.2x (i.e., 17.6MB) higher
effective capacity and 18% lower LLC miss rate compared to
Baseline. DCC benefits differ per workload, depending on its
sensitivity to cache capacity, compression ratio, and spatial
locality. It achieves highest benefits for cache sensitive workloads
with good compressibility and spatial locality (e.g., apache and
omnetpp-lbm/m8). Workloads with low spatial locality (e.g.,
canneal) or low compression ratio (e.g., wupwise) observe lower

improvements. Cache insensitive workloads (e.g., blackscholes)
also do not benefit from compression.

Co-DCC further improves compression effectiveness by reducing
internal fragmentation within data sets. Co-DCC achieves, on
average, 2.6x higher effective capacity (i.e., 20.8MB) and 24%
lower miss rate than Baseline. By fitting more compressed blocks
in the cache, compared to DCC, Co-DCC can further reduce LLC
miss rate for almost half of our workloads, including commercial
workloads (e.g., 18% lower miss rate for jbb), canneal, and some
of our Spec2006 mixes (e.g., 19% lower miss rate for libquantum-
bzip2/m2). By co-compacting super-blocks, Co-DCC gets some
of the benefits of the idealized BytePack (Figure 1(b)) with much
lower hardware overheads, as discussed in Section 6.2.

Compared to FixedC and VSC-2X, (Co-)DCC provides higher
LLC effective capacity and lower miss rate. Both FixedC and
VSC-2X can at most double effective cache capacity compared to
Baseline (i.e., 16MB). FixedC achieves on average 1.5x higher
effective capacity and 8% lower miss rate than Baseline. VSC-2X
provides slightly higher benefits (1.7x effective capacity, and 10%
lower miss rate). Increasing VSC tag space can improve its
benefits. For example, VSC-4X has similar miss rate reduction as
DCC, but with 2.6x higher area overhead.

Compared to 2X Baseline, (Co-)DCC effectively more than
doubles cache capacity with lower overheads. DCC achieves
higher LLC effective capacity than 2X-Baseline for majority of
our workloads. It provides lower LLC miss rate reduction than

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
or

m
 S

ys
te

m
 E

ne
rg

y

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
or

m
 M

em
or

y
Dy

na
m

ic
 E

ne
rg

y

0

1

2

3

4

5

6

N
or

m
 LL

C
Dy

na
m

ic
 E

ne
rg

y

0.40

0.50

0.60

0.70

0.80

0.90

1.00

N
or

m
 R

un
tim

e

0.20

0.40

0.60

0.80

1.00

N
or

m
 LL

C
M

is
s R

at
e

(a) Normalized LLC effective capacity (b) Normalized LLC miss rate (c) Normalized runtime

(d) Normalized total system energy (e) Normalized main memory
dynamic energy

(f) Normalized LLC dynamic energy

Figure 12. LLC effective capacity, LLC miss rate, system performance and energy normalized to Baseline

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
or

m
 LL

C
Ef

fe
ct

iv
e

Ca
pa

ci
ty

apache jbb oltp zeus ammp applu equake
mgrid wupwise black canneal freqmine m2 m3
m4 m5 m6 m7 m8 GEOMEAN

2X-Baseline (within 27%) for apache, jbb, oltp and gcc, which
have lower compression ratio and spatial locality compared to
other workloads. For these workloads, Co-DCC provides similar
or better LLC miss rate reduction than 2X-Baseline by reducing
internal fragmentation.

6.4 Overall Performance and Energy
Result 4: DCC and Co-DCC improve LLC efficiency and boost
system performance by 10% (up to 29%) and 14% (up to 38%) on
average, respectively.

Result 5: DCC and Co-DCC save on average 8% (up to 24%) and
12% (up to 39%) of system energy, respectively, due to shorter
runtime and fewer accesses to the main memory.

Result 6: DCC and Co-DCC achieve respectively 2.5x and 3.5x
higher performance improvements, and 2.2x and 3.3x higher
system energy improvements compared to FixedC and VSC-2X.

Result 7: (Co-)DCC also improves LLC dynamic energy by about
50% on average due to accessing fewer bytes. On the other hand,
VSC-2X hurts LLC dynamic energy for majority of our
workloads due to its need for energy-expensive re-compactions.

By improving LLC utilization and reducing accesses to the main
memory (i.e., the lower LLC miss rate), (Co-)DCC significantly
improves system performance over Baseline. Figure 12(c) plots
runtime of different techniques normalized to Baseline. DCC and
Co-DCC improve performance by 10% (up to 29% for omnetpp-
lbm/m8) and 14% (up to 38% for libquantum-bzip2/m3) on
average, respectively. For cache sensitive applications with
medium-to-high compressibility and medium-to-high spatial
locality (e.g., apache and zeus), (Co-)DCC achieves significant
performance improvements by fitting more blocks in the cache.
They provide lower improvements for applications with low
spatial locality and low compression ratio (e.g., canneal and gcc).
On the other hand, compressed caches, including (Co-)DCC, can
hurt performance of workloads sensitive to LLC access latency
(e.g., freqmine) due to the decompression latency. (Co-)DCC
hurts performance by less than 3% (for freqmine). Cache
insensitive workloads also do not benefit from compressed
caches. An adaptive technique can be employed to further reduce
these overheads [2], which is orthogonal to our proposals.

(Co-)DCC significantly outperforms FixedC, VSC-2X and 2X-
Baseline by effectively more than doubling the cache capacity.
FixedC and VSC-2X limit compression effectiveness in
improving system performance, achieving on average 4% and 5%
performance improvements, respectively. (Co-)DCC outperforms
2X-Basline for majority of our workloads. 2X-Baseline performs
better than DCC for six of our workloads (within 11% for
canneal). These workloads have lower spatial locality (e.g.
canneal), lower compression ratio (e.g., jbb), or higher sensitivity
to cache latency (e.g., freqmine) than the rest of our workloads.
Co-DCC improves performance for more workloads, providing
slightly lower performance than 2X-Baseline only for three
workloads (within 3% for freqmine).

(Co-)DCC improves system energy both due to shorter runtime
and fewer accesses to the main memory. Figure 12(d) shows the
total system energy of different techniques. DCC and Co-DCC
reduce the total system energy by 8% (up to 24% for omnetpp-
lbm/m8) and 12% (up to 39% for libquantum-bzip/m2) on
average, respectively. Figure 12(e) plots the main memory
dynamic energy for these techniques. (Co-)DCC significantly
reduces the main memory dynamic energy by reducing the

number of cache misses. This contributes to (Co-)DCC higher
system energy improvements as well. Compared to FixedC and
VSC-2X, (Co-)DCC achieves higher energy savings. Although
VSC-2X provides slightly higher performance and lower main
memory dynamic energy consumption than FixedC, its system
energy saving is less due to its high overheads on LLC dynamic
energy. Figure 12(f) shows the dynamic energy of different
compressed caches normalized to Baseline. FixedC, DCC and
Co-DCC improve LLC dynamic energy by 27%, 52% and 46% on
average over Baseline, respectively. On the other hand, VSC-2X
significantly increases LLC dynamic energy (about 3x) by
increasing the number of cache accesses (Figure 1(c)).

We also measured the sensitivity of (Co-)DCC to different design
parameters including decompression latency and LLC access
latency. Our simulations (not shown here) show that reducing
decompression latency (for the same C-PACK+Z algorithm) from
9 cycles to 3 cycles only slightly increases (Co-)DCC
performance. It achieves on average 1% and up to 3% higher
performance than the results shown in Figure 12(c). We also
studied the sensitivity of (Co-)DCC to LLC cache access latency.
Our simulation results (not shown here) show that even reducing
LLC access latency to 20 cycles (33% faster LLC) does not
significantly impact (Co-)DCC results.

7. RELATED WORK
Exploiting Spatial Locality in Caches. This work builds upon
previous dual-grain caches namely the Region Tracker [39], the
sectored cache [25], sector pool cache [30], and the decoupled-
sectored cache [31], mostly discussed in Section 3. RegionTracker
also manages cache at dual-granularities of memory regions (e.g.,
1KB) and cache blocks [39]. Unlike our proposal, Region
Tracker [39] aims facilitating collection of coarse-grain
information.

Cache Compression. In Section 2, we described some of related
work on compressed caches. Hallnor et al. extend their earlier
indirect index cache [17] to support compression (IIC-C) [16].
IIC-C uses a software-managed hash table to provide full
associativity and forward pointers to associate tags with variable
number of sub-blocks anywhere in the data array [16], eliminating
the need for repacking. However, for an 8MB LLC with 64-byte
blocks, 16-byte sub-blocks, and doubled number of tags, their
scheme incurs about 24% area overhead (26% considering
(de-)compressors), while it at most doubles effective capacity.
Further increasing the number of tags will make its area overhead
even worse. J. S. Lee, et al. [24] compress block pairs and store
them in a single line if both lines compress by 50% or more. In
this way, they free a cache block in an adjacent set; however, they
need to check two sets for a potential hit on every access, which
increases power overheads. In addition, their technique limits
compressibility by failing to take advantage of lines that compress
by less than 50%. Naffziger and Kover’s patent [28] describes a
compressed cache design that uses forward pointers to associate
tags with data sub-blocks. The overhead is less than IIC-C [16],
since pointers only refer to sub-blocks within a set (not the entire
cache) and are thus much smaller. In one embodiment they also
serialize the sub-block accesses. However, as far as we can tell,
this scheme has never been evaluated in the public literature.

Some techniques aim reducing cache dynamic power
consumption by compression. For example, Dynamic zero
compression (DZC) [33] only stores non-zero bytes in the cache.
It reduces L1 cache dynamic power, but does not increase cache

effective size. Similarly, FVC [35] reduces cache dynamic power
by accessing half of the block if compressed. Significance-
compression [22] helps both cache power and system energy by
accessing half of the cache block if compressed, and packing
more blocks in the cache. In a recent work, Residue cache [23]
aims reducing L2 cache area and power in single processor
embedded systems. They compress cache blocks and store them in
half size in L2 cache. For uncompressed cache blocks, they store
another half in a small cache, called residue cache.

S. Baek, et al. [7] proposes a size-aware compressed cache
management to improve the performance of compressed caches.
Their proposal is orthogonal to ours, and can be integrated with
(Co-)DCC. G. Pekhimenko, et al. [29] also proposes a new
compression algorithm with lower complexities than previously
proposed ones, but requires an adder per word. (Co-)DCC is
mainly independent of compression algorithms, and can use their
proposed algorithm as well.

Compression is also used at main memory [1] [15]. The decoupled
zero-compressed memory [13] manages the main memory as a
decoupled sectored set-associative cache. It detects null blocks to
improve performance, which is more limited than compression-
based schemes.

8. CONCLUSIONS
In this paper, we propose Decoupled Compressed Cache that
exploits spatial locality to improve both the performance and
energy-efficiency of cache compression. DCC manages the cache
at three granularities, tracking super-blocks while dynamically
compressing and allocating single blocks as variable number of
sub-blocks. It addresses the issues with conventional compressed
caches, and achieves significantly higher LLC effective cache
capacity while incurring low area overheads. It also decouples
sub-blocks from the address tag to eliminate energy-expensive re-
compaction when a block’s size changes. A further optimized
design (Co-DCC) reduces internal fragmentation in the cache by
co-compacting super-blocks. We show that on average, DCC and
Co-DCC reduce system energy by 8% and 12%, respectively, and
improve performance by 10% and 14%, respectively, compared to
the same size conventional cache. (Co-)DCC nearly doubles
compression benefits compared to previous proposals with
comparable overheads.

9. ACKNOWLEDGMENTS
This work is supported in part by the National Science Foundation
(CNS-0916725, CCF-1017650, CNS-1117280, and CCF-
1218323) and a University of Wisconsin Vilas award. The views
expressed herein are not necessarily those of the NSF. Professor
Wood has a significant financial interest in AMD. The authors
would like to acknowledge Hamid Reza Ghasemi, members of the
Multifacet research group, and our anonymous reviewers for their
comments on the paper.

10. REFERENCES
[1] Abali, B. et al. 2001. Performance of Hardware Compressed

Main Memory. In Proceedings of the 7th IEEE Symposium
on High-Performance Computer Architecture.

[2] Alameldeen, A. and Wood, D. 2004. Adaptive Cache
Compression for High-Performance Processors. In
Proceedings of the 31st Annual International Symposium on
Computer Architecture.

[3] Alameldeen, A. et al. 2003. Simulating a $2M Commercial
Server on a $2K PC. IEEE Computer.

[4] Alameldeen, A. and Wood, D. 2003. Variability in
Architectural Simulations of Multi-threaded Workloads. In
Proceedings of the Ninth IEEE Symposium on High-
Performance Computer Architecture.

[5] Arelakis, A., Stenström, P. 2012. A Case for a Value-Aware
Cache. IEEE Computer Architecture Letters.

[6] Aslot, V. et al. 2001. SPEComp: A New Benchmark Suite
for Measuring Parallel Computer Performance. In Workshop
on OpenMP Applications and Tools.

[7] Baek, S. et al. 2013. ECM:Effective Capacity Maximizer for
High-Performance Compressed Caching. In Proceedings of
IEEE Symposium on High-Performance Computer
Architecture.

[8] Bienia, C. et al. 2009. PARSEC 2.0: A New Benchmark
Suite for Chip-Multiprocessors. In Workshop on Modeling,
Benchmarking and Simulation.

[9] Chen, X. et al. 2010. C-pack: a high-performance
microprocessor cache compression algorithm, IEEE
Transactions on VLSI Systems.

[10] Intel Core i7 Processors
http://www.intel.com/products/processor/corei7/

[11] Das, R. et al. 2008. Performance and Power Optimization
through Data Compression in Network-on-Chip
Architectures, International Symposium on High
Performance Computer Architecture.

[12] Dennard R. et al. 1974. Design of Ion-Implanted MOSFET's
with Very Small Physical Dimensions. IEEE Journal of
Solid-State Circuits.

[13] Dusser, J. et al. 2011. Decoupled Zero-Compressed Memory.
In Proceedings of the 6th International Conference on High
Performance and Embedded Architectures and Compilers.

[14] Dusser, J. et al. 2009. Zero content augmented cache. In
Proceedings of the 23rd international conference on
Supercomputing.

[15] Ekman, M. and Stenstrom, P. 2005. A robust main-memory
compression scheme. SIGARCH Computer Architecture
News.

[16] Hallnor, E. et al. 2005. A Unified Compressed Memory
Hierarchy. In Proceedings of the 11th International
Symposium on High-Performance Computer Architecture.

[17] Hallnor, E. et al. 2000. A Fully Associative Software-
Managed Cache Design. In Proceedings of the 27th Annual
International Symposium on Computer Architecture.

[18] Hartstein, A. et al. 2008. On the Nature of Cache Miss
Behavior: Is It √2? J. Instruction-Level Parallelism 10.

[19] CACTI: http://www.hpl.hp.com/research/cacti/
[20] ITRS. International technology roadmap for semiconductors,

2010 update, 2011. URL http://www.itrs.net
[21] Keckler, S. 2011. Life After Dennard and How I Learned to

Love the Picojoule. In Proceedings of the 44th Annual
IEEE/ACM International Symposium on Microarchitecture.

[22] Kim, N. et al. 2002. Low-Energy Data Cache Using Sign
Compression and Cache Line Bisection. Second Annual
workshop on Memory Performance Issues.

[23] Kim, S. et al. 2011. Residue Cache: A Low-Energy Low-
Area L2 Cache Architecture via Compression and Partial
Hits. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture.

[24] Lee, J. et al. 2000. An on-chip cache compression technique
to reduce decompression overhead and design complexity.
Journal of Systems Architecture.

[25] Liptay, J. 1968. Structural Aspects of the System/360
Model85 Part II: The Cache. IBM Systems Journal.

[26] Martin, M. et al. 2005. Multifacet’s General Execution-
driven Multiprocessor Simulator (GEMS) Toolset. Computer
Architecture News.

[27] 2007. Calculating memory system power for DDR3.
Technical Report TN-41-01. Micron Technology.

[28] Naffziger, S. et al. 2002. Apparatus for cache compression
engine for data compression of on-chip caches to increase
effective cache size. US patent 6,640,283.

[29] Pekhimenkoy, G. et al. 2012. Base-Delta-Immediate
Compression: Practical Data Compression for On-Chip
Caches. In Proceedings of the 21st international conference
on Parallel architectures and compilation techniques.

[30] Rothman, J. et al. 1999. The Pool of Subsectors Cache
Design. International Conference on Supercomputing.

[31] Seznec, A. 1994. Decoupled sectored caches: Conciliating
low tag implementation cost and low miss ratio. International
Symposium on Computer Architecture.

[32] Tremaine, R. et al. 2001. IBM Memory Expansion
Technology (MXT). IBM Journal of Research and
Development.

[33] Villa, L. et al. 2000. Dynamic zero compression for cache
energy reduction. In Proceedings of the 33rd annual
ACM/IEEE international symposium on Microarchitecture.

[34] Weiss, D. et al. 2011. An 8MB Level-3 Cache in 32nm SOI
with Column-Select Aliasing. Solid-State Circuits
Conference Digest of Technical Papers.

[35] Yang, J. et al. 2002. Energy Efficient Frequent Value Data
Cache Design. In Proceedings of the 35th Annual
IEEE/ACM International Symposium on Microarchitecture.

[36] Yang, J. et al. 2002. Frequent Value Locality and its
Applications. ACM Transactions on Embedded Computing
Systems.

[37] Yang, J. et al. 2000. Frequent Value Compression in Data
Caches. In Proceedings of the 33rd Annual IEEE/ACM
International Symposium on Microarchitecture.

[38] Yoon, D. et al. 2011. Adaptive granularity memory systems:
A tradeoff between storage efficiency and throughput. In
Proceeding of the 38th Annual International Symposium on
Computer Architecture.

[39] Zebchuk, J. et al. 2007. A Framework for Coarse-Grain
Optimizations in the On-Chip Memory Hierarchy. In
Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitectur

