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Abstract

Transactional Memory (TM) systems must track the

read and write sets—items read and written during a

transaction—to detect conflicts among concurrent trans-

actions. Several TMs use signatures, which summarize

unbounded read/write sets in bounded hardware at a per-

formance cost of false positives (conflicts detected when

none exists).

This paper examines different organizations to achieve

hardware-efficient and accurate TM signatures. First, we

find that implementing each signature with a single k-hash-

function Bloom filter (True Bloom signature) is inefficient,

as it requires multi-ported SRAMs. Instead, we advocate

using k single-hash-function Bloom filters in parallel (Par-

allel Bloom signature), using area-efficient single-ported

SRAMs. Our formal analysis shows that both organiza-

tions perform equally well in theory and our simulation-

based evaluation shows this to hold approximately in prac-

tice. We also show that by choosing high-quality hash func-

tions we can achieve signature designs noticeably more ac-

curate than the previously proposed implementations. Fi-

nally, we adapt Pagh and Rodler’s cuckoo hashing to im-

plement Cuckoo-Bloom signatures. While this representa-

tion does not support set intersection, it mitigates false pos-

itives for the common case of small read/write sets and per-

forms like a Bloom filter for large sets.
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1. Introduction

Transactional memory (TM) [13, 15] systems ease multi-

threaded programming by guaranteeing that some dynamic

code sequences, called transactions, execute atomically and

in isolation. To achieve high performance, TMs execute

multiple transactions concurrently and commit only those

that do not conflict. A conflict occurs when two concurrent

transactions perform an access to the same memory address

and at least one of the accesses is a write. A TM system

must implement mechanisms to detect these events (con-

flict detection).

An important aspect of conflict detection is recording

the addresses that a transaction reads (read set) and writes

(write set) at some granularity (e.g., memory block or

word). One promising approach is to use signatures, data

structures that can represent an unbounded number of el-

ements approximately in a bounded amount of state. Led

by Bulk [7], several systems including LogTM-SE [31],

BulkSC [8], and SigTM [17], have implemented read/write

sets with per-thread hardware signatures built with Bloom

filters [2]. These systems track the addresses read/written

in a transaction by inserting them into the read/write sig-

natures, and clear both signatures as the transaction com-

mits or aborts. Depending on the system, signatures must

also support testing whether an address is represented in it

or intersecting two signatures. A test or intersection oper-

ation may signal a conflict when none existed (a false pos-

itive), but may not miss a conflict (a false negative). False

positives cause unnecessary conflicts that may degrade per-

formance, but they do not violate transaction atomicity.

This paper seeks to improve the performance and to re-

duce the cost of hardware signature implementations. The

three main functional requirements of signature implemen-

tations are: (a) they should minimize gratuitous aliases for

small read/write sets, (b) they should gracefully degrade as

read/write sets become large, and (c) performance should be

robust to changes in workload and system size. Hardware

signature implementations should be cost-efficient (e.g., by

efficiently using state and cheaply implementing state and

logic). This paper explores the design space of signatures

with formal analysis, area analysis, and experimental per-

formance evaluation of signatures. Our contributions in-

clude:

• We show that true Bloom signatures, implemented with

a single Bloom filter of k hash functions and m state bits,

are area inefficient when implemented as k-ported mem-

ories.

• Rather we advocate parallel Bloom signatures that use

k parallel Bloom filters, each with one hash function

and m/k state bits, and only require single-ported mem-

ories. We show with probabilistic analysis that paral-
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Figure 1: True Bloom Signatures

lel Bloom signatures perform asymptotically the same

as true Bloom signatures when k/m ≪ 1.

• We advocate using high-quality hash functions (e.g.

H3 [5]) to achieve more accurate signatures with practi-

cal address streams, and our results show that these hash

functions achieve better results in practice than those

used in previous designs.

• We present a different signature implementation that

can out-perform Bloom signatures. Our Cuckoo-Bloom

signature adapts Cuckoo hashing [20] to represent ad-

dresses in a way similar to a cuckoo hash table for small

sets and morphs to a Bloom filter as the hash table fills

up. However, Cuckoo-Bloom signatures add complex-

ity and do not support signature intersection.

• Finally, we examine the performance of signature im-

plementations in the context of LogTM-SE [31], which

tests signature membership on coherence events. The

main conclusions from our simulation-based perfor-

mance study is that parallel Bloom signatures match

the performance of true Bloom signatures and that us-

ing an L2 cache directory to filter signature checks

can mitigate false positives as the number of cores in-

creases.

We next present the design, analysis and implementation

of true Bloom signatures (Section 2), parallel Bloom signa-

tures (Section 3), and our newly-developed Cuckoo-Bloom

signatures (Section 4). We then examine area requirements

(Section 5), evaluate performance (Section 6), review re-

lated work (Section 7), and conclude the paper (Section 8).

2. True Bloom signatures

All currently proposed TM systems that use hard-

ware signatures advocate implementations using Bloom

filters [2]. We call a signature implemented with a sin-

gle Bloom filter a true Bloom signature. In this section

we review true Bloom signatures, analyze their false pos-

itive rates, and sketch a hardware implementation using

multi-ported SRAMs.

Design: A true Bloom signature provides an efficient way

to represent a set of values (in our case, block addresses).

Inserting new addresses and testing for membership in the

signature is simple, with a certain probability of false pos-

itives and no possibility of false negatives. A true Bloom

signature consists of an m-bit field, which is accessed us-

ing k independent hash functions, as shown in Figure 1a.

Every bit in the field is initially set to 0. To insert an ad-

dress to the set, the k hash values of the address are com-

puted. Each hash function hi can give a value in the range

[0, ...,m − 1]. The bits at the positions indicated by these

values are set to 1. To test for membership of an address, we

compute the results of the hash functions and check the con-

tents of the bits they point to. If at least one bit is set to 0,

the address is not in the signature. If all the bits are set to 1,

either the address is in the set or the insertion of other ad-

dresses set these bits to 1 (a false positive).

Analysis: We now present a formal analysis of false pos-

itives, which are critical to performance. Let us assume

that we insert n addresses to the filter, and that the k-tuples

of hash values are independent and uniformly distributed.

This is approximately the case even with practical address

streams if we use universal or almost-universal hash func-

tions [23]. On a single insertion, the probability of a par-

ticular hash function writing a 1 to the i-th position on the

bit array (regardless of whether this position was 0 or 1) is

1/m. Since the k hash functions are independent, the prob-

ability of not setting a certain bit to 1 in one insertion opera-

tion is (1−1/m)k. Therefore, the probability of a single bit

still being 0 after the n insertions is p0(n) = (1 − 1/m)nk.

On a test for membership, the test returns true only if all

of the checked bits are set to one. The probability of getting

a positive match is:

PP (n) = (1 − p0(n))k

However, we are interested in the probability of false

positives, i.e. the probability that a hit occurs and that the

address we test for is not one of the n inserted addresses. In

general, this is:

PFP (n) = PP (n) × PI(n)

where PI(n), by Bayes’ rule, is the probability that the ad-

dress was not inserted into the signature, conditioned by a

positive test result in the signature. Assuming that the ad-

dresses we test for are independent from the inserted ones,
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uniformly distributed, and that the number of addresses nt

we test for is much larger than the set of inserted addresses

(i.e. nt ≫ n), then PI(n) = nt−n
nt

∼= 1 and:

PFP (n) ∼= PP (n) = (1 − p0(n))k

Experimentally, however, the probability of a false pos-

itive may differ from the probability of a positive, because

addresses are not random (e.g. locality) and hash functions

might not be perfectly universal [22, 23]. Nevertheless, we

find this equation to be a good first-order approximation,

and at the very least it is an upper bound on the probabil-

ity of false positives (because PI(n) ≤ 1).

Finally, let us perform an approximation to simplify the

equation of PFP (n), which will also be useful in the next

section. Consider the Taylor series expansion of the expo-

nential function, ex =
∑

∞

n=0

1

n!
xn. For our purposes, the

number of bits m is relatively large, so |1/m| ≪ 1 and:

e−1/m = 1 − 1

m + 1

2m2 − 1

6m3 + ... ∼= 1 − 1

m

Therefore, p0(n) = (1 − 1/m)nk ∼= e−
nk

m , and:

PFP (n) ∼=
(

1 − e−
nk

m

)k

when 1

m ≪ 1

Design dimensions: There are three design dimensions in

a true Bloom signature: (a) the size of the bit field, (b) the

number of hash functions, and (c) the hash functions them-

selves. The size of the bit field (m) is a critical parameter: a

larger field decreases the probability of false positives for a

certain number of insertions (PFP (n)), but it increases the

hardware requirements as well.

The effect of the number of hash functions is depicted

in Figure 2, which shows the probability of false positives

in 1024-bit true Bloom signatures as we vary the number

of addresses inserted, n, on the x-axis, and the number of

hash functions, k (different lines). In the main figure, n
varies from 0 to 1000, while the close-up focuses on n up

to 120. For example, when n = 20 addresses have been in-

serted, a filter with k = 1 has PFP (n) = 0.02, and a fil-

ter with k = 4 has PFP (n) = 3 × 10−5. For n = 600 ad-

dresses, the probabilities are now 0.44 and 0.67, and the one

hash function filter outperforms the four hash function fil-

ter. More generally, increasing the number of hash func-

tions (larger k), reduces false positives for small read/write

sets (an important case) at the cost of more false positives

for large read/write sets.

Finally, signatures need to implement k different hash

functions. Previously proposed TM signatures use bit-

selection, where each hash value comes from a subset of

the bits of the address. While bit-selection is simple, it

may not yield sufficient variation to approximate a univer-

sal hash function. We advocate using functions from the

H3 family of universal hash functions [5, 23], which can

achieve many uncorrelated and uniformly distributed hash

values. In an H3 hash function, each bit of each hash value

is generated by XORing a subset of the bits of the address.
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Figure 2: Influence of the number of hash functions on the

probability of false positives

These address bits are randomly chosen, with the probabil-

ity of selecting each individual address bit being 0.5. In

this paper we closely follow the definition of the H3 hash

functions, but actual implementations could explore XOR-

ing fewer address bits to reduce hardware cost [28].

Hardware: True Bloom signatures can be implemented in

hardware by partitioning the bit-field into words, and stor-

ing them in a small, bit-addressable SRAM. As shown in

Figure 1b, we divide the output bits of the generated hash

values into wordlines and bitlines that address the SRAM.

To insert an address, for each hash value, the appropriate

wordline is raised and the corresponding bitline is driven to

high, while the other bitlines are left floating. To test for an

address, the bit addressed by each hash value is read by rais-

ing the appropriate wordline and sensing the bitline’s value.

Regarding the hash functions, bit-selection requires triv-

ial hardware, and hardwired H3 hash functions are rela-

tively inexpensive to implement, requiring a small tree of

2-input XOR gates per bit of each hash function. To im-

plement k hash function signatures, we should use SRAMs

with k read and write ports (we could still use a single-

ported SRAM and perform the reads or writes over multiple

cycles, but that would complicate the control logic and in-

crease the delay). This is not area-efficient for filters with

multiple hash functions, because the size of an SRAM cell

increases quadratically with the number of ports. In the next

section, we describe a partitioning strategy to overcome this

quadratic growth.

3. Parallel Bloom signatures

This section describes parallel Bloom signatures, which,

we will show, perform like true Bloom signatures, but avoid

multi-ported SRAMs.
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Figure 3: Parallel Bloom Signatures

Design: Instead of having a single k-hash function Bloom

filter, we now consider using k Bloom filters, each with a

different hash function. To have the same amount of state

as a true Bloom signature, each of the individual Bloom fil-

ters uses a m/k-bit field. To insert an address, we hash it

and set a bit in all k filters. We report that an address is rep-

resented in the signature only if all the individual Bloom

filters say so. We call this structure a parallel Bloom signa-

ture and its design is shown in Figure 3a. A similar design

was proposed in Bulk [7].

Analysis: Under the same assumptions made for the anal-

ysis of true Bloom signatures, the probability of the i-th
bit of a particular filter being still 0 after n insertions is

p0(n) =
(

1 − 1

m/k

)n

. Hence, the probability of false pos-

itives is:

PFP (n) ∼= PP (n) =
(

1 −

(

1 −
1

m/k

)n)k

This appears to be different from the PFP (n) for true

Bloom signatures. However, if we apply the Taylor series

approximation of ex as we did before, we obtain:
k
m ≪ 1 ⇒ 1 − 1

m/k
∼= e−

k

m

And therefore,

PFP (n) ∼=

(

1 − e−
nk

m

)k

when k
m

≪ 1

Under the approximation, a parallel Bloom signa-

ture achieves the same PFP (n) as a true Bloom signature.

This approximation is very accurate when the num-

ber of hash functions is much smaller than the length of

the bit field (i.e. k/m ≪ 1), which will normally be the

case. Moreover, we experimentally verify this result in Sec-

tion 6. A similar approximation is also used in filters in

networking [9], but without realizing that one hash func-

tion per parallel filter is sufficient and can lead to a more

area-efficient design.

Hardware: The implication of such a partitioning for hard-

ware is that instead of implementing multi-hash function

Bloom filters with multi-ported large SRAMs, we can use

multiple, smaller single-ported SRAMs. Finally, the hash

functions are also less expensive to implement, because they

now generate hash values that are smaller by a factor of k.

Figure 3b shows a canonical hardware implementation.

4. Cuckoo-Bloom signatures

So far, we have considered signatures implemented with

Bloom filters only. In this section, we present a new signa-

ture implementation, called a Cuckoo-Bloom signature.

Cuckoo-Bloom signatures represent small read/write

sets by adapting cuckoo hashing [20]. We choose a hash ta-

ble based scheme because similar approximate membership

testers have proven more space-efficient than Bloom fil-

ters [6, 19]. Cuckoo hashing supports a fast lookup via

two (parallel) probes, but complicates inserts. When an in-

sert finds both probe targets full, it removes one of the

old target items, inserts the new item, re-inserts the old

at its other probe target, and recursively repeats. This al-

lows us to reach high occupancies, in the range of 80%.

Optimizing for fast signature lookup makes sense, be-

cause LogTM-SE experiments show lookups can be 5.5 to

200 times more frequent than inserts. However, a hash ta-

ble alone can only hold a limited number of entries.

Because we want to represent an unbounded number of ad-

dresses, we dynamically transform the hash table into a

Bloom filter as occupancy increases.

Cuckoo-Bloom signatures match the low false positive

rates of Bloom signatures with many hash functions when

the number of addresses is small (an important and common

case), and show the good asymptotic behavior of Bloom

signatures with few hash functions when the number of ad-

dresses is large. We now present the design, analysis, and

hardware implementation of Cuckoo-Bloom signatures.

Design: The basic structure of the signature is shown in

Figure 4. The table has S sets (rows), and each of those sets

is divided in B buckets, like a B-ary set-associative cache.

Each of the cells in the table stores a 3-tuple of hash val-

ues of one address.

On an insert operation, three hash functions (h1, h2, hE)
are applied to the address, yielding the hash values

(H1,H2, E). H1 and H2 are used to index the ta-

ble, while E provides extra information about the address

that makes its representation more accurate. In the sim-

plest case, at least one bucket of the two indexed sets will

be unused. In that case, the two sets are retrieved, and the

new element is inserted in the last bucket of the least occu-
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Figure 4: Cuckoo-Bloom Signatures

pied set.

To test if an address was inserted into the structure, we

compute the (H1,H2, E) tuple, retrieve the sets addressed

by H1 and H2, and check if an element with (H1,H2, E) is

already present.

If, when doing an insertion, both sets happen to be full,

the element in the leftmost bucket of one of those two sets

is evicted, the remaining buckets of the set are shifted to the

left, and the new element is inserted into the last bucket. We

then re-insert this evicted element back into the table, possi-

bly evicting another one, and repeat the process as needed.

For example, if we tried to insert (3, 3, 54) into the struc-

ture in Figure 4a, (3, 3, 156) would be evicted, (3, 5, 942)
would be shifted into bucket 0, and (3, 3, 54) would be in-

serted into bucket 1 of set 3. The evicted element (3, 3, 156)
would then be re-inserted into bucket 1 of set 3, evicting

(3, 5, 942) from bucket 0, which would in turn be inserted

at bucket 1 of set 5, shifting (2, 5, 27) to bucket 0 of set 5

and producing no more evictions.

As the table fills up, the insertion process could result in

an infinite loop of evictions and re-insertions. To avoid this,

we limit the number of iterations to a small integer (4 in our

experiments). If the last iteration ends up evicting an ele-

ment, we set the BF bit of one of the two possible sets of

this evicted element, and convert it into a Bloom filter. This

is done by first evicting all elements in the set into a sep-

arate storage space, and then hashing the new element into

the Bloom filter. We then repeat the insertion process for the

newly evicted elements. This chain of evictions could lead

to long delays, but our analysis and experiments show that

for two buckets (i.e. two elements/set) delays are accept-

able, as multiple Bloom filters are rarely created. This does

not hold for more buckets, where transforming the struc-

ture into a Bloom filter typically causes long delays. To

achieve a low probability of false positives, each element

is only hashed into one of the two sets in which it can re-

side. This set is determined by the least-significant bit of

the E field.

Analysis: We analyzed Cuckoo-Bloom signatures using

Monte Carlo simulation, as closed-form false probability

formulas are difficult to obtain for the general case. Ta-

ble 1 shows the parameters used for the Cuckoo-Bloom sig-

SRAM size 1024 bits Max iterations/insert 4

Sets 32 Set size 32 bits

Buckets/set 2 Hash function length 4 bits

Hash functions 2 (H3) E field length 12 bits

Table 1: Parameters for Cuckoo-Bloom signatures
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Figure 5: Probability of false positives of Bloom and

Cuckoo-Bloom signatures

natures and Figure 5 shows the false conflict rates. Cuckoo-

Bloom signatures precisely represent the address set for

small sets and morph into Bloom signatures for large sets.

Cuckoo-Bloom signatures are able to perform well because

we move elements around when conflicts arise, and thus

achieve a high occupancy before the conversion into a

Bloom filter starts (80% in our Monte Carlo simulations).

Before this conversion, 95% of insertions cause no more

than one eviction.

Hardware: Cuckoo signatures could be constructed by

implementing the design in Figure 4a with a single large

2-ported SRAM. However, we can instead use two sepa-

rate single-ported SRAMs. As shown in Figure 4b, each

SRAM is indexed by one of the hash functions, and stores

half of the sets in each table. Additionally, we just need

to store one of H1 or H2 per entry, as the other hash value
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can be deduced by the set the entry is in. The BF bits

are maintained as a separate array of flip-flops. We do not

show the extra control logic or storage required to imple-

ment the Bloom filter upon setting the BF bit. Unlike the

bit-addressed SRAMs used for Bloom signatures, writing to

this Bloom filter involves reading a word, setting the corre-

sponding bit, and writing back the entire word.

In general, this scheme can be extended to work with

a higher number of buckets and multiple hash functions.

Of these, all but one hash value needs to be stored in each

bucket. The total number of storage bits is S × (B× ((K −
1) × LH + LE)), where S is the number of sets, B is the

number of buckets, K is the number of hash functions (and

memories), LH = log2(S/K) is the length of the hash val-

ues, and LE is the length of the E field. Note that the length

of this field is arbitrary: a larger field will allow a more ac-

curate representation of the address set, but more space will

be required per entry.

5. Area evaluation

We have thus far analyzed the behavior and described

the hardware implementation of three signature designs. In

this section, we use area models derived from CACTI [27]

to evaluate their area requirements. We also study the area

overheads of signatures in real systems.

5.1. Area requirements of signatures

Table 2 compares the area required by true and parallel

Bloom signatures for a 4Kbit signature and up to four hash

functions. The area estimates were obtained using CACTI

4.2 [27], for the 65nm technology node. We used memo-

ries with 8-byte words, which yield memories of the same

wordlines and bitlines for the true Bloom signature. We use

dual-ended read ports, and separate read/write ports. For

true Bloom signatures, we used k-ported SRAMs, and for

parallel Bloom signatures we used single-ported SRAMs.

k 1 2 4

True Bloom 0.031 0.113 0.279

Parallel Bloom 0.031 0.032 0.035

Table 2: SRAM area requirements (in mm2) of true and

parallel Bloom signatures, m=4Kbit, 65nm technology

As we can see, parallel Bloom signatures use signifi-

cantly less area than true Bloom signatures: 3.2× less for

two hash functions, and 8× for four hash functions. While

we expect a quadratic savings in area proportional to the re-

duction in number of ports, the savings are less due to the

fixed overheads, like multiplexers or sense-amps, that these

small SRAMs have. Finally, note that the partitioning strat-

egy of parallel Bloom signatures is helpful for other im-

plementation styles as well (e.g. for smaller signatures im-

plemented using flip-flops, using parallel Bloom signatures

greatly reduces the size of the multiplexers, decoders, and

the amount of wiring).

Implementing the hash functions also contributes to the

area of signatures in addition to the SRAMs. While bit-

selection requires no extra logic and only wiring overhead,

the H3 hash functions require additional XOR gates to im-

plement the hash function. Recall from Section 2 that, for

n-bit addresses we need a tree of n/2 two-input XOR gates

for each bit of the hash function. Carefully designing this

hash function to use fewer address bits and physical design

optimizations can reduce the area and delay of this hash

function. Assuming an n/2 XOR tree and a 4-transistor

XOR gate design [29], for k = 4, our area models based on

transistor counts show that the hash functions occupy about

one-fifth the size of the SRAM.

Finally, Cuckoo-Bloom signatures require single-ported,

word-readable memories, like parallel Bloom signa-

tures. Hence, for the same size, Cuckoo-Bloom and parallel

Bloom signatures have the same memory area require-

ments. Cuckoo-Bloom signatures require additional BF
bits, control logic for implementing evictions, and ex-

tra registers to hold evicted elements. However, these

structures are likely to have a small impact on the to-

tal area and scale well with signature size.

5.2. Signatures in real systems

To understand the area overheads of adding transaction

support to hardware, we picked two different multi-core

systems: the Sun Niagara [14], which uses simple in-order

cores, and the AMD Barcelona [32], which uses more com-

plex out-of-order cores. Although signatures are not the

only extra hardware required for TM support, in this pa-

per we focus on the area overheads of signatures alone. To

make the analysis simple we picked one signature design:

parallel Bloom signatures of 4Kbits with four hash func-

tions, using the bit-selection hash functions. We assume

separate signatures per thread context, and separate signa-

tures for the read and write sets. As a result, one core of

the 4-way multithreaded Niagara core will require 8 signa-

tures. Table 4 shows the area overheads for both architec-

tures using CACTI-based area estimates for signatures.

As we can see, the hardware required to implement sig-

natures is noticeable in the Niagara system but minimal

in the Barcelona system. The overheads differ mainly be-

cause the area for signatures scales linearly with the number

of thread contexts. For the simple in-order Niagara cores,

the total of 8 signatures/core amount to a total of 4Kbytes

of memory, half as much as the L1 instruction cache. In

terms of the overall die, the area required by signatures is

at most about 1%. Also, additional signatures can be re-

quired by particular TM systems. For example, to enable

virtualization, LogTM-SE [31] uses two additional signa-
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Benchmark Input
Units Time in Read set Write set Dyn. instrs / Retries/

of work transactions size (avg/max) size (avg/max) xact (avg/max) xact

btree Uniform random 100000 ops 54.9% 13.2 / 20 0.64 / 15 514.0 / 1988 0.022

raytrace teapot 1 parallel phase 2.7% 5.25 / 573 1.98 / 4 11.8 / 18406 0.003

barnes 512 bodies 1 parallel phase 9.2% 5.23 / 41 3.92 / 35 200.7 / 3493 0.23

vacation n8-q10-u80-r65536 4096 operations 100% 80.4 / 176 12.4 / 62 4301 / 318624 2.05

delaunay gen4.2 - 100% 26.2 / 222 14.8 / 131 8331 / 89105 1.29

Table 3: Parameters and TM characteristics of the benchmarks

Core

0
Core

31

Crossbar

L2 Bank

0

L2 Bank

7

Memory
controller

Memory
controller

...

...

Memory
controller

Memory
controller

Cores 32-way CMP, IPC/core=1, SPARCv9 ISA

L1 Caches
32KB split,4-way associative,

64B lines, 3-cycle access latency

L2 Cache
8MB, 8-way assoc., 8-banked, 64B lines,

6/20-cycle tag/data access latency

Coherence MESI, snooping,

protocol signature checks broadcast by L2

Memory 4 memory controllers,

subsystem 450-cycle latency to main memory

Interconnect Crossbar, 5-cycle link latency

(a) System organization (b) System parameters

Figure 6: Simulated system

AMD Barcelona Sun Niagara

Cores, Quad-core, 8-core,

multithreading no MT 4-way FGMT

Technology node 65nm 90nm

Die size 291mm2 379mm2

Core size 28.7mm2 13mm2

L1 areas (I/D) 2.25mm2 (both) 1.12/0.64mm2

Area used by
0.07mm2 0.54mm2

signatures, per core

Core size increase 0.25% 4.1%

Die size increase 0.10% 1.1%

Table 4: Area estimates in real systems

tures per thread context (called summary signatures), hence

doubling the hardware requirements. Finally, note how par-

allel Bloom signatures provide significant area savings over

true Bloom signatures when using a large number of hash

functions. If we used true Bloom signatures, we would re-

quire 4.3mm2 per core in the Niagara, causing a 33% in-

crease in the core area.

Our two main conclusions from the area analysis are: (a)

parallel Bloom signatures are much more area-efficient than

true Bloom signatures whenever more than one hash func-

tion is used, and (b) the area required for signatures in hard-

ware TM systems is relatively small compared to the over-

all processor core area.

6. Performance evaluation

We now present a performance evaluation of signatures.

Specifically, we evaluate true Bloom signatures, parallel

Bloom signatures, and Cuckoo-Bloom signatures using the

Simics full-system simulator with the GEMS [16] toolset to

simulate a chip multiprocessor with LogTM-SE.

6.1. Simulation methodology

Benchmarks: We use five different benchmarks with inter-

esting behavior relevant to the evaluation of signatures:

• Btree: In this microbenchmark, each thread accesses a

shared B-tree to perform either a lookup or an insertion

(with 80%/20% probabilities) using transactions. Per-

thread memory allocators are used to increase perfor-

mance.

• Raytrace and Barnes: Both workloads belong to the

SPLASH-2 suite [30], whose transactional versions [18]

feature small transactions with little contention. In this

suite, Raytrace and Barnes exert the most pressure on

signature designs.

• Vacation and Delaunay: These benchmarks belong

to the STAMP benchmark suite [17]. Both feature

coarse-grain, long-running transactions with large read

and write sets, and follow TCC’s model of all transac-

tions, all the time [12]. Consequently, of our five bench-

marks, these exert the most pressure on the signatures.
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Figure 7: Performance (higher is better) of true and parallel Bloom signatures with four hash functions

The exact parameters of the benchmarks, as well as their

main TM-related characteristics are summarized in Table 3.

System configuration: We model a CMP modified to sup-

port LogTM-SE. The CMP has 32 in-order, single-issue

cores, and has other parameters summarized in Figure 6b.

LogTM-SE is fully described elsewhere [31], but we re-

view how it does conflict detection, as that is most perti-

nent to our experiments. A transactional read (write) inserts

its block address into the core’s read (write) signature. A

transactional cache miss that is redirected to a remote core

tests its address against the appropriate remote signatures

(a read miss tests the write signature, while a write miss

tests both signatures). A positive tests causes a negative ac-

knowledgement that the original requesting core uses to re-

solve the (potentially false) conflict with a stall or trap to

software (e.g., to abort).

Most of our experiments assume signature requests are

broadcast to model existing broadcast proposals and put

pressure on signature designs. A few experiments use

LogTM-SE’s original design where the L2 directory pro-

tocol filters which core sees coherence misses, and must be

modified to support sticky states to handle cache victimiza-

tion of transactional data [18].

Hash functions: In the evaluation of Bloom signatures,

we use both bit-selection and hardwired H3 hash func-

tions, while using only H3 for Cuckoo-Bloom. We use bit-

interleaving as a particular class of bit-selection hash func-

tions: of the k different hash values, the i-th hash value is

generated by concatenating the bits i, i + k, i + 2k, and

so on. If the number of bits required for the hash func-

tions is greater than the number of bits of the address we

want to consider (25 in our case), we wrap around and

start selecting bits from the beginning again. For exam-

ple, the second of four 8-bit values would use address bits

(1, 5, 9, 13, 17, 21, 0, 4). However, we have explored other

kinds of bit-selection functions (e.g. those used in other TM

papers [7, 17]), and found that they perform similarly and

that all the conclusions obtained apply to them as well.

Metrics: In this section, we focus on the impact that each

signature design has on performance. All the performance

figures presented are normalized to those of a system with

“perfect” signatures, i.e. one that has no false positives or

false negatives and has a single-cycle access time. This

signature is not implementable in bounded hardware, but

provides an upper bound on conflict detection capabilities.

The simulated system’s memory latency was randomly per-

turbed, and we did multiple runs of each benchmark and

configuration to obtain stable averages [1].

6.2. Results

For the sake of clarity and conciseness, we present a sub-

set of the results we have obtained. The full set of results

(with, for example, more signature sizes) can be found in a

technical report [25]. Those results further corroborate the

observations made in this paper.

True vs parallel Bloom signatures: Figure 7 shows nor-

malized performance when using true and parallel Bloom

signatures of four hash functions, with either bit-selection

or H3. In general, the performance differences between us-

ing a true and a parallel Bloom signature are quite small,

and are higher for bit-selection than for H3 (with a 8.2%

versus a 3.6% mean difference), since H3 hash functions

create more uniform and uncorrelated distributions of the

hash values. Recall that in our formal analysis we showed

that parallel Bloom matches true Bloom when addresses

are evenly distributed. Also, we can easily see how par-

allel Bloom signatures with H3 perform better than their

true Bloom counterparts whenever the differences are no-

ticeable.

Implication 1: Since parallel Bloom signatures perform

either equivalently or slightly better than true Bloom signa-

tures and are more area-efficient, we recommend them and

will focus on parallel Bloom signatures from now on.

Number and type of hash functions: Figure 8 clearly

shows that the effect of increasing the number of hash func-

tions depends strongly of the type of hash functions used.
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Figure 8: Performance of parallel Bloom signatures with different number and type of hash functions

For bit-selection, increasing the hash functions beyond 2 of-

ten degrades performance. This result is consistent with the

findings in Bulk [7], in which bit-selection is used, and it is

concluded that using more than two hash functions yields

worse performance. However, we can see that when using

H3 hash functions, performance increases steadily when in-

creasing the number of hash functions up to four. With eight

H3 hash functions (not shown for clarity) we observed per-

formance drops marginally (1% less on average). Again,

this is an effect of the higher quality of H3 hashing.

In absolute terms, we can see how we can achieve a sig-

nificantly higher performance for a given size if we use H3

hash functions. For example, the best 2048-bit design with

H3 hash functions outperforms the best signature using bit-

selection by 30% in Vacation and 27% in Delaunay.

Implication 2a: When using low-quality hash functions

like bit-selection, we confirm that more than two hash func-

tions does not help.

Implication 2b: We advocate using high-quality hash

functions, like those from the H3 family, that can gener-

ate many uncorrelated and equally distributed hash values,

and using four or more such hash functions.

Impact of the number of cores: We now study a machine

configuration with a small signature size of 256-bits and two

H3 hash functions, and a varying number of cores (keeping

the other parameters of the system as shown in Figure 6b),

thus making signatures critical to performance. Figure 9

shows the relative performances for CMPs with 8, 16, and

32 cores, both when broadcast is used, and when we use

the directory protocol proposed in LogTM-SE instead. In

general, we can see how insufficiently accurate signatures

hurt performance much more as we increase the number of

cores. For example, when the broadcast protocol is used,

there is a a 27% slowdown in Vacation with 8 cores, and

a 143% slowdown with 32 cores. Also, as we can see, the

directory protocol is often effective in reducing the perfor-

mance degradation caused by false positives (as fewer tests

are performed), but signature size still needs to increase

with the number of cores for the more demanding bench-
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Figure 9: Performance with a 256-bit, two H3 hash func-

tion signature with a varying number of cores

marks. For example, the slowdowns in Vacation are 11%

with 8 cores, and 51% with 32 cores.

Implication 3: As the number of cores increases, signa-

tures must be carefully designed to mitigate the increased

potential for false positives, especially if broadcast coher-

ence is used. However, using a directory (at L2 cache

banks) enables larger TM systems without undue false pos-

itives, mitigating the need to increase signature hardware.

Performance of Cuckoo-Bloom signatures: To see how

Cuckoo-Bloom signatures perform in a practical setting,

we simulate them in the same conditions as Bloom signa-

tures. We used signatures with the parameters shown in Ta-

ble 1, keeping the 16-bit entries, with either 16 or 64 sets,

to get sizes of 512 and 2048 bits. Figure 8 shows the per-

formance impact of Cuckoo-Bloom signatures for the dif-

ferent benchmarks. Its performance is at least between the

two and four hash function Bloom signatures, and for most

benchmarks it outperforms the best bit-selection Bloom sig-

nature and is similar in performance to the four hash func-

tion H3 Bloom signature. Furthermore, these results im-

prove comparatively with bigger sizes (as we can hold an

accurate representation of more elements).

Implication 4: Cuckoo-Bloom signatures can out-

perform parallel Bloom signatures, especially when Bloom

signatures use one or two hash functions.
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7. Related work

We review related work in Bloom filters and their appli-

cation as signatures for transactional memory. Bloom fil-

ters were first proposed in 1970 [2]. Many variations on

Bloom filters have been proposed. Counting Bloom fil-

ters allow deletions and can represent multisets [10]. Hash-

table-based alternatives similar to Bloom filters have been

proven to be more space-efficient than Bloom filters them-

selves [6, 19]. Bloom filters have been used in computer ar-

chitecture for purposes other than conflict detection (e.g.,

for load-store queues [26] and early miss detection in L2

caches [11]).

Hardware implementations of Bloom filters are com-

mon in network applications. Broder and Mitzenmacher

survey the theory and applications of Bloom filters in net-

works [4]. Dharmapurikar et al. describe a packet inspec-

tion system with hardware-implemented Bloom filters [9].

Often, these designs require efficient implementations of

counting Bloom filters [3, 24].

The choice of hash functions in hardware Bloom filters

is crucial, because complex functions may achieve better

performance, but take more area. Ramakrishna et al. com-

pare bit-selection, simple XORing and H3 for address hash

tables with real-life data, and conclude that only H3 func-

tions can achieve analytical performance in practice [23].

Earlier work by Ramakrishna shows how to achieve ana-

lytical performance with Bloom filters in a practical setting

by using a universal hash function [22]. The H3 family

of hash functions was first described by Carter and Weg-

man [5]. Vandierendonck and De Bosschere describe two

approaches to measure and improve the quality of specific

XOR-based hash functions [28].

Several transactional memory systems have adopted sig-

natures. VTM [21] uses a global signature (XF), imple-

mented as a counting Bloom filter, to filter conflict tests af-

ter cache victimization and other rare events. Some soft-

ware TM systems use signature-like structure with a single

hash function, which can suffer many false positives [33].

Bulk [7] pioneered performing all conflict detection with lo-

cal signatures. It implemented (what we refer to as) parallel

Bloom signatures with bit-selection hashing. BulkSC [8]

uses Bulk’s structures to enforce sequential consistency.

LogTM-SE [31] uses a similar signature implementation,

but operates with a directory filter and adds summary sig-

natures to support context switching and paging. Finally,

SigTM [17] uses signatures in a manner similar to LogTM-

SE, but uses the more expensive true Bloom signature im-

plementation. None of these TM papers, however, provides

an analysis of the performance and area requirements across

signature design alternatives, as done in this paper.

8. Conclusions

Signature-based conflict detection is a promising ap-

proach in TM systems, as it enables transactions unbounded

in size in a hardware-efficient manner, at the expense of a

typically small performance hit. Multiple signature-based

designs have been proposed so far, but the novelty and com-

plexity of these systems left little room to cover in depth the

different approaches to signature implementation.

This paper is the first to perform a detailed comparison of

the performance and area of three signature design alterna-

tives: true Bloom, parallel Bloom, and the newly-proposed

Cuckoo-Bloom. We find, for example, that parallel Bloom

signatures are preferred to true Bloom signatures, hashing

via bit-selection is usually not sufficient, directory filter-

ing can be valuable, and Cuckoo-Bloom signatures can out-

perform Bloom signatures.

Although the benchmarks used in the evaluation provide

insight into signature behavior, future studies could use a

richer set of benchmarks for a more thorough evaluation.

Also, there is room for future work in designing hash func-

tions. For example, they could randomly change when a

conflict is detected to avoid repeated false conflicts, or even

dynamically adapt to the workload.
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