
This work is supported in part by the National Science Foundation (NSF), with grants
EIA/CNS-0205286, CCR-0324878, and CNS-0551401, as well as donations from
Intel and Sun Microsystems. Hill has significant financial interest in Sun Microsys-
tems. The views expressed herein are not necessarily those of the NSF, Intel, or Sun
Microsystems.

Appears in the proceedings of the
39th Annual IEEE/ACM Symposium on Microarchitecture (MICRO-39), 2006

1

Abstract
Ring interconnects may be an attractive solution for future chip
multiprocessors because they can enable faster links than buses
and simpler switches than arbitrary switched interconnects.
Moreover, a ring naturally orders requests sufficiently to enable
directory-less coherence, but not in the total order that buses
provide for snooping coherence. Existing cache coherence
protocols for rings either establish a (total) ordering point
(ORDERING-POINT) or use a greedy order (GREEDY-ORDER) with
unbounded retries.

In this work, we propose a new class of ring protocols, RING-
ORDER, in which requests complete in ring position order to
achieve two benefits. First, RING-ORDER improves performance
relative to ORDERING-POINT by activating requests immediately
instead of waiting for them to reach the ordering point. Second, it
improves performance stability relative to GREEDY-ORDER by not
using retries.

Thus, the new RING-ORDER combines the best of ORDERING-POINT

(good performance stability) with the best of GREEDY-ORDER (good
average performance).

1. Introduction
Chip-Multiprocessors (CMPs) present microarchitects with

new challenges and opportunities. In particular, because the
primary means of communication between the individual
processors is via shared-memory, the memory system is now a
first-order design issue at the chip level instead of the system level.
A key function of the memory system is to keep caches coherent.

Cache coherence has been well-studied in the context of
building larger systems from uniprocessors. Small to moderate-
sized symmetric multiprocessors [11, 43] used ordered bus
interconnects for coherence with a snooping protocol. Larger
multiprocessors [30, 40] required more complex interconnection
networks to offer better scalability, such as the use of packet-
switching in general topologies like a grid or torus. Although
recent advances now allow a broadcast-based protocol to function
correctly on an unordered network [25, 36], the default solution for
scalable systems remains directory protocols even though they
have costly indirections and state requirements.

Existing cache coherence techniques developed for previous
multiprocessors can be applied to current CMPs [7, 26]. However,
the technology of future CMPs and the realities of increasing
design complexity [8] may require new solutions. On-chip

networks can offer very high bandwidth because of the abundant
availability of wires. However, the relative delay of these wires is
rapidly increasing [21].

Implementing a logical bus in a CMP will likely entail a
pipelined design with centralized arbitration and ordering points.
To initiate a request on the CMP bus fabric described by Kumar et
al. [28], a processor must first access a centralized arbiter and then
send its request to a queue to create the total order. Ordered requests
are resent on different snoop links, and snoop results collect at
another queue and are again resent. Thus implementing bus
ordering in a future CMP may incur significant latency and area
costs. Like a logical bus, a crossbar is also a centralized structure
that faces similar performance challenges in many-core CMPs.

Microarchitects can move to a packet-switched network using
a general topology, like a grid or torus, to create a scalable on-chip
interconnect. However this “route packets, not wires” approach [13]
also comes with significant costs. First, implementing the
interconnect itself requires the correct design and verification of all
queues, routers, and algorithms for routing with deadlock
avoidance. Second, more state and area overhead may be devoted to
buffers and routers. Third, a directory coherence protocol designed
to operate with an unordered network is usually needed for most
topologies, requiring costly indirections and acknowledgement
messages.

Ring interconnects offer a viable intermediate solution,
because they use short point-to-point wires with distributed control,
have trivial routers with less area and design overhead, and offer
some ordering properties exploitable by the coherence protocol.
Given the centralized nature of buses and crossbars, and the
complexity and overhead associated with a packet-switched
network, a ring-based interconnect may offer a preferable
compromise. Rings are already used for intra-CMP coherence in
the IBM Power4 [48] and Power5 [44], the on-chip interconnect for
the IBM/Sony/Toshiba Cell [23], and are being considered by Intel
for next-generation CMPs consisting of 8 to 16 cores [24]. Larger
ring-based systems can be built by using a hierarchy, such as
clustering or even a ring-of-rings (KSR-1 [9, 17]). The Scalable
Coherence Interconnect (SCI) [20] sent messages on rings, but the
coherence protocol did not exploit ring ordering properties.

The ordering of a ring is not the same as a totally ordered bus.
Figure 1 illustrates how processors may see a different order of
message arrivals depending on ring position. Cache coherence
protocols for rings must create their own ordering of requests. One
straightforward approach establishes an ordering point on the ring
in which a total ordering of requests is created. The downside is that
request messages are not active until they reach the ordering point,
costing both latency and bandwidth. A second approach, used by

Coherence Ordering for Ring-based Chip Multiprocessors

Michael R. Marty and Mark D. Hill
Computer Sciences Department

University of Wisconsin—Madison
{mikem, markhill}@cs.wisc.edu

2

other systems including the IBM Power4/5 [29, 44, 48], greedily
orders requests by making them active immediately and
completing the first request that reaches the current owner.
Unfortunately, the current greedy protocols resort to unbounded
retries to handle conflicts and races [5, 12, 29].

Deploying a ring in a modern CMP requires aggressive
implementation techniques. In particular, to minimize latency a
ring-based system should immediately forward request messages
to the next node (i.e., eager forwarding [47]) instead of first
performing a snoop and then forwarding the message.
Furthermore, a ring lacks shared lines to inhibit a memory
response, yet a system should access the slow DRAM as soon as
possible when necessary. Our baseline, eight-processor CMP with
a ring interconnect is shown in Figure 2. In this CMP, the ring
attaches to the processors’ private cache hierarchies, shared L3
cache banks, and on-chip memory controllers.

An ideal ring protocol should (a) minimize latency and use of
bandwidth, and (b) provide stable and predictable performance
(e.g., no use of retries or negative acknowledgements). We develop
such a protocol in this paper and summarize our contributions as
follows:

•We present ring-based protocols based on an ordering point,
ORDERING-POINT (Section 2.1), and a greedy-based approach,
GREEDY-ORDER (Section 2.2). We create a new class of ring
protocols that completes requests in order of ring position,
RING-ORDER (Section 2.3), without incurring the overhead of an
ordering point and without retries. Furthermore, RING-ORDER
has no requirements on the timing of snoop responses or the
ring.

•We apply ORDERING-POINT, GREEDY-ORDER, and RING-ORDER
to the eight-processor CMP in Figure 2, using a memory
interface cache (MIC) to improve memory latency and
bandwidth characteristics (Section 3).

•We evaluate the three classes of protocols, using full-system
simulation, with workloads including OLTP, Apache, SpecJBB,
Zeus, and SpecOMP benchmarks (Sections 4 and 5). We find
RING-ORDER performs up to 52% faster than ORDERING-POINT,
and that it can outperform GREEDY-ORDER by up to 13%. RING-
ORDER also offers significant improvements in performance
stability over GREEDY-ORDER. Hence our new protocol
combines the best of ORDERING-POINT (good performance
stability) with the best of GREEDY-ORDER (good average
performance).

2. Ring-based Cache Coherence Protocols
In this section, we discuss three different classes of coherence

protocols for a ring and concentrate on how requests are ordered.
For readers interested in more detailed specifications, table-based
state-transition tables [45] are available in the Appendix for
GREEDY-ORDER and RING-ORDER. We simplify the development
of the protocols by first assuming a ring comprised only of
minimal nodes with a processor and cache. In Section 3, we apply
the protocols to a more-realistic CMP with integrated memory
controllers, and discuss more requirements of the ring architecture.
While our simulations assume sequential consistency, all
coherence protocols in this paper can also support more relaxed
memory consistency models.

For all protocols, we require a unidirectional ring in which
messages for the same block address cannot bypass one another on
any ring link (i.e., parallel rings interleaved by address are
allowed). When a request message is received at each ring
interface, it is copied to the node’s snoop queue and eagerly
forwarded on the ring, minimizing latency by not forcing the
serialization of snoops. The interface may also remove the request
message from the ring, depending on the protocol. For data
messages, the interface examines each to determine if it should be
pulled from the ring or forwarded to the next node.

2.1 ORDERING-POINT

The first class of protocols recreates the global ordering of an
atomic bus by establishing a point on the ring where all requests
are ordered. The disadvantage of this approach is that requests are
not active until they reach the ordering point, thus increasing both
latency and bandwidth.

Ordering points are commonly used to deal with unordered
interconnects, ranging from the directory-less AMD Opteron [1,
25, 50] to directory-based systems [7, 18, 30, 31, 20]. Because our
ring-based ORDERING-POINT protocol does not store a list of
sharers or a pointer (e.g., SCI) in some directory structure, it is
logically most similar to the Opteron protocol. However unlike
these other approaches, ORDERING-POINT exploits the order of a
ring so that requests are pipelined and do not block.

Figure 3 shows an example of how ORDERING-POINT works.
A processor’s request message is initially inactive and ignored by
other nodes until it reaches the ordering point. The ordering point

P
ri

va
te

L
2

L3

P
ri

va
te

L
2

P
ri

va
te

L
2

P
ri

va
te

L
2

P
rivate
L

2
P

rivate
L

2
P

rivate
L

2
P

rivate
L

2

mem controller

mem controller

L3

D

I $
L1

L1
$

CPU 3

D

I $
L1

L1
$

D

I $
L1

L1
$

D

I $
L1

L1
$

D

I $
L1

L1
$

D

I $
L1

L1
$

D

I $
L1

L1
$

D

I $
L1

L1
$

CPU 1

CPU 2

CPU 0

CPU 4

CPU 5

CPU 6

CPU 7

Figure 2: Baseline CMP

Figure 1: For unidirectional rings that allow simultaneous
transmitters, the order of received messages may depend on
ring position. Here, P12 receives messages in {A,B} order
whereas P6 sees them in {B,A} order.

P3

P6

P12

P9

A

B

3

activates the request, thereby creating a consistent order of active
request messages seen by other processors. The owning processor
will eventually complete a snoop and send data to the requesting
processor. The ordering point removes the request message from
the ring and, for an exclusive request, sends a final
acknowledgement message to the requestor indicating that all
snoops (invalidations) have completed. The final
acknowledgement message can be elided with some additional
complexity and constraints, such as ensuring that all requests are
fully buffered, but we found this has little impact on performance
because it overlaps with data access and transfer.

To prevent the ordering point from blocking subsequent
requests before each has completed, a requestor must record the
first active request message received after observing and
forwarding its own active request. By doing so, it commits to
satisfy one subsequent request, thereby forming a linked chain of
coherence service. If any of the subsequent requests are for
exclusive access (get modified), the requestor will also invalidate
itself upon completing its own request and servicing the next.

On average, a request must traverse half the ring (N/2 hops) to
reach the ordering point, then traverse the entire ring (N) while
active for a total of N+N/2 hops. Assuming a final
acknowledgement message is used, the total control traffic is 2N.
Although the protocol creates a total order of requests with a
bounded latency, strictly ordering requests at the ordering point
imposes additional latency.

2.2 GREEDY-ORDER

In a greedily ordered protocol, requests are immediately
active and ordered by which request reaches the current owner
first. In the common case, this improves latency and reduces
bandwidth because a request does not incur extra hops to reach an
ordering point. However, when conflicts (races) occur, a node may
be required to issue an unbounded number of retries. GREEDY-
ORDER is derived from Barroso et al.’s Express Ring [5] protocol
and the IBM Power4/5 protocols [29, 44, 48].

Figure 4 illustrates GREEDY-ORDER with an example. A
processor’s request message is active immediately and
acknowledged by the owning node in a combined response that
follows the request (not illustrated). If multiple requests issue near-
simultaneously, the first request that reaches the owner is
acknowledged and wins the race. Otherwise, the request is not
acknowledged and the losing requestor issues a retry after
inspecting the combined response.

The example in Figure 4 shows a conflict situation with
multiple exclusive requestors. If an exclusive request reaches any
node with a shared request outstanding, we adopt Barroso’s policy
in which the shared requestor must abort the request and issue a
retry, even though a data response may already be in flight. The
shared request must be aborted because the owner may respond to
an exclusive request while data travels to a shared request resulting
in a coherence violation. An alternate approach prevents this case
of possible incoherence by transferring ownership on any shared
request. However, we found this policy resulted in more
pathological starvation because of the increased likelihood of a
shared request missing the in-flight owner. GREEDY-ORDER’s
cache controller is specified in the Appendix (Table 6), with
shaded cells to indicate the state-transitions resulting in a retry.

A system that uses retries to handle contention avoids
starvation only if future system conditions eventually allow a
processor’s retry to succeed in all cases. Probabilistic systems are
acceptable in other domains of computing, such as Ethernet [39].
But feedback from industry indicates chip designers prefer
stronger, non-probabilistic guarantees of liveness for a coherence
protocol. Furthermore, a system like Ethernet exploits the carrier
sense property to prove its liveness [42] whereas we are not aware
of a general proof, for a greedily ordered protocol, which will
always avoid a pathological retry scenario.

We considered other techniques to address retries in GREEDY-
ORDER. Exponential backoff or adding randomness to retries can
increase the probability of success, but does not guarantee freedom
of starvation. Attaching a priority (such as the age of the request)

P3

P6

P3

P6

P3

P6

ordering
point

ordering
point

ordering
point

P9P9 P9
IM

(P3)

(1) (1)

(2a)

(2b) (3)

(5a)

(5b)

*

TIME

P9 getM

IM IM

O

IM IM

O

P3 getM

P3 getM

P9 g
etM

P3 getM
O−>I

P9 ACK

IM

DATA

(6)

Glossary: getM = get modified, O = owned, I = invalid, IM = issued request for modify
final ack message can be omitted with additional assumptions discussed in Section 2.1*

The example depicts two exclusive requestors in the ORDERING-POINT protocol
(some actions not labeled in figure):

(1) P9 and P3 issue get modified requests to a block owned by P6.

(2a) P9’s request reaches the ordering point and is made active. The active request
will invalidate caches and locate the owner.

(2b) P3’s inactive request is ignored by P6 and P9.

(3) P6 receives P9’s active request, performs a snoop, sends data to P9.

(4) P9 forwards its own active request to potentially invalidate other processors.
P9 sets a bit indicating its own active request is received.

(5a) P3’s request reaches P9 (already seen own request). P9 commits to service it
upon completion.

(5b) The ordering point removes P9’s active request, sends final ack message indi-
cating all caches are invalidated.

(6) P9 receives data from P6.

(7) P9 receives final ack message and sends data to P3.

Figure 3: Example of ORDERING-POINT

4

does not solve the problem because it would require the processor
to either remember starving requests, or to wait until multiple
requests are received in order to prioritize the set of requestors. We
also considered an approach that carefully constructs a distributed
linked chain of requests such that a node hands off the block to the
next requestor, like done in ORDERING-POINT. But correctly
constructing this list without an ordering point adds significant
complexity and constraints, especially when considering the
effects of bank contention and interfacing with memory (discussed
in Section 3).

Another disadvantage of GREEDY-ORDER is that it relies on a
snoop response from every cache for every request. Implementing
this efficiently on a ring (i.e., without an entire trailing response
message) can use a combined response with synchrony such that
response bits trail a request message by a fixed number of cycles.
This fixed timing increases the complexity and constraints of the
system. For example, the architected fixed timing must account for
bank contention and the various snoop times of different-sized
caches. If a request cannot be snooped within the architected fixed
time, it must be negatively acknowledged (Nacked) and
subsequently retried by the requestor. Increasing the delay in the
fixed timing decreases the probability of a Nack, however this will
negatively impact many non-delayed requests. Making the timing
too aggressive will result in extra Nacks and retries, increasing the
probability of pathological starvation.

We seek a better mechanism that bounds every node’s
coherence operation for performance stability, but does not use an
ordering point. Furthermore, we seek a coherence protocol that
does not rely on a synchronous snoop response for message
efficiency. We now present a new class of ring protocols that orders
completion of requests by the position on the ring.

2.3 RING-ORDER

Ideally, a request in a ring protocol is active immediately,
does not require retries to handle contention, and incurs minimal
latency and bandwidth. We develop a new class of protocols that
achieves these goals by completing requests in ring order. This
protocol is inspired by token coherence [36], directly enforcing the
coherence invariant by counting tokens. But, we do not use retries

or persistent requests [37] to ensure forward progress. Instead, we
exploit ring order to guarantee that initial requests always succeed.
Another key advantage is that RING-ORDER does not require any
fixed synchrony in the ring or when snoop responses generate.

Recall that token coherence associates a fixed number of
tokens for each memory block in the system. In order to write a
block, a processor must acquire all the tokens. To read a block,
only a single token is needed. In this way, the coherence invariant
is directly enforced by counting and exchanging tokens. Cache
tags and messages encode the number of tokens using Log2 N bits,
where N is the fixed number of tokens for each block. Unlike token
coherence as previously published, in RING-ORDER memory stores
only a single bit per memory block to track whether it contains all
or none of the tokens (discussed in Section 3.2). We distinguish
one of the tokens as the priority token. Similar to the owner token
used by token coherence, the priority token denotes which
response should carry data. More importantly, it allows requests to
complete in ring order by prioritizing the requestors as it moves
around the ring.

An example of RING-ORDER is shown in Figure 5, and the
cache controller is specified in Table 7 of the Appendix. The key
insight is that token counting allows a requestor to remove tokens
off the ring to complete its request safely and potentially
immediately. A request message causes tokens to move on the
unidirectional ring. But a response message is not strictly sent to a
particular requestor and can instead be used by other requestors on
the way. Each response message includes a furthest-
destination field to indicate the furthest relative node on the
ring that desires the tokens for a coherence request. A requestor
also tracks this field in its miss status holding register (MSHR)
[27] so that it may hold the tokens temporarily to complete its
request, but can determine if it needs to (eventually) put tokens
back on the ring.

To ensure starvation avoidance, a policy must be in place to
prevent multiple exclusive requestors from holding a subset of the
tokens. The priority token breaks the symmetry by distinguishing
which requestor should hold tokens. A requesting node must
remove the incoming priority token from the ring and hold onto it

P3

P6

P3

P6

P3

P6

P12 P12P12

P9P9 P9
IM IMIM

P3 getM

DATA

P9 getM

(1)

(1)

(5)

TIME

IM

O

S−>I

O−>I

Glossary: getM = get modified, M = modified, O = owned, S = shared, I = invalid, IM = issued request for modify

(2)

(3)

(4a)

(6)

P9 getM

RETRY

IM M

P9 getM

The example depicts two exclusive requestors in the GREEDY-ORDER protocol (some
actions not labeled in figure):

(1) P9 and P3 issue get modified requests to a block owned by P6.

(2) P12 snoops P9’s request and invalidates its shared copy.

(3) P3 snoops P6’s request and acknowledges it in a combined response. P3 com-
mits to send data to P6.

(4a) P9’s request passes P3 and P6 without being acknowledged.

(4b) P3 removes its request from ring. In the response following, P3 recognizes its
request was acknowledged, expects data.

(5) P3 receives data from P6, completes request.

(6) P9 removes its request from ring and issues a retry because it was not
acknowledged in the combined response.

Figure 4: Example of GREEDY-ORDER

5

until its request completes. Other non-priority tokens, in flight due
to a writeback or exclusive request, must coalesce with the priority
token. Thus a requestor does not acquire non-priority tokens until
it holds the priority token. If an exclusive requestor is holding the
priority token, it updates the furthest-destination field in its MSHR
when it receives other requests while waiting for tokens. The
furthest destination field also includes a single bit to indicate if any
requestor seeks all the tokens.

RING-ORDER minimizes data transfer, because all requesting
nodes complete their requests as data moves around the ring once.
One suspected negative aspect of our protocol is that a writer may
need to collect tokens from multiple sharers, with a message for
each. We could further optimize this by using a combined response
that collects tokens. We choose not to because our observations
corroborate other studies showing most invalidations are for few
caches (most commonly one) [19, 35]. We do implement a simple
optimization that allows a requestor to remove and hold non-
priority tokens before receiving the in-flight priority token, but
only if there are no other concurrent requests. To detect other
concurrent requests, a bit is set in the MSHR on observing another
request message, and the furthest destination of each incoming
response message is examined.

RING-ORDER applies to rings with relaxed timing, or even
asynchronous circuit designs [49] because it avoids a synchronous
combined snoop response. The same property will also be
beneficial when applied to hierarchical systems (e.g., a ring-of-
rings) because a system-wide snoop response is unnecessary.

3. Application to CMPs
Here, we apply our three classes of ring protocols to a CMP

(Figure 2) and describe the interaction with memory controllers
and ring architectures.

3.1 Base System
The baseline CMP consists of eight processor cores, each

with private L1 and L2 caches. Two shared L3 cache banks are
each backed by an on-chip memory controller and are interleaved
by the low-order bits of the block address. The L3 acts like a

victim cache in that allocations only occur on L2 writebacks. The
L2 and L3 cache controllers connect to a single unidirectional ring
to handle all on-chip coherence and memory requests. The L2
controllers issue all requests on behalf of the processor and handle
snoops. The L3 controllers also participate on the ring and tightly
couple with the on-chip memory controllers via direct links. For
the ORDERING-POINT protocol, the L3/memory controllers
function as the ordering point. Therefore, the memory latency is
the same for all three protocols.

3.2 Accessing Memory
A key challenge for non-directory coherence protocols is

determining if memory should respond to a request with data. Our
protocols add an owner-bit to each memory block [16] so the
memory controller can recognize ownership and supply data.
Because memory is slow and bandwidth constrained [15, 22], we
cache these bits in a memory interface cache (MIC) located at each
of the two memory controllers. The MIC is coarse-grained to
reduce tag overhead and exploits spatial locality by associating
several bits with each tag.

An alternative approach is to collect a snoop response from
every cache on every request (analogous to logical shared lines in
bus-based systems), and only then obtain the data from memory.
However, this can negatively impact memory latency due to the
additional ring traversal.

For all three classes of protocols, the owner bit is accessed to
determine if memory should respond to a request with data. On a
MIC miss, the owner bits are fetched and the data block is
prefetched in case the owner bit is ultimately set. GREEDY-ORDER

must also Nack the request, causing a retry, because the timing of
the synchronous snoop response cannot be met when accessing the
slow DRAM. Designers of a GREEDY-ORDER protocol also need to
prevent a possible pathological scenario in which the recently
fetched owner bit is continually replaced before the retry reaches
the MIC.

For RING-ORDER, the owner bit represents whether memory
logically contains all the tokens, or none of the tokens. Thus unlike

P3

P6

P3

P6

P12P12

P3

P6

P12

P9 P9

P9 getM

P3 getM

data
FD = P3

DONE

P9

FD = P3
data

IM IM IM IM IM
(1)

(1) (5)

(6)

TIME

Glossary: getM = get modified, IM = issued request for modify, FD = furthest−destination field

(2a)

(2b)

(4b)

(4a)

= priority token= token

The example depicts two exclusive requestors in the RING-ORDER protocol (some
actions not labeled in figure):

(1) P3 and P9 issue get modified requests to a block. P12 holds a single token, P6
holds the rest including the priority token.

(2a) P12 receives P9’s request, initiates snoop.

(2b) P6 receives P3’s request, initiates snoop.

(3) P6 receives P9’s request while snooping, records furthest relative requestor in its
snoop-tracking table.

(4a) P12 completes snoop and sends single token on ring. P3 does not remove the
single token because it does not hold the priority token.

(4b) P6 completes snoop and sends data and all tokens, including the priority
token, on the ring. The response is tagged with a furthest-destination field set to P3.

(5) P9 removes data and tokens from ring and is able to complete its request
because it acquires all tokens.

(6) P9 honors the furthest-destination field and places data and tokens back on
the ring.

Figure 5: Example of RING-ORDER

6

token coherence as previously published, we further innovate by
reducing the token count at memory down to a single bit per block
by coalescing tokens on replacements. In the common case of
replacing unshared data, tokens are already coalesced causing the
memory interface to immediately accept the writeback and set the
owner bit. Otherwise, a cache places tokens on the ring to coalesce
with other tokens. To replace the priority token and prevent
possible livelock (because the sharers could simultaneously
replace), the cache with the priority token must first send a control
message to find a different cache willing to accept its tokens.

Alternative ordering strategies present challenges for
implementing the exclusive cache state (E-state). GREEDY-ORDER

achieves the E-state with an added bit to the combined response
that indicates if any sharer exists (logically similar to a shared
intervention signal). RING-ORDER has the equivalent of an
exclusive state because any response from memory logically
contains all the tokens, and clean data is omitted from token
replacement messages. In ORDERING-POINT, however, an exclusive
state is difficult without other significant compromises. Even if an
additional exclusive bit is added to each memory block (and MIC),
the memory controller cannot determine when to reset the
exclusive bit without tracking a count of sharers. Hence our
ORDERING-POINT protocol lacks an E-state.

The equivalent of a perfect memory interface cache is to
implement a structure that summarizes all on-chip caches. We did
not evaluate this approach because our coarse-grained MIC
performs quite well, and avoids the very wide aggregate
associativity and significant area overhead of this structure.

3.3 Ring Architecture and Buffering
Although the focus of this paper is coherence ordering, we

now discuss some of the implications and requirements of the low-
level ring architecture. The choice of ring architecture (commonly
slotted or register-insertion) [46] is mostly independent of our
three classes of ring protocols. A slotted ring is most practical for
GREEDY-ORDER because acknowledgement bits can trail the
request slot by a fixed number of cycles. Therefore, implementing
the combined snoop response does not require a separate message.
However a register-insertion ring inserts arbitrary delays by
allowing a processor to immediately transmit while buffering some
amount of incoming data. Since ORDERING-POINT and RING-
ORDER do not require a combined snoop response on every
request, a register-insertion ring is just as practical.

All three protocols require the low-level ring architecture to
provide guaranteed resources (virtual networks) for request and
responses. In a slotted ring, this is accomplished by using a fixed
allocation of request and response slots. Register-insertion rings
can use flow control and priority techniques similar to the SCI ring
(i.e., idle symbols, go bits) [20]. Like most existing systems we are

aware of, we assume that the ring provides fault tolerance at a
lower level than the coherence protocol.

In all protocols, once a response message is placed on the
ring, it can always be removed by the destination because the
resources allocate upon issuing the request message. In RING-
ORDER, before forwarding a token message, the interface checks
the MSHR table to determine if tokens for the address should be
removed from the ring. Accessing the MSHR table should have
minimal impact on the latency of token messages because it is
typically small.

In contrast to response messages, a request message may
reach a node with insufficient resources to handle the snoop. This
is especially problematic in GREEDY-ORDER because of its
synchronous snoop response requirement. But for ORDERING-
POINT and RING-ORDER, most contention can be handled by using
deeper buffers because no synchronous snoop response is needed.
In the rare case that a request reaches a processor with no available
buffer space, we assume the ring interface will flip some bits in the
header message to cause the message to traverse the ring again
(ignored by subsequent ring nodes), essentially using the ring itself
as a buffer. Thus there is never any back-pressure on the ring. In
this way, the ring is analogous to a “traffic roundabout”. In a traffic
roundabout, once a car is able to enter the roundabout (ring), it
continues to circulate until it is able to exit (acquire a buffer).

4. Evaluation Methodology
We evaluate our protocols with full-system simulation using

Virtutech Simics [33] extended with the Wisconsin GEMS toolset
[34]. GEMS provides a detailed memory system timing model
which accounts for all protocol messages and state transitions.
Each processing core has private 64KB L1 I&D caches and a
private 1MB L2 cache. The two shared L3 caches are 8MB each
for a total on-chip L2/L3 capacity of 24MB. Each L2 cache is
generously interleaved into sixteen banks to increase the amount of
snoop bandwidth. We idealize the L3 caches such that a snoop can
always be performed. The two memory interface caches (MIC) are
both 128KB and each tag entry holds 256 owner bits. All other
memory system parameters are specified in Table 1. For RING-
ORDER, the logical number of tokens for each block is 16 to allow
all caches to hold a shared copy of data. Thus response messages
and cache tags encode the token count with 4 bits, plus an
additional bit to denote the priority token.

To better understand and isolate memory system performance
and its impact on overall performance, we model both in-order and
out-of-order Sparc cores attached to the same memory system
described above. The in-order cores are inspired by Niagara [26],
but are 2-way superscalar, single-threaded, and do not share a
floating-point unit. ALU operations are idealized and always take
one cycle. The out-of-order cores use GEMS’ TFsim timing model

Table 1: Memory System Parameters
(processor cycles specified)

Private L1 Caches Split I&D, 64 KB 4-way set associative, 2-cycle access time, 64-byte line

Private L2 Caches Unified 1MB 4-way set associative, 15-cycle data access, 8-cycle tag access, 64-byte line

Shared L3 Caches Two 8MB shared banks, 16-way set associative, 25-cycle access time, 64-byte line

On-chip Ring Interconnect 80-byte unidirectional links, 6-cycle delay per link, 2-cycle switch delay

Memory 4GB of DRAM, 275-cycle access

Memory Interface Cache 128KB, 16-way set associative, 256 bits per tag

Table 2: Out-of-Order Core Parameters

Reorder buffer/scheduler 128/64 entries

Pipeline width 3-wide fetch & issue

Pipeline stages 15

Direct branch predictor 1kBytes YAGS

Indirect branch predictor 64 entry (cascaded)

Return address stack 64 entry

7

[38] with the parameters specified in Table 2. We model core
frequencies of 12-FO4 delays, consistent with prior work [10]. All
configurations implement sequential consistency.

We approximate a well-engineered slotted ring with wide, 80-
byte unidirectional links. We do so by using GEMS’ packet-
switched interconnect infrastructure with a ring topology and
sufficient buffering at the endpoints. Links are wide enough to
interleave a single control message with a data message, but we
prevent routing a control and data message for the same block
address in the same cycle to prevent reordering. Our technology
assumptions model a link delay of 300 picoseconds per millimeter,
and each of the ring links in the target CMP measure 5 mm. We
clock the ring at half the core frequency, consistent with the IBM
Cell [23]. Thus the modeled delay per rink link is six processor
cycles (assuming 4 GHz cores) plus two cycles for the switch,
making the total round-trip latency 80 processor cycles.

In GREEDY-ORDER, synchronous snoop responses follow
requests by 25 cycles (6.25 ns). With our modeled L2 tag latency
of 8 cycles, this allows the L2 to process three tag accesses within
the architected time. This was an engineering tradeoff based on
empirical evaluation. With the L2 interleaved sixteen ways, we
found that an aggressively timed snoop response, unable to handle
bank conflicts, resulted in occasional starvation due to pathological
behavior.

Nonetheless, system designers may go to great lengths in
order to engineer GREEDY-ORDER’s snoop response to be
aggressive, yet avoid excessive Nacks due to bank contention.
Therefore, we also simulate GREEDY-ORDER-IDEAL in which all
snoop responses magically generate immediately even if the bank
is busy with other queued requests.

For RING-ORDER and ORDERING-POINT, each of the
interleaved L2 banks is backed by a snoop queue sized to eight
entries (exceeding the maximum size we observe in simulation).

The workloads used are the following: an online transaction
processing workload (OLTP), static web-serving workloads
(Apache and Zeus), a Java middleware workload (SpecJBB), and
scientific workloads from the SpecOMP suite [4] (OMPfma3d,
OMPart, OMPmgrid). For the commercial workloads, we
measured transactions completed. The SpecOMP workloads were
split by main loop completion because of the prohibitive

simulation time required to finish the entire execution using the
reference input set. Alameldeen et al. [3] further describe all
workload configurations including the lengths of cache warmup
and simulation. To account for non-determinism in multithreaded
workloads, we pseudo-randomly perturb simulations and calculate
error bars to 95% confidence [2].

5. Evaluation

5.1 Runtime
Figure 6 shows the normalized runtime for all four protocols

running with the in-order cores. Runtime is normalized to
ORDERING-POINT. We find:

•RING-ORDER performs the best as it is 6-52% faster than
ORDERING-POINT for all workloads except OMPmgrid, which
performs comparable because nearly all misses are to read-only
data satisfied by memory.

•RING-ORDER outperforms GREEDY-ORDER by 8-12% for
Apache, OLTP, Zeus and OMPart. Compared to GREEDY-
ORDER-IDEAL, RING-ORDER performs comparable or slightly
better.

Figure 7 shows the normalized runtime with out-of-order
cores. RING-ORDER still performs the best as it is 5-21% faster
than ORDERING-POINT (for all workloads) and 6-13% faster than
GREEDY-ORDER for Apache, OLTP, and OMPart. The quantitative
performance differences between in-order and out-of-order
processors change for two primary reasons: out-of-order cores
tolerate some of the coherence latency, and protocol-independent
stalls contribute more to the execution time (e.g., pipeline flushes).

To gain further insight into the performance differences,
Table 3 shows L2 misses-per-1000 instructions, the percentage of
sharing misses, and the average latency of sharing misses. The
protocols exhibit similar L2 misses-per-1000-instructions for most
workloads. But for OMPfma3d and OMPmgrid, ORDERING-POINT

incurs twice as many L2 misses due to its lack of an exclusive
cache state. This noticeably penalizes OMPfma3d because of its
high miss rate. All other performance differences are mostly due to
sharing behavior. For example, 48.6% of Apache’s L2 misses are
sharing and the protocols behave differently for these misses. For
Apache, a sharing read miss averages 128.8 cycles with
ORDERING-POINT, 106.8 cycles with GREEDY-ORDER, and 96.4

Figure 6: Normalized runtime with in-order cores

0.0

0.5

1.0

no
rm

al
iz

ed
 r

un
tim

e

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

Apache

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

OLTP

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

SpecJBB

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

Zeus

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

OMPfma3d
O

rd
er

in
g-

Po
in

t
G

re
ed

y-
O

rd
er

G
re

ed
y-

O
rd

er
-I

de
al

R
in

g-
O

rd
er

OMPmgrid

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

OMPart

0.0

0.5

1.0

no
rm

al
iz

ed
 r

un
tim

e

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

Apache

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

OLTP

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

SpecJBB

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

Zeus

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

OMPfma3d

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

OMPmgrid

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

OMPart

Figure 7: Normalized runtime with out-of-order cores

8

cycles with RING-ORDER. These average sharing miss latencies
match the expected behavior of the protocols. ORDERING-POINT

must traverse half the ring, on average, to activate a request and
GREEDY-ORDER incurs a penalty for the timing of the synchronous
snoop response. Likewise the OLTP, Zeus, and OMPart workloads
exhibit significant sharing misses and see similar latencies.
OMPmgrid and OMPfma3d show higher sharing miss latencies
because of barrier contention, but these do not impact performance
much because the contention is infrequent.

All of our protocols work with different configurations of
unidirectional rings, including multiple rings interleaved by
address. We did not simulate this plethora of options, however, we
did perform sensitivity analysis to the latency and width of ring
links. If the ring runs at the same frequency as the in-order
processor cores, the control overhead penalty of ORDERING-
POINT’s cache-to-cache transfers diminishes. In this case, RING-
ORDER still performs 4-30% faster for all workloads except
OMPmgrid. A narrower ring also diminishes control overhead
because more cycles are spent on actual data transfer rather than
the smaller control messages. When simulating 40-byte links,
RING-ORDER outperforms ORDERING-POINT by 5-36% (except
OMPmgrid). Furthermore, narrower links negatively impact
GREEDY-ORDER and GREEDY-ORDER-IDEAL because increased
data traversal latency can actually exacerbate the retry problem as
there is more opportunity for a request message to miss the in-
flight data. With 40-byte links, the increase in retries affects
performance, especially for Apache, where GREEDY-ORDER-IDEAL

incurs 30% more race-induced retries and causes RING-ORDER to
outperform it by 11%. For all the configurations we simulated,
RING-ORDER performed the best.

5.2 Bandwidth
Figure 8 shows normalized bytes transferred on the CMP

ring. Reducing bandwidth can lead to lower latency (if
constrained), less resources devoted to the interconnect, and
reduced power consumption. We assume control messages use 8
bytes and data messages use 72 bytes. For GREEDY-ORDER and
GREEDY-ORDER-IDEAL, bandwidth used by the combined snoop
response is ignored. We find:

• RING-ORDER consumes the least amount of ring bandwidth for
all workloads. It uses 15-34% less bandwidth than ORDERING-
POINT, and 2-12% less bandwidth than GREEDY-ORDER.

ORDERING-POINT’s activation and acknowledgment of
requests, and GREEDY-ORDER’s retries consume more bandwidth
than RING-ORDER’s non-data token responses (Response Control),
and RING-ORDER’s coalescing and non-silent replacement of
tokens (Writeback Control). RING-ORDER further optimizes
bandwidth by completing all simultaneous outstanding requests,
for the same block, with a single data message traversal.

5.3 Performance Stability
We now consider performance stability by examining the

worst-case behavior observed in simulation. For GREEDY-ORDER,
the worst-case is pathological starvation that can theoretically
occur due to its lack of total ordering. We find:

• Starvation situations did occasionally arise in our simulations
for both GREEDY-ORDER and GREEDY-ORDER-IDEAL.

Figure 9 shows an excerpt from a trace of GREEDY-ORDER-
IDEAL running the OMPmgrid workload. Processor 6 continually
issued a retry for the block because, due to the timing conditions
encountered, its request continually missed the owner in flight to a

Table 3: Breakdown of L2 Misses
L2 misses / 1000 instructions % sharing L2

misses
(Load, Store)

average cycles of L2 sharing misses (load, store)

ORDERING-
POINT

GREEDY-ORDER and
GREEDY-ORDER-
IDEAL

RING-ORDER ORDERING-
POINT

GREEDY-ORDER GREEDY-
ORDER-IDEAL

RING-ORDER

Apache 28.7 26.4 26.0 33.1, 15.5 128.8, 153.6 106.8, 101.6 96.8, 93.1 96.4, 90.4

OLTP 13.1 12.5 12.6 47.6, 24.2 131.3, 154.8 106.2, 102.7 96.2, 93.9 96.1, 91.4

SpecJBB 3.9 3.0 3.0 21.6, 2.5 133.4, 153.7 108.3, 104.3 98.8, 95.3 97.3, 93.7

Zeus 19.8 18.7 18.0 29.4, 15.1 133.4, 153.8 108.2, 103.4 97.3, 94.6 96.9, 90.3

OMPmgrid 3.6 1.5 1.5 3.9, 0.9 156.9, 154.7 142.4, 119.3 136.9, 112.6 124.3, 94.4

OMPfma3d 22.6 12.6 12.6 0.3, 0.9 174.9, 158.0 157.0, 125.7 148.9, 117.4 139.9, 94.0

OMPart 62.5 62.5 62.5 57.8, 0.01 128.8, 161.3 117.9, 128.1 111.7, 128.1 103.5, 94.9

Figure 8: Normalized ring traffic (in-order cores)

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
iz

ed
 tr

af
fi

c Response Data

Writeback Data

Request Control

Response Control

Writeback Control

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

Apache

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

OLTP

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

SpecJBB

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

Zeus

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

OMPfma3d

O
rd

er
in

g-
Po

in
t

G
re

ed
y-

O
rd

er
G

re
ed

y-
O

rd
er

-I
de

al
R

in
g-

O
rd

er

OMPmgrid
O

rd
er

in
g-

Po
in

t
G

re
ed

y-
O

rd
er

G
re

ed
y-

O
rd

er
-I

de
al

R
in

g-
O

rd
er

OMPart

9

different requestor. We could further engineer GREEDY-ORDER and
GREEDY-ORDER-IDEAL to complete all our simulations by reducing
the chances of starvation through techniques previously discussed.
However, we would not be convinced that our efforts would result
in starvation-free execution for months and years on a real system,
given that our simulation target runs for only a few seconds.

We now examine the performance stability of our protocols
by considering the maximum latencies and retries encountered for
all misses (not just sharing misses). Table 4 shows the average and
maximum latency of any L1 miss. RING-ORDER has the lowest
maximum observed request latency of 422 cycles. Some requests
in GREEDY-ORDER and GREEDY-ORDER-IDEAL take thousands of
cycles and even exceed the per-request watchdog timer of 80,000
cycles we use in the simulator. Table 5 shows the average number
of retries used for each coherence request and the maximum
observed. Misses to the MIC account for most of the actual
number of retries (not shown) even though the hit rate of each
128KB MIC is 89-91% for all workloads. However for those
requests that required several retries, the reasons were mostly due
to bank conflict and coherence races. Generally SpecOMP
workloads, with their use of a barrier for fine-grained loop
synchronization, encounter the most severe situations requiring
numerous retries due to coherence races.

6. Related Work
Barroso et al. [5, 6] developed a snooping protocol for SMP

systems using a slotted ring, which served as the basis of our
greedily ordered protocol. They compared their snooping
implementation against a directory-based ring protocol and a split-
transaction bus, finding the snooping-on-rings approach
preferable. We build upon the work of Barroso et al. by extending
and applying the protocol to a CMP, classifying snooping ring
protocols based on ordering, and comparing it to a new type of ring
protocol as well as one using a directory-less ordering point.

IBM’s Power4 [48] and Power5 [44] both use a protocol
similar to GREEDY-ORDER [29]. One difference between GREEDY-
ORDER and the IBM protocols is that memory does not contain
owner bits and does not participate in the combined response.
Instead, the requestor will resend the combined response on the
ring. If no other cache acknowledged the request in the combined
response, the memory controller will send the data (which it
prefetches when observing the initial request). If the combined
response indicates a coherence conflict, the processor instead
issues a retry. To explicitly detect a conflict, whenever a processor
acknowledges a request and sends data, it remembers the address
in a table until cleared by the combined response that the winning
requestor resends. In contrast, our GREEDY-ORDER protocol uses
owner bits and a memory interface cache to reduce memory
latency and bandwidth in a CMP. In doing so, memory participates
in the combined response such that resending it, and explicitly
detecting coherence conflict with an extra table, is unnecessary.

Strauss et al. [47] present flexible snooping for optimizing
performance and power in a system using an embedded ring
between bus-based CMPs. The protocol is similar to the IBM
Power5 and GREEDY-ORDER except that they selectively and
predictively change when request messages are forwarded to the
next CMP. All of our protocols immediately forward a request
message on the ring before performing the snoop (eager
forwarding) for maximum performance because snoops
parallelize. In contrast, Strauss et al. selectively and predictively
do the opposite by first performing a snoop and then forwarding
the request to the next node on the ring (lazy forwarding), thereby
potentially saving power. One consequence of this approach in a
greedy ordered protocol is that a separate response message trails
the request message whenever eagerly forwarded. The GREEDY-
ORDER protocol we model instead uses bandwidth-efficient
response bits that follow the request by a fixed number of cycles.
Our work focuses on the ordering of requests on a ring, eliminating
the retries used by Strauss et al., and targets a CMP system.

Figure 9: Excerpt of a GREEDY-ORDER-IDEAL trace, running
OMPmgrid, for a single cache block. Processor 6’s request is
pathological starved for over 75,000 cycles.

Table 4: Overall Miss Latencies in Cycles (MAX, AVG)
ORDERING-POINT GREEDY-ORDER-

IDEAL
GREEDY-ORDER RING-ORDER

Apache 490, 86.9 750, 73.6 5206, 73.6 308, 70.7

OLTP 516, 55.4 833, 44.4 765, 46.3 297, 43.6

SpecJBB 476, 66.6 800, 55.1 8316, 55.4 316, 53.8

Zeus 524, 83.4 1516, 72.6 6611, 72.6 336, 67.7

OMPmgrid 517, 92.2 large1, 51.9 14791, 51.9 422, 50.0

OMPfma3d 589, 222.6 2945, 152.2 large1, 152.2 302, 150.3

OMPart 517, 118.5 851, 110.4 973, 112.9 422, 104.3

Table 5: Retries per Miss Request (MAX, AVG)
ORDERING-POINT GREEDY-ORDER-

IDEAL
GREEDY-ORDER RING-ORDER

Apache 0,0 10, 0.24 53, 0.24 0,0

OLTP 0,0 8, 0.12 11, 0.12 0,0

SpecJBB 0,0 11, 0.37 92, 0.37 0,0

Zeus 0,0 14, 0.31 68, 0.31 0,0

OMPmgrid 0,0 large1, 0.07 259, 0.07 0,0

OMPfma3d 0,0 29, 0.12 large1, 0.12 0,0

OMPart 0,0 10, 0.11 13, 0.12 0,0

1At least one simulation run encountered a request that exceeded our per-request watch-
dog timer of 80,000 cycles.

10

Nonetheless, their forwarding strategy applies especially well to
RING-ORDER because our protocol does not need an expensive
combined response message for every eagerly forwarded request.

The IBM Cell processor [23] uses a ring-based interconnect
for transferring data between the main processor and the eight
“synergistic processing elements” (SPEs). A tree-based centralized
arbiter determines when the processors access the ring to transfer
data. We do not assume centralized arbitration for accessing the
ring, although if one were present, it could be used for coherence
ordering. Since each individual SPE has its own private memory
with separate addressing, the Cell interconnect is optimized for
DMA-like operations rather than cache coherence at the line level.

The Scalable Coherence Interface (SCI) [20] is based on a
register-insertion ring and used a distributed directory-based
protocol. Several systems were built with the SCI including the
Sequent STiNG system [32]. The SCI protocol does not exploit the
ordering properties of a ring and requires many messages to
manipulate the doubly linked list of sharers. For example,
obtaining a shared copy of data and updating the list of sharers
requires four ring traversals. In contrast, for all of our protocols,
getting a shared copy requires only a single request message and a
single response message.

The Kendall Square Research KSR-1 [9, 17] used a hierarchy
of slotted unidirectional rings for cache coherence. In the KSR, a
request is always lazily forwarded—a message visits a node,
performs the snoop operation, and only then is forwarded to the
next node. Our protocols parallelize the snoops by eagerly
forwarding requests immediately to the next node before
performing the snoop. We fail to find the specific strategy the KSR
used for handling coherence races. We suspect that by not
performing snoops in parallel, it is able to construct a linked chain
of requests because the searches are slow and can carry
information about previous snoops.

Chung et al. [12] also proposed a snooping protocol for SMP
systems based on register-insertion rings. It too is greedily ordered
and uses retries to handle conflict. Oi et al. [41] developed a cache
coherence protocol that operates on bidirectional rings for SMPs.
Because bidirectional rings have even less order than
unidirectional rings, they use both retries and an ordering point.
The Hector SMP system used a hierarchy of rings and a write-
update protocol with filters [14]. We only considered write-
invalidate protocols in this work.

Marty et al. [37] also apply token coherence in a CMP
system. However they used unordered interconnection networks,
retries, and persistent requests. The focus of this work is the study
of ring protocols for CMPs rather than token coherence. We
leverage token coherence to create a better ring protocol, but
simplify it by exploiting the ordering of a ring to avoid retries and
persistent requests. Furthermore, we innovate by requiring only a
single bit per memory block rather than an entire token count.

7. Conclusions
Rings offer an interconnect with short point-to-point links,

distributed control, and ordering properties exploitable by a
coherence protocol. However, a ring does not provide the same
ordering as a logical bus. In this paper, we classify snooping ring
protocols based on how coherence requests are ordered. The
ORDERING-POINT protocol establishes an ordering point to recreate

the total order provided by a bus, but it is inefficient with latency
and bandwidth. The GREEDY-ORDER protocol offers lower latency,
but an unbounded number of retries are used to resolve conflicts.
Our new type of ring protocol, RING-ORDER, offers the best of
ORDERING-POINT (good performance stability) and GREEDY-
ORDER (good average performance). Furthermore, RING-ORDER

does not require a synchronous snoop response, potentially easing
design complexity and verification, and potentially improving
performance with its relaxed timing.

Acknowledgements
We thank Steve Kunkel, Jim Rose, Ching-Tsun Chou,

Xiaowei Shen, David Wood, the anonymous reviewers, and the
Wisconsin Computer Architecture Affiliates for feedback on this
work. We also thank Dan Gibson, Natalie Enright, Jason Cantin,
Luke Yen, Kevin Moore, and UW Multifacet students for
comments and proofreading. Finally we thank Virtutech, the
Wisconsin Condor group, and the Wisconsin Computer Systems
Lab for their support.

References
[1] A. Ahmed, P. Conway, B. Hughes, and F. Weber. AMD Opteron

Shared Memory MP Systems. In Proceedings of the 14th HotChips
Symposium, Aug. 2002.

[2] A. R. Alameldeen and D. A. Wood. Variability in Architectural
Simulations of Multi-threaded Workloads. In Proceedings of the
Ninth IEEE Symposium on High-Performance Computer
Architecture, pages 7–18, Feb. 2003.

[3] A. R. Alameldeen and D. A. Wood. IPC Considered Harmful for
Multiprocessor Workloads. IEEE Micro, 26(4):8–17, Jul/Aug 2006.

[4] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. Jones, and
B. Parady. SPEComp: A New Benchmark Suite for Measuring
Parallel Computer Performance. In Workshop on OpenMP
Applications and Tools, pages 1–10, July 2001.

[5] L. A. Barroso and M. Dubois. Cache Coherence on a Slotted Ring. In
Proceedings of the International Conference on Parallel Processing,
pages 230–237, Aug. 1991.

[6] L. A. Barroso and M. Dubois. The Performance of Cache-Coherent
Ring-based Multiprocessors. In Proceedings of the 20th Annual
International Symposium on Computer Architecture, pages 268–277,
May 1993.

[7] L. A. Barroso, K. Gharachorloo, R. McNamara, A. Nowatzyk,
S. Qadeer, B. Sano, S. Smith, R. Stets, and B. Verghese. Piranha: A
Scalable Architecture Based on Single-Chip Multiprocessing. In
Proceedings of the 27th Annual International Symposium on
Computer Architecture, pages 282–293, June 2000.

[8] C. Bazeghi, F. J. Mesa-Martinez, B. Greskamp, J. Torrellas, and
J. Renau. uComplexity: Estimating Processor Design Effort. In
Proceedings of the 38th Annual IEEE/ACM International Symposium
on Microarchitecture, Nov. 2005.

[9] H. Burkhardt, S. Frank, B. Knobe, and J. Rothnie. Overview of the
KSR 1 computer system. Technical Report KSR-TR-9202001, Kendall
Square Research, 1992.

[10] J. Chang and G. S. Sohi. Cooperative Caching for Chip
Multiprocessors. In Proceedings of the 33nd Annual International
Symposium on Computer Architecture, June 2006.

[11] A. Charlesworth. Starfire: Extending the SMP Envelope. IEEE Micro,
18(1):39–49, Jan/Feb 1998.

[12] S. W. Chung, S. T. Jhang, and C. S. Jhon. PANDA: ring-based
multiprocessor system using new snooping protocol. In International
Conference on Parallel and Distributed Systems, pages 10–17, 1998.

[13] W. J. Dally and B. Towles. Route Packets, Not Wires: On-Chip
Interconnection Networks. In Design Automation Conference, pages
684–689, 2001.

[14] K. Farkas, Z. Vranesic, and M. Stumm. Scalable Cache Consistency
for Hierarchically Structured Multiprocessors. The Journal of
Supercomputing, 8(4), 1995.

[15] I. T. R. for Semiconductors. ITRS 2002 Update. Semiconductor
Industry Association, 2002.
http://public.itrs.net/Files/2002Update/2002Update.pdf.

[16] S. J. Frank. Tightly Coupled Multiprocessor System Speeds Memory-
access Times. Electronics, 57(1):164–169, Jan. 1984.

11

[17] S. J. Frank, H. Burkhardt, L. O. Lee, N. Goodman, B. I. Margulies,
and F. D. Weber. Multiprocessor Digital Data Processing System,
Oct. 1991. U.S. Patent 5,055,999.

[18] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren.
Architecture and Design of AlphaServer GS320. In Proceedings of
the Ninth International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 13–24, Nov.
2000.

[19] A. Gupta and W.-D. Weber. Cache Invalidation Patterns in Shared-
Memory Multiprocessors. IEEE Transactions on Computers,
41(7):794–810, July 1992.

[20] D. Gustavson. The Scalable Coherent Interface and related standards
projects. IEEE Micro, 12(1):10–22, Feb. 1992.

[21] M. Horowitz, R. Ho, and K. Mai. The future of wires. In
Semiconductor Research Corporation Workshop on Interconnects for
Systems on a Chip, May 1999.

[22] J. Huh, S. W. Keckler, and D. Burger. Exploring the Design Space of
Future CMPs. In Proceedings of the 2001 International Conference
on Parallel Architectures and Compilation Techniques, pages 199–
210, 2001.

[23] Unleashing the Cell Broadband Engine Processor. http://www-
128.ibm.com/developerworks/power/library/pa-fpfeib/, Nov. 2005.

[24] Platform 2015: Intel Processor and Platform Evolution for the Next
Decade.
ftp://download.intel.com/technology/computing/archinnov/platform2
015/download/platform_2015.pdf, June 2005.

[25] C. N. Keltcher, K. J. McGrath, A. Ahmed, and P. Conway. The AMD
Opteron Processor for Multiprocessor Servers. IEEE Micro, 23(2):66–
76, March-April 2003.

[26] P. Kongetira. A 32-way Multithreaded SPARC Processor. In
Proceedings of the 16th HotChips Symposium, Aug. 2004.

[27] D. Kroft. Lockup-Free Instruction Fetch/Prefetch Cache
Organization. In Proc. 8th Symposium on Computer Architecture,
Computer Architecture News, volume 9, pages 81–87, May 1981.

[28] R. Kumar, V. Zyuban, and D. Tullsen. Interconnections in multi-core
architectures: Understanding Mechanisms, Overheads and Scaling. In
Proceedings of the 32nd Annual International Symposium on
Computer Architecture, June 2005.

[29] S. Kunkel. IBM Future Processor Performance, Server Group.
Personal Communication, 2006.

[30] J. Laudon and D. Lenoski. The SGI Origin: A ccNUMA Highly
Scalable Server. In Proceedings of the 24th Annual International
Symposium on Computer Architecture, pages 241–251, June 1997.

[31] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta, and J. Hennessy.
The Directory-Based Cache Coherence Protocol for the DASH
Multiprocessor. In Proceedings of the 17th Annual International
Symposium on Computer Architecture, pages 148–159, May 1990.

[32] T. D. Lovett and R. M. Clapp. STiNG: A CC-NUMA Computer
System for the Commercial Marketplace. In Proceedings of the 23th
Annual International Symposium on Computer Architecture, May
1996.

[33] P. S. Magnusson et al. Simics: A Full System Simulation Platform.
IEEE Computer, 35(2):50–58, Feb. 2002.

[34] M. M. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood.
Multifacet’s General Execution-driven Multiprocessor Simulator
(GEMS) Toolset. Computer Architecture News, pages 92–99, Sept.
2005.

[35] M. M. K. Martin, P. J. Harper, D. J. Sorin, M. D. Hill, and D. A.
Wood. Using Destination-Set Prediction to Improve the
Latency/Bandwidth Tradeoff in Shared Memory Multiprocessors. In
Proceedings of the 30th Annual International Symposium on
Computer Architecture, pages 206–217, June 2003.

[36] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Coherence:
Decoupling Performance and Correctness. In Proceedings of the 30th
Annual International Symposium on Computer Architecture, pages
182–193, June 2003.

[37] M. R. Marty, J. D. Bingham, M. D. Hill, A. J. Hu, M. M. K. Martin,
and D. A. Wood. Improving Multiple-CMP Systems Using Token
Coherence. In Proceedings of the Eleventh IEEE Symposium on High-
Performance Computer Architecture, Feb. 2005.

[38] C. J. Mauer, M. D. Hill, and D. A. Wood. Full System Timing-First
Simulation. In Proceedings of the 2002 ACM Sigmetrics Conference
on Measurement and Modeling of Computer Systems, pages 108–116,
June 2002.

[39] R. M. Metcalfe and D. R. Boggs. Ethernet: Distributed Packet
Switching for Local Computer Networks. Communications of the
ACM, 19(5):395–404, July 1976.

[40] S. S. Mukherjee, P. Bannon, S. Lang, A. Spink, and D. Webb. The
Alpha 21364 Network Architecture. In Proceedings of the 9th Hot
Interconnects Symposium, Aug. 2001.

[41] H. Oi and N. Ranganathan. A Cache Coherence Protocol for the
Bidirectional Ring Based Multiprocessor. In International Conference
on Parallel and Distributed Computing and Systems, 1999.

[42] D. Shasha, A. Pnueli, and W. Ewald. Temporal Verification of
Carrier-Sense Local Area Network Protocols. In Proceedings of The
11th ACM SIGPLAN/SIGACT Symposium on Principles of
Programming Languages (POPL), pages 54–65, Jan. 1984.

[43] A. Singhal, D. Broniarczyk, F. Cerauskis, J. Price, L. Yaun,
C. Cheng, D. Doblar, S. Fosth, N. Agarwal, K. Harvery, E. Hagersten,
and B. Liencres. Gigaplane: A High Performance Bus for Large
SMPs. In Proceedings of the 4th Hot Interconnects Symposium, pages
41–52, Aug. 1996.

[44] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, and J. Joyner.
Power5 System Microarchitecture. IBM Journal of Research and
Development, 49(4), 2005.

[45] D. J. Sorin, M. Plakal, M. D. Hill, A. E. Condon, M. M. K. Martin,
and D. A. Wood. Specifying and Verifying a Broadcast and a
Multicast Snooping Cache Coherence Protocol. IEEE Transactions on
Parallel and Distributed Systems, 13(6):556–578, June 2002.

[46] W. Stallings. Local Networks. ACM Computing Surveys, 16(1), 1984.
[47] K. Strauss, X. Shen, and J. Torrellas. Flexible Snooping: Adaptive

Forwarding and Filtering of Snoops in Embedded-Ring
Multiprocessors. In Proceedings of the 33nd Annual International
Symposium on Computer Architecture, June 2006.

[48] J. M. Tendler, S. Dodson, S. Fields, H. Le, and B. Sinharoy.
POWER4 System Microarchitecture. IBM Server Group Whitepaper,
Oct. 2001.

[49] T. Villiger, H. Kaslin, F. K. Gurkaynak, S. Oetiker, and W. Fichter.
Self-timed Ring for Globally-Asynchronous and Locally-
Synchronous Systems. In Proceedings of the Ninth International
Symposium on Asynchronous Circuits and Systems, pages 141–151,
May 2003.

[50] F. Weber. AMD’s Next Generation Microprocessor Architecture, Oct.
2001.

Appendix
The following page shows detailed specifications of the GREEDY-ORDER and
RING-ORDER cache controllers using a table-based technique [45]. We
believe this representation provides clear, concise visual information yet
includes sufficient detail (e.g., transient states) arguably lacking in the tradi-
tional, graphical form of state diagrams.

The rows of each table correspond to the states that the cache controller can
enter, including both stable states (e.g. M, O, E, S, I) and transient states
(e.g., IS, IM). The columns correspond to events that cause the cache to take
actions and to potentially change the state. Events are usually the result of
receiving a message from the interconnect or processor. The table entries
themselves are the atomic actions taken and, if the state changes, the result-
ing state (denoted with a slash, e.g., /S indicates the new state is S).

Table 6 shows the specification of the GREEDY-ORDER cache controller, with
stable states {M, O, E, S, I}. Consider an example: when a processor
issues a Load to the cache controller in State I, it sends a GETS message
and transitions to state IS. The cache controller in state M, O, or E will
acknowledge the GETS, send data, and transition to state O. Various Own
GET events indicate the result of the combined response that follows the
request. For example, the {Own GETS (acked, shared)} event indi-
cates that the request was acknowledged and that there also exists a sharer
such that the requestor cannot enter the exclusive state when clean data is
received. The shaded cells indicate retries which can occur an unbounded
number of times.

Table 7 shows the specification of the RING-ORDER cache controller. The
stable states, {NONE, SOME, SOMEP, ALL} represent the number of
tokens held. SOMEP also indicates if the cache holds a subset of tokens along
with the priority token. IMP and IMSOME indicates an outstanding exclu-
sive request where the requestor holds the priority token or some tokens,
respectively. The P and COA states handle token coalescing during replace-
ments of shared data. The {FurthestDest GETS} and {Furthest-
Dest GETM} events locally generate when the processor finishes a
request but needs to send tokens/data on the ring, as described in
Section 2.3. We show an explicit forward action because token response
messages can be handled by any requestor with an MSHR allocated, instead
of being delivered to a particular processor.

Ta
bl

e
6.

G
R

E
E

D
Y

-O
R

D
E

R
 C

ac
he

 C
on

tr
ol

le
r

St
at

e
T

ra
ns

it
io

ns

Ta
bl

e
7:

R
IN

G
-O

R
D

E
R

 C
ac

he
 C

on
tr

ol
le

r
St

at
e

T
ra

ns
it

io
ns

Ke
y:

 z
=

sta
ll,

 x
 =

 d
on

’t
ca

re
, e

 =
 er

ro
r,

FD
 =

 F
ur

th
es

t D
es

tin
at

io
n

fie
ld

, P
-D

at
a =

 P
rio

rit
y

to
ke

n
w

ith
 d

at
a

L
oa

d
St

or
e

R
ep

la
ce

m
en

t
O

th
er

 G
E

T
M

O
th

er
 G

E
T

S
O

w
n

G
E

T
M

(a
ck

ed
)

O
w

n
G

E
T

M
(u

na
ck

ed
)

O
w

n
G

E
T

M
(n

ac
ke

d)
O

w
n

G
E

T
S

(a
ck

ed
)

O
w

n
G

E
T

S
(a

ck
ed

, s
ha

re
d)

O
w

n
G

E
T

S
(u

na
ck

ed
)

D
at

a
(r

et
ry

m
is

m
at

ch
)

D
at

a

I
se

nd
 G

E
T

S
/ I

S
se

nd
 G

E
T

M
 /

IM
re

pl
ac

e
/ I

/ I
x

e
e

e
e

e
e

e
e

S
do

 L
oa

d
se

nd
 G

E
T

M
 /

IM
re

pl
ac

e
/ I

/ I
A

C
K

G
E

T
S

(s
ha

re
d)

e
e

e
e

e
e

e
e

E
do

 L
oa

d
do

 S
to

re
 /

M
re

pl
ac

e
/ I

A
C

K
G

E
T

M
,

se
nd

da
ta

 /
I

A
C

K
G

E
T

S,
se

nd
da

ta
 /

O
e

e
e

e
e

e
e

e

O
do

 L
oa

d
se

nd
 G

E
T

M
 /

O
M

se
nd

da
ta

,r
ep

la
ce

/
I

A
C

K
G

E
T

M
,

se
nd

da
ta

 /
I

A
C

K
G

E
T

S,
se

nd
da

ta
e

e
e

e
e

e
e

e

M
do

 L
oa

d
do

 S
to

re
se

nd
da

ta
,r

ep
la

ce
/

I
A

C
K

G
E

T
M

,
se

nd
da

ta
 /

I
A

C
K

G
E

T
S,

se
nd

da
ta

 /
O

e
e

e
e

e
e

e
e

IS
z

z
z

/ I
SD

x
e

e
e

/ I
SA

E
/ I

SA
se

nd
 G

E
T

S
di

sc
ar

d
da

ta
e

IS
A

E
z

z
z

x
x

e
e

e
e

e
e

di
sc

ar
d

da
ta

sa
ve

 d
at

a,
 d

o
L

oa
d

/ E

IS
A

z
z

z
/ I

SD
x

e
e

e
e

e
e

di
sc

ar
d

da
ta

sa
ve

 d
at

a,
 d

o
L

oa
d

/ S

IS
D

z
z

z
x

x
e

e
e

se
nd

 G
E

T
S

/ I
S

se
nd

 G
E

T
S

/ I
S

se
nd

 G
E

T
S

/ I
S

di
sc

ar
d

da
ta

di
sc

ar
d

da
ta

IM
z

z
z

x
x

/ I
M

A
se

nd
 G

E
T

M
se

nd
 G

E
T

M
e

e
e

e
e

IM
A

z
z

z
x

x
e

e
e

e
e

e
e

sa
ve

da
ta

,d
o

St
or

e,
/M

O
M

z
z

z
x

x
e

do
 s

to
re

 /
M

se
nd

 G
E

T
M

e
e

e
e

e

L
oa

d
St

or
e

R
ep

la
ce

m
en

t
O

th
er

 G
E

T
M

O
th

er
 G

E
T

S
O

w
n

G
E

T
O

th
er

 P
U

T
PU

T-
A

C
K

To
ke

ns
To

ke
ns

(a
ll)

Pr
io

ri
ty

 T
ok

en
w

/ D
at

a

Pr
io

ri
ty

 T
ok

en
w

/ D
at

a
(a

ll
to

ke
ns

)
Fu

rt
he

st
D

es
t

(G
E

T
M

)
Fu

rt
he

st
D

es
t

(G
E

T
S)

N
O

N
E

se
nd

 G
E

T
S

/ I
S

se
nd

 G
E

T
M

 /
IM

re
pl

ac
e

x
x

x
fo

rw
ar

d
fo

rw
ar

d
fo

rw
ar

d
fo

rw
ar

d
fo

rw
ar

d
fo

rw
ar

d
e

e

SO
M

E
do

 L
oa

d
se

nd
G

E
T

M
/

IM
SO

M
E

se
nd

To
ke

ns
,

re
pl

ac
e

/ N
O

N
E

Se
nd

To
ke

ns
/ N

O
N

E
x

x
re

m
ov

e
PU

T,
se

nd
PU

T-
A

C
K

/
P

fo
rw

ar
d

fo
rw

ar
d

fo
rw

ar
d

fo
rw

ar
d

fo
rw

ar
d

e
e

SO
M

E
P

do
 L

oa
d

se
nd

G
E

T
M

/
IM

P
se

nd
 P

U
T

 /
C

O
A

Se
nd

P-
D

at
a

/ N
O

N
E

Se
nd

P-
D

at
a

/ S
O

M
E

x
e

e
R

em
ov

e
To

ke
ns

(w
ri

te
ba

ck
)

R
em

ov
e

To
ke

ns
(w

ri
te

ba
ck

)
/ A

L
L

e
e

Se
nd

P-
D

at
a

/
N

O
N

E
Se

nd
P-

D
at

a
/

SO
M

E

A
L

L
do

 L
oa

d
do

St
or

e,
m

ar
k

di
rt

y
se

nd
P-

D
at

a1 ,
re

pl
ac

e
/ N

O
N

E
Se

nd
P-

D
at

a
/ N

O
N

E
Se

nd
P-

D
at

a
/ S

O
M

E
x

e
e

e
e

e
e

Se
nd

P-
D

at
a

/
N

O
N

E
Se

nd
P-

D
at

a
/

SO
M

E

IS
z

z
z

x
x

x
re

m
ov

e
PU

T,
se

nd
 P

U
T-

A
C

K
fo

rw
ar

d
fo

rw
ar

d
e

R
em

ov
e

P-
D

at
a,

do
L

oa
d

/
SO

M
E

P

R
em

ov
e

P-
D

at
a,

do
 L

oa
d

/ A
L

L
e

e

IM
z

z
z

x
x

x
re

m
ov

e
PU

T,
se

nd
 P

U
T-

A
C

K
fo

rw
ar

d
fo

rw
ar

d2
e

R
em

ov
e

P-
D

at
a

/
IM

P
R

em
ov

e
P-

D
at

a,
do

 S
to

re
 /

A
L

L
e

e

IM
P

z
z

z
U

pd
at

e
FD

U
pd

at
e

FD
x

e
e

R
em

ov
e

To
ke

ns
R

em
ov

e
To

ke
ns

,
do

 S
to

re
 /

A
L

L
e

R
em

ov
e

P-
D

at
a,

do
 S

to
re

 /
A

L
L

e
e

IM
SO

M
E

z
z

z
Se

nd
To

ke
ns

/ I
M

x
x

re
m

ov
e

PU
T,

se
nd

 P
U

T-
A

C
K

fo
rw

ar
d

fo
rw

ar
d2

e
R

em
ov

e
P-

D
at

a
/

IM
P

R
em

ov
e

P-
D

at
a,

do
 S

to
re

 /
A

L
L

e
e

P
do

 L
oa

d
z

z
U

pd
at

e
FD

U
pd

at
e

FD
x

e
e

R
em

ov
e

To
ke

ns
(w

ri
te

ba
ck

)
e

R
em

ov
e

P-
D

at
a

/
SO

M
E

P
R

em
ov

e
P-

D
at

a
/

A
L

L
e

e

C
O

A
z

z
z

x
x

x
e

Se
nd

P-
D

at
a1 ,

re
pl

ac
e

/ N
O

N
E

R
em

ov
e

To
ke

ns
(w

ri
te

ba
ck

)
R

em
ov

e
To

ke
ns

,
se

nd
P-

D
at

a1 ,
re

pl
ac

e
/ N

O
N

E

e
e

e
e

1.
 D

at
a c

an
 b

e o
pt

io
na

lly
 o

m
itt

ed
 if

 re
pl

ac
in

g
cle

an
 d

at
a

2.
 T

ok
en

s c
an

 b
e o

pt
io

na
lly

 re
m

ov
ed

 b
ef

or
e r

ec
ei

vi
ng

 p
rio

rit
y

to
ke

n
if

on
ly

 re
qu

es
to

r

(s
ha

de
d

ce
ll

s
in

di
ca

te
 r

et
ri

es
)

12

