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Abstract  

We investigate reference counting in the context of a multi- 
threaded architecture by exploiting two observations: (1) ref- 
erence-counting can be performed by a transformed program 
slice of the mutator that isolates heap references, and (2) hard- 
ware trends indicate that microprocessors in the near future 
will be able to execute multiple concurrent threads on a single 
chip. We generate a reference-counting collector as a transs- 
formed program slice of an application and then execute this 
slice in parallel with the application as a "run-behind" thread. 
Preliminary measurements of collector overheads are quite 
encouraging, showing a 25% to 53% space overhead to trans- 
fer garbage collection to a separate thread. 

1 Introduction 

Automatic memory management, or garbage collection, has 
become a "must have" component of modem programming lan- 
guages; it makes programming both easier and more reliable. The 
benefits of garbage collection come at a non-trivial cost. Hence 
much research has been done in improving collectors [13, 27], 
especially tracing collectors (mark-and-sweep and copying). Col- 
lectors have been made, in particular refinements, generational, 
incremental, concurrent and parallel. 

A.less widely used and studied form of garbage collection is refer- 
ence counting. Reference counting is a naturally incremental and 
locality-friendly approach since the collector's operations are dis- 
tributed evenly over the application's computation and the working 
set of the collector closely matches that of the main application. 
Reference counting provides for instant recycling of garbage 
(which also improves memory access locality) and thus instant 
finalization for expensive objects. It is insensitive to heap resi- 
dency and can exploit program structure (e.g., dead variable infor- 
mation). Reference counting is attractive in real-time and 
interactive environments due to the bounded overheads and pause 
times it can guarantee, in memory-constrained embedded environ- 
ments due to immediacy of garbage detection, and in distributed 
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environments due to its excellent locality. It is also simple to 
implement and has found wide use where its overheads are accept- 
able (e.g., the Perl and Python interpreters) or where it can be eas- 
ily encapsulated in abstract data types (e.g., "smart pointer" 
libraries for C++). ............ 

The problems inherent in reference counting are well known. 
There is a space overhead to store reference counts, a time over- 
head to maintain them, and the difficulty in finding and reclaiming 
cyclic garbage. Space overheads can be minimized since a few bits 
should usually suffice for most reference counts and these can be 
stored in unused parts of object headers or compacted in a table. 
Time overheads can be minimized by Deutsch and Bobrow's 
deferred reference counting [5] which ignores updates to local 
variables and periodically scans the stack to determine true refer- 
ence counts. Time overheads can also be tackled by using concur- 
rency as in the SRC Modula-2+ collector [4], and as we propose in 
this work. Cyclic structures can be collected by using a tracing col- 
lector as a backup [12]. This paper concentrates primarily on using 
concurrency to reduce the time overhead of a reference counting 
collector. Existing solutions for the other problems (space and 
cycles) can be composed with our solution. 

We propose a new way of implementing concurrent reference 
counting by exploiting two observations: 

* The computations that maintain reference counts for heap- 
allocated objects can be obtained by suitably transforming a 
program slice that comprises all the mutator's instructions 
that manipulate heap references. This transformed slice can 
then be executed in parallel with the mutator. 

o Hardware trends indicate that next-generation microproces- 
sors will be able to execute multiple concurrent threads on a 
single chip through a variety of techniques: Simultaneous 
Multithreading (SMT, where multiple threads of execution 
are fetched and executed simultaneously in the same execu- 
tion pipeline and which share functional units and all levels of 
caches e.g., Compaq 21464 [10]), Chip Multiprocessing 
(CMP, which is essentially a small-scale shared-memory mul- 
tiprocessor on a single chip e.g., IBM Power4 [7,14], Sun 
MAJC [25], Compaq Piranha [1], NEC MP98 [11]) or 
Coarse-grain Multithreading (where multiple threads of exe- 
cution share a processor but only one is being executed in a 
given cycle, this differs from traditional multiprogramming in 
that there is hardware support for extremely fast context- 
switch time e.g., IBM RS64-II/III [23,24] arid Sun MAJC). 
All of these techniques give software the opportunity to 
implement closely-coupled threads cheaply by exploiting fast 
on-chip cominunication, as opposed to a typical shared multi- 
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processor architecture where communication between proces- 
sors is comparatively expensive. 

Existing concurrent reference counting techniques have the muta- 
tot log all updates to in-heap references (similar to the write barri- 
ers of concurrent tracing schemes). The collector is a generic 
routine that examines the change log to maintain reference counts 
and reclaim garbage. However, as we shall develop, this logging 
approach is but one point in a continuum of implementations of the 
same abstract model. The concurrent-slice implementation we pro- 
pose reduces the amount of information logged by the mutator by 
having the collector repeat a subset of the mutator's actions. In the 
best case, the repeated actions correspond to a precise program 
slice of references to heap-allocated objects. Thus computations 
necessary to perform reference counting are removed from the 
mutator and isolated in an independent assist thread which runs 
behind the mutator. This approach is inspired by Patil and Fis- 
cher's shadow processing [19, 20, 18] which tried to speed up 
memory access checking by moving the instrumentation code con- 
ventionally inserted in the main application to a second "shadow" 
process which executes concurrently on an independent processor. 

2 Related Work 

Reference counting in practice: One of the most well known effi- 
cient implementations of sequential reference counting is Deutsch 
& Bobrow's deferred reference counting scheme [5]. They only 
maintain reference counts for updates to references in heap 
objects, ignoring local variables which can constitute a large frac- 
tion of pointer updates. Objects with counts equal to zero are only 
potential garbage (since local variables might point to them); they 
are put on a zero-count list which is periodically reconciled by 
having the collector pause the mutator and scan its stack and regis- 
ters for references in local variables to obtain true counts for the 
objects in the list. The Lucent Inferno environment [28] includes 
the Dis Virtual Machine which provides a (non-concurrent) refer- 
ence counting garbage collector combined with a tracing garbage 
collector [12]. 

Concurrent reference counting: The most widely known concur- 
rent reference counting implementation is DeTreville's Modula-2+ 
collector [4]. He compared several concurrent collectors: pure ref- 
erence counting, mark-and-sweep, copying and a combination of 
reference counting and mark-and-sweep. He considered the last 
combination scheme to be best in spite of the overhead of refer- 
ence counting since the concurrent tracing schemes had poor 
memory locality on their target platform (the DEC SRC Firefly). 
Levanoni and Petrank [16] have proposed a concurrent reference 
counting algorithm which is designed to use fine-grain synchroni- 
zation and be scalable on a multiprocessor system, but it has not 
yet been implemented. Kakuta et al [15] have proposed a concur- 
rent reference counting algorithm for a LISP environment. 

Customized garbage collectors: Colnet et al [3] have proposed 
automatically generating a mark-and-sweep collector for a specific 
mutator application. Their customizations include type-specific 
allocation and marking routines to speed up the collection process, 
exploiting the type system of Eiffel. 

Concurrent program slices: Patil and Fischer [19, 20, 18] sliced 
out memory-access computation and executed it as a shadow "run- 

behind" process on a dual-CPU multiprocessor in order to imple- 
ment a low-overhead memory access checker (similar to the Purify 
tool). They were able to demonstrate relatively low overheads for 
this shadow-processing scheme which inspired the research in this 
paper. A related notion is the idea of using a subset of a program's 
dynamic execution path to compute useful information, rather than 
using static analysis (and instrumentation) or dynamic profiling to 
guess the same information. This has recently been exploited in 
several "run-ahead" pre-fetching schemes [8, 2] as well as in 
aggressively speculative microarchitectures [21]. 

3 R e f e r e n c e - C o u n t i n g  w i t h  a C o n c u r r e n t  

Program Slice 

We first present an abstract model of a concurrent reference count- 
ing garbage collector for a typesafe language (such as Java) in 
which all references are to heap objects, and in which reference 
arithmetic is forbidden. We discuss how this abstract model has 
been concretely implemented in previous work and note that these 
implementations are but one point in a continuumof possible sys- 
tems. We then describe how we will study another point in the con- 
tinuum by extracting a program slice of the mutator and executing 
it concurrently on a multithreaded processor. 

3.1 An Abstract Model of Concurrent 
Reference Counting 
One can imagine a producer-consumer relation between the muta- 
tor and the collector (operating as multiple threads in a shared 
address space) with the mutator generating requests into a FIFO 
queue as it executes. The collector processes these requests and 
maintains reference counts for the objects named in each operation 
as specified by Table 1. 

Mutator 
Operation 

Request in FIFO 
Queue 

CreateRef (p) p=new ( ) 

p=q AssignRef(p,q) q->rc++ 
p->rc-- 

p dead KillRef(p) p->rc-- 

Collector 
Operation 

p->rc = 1 

' TABLE 1. Communication between mutator and collector. 
'p' and 'q' are references to objects, p->rc is the reference 
count of p's referent. 

Objects whose reference counts go to zero are considered garbage 
and returned to the memory allocator. Recursive freeing of objects 
pointed to by references embedded within this object (if their ref- 
erence counts go to zero) can be done eagerly at the garbage recla- 
mation point, or lazily by deferring it to the next allocation when 
this object is recycled by the allocator. 

This (conceptual) arrangement requires a shared FIFO queue 
between the mutator (producer) and the collector (consumer), and 
some synchronization in the memory allocator. Reference counts 
and associated book-keeping information are assumed to be stored 
in object headers and can be accessed without having to synchro- 
nize with the mutator. Overheads could be reduced by using Deut- 
sch-Bobrow deferred reference counting and only enqueuing 
updates of references in the heap, and periodically pausing the 
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mutator to scan its stack and registers for local references (or by 
having the mutator voluntarily enqueue information on local refer- 
ences at regular intervals). 

3.2 A Cont inuum of  Concrete 
Implementations of the Abstract Model 
Even though our abstract model postulates a logical FIFO queue 
between the mutator and collector, the two do not have to physi- 
cally communicate all the information inserted into the queue. We 
can imagine a continuum of concrete implementations of the 
abstract model, by varying the amount of information actually 
exchanged between the mutator and the collector. For the rest of 
this paper, we assume that the Deutsch-Bobrow deferred reference 
counting framework is used for all implementations. 

At one extreme, the mutator logs all references that it manipulates 
and the collector is a standard log-processor as outlined in 
Section 3.1. This approach is adopted in the SRC Modula-2+ col- 
lector and it seems to be the only actively pursued form of concur- 
rent reference counting. However, there are alternatives. 

At the other extreme the mutator communicates nothing to the col- 
lector except for certain irreproducible values (e.g., return values 
of memory allocations, system calls and other interactions with the 
external environment), The collector is a complete copy of the 
mutator that runs behind it by a safe distance (we describe ways of 
doing this below). Also, the mutator need not be paused for local 
reference scanning since the collector is a copy of the mutator and 
could scan itself for this information. This may, of course, be unac- 
ceptably expensive as we are running two copies of the same pro- 
gram. The heap space overhead, as seen by the mutator, is 
comparable to that of a naive semi-space copying collector which 
essentially cuts the heap in half and copies live data from one 
semispace to the other when it gets full (though, the working set of 
this extreme is larger than the copying collector since it potentially 
uses the entire heap). 

There are interesting points in the continuum between these two 
extremes. A more practical implementation requires that the col- 
lector ignore instructions that don't contribute to garbage collec- 
tion. In particular, the collector could be a program slice [26] of the 
mutator that recomputes precisely enough information to maintain 
reference counts of heap-allocated objects. This could be done by 
using the instructions that read and write heap references as the 
criteria for a static interprocedural backward slice. This slice is 
suitably transformed to produce an executable thread that gener- 
ates the same stream of FIFO requests as the original mutator 
would have and hence can be used as the collector to maintain ref- 
erence counts (again without requiting the mutator to be paused). 

Each implementation in the continuum has a cost which can be 
divided into mutator time overhead, and collector time and space 
overheads. The log-everything approach has low collector over- 
heads but it requires the mutator to log two pointers on every store 
of a reference to the heap as well as a periodic pause for the collec- 
tor m scan its stack and registers for local references. The recom- 
pute-everything approach has high collector overheads but it has 
potentially low mutator overheads in that the logging is reduced to 
a bare minimum and mutators need not be paused for stack scan- 
ning (since the collector can scan its own stack as it maintains cop- 

ies of all mutator reference variables). The slicing approach strikes 
a compromise with lower collector space overheads while still 
retaining low mutator time overheads and again, not requiring 
mutator pauses. Note that there are other points in this continuum 
as well which trade off collector overhead with mutator overhead. 
In the next subsection, we describe our particular implementation 
which approximates the slicing approach. 

3.3 Our Implementation of the Model 
Our implementation infrastructure is a Java compiler which stati- 
cally compiles Java into a native executable for execution on a uni- 
processor as well as simulators of multithreaded processors. We 
expect the basic technique to be applicable to other configurations. 

3.3.1 Generating the Collector 

System Model We assume that all coitectors that we generate will 
operate in the following manner. Each class definition in the origi- 
nal mutator application is used by the collector generation algo- 
rithm to generate a corresponding "shadow" class definition which 
contains a transformed subset of the components (data members 
and methods) of the original class definition. No direct reference is 
made to names of mutator classes in the collector, only shadow 
classes are used. Mutator objects created dynamically will have 
corresponding shadow objects in the collector. Shadow objects are 
what are manipulated by the collector when it executes. They con- 
tain (at least logically) a pointer to the original mutator object 
which this shadow represents, a reference count and any additional 
book-keeping information required by the reference-counting 
algorithm. The collector generation algorithm needs to ensure that 
such a mapping between mutator and shadow objects can be estab- 
lished (e.g., by logging the address of each new object created) and 
maintained as the mutator executes (by having the collector be 
aware of all mutator operations on references). 

The Ideal World: A Precise Slice One way of generating the col- 
lector is to literally construct a static interprocedural slice of a Java 
program using all reference-manipulation instructions in the pro- 
gram as the criteria for a backward slice. Program slicing algo- 
rithms have been extended to handle object-oriented programs 
with classes and inheritance hierarchies [17]. However, we are not 
aware of actual implementations of full-fledged program slicers for 
Java, apart from the Bandera project which slices Java programs 
[9] for the specific purpose of generating specifications for model 
checkers. To avoid implementing a program slicer for Java, we 
propose a scheme which approximates a precise static slice. 

The Real World: Our Approximation to a Precise Slice We 
want the collector to be able to reproduce the operations on refer- 
ences that are performed by the mutator. To do this, we exploit the 
type-safety and lack of reference arithmetic of Java. A reference 
variable can be assigned only one of the following three values: 
NULL, a return value from a system call (including the memory 
allocator) or the value of another reference variable. Non-reference 
variables do not contribute via data-flow to the values used to 
assign references, unlike weakly-typed languages such as C or 
C++ which allow pointer arithmetic as well as arbitrary casting 
between pointer and non-pointer types. However, non-reference 
variables do contribute via control dependences (control flow 
determined by non-references which affects reference-manipula- 
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_Q~inai  Mutator Modified Mutator 

class C class C 

int itj,k~ int i,j,k; 
String sl s ~  Strin sl s2- 

Generated Collector 

c!~ss C s 

C orig; 
int ref cnt; 
String s sl,s2; 

void f(int n) void f(int n) 

{ ( void f_s() 
Strinq s~ ~ Strina S3 + { 

S = new Strin~(~foo-l~ String s s; 
= new Strin~(~£oo-)~ WRITE_LOG(s); 

sl = S; ,s,! = s; s = new 

j ~ n; j = n; String s(READ_LOG()) 
k ffi 5 ;  k = j; sl = st 

if (i>5) k = i; if (i>5) k = it 
if (k>3) s2 = sl~ WRITE_LOG(k>3); if '(READ LOG()) S2 ffi sl; 

if (k>3) s2 = sll ) 
) ) 

} 

FIGURE 1. An example of our slice approximation scheme. We use source-to-source transformations for purposes of 
illustration only; our scheme will operate on an intermediate representation. On the left, we have part of a sample application 
program consisting of a single class C, where underlined constructs directly involve references. In the middle, we ha~,~ the 
modified mutator generated by our scheme which logs the return value of the memory allocation as well as the condition that 
controls the reference assignment 's2 = sl' .  On the right, we have the generated collector where the class C has a corresponding 
shadow class C s which only includes the reference members of C, as well as a pointer to the object which it shadows and its 
reference count. Inside the shadow member function f_s0, only mutator statements which manipulate references are preserved, 
with occasional reads from the log. For clarity, we do not show the subsequent transformation of this "slice" to actually 
maintain the reference counts of the objects whose references are being created and assigned in the function. If we used a precise 
static slice instead of our approximation, then the collector would have had to include the variables i,j,k and n as well as the 
statements that operate on them while on the other hand, the mutator would not have to log the condition k>3 since the collector 
would have enough information to be able to compute that on its own. 

size of all the live shadow objects which translates into the fraction 
of the live mutator heap locations that contain references. 

We are not restricted to shadowing every reference in a mutator 
object. We could choose to shadow some (and not have to log their 
updates) while we could leave some unshadowed (thus having to 
log their updates) 2. This gives us a means of bounding shadow 
heap overhead by deciding how much gets shadowed. Further- 
more, sophisticated encoding and compression schemes could be 
used to trade-off collector execution time with space overhead. 
The specific scheme we used for our evaluation in Section 4.2 cre- 
ates shadow objects only for mutator objects which contain refer- 
ences, where each shadow object contains, in addition to the 
shadowed references, a pointer to its corresponding mutator object 
(into whose unused bits we squeeze a reference count). 

Mutator Logging We have the mutator log relevant information to 
avoid having to compute a precise mutator slice as well as to keep 
the collector small in size. This information includes all system 
calls that return references, certain control flow conditions which 
control reference manipulation, and indices into arrays of refer- 
ences. We only need to log control flow if the control flow affects 
manipulation of reference variables, and the control flow condition 
is determined by contents of non-reference variables. Other control 
flow can either be omitted, copied into the collector (e.g., all non- 
virtual method calls) or be reproduced by the collector (e.g., virtual 
method calls can use the same virtual method table index in both 
mutator and collector). The control-flow information we do log 

tions) and reference-address generation (a non-reference value 
used to index into an array of references). Our slice approximation 
scheme makes a copy of all instrnctions (statements in class meth- 
ods) and data (object and class members, local variables, method 
parameters and return values) in the mutator that directly involve 
object references, and makes the mutator log all control depen- 
dences and address generation that depend on non-reference values 
and affect reference values. In addition, all system calls that return 
references as results have their return values logged. 

This scheme is biased towards producing a small collector slice. It 
copies the absolute minimum required mutator code (the refer- 
ence-manipulations instructions which are the slice criteria) along 
with some reads from the log as opposed to including the code and 
data that would re-compute the logged information in the collector. 
Due to lack of space, we do not present a formal algorithm to gen- 
erate the collector according to what we have just described. To 
illustrate our scheme in practice, we present an example of a gen- 
erated collector for a simple mutator class in Figure 1. 

More on the Shadow Heap A shadow object in the collector con- 
tains only the reference data fields of the corresponding mutator 
object 1, though of course they point to other shadow objects rather 
than mutator objects. Thus, one can imagine the shadow objects in 
the collector literally representing the connectivity graph of muta- 
tor objects, since each shadow object only contains references to 
other shadow objects. The collector's working set is then the total 

1. Note that an obvious optimization for classes with no reference data members is 
not to have a shadow object but directly manipulate book-keeping information in the 
mutator object header. 2. Note that arrays of references need to be shadowed in their entirety. 
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consists of 1 bit for two-way branches and a few bits (jump table 
index) for multi-way branches (switch statements). Similarly, we 
expect the index into an array of references to be much less than 16 
bits worth of data, on average. 

This information could be accumulated in spare processor registers 
in the mutator and then logged before allowing the collector to 
advance (described in the next subsection). Apart from the logging 
operation itself, this does not involve extra memory operations and 
we expect these computations not to be on the mutator's critical 
path (assuming no resource constraints). These operations are on 
the collector's critical path and that is alright since we are willing 
to let the collector lag behind while we want the mutator to con- 
tinue executing without ever having to pause. This logging could 
be reduced further by using a more precise (though larger) slice of 
the mutator that included enough data fields for the collector to 
reproduce the information in the log. 

At first blush, our scheme might seem like it involves too much 
logging. For example a loop that walks over a linked list and which 
has reference manipulations in its body needs to log the loop exit 
condition for each iteration of the loop. However, one must keep in 
mind that a traditional concurrent reference-counting scheme 
would involve logging more information since it needs to remem- 
ber two pointer values for each update of a reference in a heap- 
allocated object, coupled with periodic mutator pauses for stack 
scanning. Hence in the case of the loop, it would record two point- 
ers per iteration per reference-update in the loop body while our 
scheme would only log a boolean loop exit condition per iteration 
and not require mutator pauses. This is because our collector can 
reproduce the values of the references being updated thanks to its 
shadow heap. 

To be fair, it is not clearly evident at this stage whether our logging 
will be cheap and whether the collector size (code and data) will be 
manageable: these are the issues which our final implementation 
and evaluation will resolve. Preliminary tests indicate that the size 
of the shadow heap is reasonable (see Section 4.2). 

3.3.2 Keeping the Collector behind the Mutator 
The collector must run at a safe distance behind the mutator. That 
is, the reference count maintenance corresponding to a mutator 
operation may be performed only after that operation has been exe- 
cuted (see Table 1). This is non-trivial since not all mutator opera- 
tions are logged in a FIFO queue and the collector now reproduces 
some mutator computation on its own. 

Our solution is to divide the execution of the mutator into disjoint 
sections which we call epochs. We ensure that the collector per- 
forms reference count manipulations of an epoch only after the 
mutator has finished executing that epoch. One simple way of 
doing this is to use a counter stored in memory shared between the 
mutator and collector and have the mutator increment the counter 
frequently as it executes. Counter increments demarcate epochs. 
We will ensure that epochs are of bounded length to avoid the case 
of the collector waiting for a long (or possibly infinite) time before 
it can proceed to the next epoch. One easy way to ensure this is to 
insert an increment on each loop backedge or function call, Values 
that have to be logged in an epoch can be accumulated in registers 
or scratch memory and then flushed to the log in a single operation 
just before indicating the end of that epoch (by incrementing the 

counter). There is a corresponding division into epochs of the col- 
lector's instruction stream where it checks the counter against a 
private copy of the counter to make sure that the mutator has cona- 
tfleted execution of an epoch before it proceeds to read the log and 
update reference counts for that epoch. We do not use explicit syn- 
chronization to access the counter. There is a data race for the 
shared counter but it is harmless since the collector does not write 
to the counter and proceeds forward only when it reads an incre- 
mented value i.e., stale values only block the collector from pro- 
ceeding to the next epoch and hence are a perfomlance problem 
rather than a correctness problem. The placement of these counter 
updates is similar to the placement of thread-yield points in non- 
preemptive multithreaded systems. 

4 Implementation Status and Evaluation 
A full implementation of a concurrent collector is currently under 
development. Initially, we implemented a sequential reference- 
counting collector designed to be extended to our corleuzzent col- 
lector scheme. In this section, we use the sequentiai collector to 
estimate some of the overheads of a concurrent collector. 

4.1 Infrastructure and Benchmarks 

Our implementation infrastructure consists of the Strata [22] Java 
compiler and multithreaded processor simulators developed 
locally at Wisconsin. Strata (written in Java) statically compiles 
Java bytecodes into SPARC or MIPS executables and performs a 
number of standard local and global optimizations, including null- 
pointer and array-bounds check elimination. Currently, the compi- 
lation is entirely intraprocedural and multithreaded applications 
are not supported. The sequential collector we implemented uses 
the standard Deutseh-Bobrow scheme with 2-bit reference counts 
squeezed into object headers. The run-time system was instru- 
mented to simulate the shadow scheme outlined in Section 3.3.1. 

We used 8 benchmarks in all: the Strata compiler itself (more than 
40K lines of Java), five programs from SPECjvm98 (the remaining 
three, mtrt and jess and javac, cannot currently be compiled with 
Strata) and Java versions of two well-known object-oriented 
benchmarks, Richards and Deltablue 1. All benchmarks were com- 
piled with Strata for the SPARC architecture with maximum opti- 
mizations. Strata was executed with one of its larger source files 
(1358 lines) as input, the SPECjvm98 benchmarks were run with 
their largest inputs (speed 100) while Richards and Deltablue were 
run for 100 iterations. 

4.2 Preliminary Results 

Table 2 shows the number and average sizes of all objects allo- 
cated. Our measurements are in general agreement with those 
reported by Dieckmann and H61zle [6], with discrepancies mainly 
due to the difference in execution environments and object layout. 
Instance objects, on average, have 1 or 2 references, which implies 
small shadow objects. Moreover, the small size of instance objects 
suggests that overhead could be reduced by co-locating the shadow 
object with its associated mutator object. Note too that arrays of 
references typically contain a large fraction of null elements when 
they are reclaimed. This suggests that a sophisticated shadowing 

1. Obtained from http:llwww.sun.comlresearch/peoplelmarioljava~nchmarking 
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All Objects Instance Objects 

] ~enchmark ~ Number Avg size Number Avg size 

_ .  I Allocated (bytes) Allocated (bytes) 
Strata 

Jack 

Raytrace 

Db 

Compress 

~pegaudio 

Richards 

Deltablue 

1.6M 

6.9M 

309K 

3.2M 

8K 

10K 

5.9K 

418K 

40 

22 

20 

20 

15K 

366 

37 

28 

1.2M 

3.9M 

251K 

3.1M 

4.4K 

5.3K 

3.4K 

237K 

22 

17 

15 

12 

19 

18 

22 

18 

Avg Ref 
fields 

2.0 

1,3 

1.2 

1.0 

2.1 

2.2 

2.0 

1.5 

Array-of-reference objects 

Number 
Allocated 

20K- - [ - -  
160K 

32K 

16K 

19 

154 

l l  

89K 

Avg size Avg % 
(bytes) non-null 

-Yg7 16 

93 1.5 

29 58 

1376 81 

2356 56 

350 56 

1689 52 

51 10 
TABLE 2. Distril~utions of object sizes and densities relevant to our collector generation scheme. Instance objects refer to 
objects that are not arrays (i.e., instances of some class). Note that the average percentage of non-null elements of arrays of 
references (shown in the last column) is calculated over all reclaimed (garbage) arrays of references only. 

Benchmark 

Strata 

Jack 

Raytrace 

Db 

Compress 

Mpegaudio 

Richards 

Deltablue 

Mutator Heap 

Total 
memory 

requested 

67MB 

174MB 

6.4MB 

77MB 

119MB 

3.7MB 

224K 

12MB 

Allocator 
High-water 

mark 

34MB 

18MB 
4MB 

9.4MB 

119MB 

3.8MB 

357K 

5.1MB 

Shadow Heap 

Total 
memory 

requested 

2 2 M B  

56MB 

1.8MB 

46.5MB 

101K 

109K 

61K 

6.8MB 

Allocator 
High-water 

mark 

12MB 

9.7MB 

1.2MB 

2.4MB 

83K 

92K 

57K 

2MB 

Total 
memory 

reclaimed 

34MB 

158MB 

2.7MB 

69MB 

45K 

47K 

20K 

7.2MB 

Efficacy of reference counting 

Total live 
memory 

at end 

2MB 

1.2MB 

613K 

1.4MB 

9.7MB 

3.6MB 

204K 

149K 

Total 
unclaimed 

garbage 
at end 

31MB 

15MB 

3MB 

6.8MB 

110MB 
0 

0 

4.7MB 

Total 
unclaimed 
garbage 
with ref 

count stuck 

6MB 

3.6MB 

0.5MB 
130K l 

94MB 

0 

0 
1.4MB 

. _  I L _ i i i  . i i i i  II I I 

TABLE 3' The memory overheads of our collector's shadow heap as well as reference counting in general. The statistics f o r - -  
unclaimed garbage were calculated by p e d o r ~ n g  a mark-and-sweep of the heap just  prior to the end of execution. 

scheme that tracks only non-null references could further reduce 
shadow heap overhead. 

Table 3 shows memory overheads of the shadow heap. It also 
details the effectiveness of using reference counting to collect the 
mutator's heap. We believe that the measurements for Strata, Jack 
and Raytrace (and to some extent, Db) are representative of large, 
real applications written in an object-oriented style. 

The shadow heap overhead (measured by the ratio of the high- 
water marks) usually varies between 25% to 53%, with the excep- 
tion of Compress, Mpegaudio and Riehards which do not seem to 
be very interesting from a garbage collection point of view. There 
is more variance in reference counting's overall efficacy. To sim- 
plify our initial implementation, we use 2-bit reference counts, so 
any object with a reference count of 3 is "stuck" and earmot be col- 
lected. In general, reference counting (due to saturated counts and 
cyclic structures) does not leak excessively with the notable excep- 
tions of Compress which seems to need more reference count bits 
and Strata which seems to be using a lot of cyclic data structures. 
We expect that for many applications reference counting, with at 
most an occasional full collection, will suffice. 

5 Conclusions and Ongoing Work 

We have proposed a new concurrent reference counting algorithm 
that maintains reference counts with a collector slice that executes 
in parallel with the mutator on a multithreaded processor. Prelimi- 
nary experiments show that space overheads for the shadow heap 
are reasonable (25%-53% of the mutator heap). With more effort 
of the collector's part, shadow heap sizes can be further reduced. 

Work currently in progress aims to complete the implementation of 
the collector generation algorithm and to compare our scheme's 
performance to that of conventional mark-and-sweep and genera- 
tional collectors. We expect to produce effective multithreaded col- 
lectors that impose little mutator overhead. 
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