
Concurrent Garbage Collection Using Program Slices on
Multithreaded Processors

Manoj Plakat and Charles N. Fischer
Computer Sciences Department,
University of Wisconsin-Madison,

Madison, WI 53706, USA
{plakal, fischer} @ cs. wisc. edu

Abstract

We investigate reference counting in the context of a multi-
threaded architecture by exploiting two observations: (1) ref-
erence-counting can be performed by a transformed program
slice of the mutator that isolates heap references, and (2) hard-
ware trends indicate that microprocessors in the near future
will be able to execute multiple concurrent threads on a single
chip. We generate a reference-counting collector as a transs-
formed program slice of an application and then execute this
slice in parallel with the application as a "run-behind" thread.
Preliminary measurements of collector overheads are quite
encouraging, showing a 25% to 53% space overhead to trans-
fer garbage collection to a separate thread.

1 Introduction

Automatic memory management, or garbage collection, has
become a "must have" component of modem programming lan-
guages; it makes programming both easier and more reliable. The
benefits of garbage collection come at a non-trivial cost. Hence
much research has been done in improving collectors [13, 27],
especially tracing collectors (mark-and-sweep and copying). Col-
lectors have been made, in particular refinements, generational,
incremental, concurrent and parallel.

A.less widely used and studied form of garbage collection is refer-
ence counting. Reference counting is a naturally incremental and
locality-friendly approach since the collector's operations are dis-
tributed evenly over the application's computation and the working
set of the collector closely matches that of the main application.
Reference counting provides for instant recycling of garbage
(which also improves memory access locality) and thus instant
finalization for expensive objects. It is insensitive to heap resi-
dency and can exploit program structure (e.g., dead variable infor-
mation). Reference counting is attractive in real-time and
interactive environments due to the bounded overheads and pause
times it can guarantee, in memory-constrained embedded environ-
ments due to immediacy of garbage detection, and in distributed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
1SMM '00 Minneapolis MN USA
Copyright ACM 2000 1-58113-263-8/00/10...$5.00

environments due to its excellent locality. It is also simple to
implement and has found wide use where its overheads are accept-
able (e.g., the Perl and Python interpreters) or where it can be eas-
ily encapsulated in abstract data types (e.g., "smart pointer"
libraries for C++).

The problems inherent in reference counting are well known.
There is a space overhead to store reference counts, a time over-
head to maintain them, and the difficulty in finding and reclaiming
cyclic garbage. Space overheads can be minimized since a few bits
should usually suffice for most reference counts and these can be
stored in unused parts of object headers or compacted in a table.
Time overheads can be minimized by Deutsch and Bobrow's
deferred reference counting [5] which ignores updates to local
variables and periodically scans the stack to determine true refer-
ence counts. Time overheads can also be tackled by using concur-
rency as in the SRC Modula-2+ collector [4], and as we propose in
this work. Cyclic structures can be collected by using a tracing col-
lector as a backup [12]. This paper concentrates primarily on using
concurrency to reduce the time overhead of a reference counting
collector. Existing solutions for the other problems (space and
cycles) can be composed with our solution.

We propose a new way of implementing concurrent reference
counting by exploiting two observations:

* The computations that maintain reference counts for heap-
allocated objects can be obtained by suitably transforming a
program slice that comprises all the mutator's instructions
that manipulate heap references. This transformed slice can
then be executed in parallel with the mutator.

o Hardware trends indicate that next-generation microproces-
sors will be able to execute multiple concurrent threads on a
single chip through a variety of techniques: Simultaneous
Multithreading (SMT, where multiple threads of execution
are fetched and executed simultaneously in the same execu-
tion pipeline and which share functional units and all levels of
caches e.g., Compaq 21464 [10]), Chip Multiprocessing
(CMP, which is essentially a small-scale shared-memory mul-
tiprocessor on a single chip e.g., IBM Power4 [7,14], Sun
MAJC [25], Compaq Piranha [1], NEC MP98 [11]) or
Coarse-grain Multithreading (where multiple threads of exe-
cution share a processor but only one is being executed in a
given cycle, this differs from traditional multiprogramming in
that there is hardware support for extremely fast context-
switch time e.g., IBM RS64-II/III [23,24] arid Sun MAJC).
All of these techniques give software the opportunity to
implement closely-coupled threads cheaply by exploiting fast
on-chip cominunication, as opposed to a typical shared multi-

94

processor architecture where communication between proces-
sors is comparatively expensive.

Existing concurrent reference counting techniques have the muta-
tot log all updates to in-heap references (similar to the write barri-
ers of concurrent tracing schemes). The collector is a generic
routine that examines the change log to maintain reference counts
and reclaim garbage. However, as we shall develop, this logging
approach is but one point in a continuum of implementations of the
same abstract model. The concurrent-slice implementation we pro-
pose reduces the amount of information logged by the mutator by
having the collector repeat a subset of the mutator's actions. In the
best case, the repeated actions correspond to a precise program
slice of references to heap-allocated objects. Thus computations
necessary to perform reference counting are removed from the
mutator and isolated in an independent assist thread which runs
behind the mutator. This approach is inspired by Patil and Fis-
cher's shadow processing [19, 20, 18] which tried to speed up
memory access checking by moving the instrumentation code con-
ventionally inserted in the main application to a second "shadow"
process which executes concurrently on an independent processor.

2 Related Work

Reference counting in practice: One of the most well known effi-
cient implementations of sequential reference counting is Deutsch
& Bobrow's deferred reference counting scheme [5]. They only
maintain reference counts for updates to references in heap
objects, ignoring local variables which can constitute a large frac-
tion of pointer updates. Objects with counts equal to zero are only
potential garbage (since local variables might point to them); they
are put on a zero-count list which is periodically reconciled by
having the collector pause the mutator and scan its stack and regis-
ters for references in local variables to obtain true counts for the
objects in the list. The Lucent Inferno environment [28] includes
the Dis Virtual Machine which provides a (non-concurrent) refer-
ence counting garbage collector combined with a tracing garbage
collector [12].

Concurrent reference counting: The most widely known concur-
rent reference counting implementation is DeTreville's Modula-2+
collector [4]. He compared several concurrent collectors: pure ref-
erence counting, mark-and-sweep, copying and a combination of
reference counting and mark-and-sweep. He considered the last
combination scheme to be best in spite of the overhead of refer-
ence counting since the concurrent tracing schemes had poor
memory locality on their target platform (the DEC SRC Firefly).
Levanoni and Petrank [16] have proposed a concurrent reference
counting algorithm which is designed to use fine-grain synchroni-
zation and be scalable on a multiprocessor system, but it has not
yet been implemented. Kakuta et al [15] have proposed a concur-
rent reference counting algorithm for a LISP environment.

Customized garbage collectors: Colnet et al [3] have proposed
automatically generating a mark-and-sweep collector for a specific
mutator application. Their customizations include type-specific
allocation and marking routines to speed up the collection process,
exploiting the type system of Eiffel.

Concurrent program slices: Patil and Fischer [19, 20, 18] sliced
out memory-access computation and executed it as a shadow "run-

behind" process on a dual-CPU multiprocessor in order to imple-
ment a low-overhead memory access checker (similar to the Purify
tool). They were able to demonstrate relatively low overheads for
this shadow-processing scheme which inspired the research in this
paper. A related notion is the idea of using a subset of a program's
dynamic execution path to compute useful information, rather than
using static analysis (and instrumentation) or dynamic profiling to
guess the same information. This has recently been exploited in
several "run-ahead" pre-fetching schemes [8, 2] as well as in
aggressively speculative microarchitectures [21].

3 R e f e r e n c e - C o u n t i n g w i t h a C o n c u r r e n t

Program Slice

We first present an abstract model of a concurrent reference count-
ing garbage collector for a typesafe language (such as Java) in
which all references are to heap objects, and in which reference
arithmetic is forbidden. We discuss how this abstract model has
been concretely implemented in previous work and note that these
implementations are but one point in a continuumof possible sys-
tems. We then describe how we will study another point in the con-
tinuum by extracting a program slice of the mutator and executing
it concurrently on a multithreaded processor.

3.1 An Abstract Model of Concurrent
Reference Counting
One can imagine a producer-consumer relation between the muta-
tor and the collector (operating as multiple threads in a shared
address space) with the mutator generating requests into a FIFO
queue as it executes. The collector processes these requests and
maintains reference counts for the objects named in each operation
as specified by Table 1.

Mutator
Operation

Request in FIFO
Queue

CreateRef (p) p=new ()

p=q AssignRef(p,q) q->rc++
p->rc--

p dead KillRef(p) p->rc--

Collector
Operation

p->rc = 1

' TABLE 1. Communication between mutator and collector.
'p' and 'q' are references to objects, p->rc is the reference
count of p's referent.

Objects whose reference counts go to zero are considered garbage
and returned to the memory allocator. Recursive freeing of objects
pointed to by references embedded within this object (if their ref-
erence counts go to zero) can be done eagerly at the garbage recla-
mation point, or lazily by deferring it to the next allocation when
this object is recycled by the allocator.

This (conceptual) arrangement requires a shared FIFO queue
between the mutator (producer) and the collector (consumer), and
some synchronization in the memory allocator. Reference counts
and associated book-keeping information are assumed to be stored
in object headers and can be accessed without having to synchro-
nize with the mutator. Overheads could be reduced by using Deut-
sch-Bobrow deferred reference counting and only enqueuing
updates of references in the heap, and periodically pausing the

95

mutator to scan its stack and registers for local references (or by
having the mutator voluntarily enqueue information on local refer-
ences at regular intervals).

3.2 A Cont inuum of Concrete
Implementations of the Abstract Model
Even though our abstract model postulates a logical FIFO queue
between the mutator and collector, the two do not have to physi-
cally communicate all the information inserted into the queue. We
can imagine a continuum of concrete implementations of the
abstract model, by varying the amount of information actually
exchanged between the mutator and the collector. For the rest of
this paper, we assume that the Deutsch-Bobrow deferred reference
counting framework is used for all implementations.

At one extreme, the mutator logs all references that it manipulates
and the collector is a standard log-processor as outlined in
Section 3.1. This approach is adopted in the SRC Modula-2+ col-
lector and it seems to be the only actively pursued form of concur-
rent reference counting. However, there are alternatives.

At the other extreme the mutator communicates nothing to the col-
lector except for certain irreproducible values (e.g., return values
of memory allocations, system calls and other interactions with the
external environment), The collector is a complete copy of the
mutator that runs behind it by a safe distance (we describe ways of
doing this below). Also, the mutator need not be paused for local
reference scanning since the collector is a copy of the mutator and
could scan itself for this information. This may, of course, be unac-
ceptably expensive as we are running two copies of the same pro-
gram. The heap space overhead, as seen by the mutator, is
comparable to that of a naive semi-space copying collector which
essentially cuts the heap in half and copies live data from one
semispace to the other when it gets full (though, the working set of
this extreme is larger than the copying collector since it potentially
uses the entire heap).

There are interesting points in the continuum between these two
extremes. A more practical implementation requires that the col-
lector ignore instructions that don't contribute to garbage collec-
tion. In particular, the collector could be a program slice [26] of the
mutator that recomputes precisely enough information to maintain
reference counts of heap-allocated objects. This could be done by
using the instructions that read and write heap references as the
criteria for a static interprocedural backward slice. This slice is
suitably transformed to produce an executable thread that gener-
ates the same stream of FIFO requests as the original mutator
would have and hence can be used as the collector to maintain ref-
erence counts (again without requiting the mutator to be paused).

Each implementation in the continuum has a cost which can be
divided into mutator time overhead, and collector time and space
overheads. The log-everything approach has low collector over-
heads but it requires the mutator to log two pointers on every store
of a reference to the heap as well as a periodic pause for the collec-
tor m scan its stack and registers for local references. The recom-
pute-everything approach has high collector overheads but it has
potentially low mutator overheads in that the logging is reduced to
a bare minimum and mutators need not be paused for stack scan-
ning (since the collector can scan its own stack as it maintains cop-

ies of all mutator reference variables). The slicing approach strikes
a compromise with lower collector space overheads while still
retaining low mutator time overheads and again, not requiring
mutator pauses. Note that there are other points in this continuum
as well which trade off collector overhead with mutator overhead.
In the next subsection, we describe our particular implementation
which approximates the slicing approach.

3.3 Our Implementation of the Model
Our implementation infrastructure is a Java compiler which stati-
cally compiles Java into a native executable for execution on a uni-
processor as well as simulators of multithreaded processors. We
expect the basic technique to be applicable to other configurations.

3.3.1 Generating the Collector

System Model We assume that all coitectors that we generate will
operate in the following manner. Each class definition in the origi-
nal mutator application is used by the collector generation algo-
rithm to generate a corresponding "shadow" class definition which
contains a transformed subset of the components (data members
and methods) of the original class definition. No direct reference is
made to names of mutator classes in the collector, only shadow
classes are used. Mutator objects created dynamically will have
corresponding shadow objects in the collector. Shadow objects are
what are manipulated by the collector when it executes. They con-
tain (at least logically) a pointer to the original mutator object
which this shadow represents, a reference count and any additional
book-keeping information required by the reference-counting
algorithm. The collector generation algorithm needs to ensure that
such a mapping between mutator and shadow objects can be estab-
lished (e.g., by logging the address of each new object created) and
maintained as the mutator executes (by having the collector be
aware of all mutator operations on references).

The Ideal World: A Precise Slice One way of generating the col-
lector is to literally construct a static interprocedural slice of a Java
program using all reference-manipulation instructions in the pro-
gram as the criteria for a backward slice. Program slicing algo-
rithms have been extended to handle object-oriented programs
with classes and inheritance hierarchies [17]. However, we are not
aware of actual implementations of full-fledged program slicers for
Java, apart from the Bandera project which slices Java programs
[9] for the specific purpose of generating specifications for model
checkers. To avoid implementing a program slicer for Java, we
propose a scheme which approximates a precise static slice.

The Real World: Our Approximation to a Precise Slice We
want the collector to be able to reproduce the operations on refer-
ences that are performed by the mutator. To do this, we exploit the
type-safety and lack of reference arithmetic of Java. A reference
variable can be assigned only one of the following three values:
NULL, a return value from a system call (including the memory
allocator) or the value of another reference variable. Non-reference
variables do not contribute via data-flow to the values used to
assign references, unlike weakly-typed languages such as C or
C++ which allow pointer arithmetic as well as arbitrary casting
between pointer and non-pointer types. However, non-reference
variables do contribute via control dependences (control flow
determined by non-references which affects reference-manipula-

96

_Q~inai Mutator Modified Mutator

class C class C

int itj,k~ int i,j,k;
String sl s ~ Strin sl s2-

Generated Collector

c!~ss C s

C orig;
int ref cnt;
String s sl,s2;

void f(int n) void f(int n)

{ (void f_s()
Strinq s~ ~ Strina S3 + {

S = new Strin~(~foo-l~ String s s;
= new Strin~(~£oo-)~ WRITE_LOG(s);

sl = S; ,s,! = s; s = new

j ~ n; j = n; String s(READ_LOG())
k ffi 5 ; k = j; sl = st

if (i>5) k = i; if (i>5) k = it
if (k>3) s2 = sl~ WRITE_LOG(k>3); if '(READ LOG()) S2 ffi sl;

if (k>3) s2 = sll)
))

}

FIGURE 1. An example of our slice approximation scheme. We use source-to-source transformations for purposes of
illustration only; our scheme will operate on an intermediate representation. On the left, we have part of a sample application
program consisting of a single class C, where underlined constructs directly involve references. In the middle, we ha~,~ the
modified mutator generated by our scheme which logs the return value of the memory allocation as well as the condition that
controls the reference assignment 's2 = sl' . On the right, we have the generated collector where the class C has a corresponding
shadow class C s which only includes the reference members of C, as well as a pointer to the object which it shadows and its
reference count. Inside the shadow member function f_s0, only mutator statements which manipulate references are preserved,
with occasional reads from the log. For clarity, we do not show the subsequent transformation of this "slice" to actually
maintain the reference counts of the objects whose references are being created and assigned in the function. If we used a precise
static slice instead of our approximation, then the collector would have had to include the variables i,j,k and n as well as the
statements that operate on them while on the other hand, the mutator would not have to log the condition k>3 since the collector
would have enough information to be able to compute that on its own.

size of all the live shadow objects which translates into the fraction
of the live mutator heap locations that contain references.

We are not restricted to shadowing every reference in a mutator
object. We could choose to shadow some (and not have to log their
updates) while we could leave some unshadowed (thus having to
log their updates) 2. This gives us a means of bounding shadow
heap overhead by deciding how much gets shadowed. Further-
more, sophisticated encoding and compression schemes could be
used to trade-off collector execution time with space overhead.
The specific scheme we used for our evaluation in Section 4.2 cre-
ates shadow objects only for mutator objects which contain refer-
ences, where each shadow object contains, in addition to the
shadowed references, a pointer to its corresponding mutator object
(into whose unused bits we squeeze a reference count).

Mutator Logging We have the mutator log relevant information to
avoid having to compute a precise mutator slice as well as to keep
the collector small in size. This information includes all system
calls that return references, certain control flow conditions which
control reference manipulation, and indices into arrays of refer-
ences. We only need to log control flow if the control flow affects
manipulation of reference variables, and the control flow condition
is determined by contents of non-reference variables. Other control
flow can either be omitted, copied into the collector (e.g., all non-
virtual method calls) or be reproduced by the collector (e.g., virtual
method calls can use the same virtual method table index in both
mutator and collector). The control-flow information we do log

tions) and reference-address generation (a non-reference value
used to index into an array of references). Our slice approximation
scheme makes a copy of all instrnctions (statements in class meth-
ods) and data (object and class members, local variables, method
parameters and return values) in the mutator that directly involve
object references, and makes the mutator log all control depen-
dences and address generation that depend on non-reference values
and affect reference values. In addition, all system calls that return
references as results have their return values logged.

This scheme is biased towards producing a small collector slice. It
copies the absolute minimum required mutator code (the refer-
ence-manipulations instructions which are the slice criteria) along
with some reads from the log as opposed to including the code and
data that would re-compute the logged information in the collector.
Due to lack of space, we do not present a formal algorithm to gen-
erate the collector according to what we have just described. To
illustrate our scheme in practice, we present an example of a gen-
erated collector for a simple mutator class in Figure 1.

More on the Shadow Heap A shadow object in the collector con-
tains only the reference data fields of the corresponding mutator
object 1, though of course they point to other shadow objects rather
than mutator objects. Thus, one can imagine the shadow objects in
the collector literally representing the connectivity graph of muta-
tor objects, since each shadow object only contains references to
other shadow objects. The collector's working set is then the total

1. Note that an obvious optimization for classes with no reference data members is
not to have a shadow object but directly manipulate book-keeping information in the
mutator object header. 2. Note that arrays of references need to be shadowed in their entirety.

97

consists of 1 bit for two-way branches and a few bits (jump table
index) for multi-way branches (switch statements). Similarly, we
expect the index into an array of references to be much less than 16
bits worth of data, on average.

This information could be accumulated in spare processor registers
in the mutator and then logged before allowing the collector to
advance (described in the next subsection). Apart from the logging
operation itself, this does not involve extra memory operations and
we expect these computations not to be on the mutator's critical
path (assuming no resource constraints). These operations are on
the collector's critical path and that is alright since we are willing
to let the collector lag behind while we want the mutator to con-
tinue executing without ever having to pause. This logging could
be reduced further by using a more precise (though larger) slice of
the mutator that included enough data fields for the collector to
reproduce the information in the log.

At first blush, our scheme might seem like it involves too much
logging. For example a loop that walks over a linked list and which
has reference manipulations in its body needs to log the loop exit
condition for each iteration of the loop. However, one must keep in
mind that a traditional concurrent reference-counting scheme
would involve logging more information since it needs to remem-
ber two pointer values for each update of a reference in a heap-
allocated object, coupled with periodic mutator pauses for stack
scanning. Hence in the case of the loop, it would record two point-
ers per iteration per reference-update in the loop body while our
scheme would only log a boolean loop exit condition per iteration
and not require mutator pauses. This is because our collector can
reproduce the values of the references being updated thanks to its
shadow heap.

To be fair, it is not clearly evident at this stage whether our logging
will be cheap and whether the collector size (code and data) will be
manageable: these are the issues which our final implementation
and evaluation will resolve. Preliminary tests indicate that the size
of the shadow heap is reasonable (see Section 4.2).

3.3.2 Keeping the Collector behind the Mutator
The collector must run at a safe distance behind the mutator. That
is, the reference count maintenance corresponding to a mutator
operation may be performed only after that operation has been exe-
cuted (see Table 1). This is non-trivial since not all mutator opera-
tions are logged in a FIFO queue and the collector now reproduces
some mutator computation on its own.

Our solution is to divide the execution of the mutator into disjoint
sections which we call epochs. We ensure that the collector per-
forms reference count manipulations of an epoch only after the
mutator has finished executing that epoch. One simple way of
doing this is to use a counter stored in memory shared between the
mutator and collector and have the mutator increment the counter
frequently as it executes. Counter increments demarcate epochs.
We will ensure that epochs are of bounded length to avoid the case
of the collector waiting for a long (or possibly infinite) time before
it can proceed to the next epoch. One easy way to ensure this is to
insert an increment on each loop backedge or function call, Values
that have to be logged in an epoch can be accumulated in registers
or scratch memory and then flushed to the log in a single operation
just before indicating the end of that epoch (by incrementing the

counter). There is a corresponding division into epochs of the col-
lector's instruction stream where it checks the counter against a
private copy of the counter to make sure that the mutator has cona-
tfleted execution of an epoch before it proceeds to read the log and
update reference counts for that epoch. We do not use explicit syn-
chronization to access the counter. There is a data race for the
shared counter but it is harmless since the collector does not write
to the counter and proceeds forward only when it reads an incre-
mented value i.e., stale values only block the collector from pro-
ceeding to the next epoch and hence are a perfomlance problem
rather than a correctness problem. The placement of these counter
updates is similar to the placement of thread-yield points in non-
preemptive multithreaded systems.

4 Implementation Status and Evaluation
A full implementation of a concurrent collector is currently under
development. Initially, we implemented a sequential reference-
counting collector designed to be extended to our corleuzzent col-
lector scheme. In this section, we use the sequentiai collector to
estimate some of the overheads of a concurrent collector.

4.1 Infrastructure and Benchmarks

Our implementation infrastructure consists of the Strata [22] Java
compiler and multithreaded processor simulators developed
locally at Wisconsin. Strata (written in Java) statically compiles
Java bytecodes into SPARC or MIPS executables and performs a
number of standard local and global optimizations, including null-
pointer and array-bounds check elimination. Currently, the compi-
lation is entirely intraprocedural and multithreaded applications
are not supported. The sequential collector we implemented uses
the standard Deutseh-Bobrow scheme with 2-bit reference counts
squeezed into object headers. The run-time system was instru-
mented to simulate the shadow scheme outlined in Section 3.3.1.

We used 8 benchmarks in all: the Strata compiler itself (more than
40K lines of Java), five programs from SPECjvm98 (the remaining
three, mtrt and jess and javac, cannot currently be compiled with
Strata) and Java versions of two well-known object-oriented
benchmarks, Richards and Deltablue 1. All benchmarks were com-
piled with Strata for the SPARC architecture with maximum opti-
mizations. Strata was executed with one of its larger source files
(1358 lines) as input, the SPECjvm98 benchmarks were run with
their largest inputs (speed 100) while Richards and Deltablue were
run for 100 iterations.

4.2 Preliminary Results

Table 2 shows the number and average sizes of all objects allo-
cated. Our measurements are in general agreement with those
reported by Dieckmann and H61zle [6], with discrepancies mainly
due to the difference in execution environments and object layout.
Instance objects, on average, have 1 or 2 references, which implies
small shadow objects. Moreover, the small size of instance objects
suggests that overhead could be reduced by co-locating the shadow
object with its associated mutator object. Note too that arrays of
references typically contain a large fraction of null elements when
they are reclaimed. This suggests that a sophisticated shadowing

1. Obtained from http:llwww.sun.comlresearch/peoplelmarioljava~nchmarking

98

All Objects Instance Objects

] ~enchmark ~ Number Avg size Number Avg size

_ . I Allocated (bytes) Allocated (bytes)
Strata

Jack

Raytrace

Db

Compress

~pegaudio

Richards

Deltablue

1.6M

6.9M

309K

3.2M

8K

10K

5.9K

418K

40

22

20

20

15K

366

37

28

1.2M

3.9M

251K

3.1M

4.4K

5.3K

3.4K

237K

22

17

15

12

19

18

22

18

Avg Ref
fields

2.0

1,3

1.2

1.0

2.1

2.2

2.0

1.5

Array-of-reference objects

Number
Allocated

20K- - [- -
160K

32K

16K

19

154

l l

89K

Avg size Avg %
(bytes) non-null

-Yg7 16

93 1.5

29 58

1376 81

2356 56

350 56

1689 52

51 10
TABLE 2. Distril~utions of object sizes and densities relevant to our collector generation scheme. Instance objects refer to
objects that are not arrays (i.e., instances of some class). Note that the average percentage of non-null elements of arrays of
references (shown in the last column) is calculated over all reclaimed (garbage) arrays of references only.

Benchmark

Strata

Jack

Raytrace

Db

Compress

Mpegaudio

Richards

Deltablue

Mutator Heap

Total
memory

requested

67MB

174MB

6.4MB

77MB

119MB

3.7MB

224K

12MB

Allocator
High-water

mark

34MB

18MB
4MB

9.4MB

119MB

3.8MB

357K

5.1MB

Shadow Heap

Total
memory

requested

2 2 M B

56MB

1.8MB

46.5MB

101K

109K

61K

6.8MB

Allocator
High-water

mark

12MB

9.7MB

1.2MB

2.4MB

83K

92K

57K

2MB

Total
memory

reclaimed

34MB

158MB

2.7MB

69MB

45K

47K

20K

7.2MB

Efficacy of reference counting

Total live
memory

at end

2MB

1.2MB

613K

1.4MB

9.7MB

3.6MB

204K

149K

Total
unclaimed

garbage
at end

31MB

15MB

3MB

6.8MB

110MB
0

0

4.7MB

Total
unclaimed
garbage
with ref

count stuck

6MB

3.6MB

0.5MB
130K l

94MB

0

0
1.4MB

. _ I L _ i i i . i i i i II I I

TABLE 3' The memory overheads of our collector's shadow heap as well as reference counting in general. The statistics f o r - -
unclaimed garbage were calculated by p e d o r ~ n g a mark-and-sweep of the heap just prior to the end of execution.

scheme that tracks only non-null references could further reduce
shadow heap overhead.

Table 3 shows memory overheads of the shadow heap. It also
details the effectiveness of using reference counting to collect the
mutator's heap. We believe that the measurements for Strata, Jack
and Raytrace (and to some extent, Db) are representative of large,
real applications written in an object-oriented style.

The shadow heap overhead (measured by the ratio of the high-
water marks) usually varies between 25% to 53%, with the excep-
tion of Compress, Mpegaudio and Riehards which do not seem to
be very interesting from a garbage collection point of view. There
is more variance in reference counting's overall efficacy. To sim-
plify our initial implementation, we use 2-bit reference counts, so
any object with a reference count of 3 is "stuck" and earmot be col-
lected. In general, reference counting (due to saturated counts and
cyclic structures) does not leak excessively with the notable excep-
tions of Compress which seems to need more reference count bits
and Strata which seems to be using a lot of cyclic data structures.
We expect that for many applications reference counting, with at
most an occasional full collection, will suffice.

5 Conclusions and Ongoing Work

We have proposed a new concurrent reference counting algorithm
that maintains reference counts with a collector slice that executes
in parallel with the mutator on a multithreaded processor. Prelimi-
nary experiments show that space overheads for the shadow heap
are reasonable (25%-53% of the mutator heap). With more effort
of the collector's part, shadow heap sizes can be further reduced.

Work currently in progress aims to complete the implementation of
the collector generation algorithm and to compare our scheme's
performance to that of conventional mark-and-sweep and genera-
tional collectors. We expect to produce effective multithreaded col-
lectors that impose little mutator overhead.

6 Acknowledgements

This research was supported by the National Science Foundation
under grant CCR-9974613. We would like to thank Timothy Heft
and Subramanya Sastry for critical support with Strata, as well as
Harish Patil, Rastistav Bodik, Anne Mulhem, Denis Gopan, Harit
Modi, Ravi Rajwar and the anonymous reviewers for their many
helpful comments and suggestions.

99

7 Bibliography
[1] Luiz A. Barroso, Kourosh Gharachorloo, Robert McNamara,

Andreas Nowatzyk, Shaz Qadeer, Barton Sano, Scott Smith,
Robert Stets, and Ben Verghese. Piranha: A Scalable Architecture
Based on Single-Chip Multiprocessing. In Proceedings of the 27th
Annual International Symposium on Computer Architecture,
Vancouver, Canada, June 12-14 2000.

[2] Fay Chang and Garth Gibson. Automatic I/O Hint Generation
Through SpeculatiVe Execution. In Proceedings of the 3rd Annual
Symposium on Operating System Design and Implementation,
New Orleans, Louisiana, February 1999.

[3] Dominique Colnet, Phifippe Coucaud, and Olivier Zendra.
Compiler Support to Customize the Mark and Sweep Algorithm. In
Proceedings of the ACM SIGPLAN 1998 International Symposium
on Memory Management, Vancouver, Canada, October 17-19,
1998.

[4] John DeTreville. Experience with Concurrent Garbage Collectors
for Modula-2+. Technical Report 64, Compaq Systems Research
Center, November 1990.

[5] L. Peter Deutseh and Daniel G. Bobrow. An Efficient Incremental
Automatic Garbage Collector. Communications of the ACM,
19(9):522-576, September 1976.

[6] Sylvia Dieckmarm and Urs HiSlzle. A Study of the Allocation
Behavior of the SPECjvm98 Java Benchmarks. In Proceedings of
the 13th European Conference on Object-Oriented Programming
(ECOOP), Lisbon, Portugal, June 14--18, 1999.

[7] Keith Diefendofff. Power4 Focuses on Memory Bandwidth.
Microprocessor Report, 13(13), October 1999.

[8] James Dundas and Trevor Mudge. Improving Data Cache
Performance By Pre-Execufing Instructions Under a Cache Miss.
In Proceedings of the 1990 ACM International Conference on
Supercomputing, Amsterdam, Netherlands, June 11-15 1997.

[9] Matthew B. Dwyer, James C. Corbett, John Hatcliff, Stefan
Sokolowski, and Hongjun Zheng. Slicing Multi-threaded Java
Programs. Technical Report KSU CIS TR 99-7, Department of
Computing and Information Sciences, Kansas State University,
1999.

[10] Joel S. Emer. Simultaneous Multithreading: Multiplying Alpha's
Performance. In Proceedings of the 1999 International
Microprocessor Forum, San Jose, California, October 4..-8 1999.
MicroDesign Resources.

[11] N. Nishi etal. A IGIPS IW Single-Chip Tightly-Coupled Four-
Way Multiprocessor with Architecture Support for Multiple
Control Flow Execution. In Proceedings of the 2000 IEEE
International Solid-State Circuits Conference, San Francisco,
California, February 7-9 2000. IEEE Solid-State Circuits Society.

[12] Lorenz Huelbergen and Phil Winterbottom. Very Concurrent
Mark-&-Sweep Garbage Collection without Fine-Grain
Synchronization. In Proceedings of the ACM SIGPLAN 1998
International Symposium on Memory Management, Vancouver,
Canada, October 17-19, 1998.

[13] Richard Jones and Rafael Lins. Garbage Collection: Algorithms
for Automatic Dynamic Memory Management. John Wiley and
Sons, 1996.

[14] Jim Kahle. Power4: A DuaI-CPU Processor Chip. In Proceedings
of the 1999 International Microprocessor Forum, San Jose,
California, October 4--8 1999. MicroDesign Resources.

[15] K. Kakuta, H. Nakamura, and S. Iida. A Parallel Reference

Counting Algorithm. Information Processsing Letters, 23:33-37,
July 1986.

[16] Yossi Levanoni and Erez Petrank. A Scalable Reference Counting
Garbage Collector. Technical Report CS-0967, Computer Science
Department, Technion - Israel Institute of Technology, Haifa,
Israel, November 1999.

[17] Donglin Lian and Mary Jean Harrold. Slicing Objects Using
System Dependence Graph. In Proceedings of the IEEE
International Conference on Software Maintenance, Washington,
D.C., November 1998.

[18] Harish G. Patil. Efficient Program Monitoring Techniques. PhD
thesis, Computer Sciences Department, University of Wisconsin-
Madison, 1996.

[19] HarishG. Patil and CharlesN. Fischer. Efficient Run-time
Monitoring Using Shadow Processing. In Proceedings of the 2nd
International Workshop on Amomated and Algorithmic
Debugging (AADEBUG'95), St Malo, France, May 1995.

[20] Harish G. Patil and Charles N. Fischer. Low-cost, Concmrent
Checking of Pointer and Array Accesses in C programs. Software:
Practice and Experience, 27(1):87 - 110, December 1997.

[21] Amir Roth and GurindarS. Sohi. Speculative Data-Driven
Multithreading. Technical Report CS-TR-1414, Computer
Sciences Department, University of Wisconsin-Madison, April
2000.

[22] James E. Smith, Subramanya S. Sastry, Timothy Heil, and
Todd M. Bezenek. Achieving High Performance via Co-designed
Virtual Machines. In International Workshop on Innovative
Architecture, 1999. See Strata Homepage at URL http:ll
www.cae.wisc.edu/~ecearch/strata.

[23] S. Storino, A. Aipperspaeh, J. Borkenhagen, and S. Levenstein. A
Commercial Multi-Threaded RISC Processor. In Proceedings of
the 1998 IEEE International Solid-State Circuits Conference, San
Francisco, California, February 5-7 1998. IEEE Solid-State
Circuits Society.

[24] S. Storino and J. Borkenhagen. A Multi-Threaded 64-bit PowerPC
Commercial RISC Processor Design. In Hot Chips 1999:
Proceedings of the 11th Annual International Symposium on High-
Performance Chips, Stanford University, California, August 15-
17 1999.

[25] Marc Tremblay. An Architecture for the New Millenium. In Hot
Chips 1999: Proceedings of the 11th Annual International
Symposium on High-Performance Chips, Stanford University,
California, August 15-17 1999.

[26] Mark Weiser. Program Slicing. 1EEE Transactions on Software
Engineering, 10(4):352-357, 1984.

[27] Paul R. Wilson. Uniprocessor Garbage Collection Techniques. In
Yves Bekkers and Jaques Cohen, editors, Proceedings of the 1992
International Workshop on Memory Management, pages 1--42, St
Malo, France, September 17-19 1992.

[28] Phil Winterbottom and Rob Pike. The Design of the Inferno Virtual
Machine. In Hot Chips 1999: Proceedings of the 11th Annual
International Symposium on High-Performance Chips, Stanford
University, California, August 15-17 1999.

100

