Multicast Snooping: A New Coherence Method Using a Multicast Address Network

E. Ender Bilir, Ross M. Dickson, Ying Hu, Manoj Plakal, Daniel J. Sorin,
Mark D. Hill, David A. Wood
Computer Sciences Department
University of Wisconsin-Madison
{enderb,dickson,yhu,plakal,sorin,markhill,david}@cs.wisc.edu

the initial concept. The Sun Ultra Enterprise 10000 [1], for
Abstract example, uses four address “buses” interleaved by address.
It implements each “bus” with a pipelined broadcast tree
constructed from point-to-point links (that behave more
like ideal transmission lines to facilitate having multiple

This paper proposes a hew coherence method called “mul-
ticast snooping that dynamically adapts between broad-

cast shooping and ba directory _protocol. '\él.uit'ca;.t hbits concurrently in flight), and it has a separate unordered
SNooping 1S Uniqué because processors predict WRICN g5 petwork (a point-to-point crossbar). Nevertheless, it

CaCh.?S. should It'sno??h eaK?:‘_ cohertgnce tragslr_;\cnorc]j byimplements Total Store Order (TSO), SPARC'’s variant of
specilying a multicastinask’ fransactions are detivere processor consistency, and it could implement sequential
with an ordered multicast network, such as an Isotach net- consistency.

work, which eliminates the need for acknowledgment mes-
sages. Processors handle transactions as they would within contrast, directory protocols [8, 22] transmit a coher-
a snooping protocol, while a simplified directory operates €nce transaction over an arbitrary point-to-point network
in parallel to check masks and gracefully handle incorrect to a directory entry (usually at memory) which, in turn, re-
ones (e.g., previous owner missing). Preliminary perfor- directs the transaction to a superset of processors caching
mance numbers with mostly SPLASH-2 benchmarks runthe block. Due to the unordered network, care must be
ning on 32 processors show that we can limit multicasts to taken to ensure that concurrent transactions obtain data
an average of 2-6 destinations (<< 32) and we can deliver and update the directory in a manner that appears atomic,
2-5 multicasts per network cycle (>> broadcast snoop- despite being implemented with a sequence of messages
ing’s 1 per cycle). While these results do not include tim- (€.9., acknowledgment messages from all processors
ing, they do provide encouragement that multicast involved). A state-of-the art example of a directory proto-
snooping can obtain data directly (like broadcast snoop- col that implements sequential consistency is that of the

ing) but apply to larger systems (like directories). SGI Origin2000 [20].
Snooping protocols are successful because they obtain
1 Introduction data quickly (without indirection) and avoid the overhead

— . of sequencing invalidation and acknowledgment mes-
Large applications, such as simulators and database sery,

: ; ! sages. They are limited to relatively small systems, how-
ers, require cost-effective computation power beyond that

f a sinal . Shared i ever, because they must broadcast all transactions to all
ot a singie microprocessor. Shared-memory mu Iproces'processors and all processors must handle all transactions.
sor servers have emerged as a popular solution, becaus

th ; lik lti-taski) ¢ f contrast, directory protocols can scale to large systems,
€ sysiem appears fike a muiti-lasking Uniprocessor toy, . they have higher unloaded latency because of the over-
many applications. Most shared memory multiprocessors

) . heads of directory indirection and message sequencing.
use per-processor cache hierarchies that are kept transpagnooping protocols have been more successful in the mar-
ent with a coherence algorithm.

ketplace because many more small machines are needed
The two classic classes of coherence algorithms are snoopthan large ones.

ing and directoriesSnooping[14] keeps caches coherent
using a totally ordered network to broadcast coherence
transactions directly to all processors and memory. Mod-
ern implementations of snooping have moved well beyond

In this paper, we investigate a hybrid protocol that obtains
data directly (like snooping) when address bandwidth is
sufficient, but scales to larger machines by dynamically
degrading to directory-style indirection when it is nde

call our proposaimulticast snoopindpecause it multicasts
This work is supported in part by the National Science Foundation with COherence transactions to selected processors, lowering
grants MIP-9225097, MIPS-9625558, CCR 9257241, and CDA-9623632 the address bandwidth required for snooping. With multi-

a Wisconsin Romnes Fellowship, and donations from Compaq Computeggst Snooping' coherence transactions leave a processor
Corporation, Intel Corporation, and Sun Microsystems.

294
1063-6897/99/$10.00 (c) 1999 IEEE

with a multicast ‘mask that specifies which processors
should snoop this transaction. Masks are generated using Multicast
prediction and need not be correct (e.g., may fail to include Address Network
the previous owner or all sharers). A multicast network log-
ically determines a global order for all transactions and
delivers transactions to each processor in that order, but not E E E n mmm E E
necessarily on the same cycle. Processors process these
transactions as they would with broadcast snooping. A
mask containing more processors than necessary completes))
as in broadcast snooping, but it wastes some address band- Point to Point Data Network
width. A simplified directory in memory checks the mask
of each transaction, detecting masks that omit necessary FIGURE 1. Major components of a multicast snooping
processors and taking corrective action. Table 1 summa- system.P, M and D refer to processor, memory and
rizes the differences between broadcast snooping, directo- associated directory.

ries, and multicast snooping

described in Section 3, that data travels on a separate point-
Section 2 introduces multicast snooping in more detail, to-point data network as in the Sun E10000, and that
delving into the thorny issues of mask prediction, transac- memory is physically distributed among processors. We
tion ordering, and forward progress. Section 3 discusses dllustrate our ideas using a write-invalidate MOSI protocol.
multicast network sufficient to support multicast snooping. i . i

It is similar to the Isotach network proposed by Reynolds, 2-1 Background: Snooping and Directories

Williams, and Wagner [33]. Sections 4 and 5 give methods Consider snooping and directory protocols that implement
and results from a preliminary analysis of sharing patterns, a write-invalidate MOSI protocol [38] which allows silent
mask prediction, and network throughput. Results for replacement of shared blocks. Processors can hold each
mostly SPLASH-2 benchmarks on 32 processors showcache block in one of four states: M (Modified), O (Owned
that: (1) the mean number of sharers encountered by ahared), S (Shared), and | (Invalid). Memory has four sta-
coherence transaction is less than 2 (so multicasts could gg|e states, corresponding to the states of the processors: M
to far fewer than all 32 processors), (2) a plausible mask (memory invalid with one processor in state M and others
predictor can usually include all necessary processors (734), O (memory invalid with one processor O and others S or
95%) and yet limit multicasts to an average of 2-6 destina-), S (memory valid with processors S or 1), and | (block
tions (<< 32), and (3) our initial network can deliver idle with all processors 1). Memory state is implicit (not
between 2-5 muIticalst;s, P(;«‘]f networlT cycle Ej» broadcaststored) for snooping and explicit with directories.
snooping’s 1 per cycle). These results provide encourage- .

ment for developing multicast snooping, but they should be A Processor must have a block in state M, O, or S to per-

considered preliminary since they are not timing simula- form a I_oad onitand in state M to pe_rform a store. A pro-
tions and include some methodological approximations. cessor in state | can use the transaction GETS (get shared)
to obtain a block in state S. A processor in O, S, or | can

. . use GETX (get exclusive) to obtain an M block. A proces-
2 Multicast Snooping Coherence @) P

Figure 1 shows the major components of a system that uses
multicast snooping. We assume that addresses traverse & The data network is logically separate, but it could be imple-
totally-ordered multicast address network, such as the ongnented with virtual channels on a unified network.

TABLE 1. A Comparison of Coherence Methods

Broadcast
Coherence Method Snooping | Directories New: Multicast Snooping
Find previous owner directly (withy Yes No Usually, when prediction is cor
out indirection through memory) rect (but memory state checkec
in parallel)
Always broadcast? Yes No No (good)
Avoid serial invalidates & acks? Yes No Yes (good)
Ordered network? Yes No Yes (a challenge)
295

1063-6897/99/$10.00 (c) 1999 IEEE

sor in state S can silently downgrade a block to I. A proces- “better” mask. Most coherence transactions cause one
sor in state M or O can use transaction PUTX (put response message (a data message or nack). Only GETS to
exclusive) to request a writeback to transition foGoher- an O block causes two response messages: one from mem-
ence protocols must resolve subtle races. ory and one from the previous owner. Multicast snooping’s
directory is simpler than a conventional directory because it
sends at most one message per transaction and does not
have to enter transient states for GETSs and GETXs.

e Examplel: Consider a block B whose initial states at
processors PO, P1, and P2 are M, |, and I, respectively.
Let P1 and P2 issue GETXs to B at about the same
time. With snooping, bus arbitration will order the Third, processor actions are somewhat more complex than
GETXs (e.g., P1's GETX before P2's GETX), all pro- with broadcast snooping. A processor transitions state
cessors will observe this order, and processors will actimmediately on seeing its own or another processor’s trans-
accordingly (i.e., PO will send the block to P1 which action. Like broadcast snooping with a split-transaction
will send it to P2). With directories, the serialization bus, a processor issuing a GETX must buffer (or nack) all
happens with an indirection through the directory entry foreign transactions to that block until it receives the data
for block B. and can respond. Multicast snooping is slightly more com-

plex because in a few cases it may receive a nack-type mes-
¢ Example2: Consider a block B whose initial states at sage that nullifies the GETX, causing it to discard the
processors PO, P1, P2, and P3 are O, S, S, and |, respeduffered transactions. On receiving a nack, a processor will
tively. Let P3 issue a GETX B. Snooping broadcasts typically retry the transaction with the “better” mask pro-
P3's GETX to all processors so that PO responds with B vided by memory. Forward progress can be ensured by
and invalidates while P1 and P2 invalidate. The total using a broadcast mask (that always succeeds) #fter
order of the bus also ensures no acknowledgment mesretries. Consider again the above examples.
sages are needed to implement a memory consistency

model. A directory protocol, in contrast, forwards P3’s processors PO, P1, and P2 are M, I, and I, respectively.

GE.TX to only PO, P1, and !32. PO responds with B, Let P1 issue GETX B mask=P1,P2 (not P0), which gets

while P1 a_mdl P2 respond with acknowledgment MES- ordered before P2's GETX B mask=P0,P1,P2. Thus, PO

sages to indicate _Nher_1 the coherence transaction is sees only P2's GETX, while P1 and P2 see P1's GETX

complete, a necessity with an unordered network. before P2's. With straightforward snooping, PO would

. . send the block to P2 and P1 would wait forever. With

2.2 A Multicast Snooping Protocol multicast snooping, P1's GETX will be nacked by
Multicast snooping operates like broadcast snooping with ~ memory because it failed to include the previous owner
three major differences. First, coherence transactions are PO. Thus, PO correctly sends B to P2, since P1's GETX
augmented with a predicted “mask” that specifies which is invalidated. On learning from the nack, P1 can retry
processors should receive the transaction and always its transaction with a better mask.
includes the requesting processor and the block’'s memory
module. We will discuss mask prediction in Section 2.3. * Example2”: Consider a block B whose initial states at
processors PO, P1, P2, and P3are O, S, S, and |, respec-
tively. Let P3 issue a GETX B with some mask. If the
mask includes the previous owner and all sharers (e.g.,
mask=P0,P1,P2,P3), the transaction is successful and
P3 goes to M. If the mask includes the previous owner
but not all sharers (e.g., mask=P0,P1,P3), the transac-
tion is partially successful and P3 goes to O. If the mask
omits the previous owner (e.g., mask=P1,P3), the trans-
action fails and P3 stays |. P3 can then retry unsuccess-
ful and partially successful transactions with a better
mask.

Examplel”: Consider a block B whose initial states at

Second, at memory and in parallel with other processors, a
simplified directory entry verifies whether the mask is ade-
guate. On receiving a transaction, memory takes action and
transitions state immediately (i.e., logically before the next
transaction). A GETS whose mask includes the previous
owner succeeds. The previous owner, possibly memory,
provides the data. A GETX that includes the previous
owner and all sharers also succeeds; the previous owner,
possibly memory, provides data. A GETX that includes the
previous owner but not all sharers partially succeeds with
the requesting processor making a transition to state O.

When a transaction is not completely successful, MeMorY roble 2 presents our protocol at a level of detail beyond

provides the requesting processor with a negative or part|alWhat is necessary to read the rest of this paper, but it is

acknowledgment (nack or semiack, respectively) and Qincluded for completeness. This baseline protocol omits

many optimizations, such as supporting an upgrade trans-
1. To simplify exposition, we will not discuss PUTXs further. action to allow a processor to transition from S or O to M

296
1063-6897/99/$10.00 (c) 1999 IEEE

Requestor Memory Other Processors in Mask Requestor
Trans- | Old old Owner All Send to New old Send to New New
action State | State in mask? | inmask? | requestor State State requestor | State | State | Success?|
GETS | S, yes X data_ack S S yes
M(q),0(q) yes X O(q) M,0 data_ack O S yes
no no nack same | no
GETX (0] o) yes yes ack M(r) S | M yes
no semiack o(r) S | o partial
S| S| yes yes data_ack M(r) S | M yes
S yes no data_semiac o) S | o partial
M(q) yes yes M(r) M data_ack | M yes
o(q) yes yes ack M(r) (@] data | M yes
S |
no semiack o(r) (0] data | (0] partial
S |
M(q),0(q) no no nack same S | same no
PUTX M M(r) yes yes | | yes
(0] o(n) yes X S | yes
| 1,S,M(q),0(q) X X same same| no

TABLE 2. A Baseline Protocol: This table gives the baseline protocol in more detail. Columns 1 and 2 give the requesting
processor’s transaction and state when it sees its own transaction. Columns 3-5 give the states a transaction can encounter at
memory, while Columns 6-7 give the memory’s response. Memory states M and O are augmented with “(r)” if the requestor is
(was) the owner and with “(g)” otherwise. An “x” denotes “don’t care.” Column 8 gives the state that other processors may be

in when they see a transaction, while Columns 9-10 give their response. Cases where these processors do nothing are omitted
for brevity (observing a GETS in S, observing a PUTX in |, and when omitted from a multicast mask). Finally, Columns 11-

12 give the requesting processor’s final state and whether the transaction was successful. All other cases are impossible.

without a data message. Another important optimization is compiler, library, or runtime system), or some combination
to have memory retry unsuccessful transactions directly of these. There are several important cases where mask pre-
instead of nacking the requesting processor. This reducedlictors can send a transaction to the minimum number of
latency in the case of mask misprediction, but it makes destinations: memory and the requesting processor. These
ensuring forward progress more complex. cases include GETSs for instruction fetches, read-only data

So far, we have argued that multicast snooping can impIe—and read-mostly data,_ and GETXs to private data (e.g.,
ment coherence. The end of a coherence protocol, howevels,taCk) or de facto private data (e.g.,_ shared heap with
is to help implement a memory consistency model, such asACeesses by onIy_on(_e processor). With many mglncasts
sequential consistency. Future work involves showing that90Ing to few destinations, accurgye mask prediction for
multicast snooping can implement sequential consistencytrUIy shared data becomes less critical.

(or a weaker model) using an extension of Lamport’s logi- We have developed an initial mask predictor, caliitky-

cal clocks [18] developed at Wisconsin [35, 30, 10]. Spatial(R, which performs reasonably well for our bench-
L . marks. Each processor maintains a special direct-mapped
2.3 Mask Prediction and Encoding table to cache mask prediction information. Each entry is

A key new challenge for multicast snooping is transaction tagged with a block address and contains “sticky”-mask
mask prediction. Masks with too many nodes waste and last-invalidator fields. A GETX transaction for block B
address bandwidth, while masks with too few nodes causePredicts a multicast mask which includes the requestor, the
re-tries that add latency when obtaining blocks. Masks candirectory, and the logical OR of masks from table entries
be predicted with information from recent misses to the B™-k, B™-(k-1),..., B’, B'+1,..., B"+k (regardless of tags),
same block, recent misses to any block, behavior of spa-Where B” is the block address of B modulo table size
tially adjacent blocks, recent misses of the same static loadhence, “spatial,” since we are combining information from
or store instruction, input from software (programmer, K spatial neighbors on either side of block B). GETX data

297
1063-6897/99/$10.00 (c) 1999 IEEE

Tag Multicast mask Last invalidator 3 Multicast Address Networks

A key technology for multicast snooping is a multicast
address network.A sufficient condition is that it creates

6A40 3A00| 00000011 0] OR togethel the illusion of a total order of reliable multicasts. That is,
1 spatial multicasts can beonceptuallynumbered in such a way
6A40| 10010000 3 neighbor on that each destination receives multicasts in strictly increas-
6A80| 00100000 ad each side ing order. It isnot a requirement that a given multicast be

delivered to all of its destinations simultaneously. A pipe-
lined broadcast tree, like that used for broadcast snooping
= 10010000 in the Sun E10000, meets the above correctness require-
Mask for block ments, but falls short of our performance goals. We
Mask for neighbor#1 = 00000011 describe a more suitable network that offers optimization
opportunities to our multicast protocol.

Mask for neighbor#2 = 00100000
Mask for requester & directory = 00000110 3.1 Goals and Isotach
Predicted multicast mask — 10110111 Multlcast snooping is more effective thap broad(_:ast shoop-
ing only when the network can combine multicasts and
deliver multiple multicasts per network cycle. An ideal
GETX 6A40 is sent to processors 7,5,4,2,1,0 multicast network would boast:
FIGURE 2. The StickySpatial(1)predictor in * latency and cost as low as for a pipelined broadcast tree

action. A GETX for the block with address 6A40 causes ° near-optima| throughput for de|ivering multicasts

the predictor to access its table to find the multicast mask. absence of centralized bottlenecks (e.g., no single
The predictor also looks up one neighboring entry on each “root”) I

side and ORs these masks, as well as a mask which) L) . , o
includes the requester and the directory, to get the final ® locality exploitation (e.g., if a multicast's destinations
multicast mask. Note that since tags are not checked are within a sub-tree, the coherence traffic would not

during prediction, it is possible to combine masks for have to leave the sub-tree to be ordered)
unrelated blocks (e.g., one of the neighboring entries

above corresponds to the unrelated block at address 3A00). Fortunately, Reynolds, Williams, and Wagner [33] have
developed a class of networks, call&btach networks,

eventually returns with a mask from the previous owner or that have more stringent requirements than we have. An
memory. This mask is logically ORed into entry B’ if the Isotach network allows a processor to send a set of hetero-
tag of B” is the block address of B (hence, “sticky” since geneous variable-sized messages to multiple destinations,
this will have the effect of recording all processors which and it requires that they arrive at a specific logical time.
have ever had a copy of block B); otherwise, the entry’s tag Our requirements are less stringent than Isotach’s in two
and mask are set to the block address of B and the incomways. First, instead of a “set of messages,” we have a single
ing mask respectively. When a processor is asked to invali-fixed-size coherence transaction sending identical informa-
date block B, it sets its last-invalidator field to the tion to all destinations. Second, while our processors
requesting processor (regardless of tags). A GETS B trans+equire that a multicast arrive at all destinations at the same
action predicts a multicast mask which includes the logical time, we do not let the processors specify what that
requestor, directory, and last invalidator from entry B’. logical time is. Furthermore, we allow coherence transac-
When the GETS data returns, entry B is updated as for ations to be re-ordered before they are inserted in the total
GETX. Figure 2 shows an example of tBéickySpatial(1) order of multicasts.
predictor in action. 3.2 An Isotach-like Fat Tree Network
We have developed an indirect multicast address network
that meets our requirements and has potential to approach
our ideal goals. It is a fat-tree with arbitrary uplinks and
Isotach-like down links. It is not an Isotach network

Efficiently encoding the multicast mask is also an impor-
tant implementation issue. For this paper we simply
assume a full-map directory entry, similar to most directory
protocol studies [23]. However, many of the techniques
developed for limited directory protocols [16, 27] can be
adapted to multicast snooping.

1. Recall that the data responses to address transactions are
delivered on a logically separate point-to-point data network.

298
1063-6897/99/$10.00 (c) 1999 IEEE

because it does not meet Isotach’s more stringent require-
ments. Select Parallel Benchmarks

The topology is a k-ary fat-tree network with N roots and P
processors at the leaves, illustrated in Figure 3. A coher-
ence transaction to block B travels up the fat-tree to root Simulation w/32-processor CC-NUMA on WWT 2
selected by address (e.g., B mod r). On each network cycle
t (which we treat as synchronous for simplicity), each joot
selects a multicast and gives it the logical timestatpf = (1)Is the mean number of sharers encountered by
no rr)ullticast is available, or if contgntion in the network ?;f:gﬁ?gﬁ;ﬁlﬁ;&;m;%gr?:é"c;ﬁﬁC?E'g
prohibits the selected multicast from issuing, null messages
are placed on all empty outgoing links in that cycle. Multi- Run Through Mask Predictor
casts which issue from a root in the same network cycle
are said to belong to pulseTimestamps are implicitly car-
ried with each multicast message, but can be transmitted 2

. . . I all necessary processors and limit multicasts to an
using a smallt field (as little as one extra bit) in each mes- average number of destinations much smaller than
sage. Null messages add no contention and take up no all processors? YES.
space in network queues: they are sent on otherwise idle ,
links to ensure ordered delivery by pulse, and their only | Run Through Network Simulator
effect is to update the local time (pulse) of the queue. All
real messages also update the local time of the queue.

> (2) Can plausible mask predictors usually include

— (3) Can our initial network deliver many
Interior fat-tree nodes pass on messages from older pulses multicasts per network cycle? YES.
before messages from more recent pulses. If any incoming
network queue is empty, the local pulse of that queue arbi- | |s Multicast Snooping Promising? YES!
trates with the available multicasts in other queues. On
cycles in which network contention prohibits the oldest FIGURE 4. Performance Evaluation
pulse’s multicasts from continuing, null messages are sent Methodology Flowchart

with the oldest pulse’s pulse identifier. This ensures that the

t_imestamps ofaseries. of messages traversjng each fat'tregpecified to a level that addresses switching technique,
link have non-decreasing pulse number. Since processorgeadiock avoidance, etc. Fault tolerance should be sup-
are at the end of a link, they receive multicasts in pulse yorteq to, at least, allow failed switches and links to be

order, but not necessarily in root order. Multicast snoop o\ gided after a reboot. as was done for the Thinking
order is defined lexicographically as pulse order, then root o -hines CM-5 fat-tree ,networks [21].

order. Each destination must therefore sort received mes-

sages in each pulse into “by root” order before processing.Many other network improvements are yet to be explored.
How can locality be exploited so that, for example, a multi-

cast to destinations covered by a sub-tree of the network
can be ordered at the sub-tree’s root rather than at a net-
work root? In the limit, a multicast from a processor to
itself and a co-located shared-memory module should not
need to traverse the network at all. Instead, the multicast
could simply be inserted in a possibly-shared incoming
gueue. Finally, what are the consequences of implementing
multicast snooping with other indirect and direct topolo-
gies, such as a two-dimensional torus?

Many network issues are yet to be explored. Network
implementations should allow asynchrony and must still be

A‘A‘A’A‘A
WO

4 Performance Evaluation Methods

This section describes the methods we have used to gather
some preliminary evidence supporting multicast snooping.
Figure 4 is a flowchart that illustrates the questions we ask
in this section.

FIGURE 3. Sample Network Design: 2-ary . .
fat tree with 16 processors and 16 roots. Simulation of a 32-processor CC-NUMA systemin the

first part of our evaluation, we ran the benchmarks

299
1063-6897/99/$10.00 (c) 1999 IEEE

described in Table 3 on a CC-NUMA simulator to generate
traces of coherence transactions in order to (a) answer
guestions about the mean number of sharers, and (b) have
information to feed to mask predictors and network simula-
tors. We used the Wisconsin Wind Tunnel Il [28], a paral-
lel, discrete-event, direct-execution simulator of Type of system CC-NUMA
multiprocessor shared-memory machines. The target archi- [~jherence Directory protocol: full-map,

TABLE 4. WWT Il Simulation parameters

Parameter Value

of processors 32

tecture has 32 processors, and its parameters are shown in yachanism write-invalidate, 3-state MSI
Table 4. The parallel benchmarks were written to use an

explicitly allocated section of shared memory. Ownership | Data memory | L1 cache, SPARC MBus, Local
of the pages of this shared memory was distributed in a | hierarchy memory, Remote Block cache
round-robin manner among the nodes of the simulated | L1 data cache 128KB, direct-mapped, 32-byte
machine. We modified the simulator to generate per-direc- blocks, write-back

Fory traces of coherence transaction requests rgceived dur-I Remote block 512KB, direct-mapped, 32-byte
ing the parlallel phase of a benchmark (i.e., after | cacpe blocks, writeback inclusion with
|n|t|z_al|zat|_on). The traces include no rglev_ant timing infor- L1 cache for read-write blocks
mation, since the CC-NUMA protocol is different from the
multicast snooping protocols we wish to study. These
traces are an approximation of our baseline MOSI protocol,
because they do not include the O state and do include arof destinations much smaller than all processors, and (b)
upgrade transaction. Furthermore, since WWT2 does notgenerate predicted multicast traces to feed into our multi-
model instruction fetches, results are biased against multi-cast network simulator. We predicted witBticky-Spa-
cast snooping due to omitting the predictable case of send4ial(1), described in Section 2.3, using a 4K-entry table per
ing instruction miss GETSs to memory only. processor. We assumed a full-map encoding of the direc-
tory and masks.

Local memory 96MB

Mask Predictor: In the second step of our methodology,
we fed the generated traces into a mask predictor to (a) sedulticast Network Simulator: In the third step of our

if a plausible mask predictor can usually include all neces- methodology, we fed the predicted multicast traces into a
sary processors and limit multicasts to an average numbenetwork simulator that exactly models the abstract network
described in Section 3. Results were computed by simulat-
ing a binary fat tree with 32 roots, 32 processors, and single
1. These include accesses to per-processor private blocks (privateelement buffers at each link.

data segment and stack). They do NOT include accesses to blocks

of shared memory that do not cause a remote coherence transac-

tion request. Including these would improve the relative perfor-

mance of multicast snooping.

Benchmark | Description of Application Input Data Set

cholesky Blocked sparse matrix Cholesky factorization tk16.0 from SPLASH-2

fft Complex 1-D radix/n 6-step FFT 64K points

lu Blocked dense matrix LU factorization 512x512 matrices, 16x16 blocks
moldyn Simulation of molecular dynamics 2048 particles, 15 iterations
ocean Simulates large-scale ocean movements 130x130 ocean

radix Integer radix sort 1M integers, radix 1024

raytrace 3-D scene rendering using raytracing teapot from SPLASH-2
water-nq Quadratic-time simulation of water molecules 512 molecules

TABLE 3. Benchmarks. Our parallel benchmarks were taken mainly from the SPLASH-2 [43]
benchmark suite, with the exception of Moldyn [29] which is a shared-memory implementation of a
CHARMM-like [7] molecular dynamics application.

300
1063-6897/99/$10.00 (c) 1999 IEEE

(%]
x £ 3 S 8o
g |23 23 595 5
E |88 8 58532
< C S| 535 = = @ v &
3] cEI R =L T El X5
c oz 08 2E| L3 ©e
@ S E sl =gl a8 8=
m Z Q = Sl m®
<
cholesky 34| 12| 17| 94 92
fft 32 |03 |14 73 57
lu 24 1 03 | 12| 95 93
moldyn 54 | 29| 24| 88 56
ocean 34| 08| 13| 95 45
radix 30| 05| 14| 84 80
raytrace 56| 34| 29| 86 75
water-nq 38| 15| 19| 88 85

TABLE 5. Multicast mask prediction
statistics (to 2 significant digits).

5 Performance Evaluation Results

Sharing patterns. Multicast snooping will work best if the

mean number of sharers encountered by a coherence trans-;_

action is small (so multicasts can go to far fewer than all
processors). Results in Figure 5 confirm results from the
published literature [15, 2] that show this is the case (for
these benchmarks)in particular at most 1.3% of transac-?

. . . L A
tions required more than two invalidations (for ocean). (0
0
il
9
[
Benchmark 0
100 0
—&——4&— cholesky s
20 R REEEEEE A-- it J
80 =4 ——-—-5- lu 2
¥ —w—-—-%- moldyn
w° ——-—-S--0 ocean
60 —o—-— -9 - radix
—EB—-—-5--' raytrace

50
- water-nq
40

% of transactions

30

20

10

16
of invalidations

32

FIGURE 5. Number of invalidations sent after
a GETX/Upgrade or a GETS for an Exclusive

301

Multicast Mask Prediction. Effective multicast snooping
requires implementable mask predictors that usually
include all necessary processors and limit multicasts to an
average number of destinations much smaller than all pro-
cessors. Table 5 presents results for a viable predictor:
Sticky-Spatigfl) with 4K-entry table size (results for a 1K-
entry table are similar). Columns 2-4 address how much
extra traffic is generated. Column 2 is the average number
of nodes per successful multicastolumn 3 is the average
number of nodes in a predicted multicast that would not
have been included in a perfect multicast; column 4 is the
ratio of the total number of nodes included in all predicted
multicasts (including retries) to the total number of nodes
included in all perfect multicasts. Results show that a prac-
tical predictor can limit multicasts to 2-6 processors (far
fewer than broadcast snooping’s 32 processors) and gener-
ate traffic within a factor of three of optimal. ThuSticky-
Spatia(l) is a reasonable predictor, but there is room for
more improvement.

Table 5’s columns 5 and 6 compare multicast snooping to
directories. For example, 73% of masks predicted for all
the coherence transactions of the fft application include all
necessary processors (and possibly more), while 57% of all
transactions found the block at the directory. The difference
between the two columns indicates the percentage of trans-

04

I Bus

N Fatee
D Optma

8
74
6

Cholesky - moldyn ocean rax raytrace waterng

FIGURE 6. Multicast Address Network
Throughput

1. Our results are not exactly the same as others’ due to specific
system assumptions (e.g., cache size, associativity, and coherence
protocaol).

2. If amulticast td destinations fails and is re-issued testina-
tions, this counts dsj destinations for one successful multicast.

1063-6897/99/$10.00 (c) 1999 IEEE

actions for which directories will have to contact a third Multicasting has been used to support communication con-
(owner) node and incur the latency of an extra network structs in numerous programming environments, including
hop. As shown, all the entries in Column 5 are larger than the ISIS [6] and Orca [4] projects. ISIS uses a software
the corresponding entries in Column 6. Thus, multicast scheme to support multicast communication to a process
snooping will find blocks directly (in two hops) more often group. The Orca distributed shared memory system is built
than directories will (for our benchmarks). This difference upon an underlying software multicast mechanism that is
is small for the SPLASH-2 kernels, but it is significant for part of the Panda virtual machine. ISIS and Panda both pro-
two applications, moldyn and ocean. vide reliable multicasting and, as with our multicast net-

Multicast Network Throughput. Given a trace of the work, they both ensure that all nodes see communications

multicasts from the above section, we now ask whether our'” t_he same orc_ier. Mu|t|cast shooping d|ffe_rs from these
multicast address network can deliver much more than Oneprqjects In that |t_re||es on hardware to efficiently perform
broadcast per network cycle. Figure 6 shows results for arellable multicasting.
bus (black and always one), our network (gray), and anHardware multicast has been studied for both direct [26]
optimal network (white): Our network generally achieves and indirect networks [39]. Research has included switch
at least half of optimal throughput. Future work will show design [37], flow control [5] and deadlock avoidance [24].
how loaded network latencies compare. Multicast has been proposed for efficient support of syn-
6 Related Work chronization variables [3]. Isotach networks provide totally
ordered multicasts and groups of operations which are
Multicast snooping is a hybrid between broadcast snoopingatomic in logical time [33]. Isotach networks were origi-
[14] and directory coherence [22, 8]. There have been othemally proposed to allow pipelined implementations of
hybrid systems which have used snooping buses as part o$equential consistency without caches and powerful syn-
larger, more scalable designs than simple broadcast snoopshronization without locks.

ing. One example is the Sequent Sting [25], in which €ach 1pe jmplementation of our multicast address network uses
node is a snooping SMP connected by an SCI directory igcpnigues similar to those used in distributed simulation.

system. Encore Gigamax [42] uses a hierarchy of busesn narticular, null messages are used to place a lower bound
where transactions move up the directory as high as needed , timestamps of future messages sent on a network link,

to maintain coherence. Corollary Profusion[40] links tWo gnq this is similar to the use of null messages in conserva-
SMP buses wit