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Abstract

This paper proposes a new coherence method called “mul-
ticast snooping” that dynamically adapts between broad-
cast snooping and a directory protocol. Multicast
snooping is unique because processors predict which
caches should snoop each coherence transaction by
specifying a multicast “mask.” Transactions are delivered
with an ordered multicast network, such as an Isotach net-
work, which eliminates the need for acknowledgment mes-
sages. Processors handle transactions as they would with
a snooping protocol, while a simplified directory operates
in parallel to check masks and gracefully handle incorrect
ones (e.g., previous owner missing). Preliminary perfor-
mance numbers with mostly SPLASH-2 benchmarks run-
ning on 32 processors show that we can limit multicasts to
an average of 2-6 destinations (<< 32) and we can deliver
2-5 multicasts per network cycle (>> broadcast snoop-
ing’s 1 per cycle). While these results do not include tim-
ing, they do provide encouragement that multicast
snooping can obtain data directly (like broadcast snoop-
ing) but apply to larger systems (like directories).

1  Introduction

Large applications, such as simulators and database serv-
ers, require cost-effective computation power beyond that
of a single microprocessor. Shared-memory multiproces-
sor servers have emerged as a popular solution, because
the system appears like a multi-tasking uniprocessor to
many applications. Most shared memory multiprocessors
use per-processor cache hierarchies that are kept transpar-
ent with a coherence algorithm.

The two classic classes of coherence algorithms are snoop-
ing and directories.Snooping[14] keeps caches coherent
using a totally ordered network to broadcast coherence
transactions directly to all processors and memory. Mod-
ern implementations of snooping have moved well beyond

the initial concept. The Sun Ultra Enterprise 10000 [1], for
example, uses four address “buses” interleaved by address.
It implements each “bus” with a pipelined broadcast tree
constructed from point-to-point links (that behave more
like ideal transmission lines to facilitate having multiple
bits concurrently in flight), and it has a separate unordered
data network (a point-to-point crossbar). Nevertheless, it
implements Total Store Order (TSO), SPARC’s variant of
processor consistency, and it could implement sequential
consistency.

In contrast, directory protocols [8, 22] transmit a coher-
ence transaction over an arbitrary point-to-point network
to a directory entry (usually at memory) which, in turn, re-
directs the transaction to a superset of processors caching
the block. Due to the unordered network, care must be
taken to ensure that concurrent transactions obtain data
and update the directory in a manner that appears atomic,
despite being implemented with a sequence of messages
(e.g., acknowledgment messages from all processors
involved). A state-of-the art example of a directory proto-
col that implements sequential consistency is that of the
SGI Origin2000 [20].

Snooping protocols are successful because they obtain
data quickly (without indirection) and avoid the overhead
of sequencing invalidation and acknowledgment mes-
sages. They are limited to relatively small systems, how-
ever, because they must broadcast all transactions to all
processors and all processors must handle all transactions.
In contrast, directory protocols can scale to large systems,
but they have higher unloaded latency because of the over-
heads of directory indirection and message sequencing.
Snooping protocols have been more successful in the mar-
ketplace because many more small machines are needed
than large ones.

In this paper, we investigate a hybrid protocol that obtains
data directly (like snooping) when address bandwidth is
sufficient, but scales to larger machines by dynamically
degrading to directory-style indirection when it is not. We
call our proposalmulticast snoopingbecause it multicasts
coherence transactions to selected processors, lowering
the address bandwidth required for snooping. With multi-
cast snooping, coherence transactions leave a processor
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with a multicast “mask” that specifies which processors
should snoop this transaction. Masks are generated using
prediction and need not be correct (e.g., may fail to include
the previous owner or all sharers). A multicast network log-
ically determines a global order for all transactions and
delivers transactions to each processor in that order, but not
necessarily on the same cycle. Processors process these
transactions as they would with broadcast snooping. A
mask containing more processors than necessary completes
as in broadcast snooping, but it wastes some address band-
width. A simplified directory in memory checks the mask
of each transaction, detecting masks that omit necessary
processors and taking corrective action. Table 1 summa-
rizes the differences between broadcast snooping, directo-
ries, and multicast snooping.

Section 2 introduces multicast snooping in more detail,
delving into the thorny issues of mask prediction, transac-
tion ordering, and forward progress. Section 3 discusses a
multicast network sufficient to support multicast snooping.
It is similar to the Isotach network proposed by Reynolds,
Williams, and Wagner [33]. Sections 4 and 5 give methods
and results from a preliminary analysis of sharing patterns,
mask prediction, and network throughput. Results for
mostly SPLASH-2 benchmarks on 32 processors show
that: (1) the mean number of sharers encountered by a
coherence transaction is less than 2 (so multicasts could go
to far fewer than all 32 processors), (2) a plausible mask
predictor can usually include all necessary processors (73-
95%) and yet limit multicasts to an average of 2-6 destina-
tions (<< 32), and (3) our initial network can deliver
between 2-5 multicasts per network cycle (>> broadcast
snooping’s 1 per cycle). These results provide encourage-
ment for developing multicast snooping, but they should be
considered preliminary since they are not timing simula-
tions and include some methodological approximations.

2  Multicast Snooping Coherence

Figure 1 shows the major components of a system that uses
multicast snooping. We assume that addresses traverse a
totally-ordered multicast address network, such as the one

described in Section 3, that data travels on a separate point-
to-point data network1, as in the Sun E10000, and that
memory is physically distributed among processors. We
illustrate our ideas using a write-invalidate MOSI protocol.

2.1  Background: Snooping and Directories

Consider snooping and directory protocols that implement
a write-invalidate MOSI protocol [38] which allows silent
replacement of shared blocks. Processors can hold each
cache block in one of four states: M (Modified), O (Owned
shared), S (Shared), and I (Invalid). Memory has four sta-
ble states, corresponding to the states of the processors: M
(memory invalid with one processor in state M and others
I), O (memory invalid with one processor O and others S or
I), S (memory valid with processors S or I), and I (block
idle with all processors I). Memory state is implicit (not
stored) for snooping and explicit with directories.

A processor must have a block in state M, O, or S to per-
form a load on it and in state M to perform a store. A pro-
cessor in state I can use the transaction GETS (get shared)
to obtain a block in state S. A processor in O, S, or I can
use GETX (get exclusive) to obtain an M block. A proces-

TABLE 1. A Comparison of Coherence Methods

Coherence Method
Broadcast
Snooping Directories New: Multicast Snooping

Find previous owner directly (with-
out indirection through memory)

Yes No Usually, when prediction is cor-
rect (but memory state checked
in parallel)

Always broadcast? Yes No No (good)

Avoid serial invalidates & acks? Yes No Yes (good)

Ordered network? Yes No Yes (a challenge)

1.  The data network is logically separate, but it could be imple-
mented with virtual channels on a unified network.

FIGURE 1. Major components of a multicast snooping
system.P, M and D refer to processor, memory and
associated directory.

P M D P M D P M D

Address Network
Multicast

Point to Point Data Network
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sor in state S can silently downgrade a block to I. A proces-
sor in state M or O can use transaction PUTX (put
exclusive) to request a writeback to transition to I.1 Coher-
ence protocols must resolve subtle races.

• Example1: Consider a block B whose initial states at
processors P0, P1, and P2 are M, I, and I, respectively.
Let P1 and P2 issue GETXs to B at about the same
time. With snooping, bus arbitration will order the
GETXs (e.g., P1’s GETX before P2’s GETX), all pro-
cessors will observe this order, and processors will act
accordingly (i.e., P0 will send the block to P1 which
will send it to P2). With directories, the serialization
happens with an indirection through the directory entry
for block B.

• Example2: Consider a block B whose initial states at
processors P0, P1, P2, and P3 are O, S, S, and I, respec-
tively. Let P3 issue a GETX B. Snooping broadcasts
P3’s GETX to all processors so that P0 responds with B
and invalidates while P1 and P2 invalidate. The total
order of the bus also ensures no acknowledgment mes-
sages are needed to implement a memory consistency
model. A directory protocol, in contrast, forwards P3’s
GETX to only P0, P1, and P2. P0 responds with B,
while P1 and P2 respond with acknowledgment mes-
sages to indicate when the coherence transaction is
complete, a necessity with an unordered network.

2.2  A Multicast Snooping Protocol

Multicast snooping operates like broadcast snooping with
three major differences. First, coherence transactions are
augmented with a predicted “mask” that specifies which
processors should receive the transaction and always
includes the requesting processor and the block’s memory
module. We will discuss mask prediction in Section 2.3.

Second, at memory and in parallel with other processors, a
simplified directory entry verifies whether the mask is ade-
quate. On receiving a transaction, memory takes action and
transitions state immediately (i.e., logically before the next
transaction). A GETS whose mask includes the previous
owner succeeds. The previous owner, possibly memory,
provides the data. A GETX that includes the previous
owner and all sharers also succeeds; the previous owner,
possibly memory, provides data. A GETX that includes the
previous owner but not all sharers partially succeeds with
the requesting processor making a transition to state O.
When a transaction is not completely successful, memory
provides the requesting processor with a negative or partial
acknowledgment (nack or semiack, respectively) and a

“better” mask. Most coherence transactions cause one
response message (a data message or nack). Only GETS to
an O block causes two response messages: one from mem-
ory and one from the previous owner. Multicast snooping’s
directory is simpler than a conventional directory because it
sends at most one message per transaction and does not
have to enter transient states for GETSs and GETXs.

Third, processor actions are somewhat more complex than
with broadcast snooping. A processor transitions state
immediately on seeing its own or another processor’s trans-
action. Like broadcast snooping with a split-transaction
bus, a processor issuing a GETX must buffer (or nack) all
foreign transactions to that block until it receives the data
and can respond. Multicast snooping is slightly more com-
plex because in a few cases it may receive a nack-type mes-
sage that nullifies the GETX, causing it to discard the
buffered transactions. On receiving a nack, a processor will
typically retry the transaction with the “better” mask pro-
vided by memory. Forward progress can be ensured by
using a broadcast mask (that always succeeds) afterk
retries. Consider again the above examples.

• Example1´: Consider a block B whose initial states at
processors P0, P1, and P2 are M, I, and I, respectively.
Let P1 issue GETX B mask=P1,P2 (not P0), which gets
ordered before P2’s GETX B mask=P0,P1,P2. Thus, P0
sees only P2’s GETX, while P1 and P2 see P1’s GETX
before P2’s. With straightforward snooping, P0 would
send the block to P2 and P1 would wait forever. With
multicast snooping, P1’s GETX will be nacked by
memory because it failed to include the previous owner
P0. Thus, P0 correctly sends B to P2, since P1’s GETX
is invalidated. On learning from the nack, P1 can retry
its transaction with a better mask.

• Example2´: Consider a block B whose initial states at
processors P0, P1, P2, and P3 are O, S, S, and I, respec-
tively. Let P3 issue a GETX B with some mask. If the
mask includes the previous owner and all sharers (e.g.,
mask=P0,P1,P2,P3), the transaction is successful and
P3 goes to M. If the mask includes the previous owner
but not all sharers (e.g., mask=P0,P1,P3), the transac-
tion is partially successful and P3 goes to O. If the mask
omits the previous owner (e.g., mask=P1,P3), the trans-
action fails and P3 stays I. P3 can then retry unsuccess-
ful and partially successful transactions with a better
mask.

Table 2 presents our protocol at a level of detail beyond
what is necessary to read the rest of this paper, but it is
included for completeness. This baseline protocol omits
many optimizations, such as supporting an upgrade trans-
action to allow a processor to transition from S or O to M1.  To simplify exposition, we will not discuss PUTXs further.
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without a data message. Another important optimization is
to have memory retry unsuccessful transactions directly
instead of nacking the requesting processor. This reduces
latency in the case of mask misprediction, but it makes
ensuring forward progress more complex.

So far, we have argued that multicast snooping can imple-
ment coherence. The end of a coherence protocol, however,
is to help implement a memory consistency model, such as
sequential consistency. Future work involves showing that
multicast snooping can implement sequential consistency
(or a weaker model) using an extension of Lamport’s logi-
cal clocks [18] developed at Wisconsin [35, 30, 10].

2.3  Mask Prediction and Encoding

A key new challenge for multicast snooping is transaction
mask prediction. Masks with too many nodes waste
address bandwidth, while masks with too few nodes cause
re-tries that add latency when obtaining blocks. Masks can
be predicted with information from recent misses to the
same block, recent misses to any block, behavior of spa-
tially adjacent blocks, recent misses of the same static load
or store instruction, input from software (programmer,

compiler, library, or runtime system), or some combination
of these. There are several important cases where mask pre-
dictors can send a transaction to the minimum number of
destinations: memory and the requesting processor. These
cases include GETSs for instruction fetches, read-only data
and read-mostly data, and GETXs to private data (e.g.,
stack) or de facto private data (e.g., shared heap with
accesses by only one processor). With many multicasts
going to few destinations, accurate mask prediction for
truly shared data becomes less critical.

We have developed an initial mask predictor, calledSticky-
Spatial(k), which performs reasonably well for our bench-
marks. Each processor maintains a special direct-mapped
table to cache mask prediction information. Each entry is
tagged with a block address and contains “sticky”-mask
and last-invalidator fields. A GETX transaction for block B
predicts a multicast mask which includes the requestor, the
directory, and the logical OR of masks from table entries
B´-k, B´-(k-1),..., B´, B´+1,..., B´+k (regardless of tags),
where B´ is the block address of B modulo table size
(hence, “spatial,” since we are combining information from
k spatial neighbors on either side of block B). GETX data

Requestor Memory Other Processors in Mask Requestor

Trans-
action

Old
State

Old
State

Owner
in mask?

All
in mask?

Send to
requestor

New
State

Old
State

Send to
requestor

New
State

New
State Success?

GETS I S,I yes x data_ack S S yes

M(q),O(q) yes x O(q) M,O data_ack O S yes

no no nack same I no

GETX O O(r) yes yes ack M(r) S I M yes

no semiack O(r) S I O partial

S,I S,I yes yes data_ack M(r) S I M yes

S yes no data_semiack O(r) S I O partial

M(q) yes yes M(r) M data_ack I M yes

O(q) yes yes ack M(r) O data I M yes

S I

no semiack O(r) O data I O partial

S I

M(q),O(q) no no nack same S I same no

PUTX M M(r) yes yes I I yes

O O(r) yes x S I yes

I I,S,M(q),O(q) x x same same no

TABLE 2. A Baseline Protocol: This table gives the baseline protocol in more detail. Columns 1 and 2 give the requesting
processor’s transaction and state when it sees its own transaction. Columns 3-5 give the states a transaction can encounter at
memory, while Columns 6-7 give the memory’s response. Memory states M and O are augmented with “(r)” if the requestor is
(was) the owner and with “(q)” otherwise. An “x” denotes “don’t care.” Column 8 gives the state that other processors may be
in when they see a transaction, while Columns 9-10 give their response. Cases where these processors do nothing are omitted
for brevity (observing a GETS in S, observing a PUTX in I, and when omitted from a multicast mask). Finally, Columns 11-
12 give the requesting processor’s final state and whether the transaction was successful. All other cases are impossible.
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eventually returns with a mask from the previous owner or
memory. This mask is logically ORed into entry B´ if the
tag of B´ is the block address of B (hence, “sticky” since
this will have the effect of recording all processors which
have ever had a copy of block B); otherwise, the entry’s tag
and mask are set to the block address of B and the incom-
ing mask respectively. When a processor is asked to invali-
date block B, it sets its last-invalidator field to the
requesting processor (regardless of tags). A GETS B trans-
action predicts a multicast mask which includes the
requestor, directory, and last invalidator from entry B´.
When the GETS data returns, entry B´ is updated as for a
GETX. Figure 2 shows an example of theStickySpatial(1)
predictor in action.

Efficiently encoding the multicast mask is also an impor-
tant implementation issue. For this paper we simply
assume a full-map directory entry, similar to most directory
protocol studies [23]. However, many of the techniques
developed for limited directory protocols [16, 27] can be
adapted to multicast snooping.

3  Multicast Address Networks

A key technology for multicast snooping is a multicast
address network.1 A sufficient condition is that it creates
the illusion of a total order of reliable multicasts. That is,
multicasts can beconceptuallynumbered in such a way
that each destination receives multicasts in strictly increas-
ing order. It isnot a requirement that a given multicast be
delivered to all of its destinations simultaneously. A pipe-
lined broadcast tree, like that used for broadcast snooping
in the Sun E10000, meets the above correctness require-
ments, but falls short of our performance goals. We
describe a more suitable network that offers optimization
opportunities to our multicast protocol.

3.1  Goals and Isotach

Multicast snooping is more effective than broadcast snoop-
ing only when the network can combine multicasts and
deliver multiple multicasts per network cycle. An ideal
multicast network would boast:

• latency and cost as low as for a pipelined broadcast tree
• near-optimal throughput for delivering multicasts
• absence of centralized bottlenecks (e.g., no single

“root”)
• locality exploitation (e.g., if a multicast’s destinations

are within a sub-tree, the coherence traffic would not
have to leave the sub-tree to be ordered)

Fortunately, Reynolds, Williams, and Wagner [33] have
developed a class of networks, calledIsotach networks,
that have more stringent requirements than we have. An
Isotach network allows a processor to send a set of hetero-
geneous variable-sized messages to multiple destinations,
and it requires that they arrive at a specific logical time.
Our requirements are less stringent than Isotach’s in two
ways. First, instead of a “set of messages,” we have a single
fixed-size coherence transaction sending identical informa-
tion to all destinations. Second, while our processors
require that a multicast arrive at all destinations at the same
logical time, we do not let the processors specify what that
logical time is. Furthermore, we allow coherence transac-
tions to be re-ordered before they are inserted in the total
order of multicasts.

3.2  An Isotach-like Fat Tree Network

We have developed an indirect multicast address network
that meets our requirements and has potential to approach
our ideal goals. It is a fat-tree with arbitrary uplinks and
Isotach-like down links. It is not an Isotach network

FIGURE 2. The StickySpatial(1)predictor in
action. A GETX for the block with address 6A40 causes
the predictor to access its table to find the multicast mask.
The predictor also looks up one neighboring entry on each
side and ORs these masks, as well as a mask which
includes the requester and the directory, to get the final
multicast mask. Note that since tags are not checked
during prediction, it is possible to combine masks for
unrelated blocks (e.g., one of the neighboring entries
above corresponds to the unrelated block at address 3A00).

6A40 10010000 3

6A80 00100000 2

3A00 00000011 06A40 }OR together
1 spatial
neighbor on
each side

Mask for block = 10010000

Mask for neighbor#1

Mask for neighbor#2 = 00100000

Mask for requester & directory = 00000110

= 00000011

Predicted multicast mask = 10110111

GETX 6A40 is sent to processors 7,5,4,2,1,0

Tag Multicast mask Last invalidator

1.  Recall that the data responses to address transactions are
delivered on a logically separate point-to-point data network.
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because it does not meet Isotach’s more stringent require-
ments.

The topology is a k-ary fat-tree network with N roots and P
processors at the leaves, illustrated in Figure 3. A coher-
ence transaction to block B travels up the fat-tree to rootr
selected by address (e.g., B mod r). On each network cycle
t (which we treat as synchronous for simplicity), each rootj
selects a multicast and gives it the logical timestampt.j. If
no multicast is available, or if contention in the network
prohibits the selected multicast from issuing, null messages
are placed on all empty outgoing links in that cycle. Multi-
casts which issue from a root in the same network cyclet
are said to belong to pulset. Timestamps are implicitly car-
ried with each multicast message, but can be transmitted
using a small∆t field (as little as one extra bit) in each mes-
sage. Null messages add no contention and take up no
space in network queues: they are sent on otherwise idle
links to ensure ordered delivery by pulse, and their only
effect is to update the local time (pulse) of the queue. All
real messages also update the local time of the queue.

Interior fat-tree nodes pass on messages from older pulses
before messages from more recent pulses. If any incoming
network queue is empty, the local pulse of that queue arbi-
trates with the available multicasts in other queues. On
cycles in which network contention prohibits the oldest
pulse’s multicasts from continuing, null messages are sent
with the oldest pulse’s pulse identifier. This ensures that the
timestamps of a series of messages traversing each fat-tree
link have non-decreasing pulse number. Since processors
are at the end of a link, they receive multicasts in pulse
order, but not necessarily in root order. Multicast snoop
order is defined lexicographically as pulse order, then root
order. Each destination must therefore sort received mes-
sages in each pulse into “by root” order before processing.

Many network issues are yet to be explored. Network
implementations should allow asynchrony and must still be

specified to a level that addresses switching technique,
deadlock avoidance, etc. Fault tolerance should be sup-
ported to, at least, allow failed switches and links to be
avoided after a reboot, as was done for the Thinking
Machines CM-5 fat-tree networks [21].

Many other network improvements are yet to be explored.
How can locality be exploited so that, for example, a multi-
cast to destinations covered by a sub-tree of the network
can be ordered at the sub-tree’s root rather than at a net-
work root? In the limit, a multicast from a processor to
itself and a co-located shared-memory module should not
need to traverse the network at all. Instead, the multicast
could simply be inserted in a possibly-shared incoming
queue. Finally, what are the consequences of implementing
multicast snooping with other indirect and direct topolo-
gies, such as a two-dimensional torus?

4  Performance Evaluation Methods

This section describes the methods we have used to gather
some preliminary evidence supporting multicast snooping.
Figure 4 is a flowchart that illustrates the questions we ask
in this section.

Simulation of a 32-processor CC-NUMA system:In the
first part of our evaluation, we ran the benchmarks

FIGURE 3. Sample Network Design: 2-ary
fat tree with 16 processors and 16 roots.

Select Parallel Benchmarks

Simulation w/32-processor CC-NUMA on WWT 2

(1) Is the mean number of sharers encountered by
 a coherence transaction small (so multicasts could

have far fewer destinations than broadcast)?  YES.

 (2) Can plausible mask predictors usually include  
  all necessary processors and limit multicasts to an
  average number of destinations much smaller than
  all processors?  YES.

Run Through Mask Predictor

Run Through Network Simulator

 (3) Can our initial network deliver many
  multicasts per network cycle?  YES.

Is Multicast Snooping Promising?  YES!

FIGURE 4. Performance Evaluation
Methodology Flowchart
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described in Table 3 on a CC-NUMA simulator to generate
traces of coherence transactions in order to (a) answer
questions about the mean number of sharers, and (b) have
information to feed to mask predictors and network simula-
tors. We used the Wisconsin Wind Tunnel II [28], a paral-
lel, discrete-event, direct-execution simulator of
multiprocessor shared-memory machines. The target archi-
tecture has 32 processors, and its parameters are shown in
Table 4. The parallel benchmarks were written to use an
explicitly allocated section of shared memory. Ownership
of the pages of this shared memory was distributed in a
round-robin manner among the nodes of the simulated
machine. We modified the simulator to generate per-direc-
tory traces of coherence transaction requests received dur-
ing the parallel phase of a benchmark (i.e., after
initialization).1 The traces include no relevant timing infor-
mation, since the CC-NUMA protocol is different from the
multicast snooping protocols we wish to study. These
traces are an approximation of our baseline MOSI protocol,
because they do not include the O state and do include an
upgrade transaction. Furthermore, since WWT2 does not
model instruction fetches, results are biased against multi-
cast snooping due to omitting the predictable case of send-
ing instruction miss GETSs to memory only.

Mask Predictor: In the second step of our methodology,
we fed the generated traces into a mask predictor to (a) see
if a plausible mask predictor can usually include all neces-
sary processors and limit multicasts to an average number

of destinations much smaller than all processors, and (b)
generate predicted multicast traces to feed into our multi-
cast network simulator. We predicted withSticky-Spa-
tial(1), described in Section 2.3, using a 4K-entry table per
processor. We assumed a full-map encoding of the direc-
tory and masks.

Multicast Network Simulator: In the third step of our
methodology, we fed the predicted multicast traces into a
network simulator that exactly models the abstract network
described in Section 3. Results were computed by simulat-
ing a binary fat tree with 32 roots, 32 processors, and single
element buffers at each link.1. These include accesses to per-processor private blocks (private

data segment and stack). They do NOT include accesses to blocks
of shared memory that do not cause a remote coherence transac-
tion request. Including these would improve the relative perfor-
mance of multicast snooping.

Benchmark Description of Application Input Data Set

cholesky Blocked sparse matrix Cholesky factorization tk16.O from SPLASH-2

fft Complex 1-D radix-√n 6-step FFT 64K points

lu Blocked dense matrix LU factorization 512x512 matrices, 16x16 blocks

moldyn Simulation of molecular dynamics 2048 particles, 15 iterations

ocean Simulates large-scale ocean movements 130x130 ocean

radix Integer radix sort 1M integers, radix 1024

raytrace 3-D scene rendering using raytracing teapot from SPLASH-2

water-nq Quadratic-time simulation of water molecules 512 molecules

TABLE 3. Benchmarks. Our parallel benchmarks were taken mainly from the SPLASH-2 [43]

benchmark suite, with the exception of Moldyn [29] which is a shared-memory implementation of a

CHARMM-like [7] molecular dynamics application.

TABLE 4. WWT II Simulation parameters

Parameter Value

# of processors 32

Type of system CC-NUMA

Coherence
mechanism

Directory protocol: full-map,
write-invalidate, 3-state MSI

Data memory
hierarchy

L1 cache, SPARC MBus, Local
memory, Remote Block cache

L1 data cache 128KB, direct-mapped, 32-byte
blocks, write-back

Remote block
cache

512KB, direct-mapped, 32-byte
blocks, writeback inclusion with
L1 cache for read-write blocks

Local memory 96MB
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5 Performance Evaluation Results

Sharing patterns.Multicast snooping will work best if the
mean number of sharers encountered by a coherence trans-
action is small (so multicasts can go to far fewer than all
processors). Results in Figure 5 confirm results from the
published literature [15, 2] that show this is the case (for
these benchmarks)1. In particular at most 1.3% of transac-
tions required more than two invalidations (for ocean).

Multicast Mask Prediction. Effective multicast snooping
requires implementable mask predictors that usually
include all necessary processors and limit multicasts to an
average number of destinations much smaller than all pro-
cessors. Table 5 presents results for a viable predictor:
Sticky-Spatial(1) with 4K-entry table size (results for a 1K-
entry table are similar). Columns 2-4 address how much
extra traffic is generated. Column 2 is the average number
of nodes per successful multicast2; column 3 is the average
number of nodes in a predicted multicast that would not
have been included in a perfect multicast; column 4 is the
ratio of the total number of nodes included in all predicted
multicasts (including retries) to the total number of nodes
included in all perfect multicasts. Results show that a prac-
tical predictor can limit multicasts to 2-6 processors (far
fewer than broadcast snooping’s 32 processors) and gener-
ate traffic within a factor of three of optimal. Thus,Sticky-
Spatial(1) is a reasonable predictor, but there is room for
more improvement.

Table 5’s columns 5 and 6 compare multicast snooping to
directories. For example, 73% of masks predicted for all
the coherence transactions of the fft application include all
necessary processors (and possibly more), while 57% of all
transactions found the block at the directory. The difference
between the two columns indicates the percentage of trans-
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cholesky 3.4 1.2 1.7 94 92

fft 3.2 0.3 1.4 73 57

lu 2.4 0.3 1.2 95 93

moldyn 5.4 2.9 2.4 88 56

ocean 3.4 0.8 1.3 95 45

radix 3.0 0.5 1.4 84 80

raytrace 5.6 3.4 2.9 86 75

water-nq 3.8 1.5 1.9 88 85

TABLE 5. Multicast mask prediction
statistics (to 2 significant digits).
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1.  Our results are not exactly the same as others’ due to specific
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actions for which directories will have to contact a third
(owner) node and incur the latency of an extra network
hop. As shown, all the entries in Column 5 are larger than
the corresponding entries in Column 6. Thus, multicast
snooping will find blocks directly (in two hops) more often
than directories will (for our benchmarks). This difference
is small for the SPLASH-2 kernels, but it is significant for
two applications, moldyn and ocean.

Multicast Network Throughput. Given a trace of the
multicasts from the above section, we now ask whether our
multicast address network can deliver much more than one
broadcast per network cycle. Figure 6 shows results for a
bus (black and always one), our network (gray), and an
optimal network (white).1 Our network generally achieves
at least half of optimal throughput. Future work will show
how loaded network latencies compare.

6  Related Work

Multicast snooping is a hybrid between broadcast snooping
[14] and directory coherence [22, 8]. There have been other
hybrid systems which have used snooping buses as part of
larger, more scalable designs than simple broadcast snoop-
ing. One example is the Sequent Sting [25], in which each
node is a snooping SMP connected by an SCI directory
system. Encore Gigamax [42] uses a hierarchy of buses,
where transactions move up the directory as high as needed
to maintain coherence. Corollary Profusion[40] links two
SMP buses with logic that defers a transaction that must
first execute on the other bus. The Data Diffusion Machine
[17] and the KSR-1 [12] are both hybrids in that they use
hierarchies of snooping buses/rings to implement a COMA
protocol that is neither snooping nor a directory. Scott and
Goodman [34] add pruning caches to switches in a multi-
stage interconnection network (MIN) to reduce broadcast
invalidations. Multicast snooping differs from all these
schemes in that (a) masks are predicted and need not be
correct, (b) the multicast set is determined by the issuing
processor and does not use state distributed throughout the
network, and (c) the directory entry is only to verify the
prediction.

Stenstrom [36] proposed a write-update coherence protocol
that uses multicasts in a multistage interconnection net-
work and maintains sharing information at the owner’s
cache (the memory directory only maintains a pointer to
the owner). In contrast, multicast snooping is a write-inval-
idate protocol and allows imperfect masks.

Multicasting has been used to support communication con-
structs in numerous programming environments, including
the ISIS [6] and Orca [4] projects. ISIS uses a software
scheme to support multicast communication to a process
group. The Orca distributed shared memory system is built
upon an underlying software multicast mechanism that is
part of the Panda virtual machine. ISIS and Panda both pro-
vide reliable multicasting and, as with our multicast net-
work, they both ensure that all nodes see communications
in the same order. Multicast snooping differs from these
projects in that it relies on hardware to efficiently perform
reliable multicasting.

Hardware multicast has been studied for both direct [26]
and indirect networks [39]. Research has included switch
design [37], flow control [5] and deadlock avoidance [24].
Multicast has been proposed for efficient support of syn-
chronization variables [3]. Isotach networks provide totally
ordered multicasts and groups of operations which are
atomic in logical time [33]. Isotach networks were origi-
nally proposed to allow pipelined implementations of
sequential consistency without caches and powerful syn-
chronization without locks.

The implementation of our multicast address network uses
techniques similar to those used in distributed simulation.
In particular, null messages are used to place a lower bound
on timestamps of future messages sent on a network link,
and this is similar to the use of null messages in conserva-
tive parallel discrete-event simulation [9,13] and ghost
messages in PRAM emulation [31].

Cache coherence protocols have also been designed to
exploit ordering properties of interconnection networks.
Landin et al. showed that a class of race-free networks
eliminates the need to send acknowledgment messages in a
directory protocol [19]. The Delta Cache protocols [41, 11,
32] exploit the strong ordering properties of Isotach net-
works to provide sequential consistency as well as power-
ful synchronization operations. However, unlike multicast
snooping, Delta Cache protocols require the processor to
check timestamps before completing each L1 cache access.

7  Conclusions and Future Work

This paper proposes a new coherence method calledmulti-
cast snooping, which behaves like snooping for small sys-
tems and gracefully and dynamically degrades to directory-
like indirection for large systems. Multicast snooping is
unique because processors predict which caches should
snoop each coherence transaction by specifying a multi-
cast “mask.” Transactions are delivered with an ordered
multicast network that eliminates the need for acknowledg-
ment messages. Processors handle transactions as they
would with snooping, while a simplified directory operates

1. Consider a trace of Mtotal multicasts, where Mmaxis number of
multicasts to the destination that received the most. For a network
that can deliver to each destination at most one multicast per
cycle, the optimal throughput is Mtotal / Mmax.
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in parallel to check masks and gracefully handle incorrect
ones (e.g., previous owner missing).

The results are preliminary, because they include some
methodological approximations, do not simulate timing,
and are limited to one system size and small benchmarks.
Nevertheless, they provide encouragement that multicast
snooping can support larger systems than conventional
snooping. If the limit is the number of incoming transac-
tions a processor can process, then multicast snooping sys-
tems can be 2-5 times larger. Compared to directory
systems, multicast snooping appears promising because it
more frequently finds data directly (by sometimes avoiding
indirection for data that is not at home) and eliminates the
need to generate, sequence, and wait for explicit acknowl-
edgment messages.

Future work will involve developing a timing simulator to
allow us to study multicast snooping systems in greater
detail. We would also like to examine the performance of
other applications, such as databases, on this simulator. In
addition, there are several other issues that are outside the
scope of this particular paper. It would be interesting to
examine other configurations, such as clusters of SMPs,
and other network architectures, including direct networks.
Studying other network possibilities also opens up the pos-
sibility of relaxing some of our ordering and synchroniza-
tion requirements. Finally, fault tolerance should be
supported to, at least, allow failed switches and links to be
avoided after a reboot.
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