
1

Forwardflow: A Scalable Core for Power-Constrained CMPs

ABSTRACT
Chip Multiprocessors (CMPs) are now commodity hard-
ware, but commoditization of parallel software remains
elusive. In the near term, the current trend of increased core-
per-socket count will continue, despite a lack of parallel
software to exercise the hardware. Future CMPs must
deliver thread-level parallelism when software provides
threads to run, but must also continue to deliver perfor-
mance gains for single threads by exploiting instruction-
level parallelism and memory-level parallelism. However,
power limitations will prevent conventional cores from
exploiting both simultaneously.

This work presents the Forwardflow Architecture, which
can scale its execution logic up to run single threads, or
down to run multiple threads in a CMP. Forwardflow
dynamically builds an explicit internal dataflow representa-
tion from a conventional instruction set architecture, using
forward dependence pointers to guide instruction wakeup,
selection, and issue. Forwardflow’s backend is organized
into discrete units that can be individually (de-)activated,
allowing each core’s performance to be scaled by system
software at the architectural level.

On single threads, Forwardflow core scaling yields a mean
runtime reduction of 21% for a 37% increase in power con-
sumption. For multithreaded workloads, a Forwardflow-
based CMP allows system software to select the perfor-
mance point that best matches available power.

Categories and Subject Descriptors
C.1: [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors), Other Architecture
Styles—Adaptable architectures

General Terms
Performance, Design

Keywords
Chip Multiprocessor (CMP), Power, Scalable Core

If you were plowing a field, which would you rather use:
Two strong oxen or 1024 chickens?

—Attributed to Seymour Cray

1 INTRODUCTION
The last several years have witnessed a paradigm shift in the
microprocessor industry, from chips holding one increas-
ingly complex out-of-order core to chips holding a handful
of simpler cores [13, 32]. While Moore’s Law continues to
promise more transistors [8], power and thermal concerns
have driven the industry to focus on more power-efficient
multicore designs. Microarchitects hope to improve applica-
tions’ overall efficiency by focussing on thread-level
parallelism (TLP), rather than instruction-level parallelism
(ILP) within a single thread.

At least two fundamental problems undermine this vision.
First, microprocessor vendors are already shipping products
in which not all cores can simultaneously operate at full
speed due to power constraints [14]. This trend is likely to
continue, as the fraction of active transistors decreases with
each technology generation [6, 34].

Second, Amdahl’s Law still applies. Even well-parallelized
applications have sequential bottlenecks that limit their
parallel speedup, and most applications are not currently
parallel at all. A thousand simple cores may maximize
performance in an application’s parallel section, but simple
cores exacerbate sequential bottlenecks by providing
limited ILP. Hill and Marty’s multicore model [11] leads to
the conclusion that “researchers should seek methods of
increasing core performance even at high cost.” In other
words, rather than simply double the number of simple
cores when the transistor count doubles, architects should
budget some of the additional transistors to increase single-
thread performance instead.

Together, these two problems motivate scalable cores: cores
that can trade off power and performance as the situation
merits. Scaling core performance means scaling core
resources to extract additional ILP, either by statically
provisioning cores differently or by dynamically
(de)allocating core resources. Conventional core microar-
chitectures have evolved largely in the uniprocessor domain,
and scaling their microarchitectural structures in the CMP
domain poses significant complexity and power challenges.

In a scalable core, resource allocation changes over time.
Cores must not rely on powered-off components to function
correctly when scaled down, and must not wastefully broad-

Dan Gibson
Computer Sciences Department

University of Wisconsin—Madison
1210 W. Dayton St.
Madison, WI 53706

gibson@cs.wisc.edu

David A. Wood
Computer Sciences Department

University of Wisconsin—Madison
1210 W. Dayton St.
Madison, WI 53706

david@cs.wisc.edu

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, to republish, to post
on servers or to redistribute to lists, requires prior specific permis-
sion and/or a fee.

ISCA 2010 Saint-Malo, France

Copyright 2010 ACM

2

cast across large structures when scaled up. Designers of
scalable cores should avoid structures that are difficult to
scale, like centralized register files and bypassing networks.
Instead, they should focus on structures that can be easily
disaggregated, and powered-on incrementally to improve
core performance independent of other structures.

This work presents the Forwardflow Architecture, a scalable
core design targeted at power-constrained CMPs leveraging
a modular instruction window. Forwardflow represents
inter-instruction dependences via a linked list of forward
pointers [23, 24, 35]. Instructions, values, and data depen-
dences reside in a distributed Dataflow Queue (DQ), as
illustrated in Figure 1. The DQ is comprised of independent
banks and pipelines, which can be activated or de-activated
by system software to scale a core’s execution resources.

In a Forwardflow-based CMP, single-thread performance
can be increased by scaling up a single core (19% runtime
reduction on SPEC INT 2006, 25% on SPEC FP 2006, 9%
on the Wisconsin Commercial Workload Suite). Other cores
can be scaled down (e.g., with DVFS [14]) or disabled to
stay within the power budget. Even for multi-threaded
workloads, scaling is still valuable when the power
consumed does not exhaust the supply. Forwardflow cores
can continue to scale performance up until a desired power
budget has been reached.

Forwardflow’s design delivers both high-performance and
energy efficiency. Overall, Forwardflow cores are more
efficient than a traditional core baseline in 44 of 47 studied
benchmarks. No one configuration is most efficient in all
cases, but because Forwardflow cores can scale, they enable
system software to optimize a CMP for the desired metric,
whether it be performance, energy efficiency, or low chip-
wide power consumption.

2 TOWARD SCALABLE CORES
The most important feature of scalable (processor) cores is
that they have multiple operating configurations at varied
power/performance points. Scalable cores can scale up,
allowing single-threaded applications to aggressively
exploit ILP and MLP to the limits of available power, or can
scale down to exploit TLP with more modest (and less
power-hungry) single-thread performance. To compete with
traditional designs, a scalable core should have a nominal
operating point at which it delivers performance comparable
to a traditional out-of-order core at comparable power, and
should offer more aggressive configurations when scaled

up. In other words, performance itself should not be sacri-
ficed for performance scaling.

Canonical work in this domain, Core Fusion [15] and
Composable Lightweight Processors [16], compose entire
cores to scale all pipeline resources at the same rate. Our
work differs by observing that many workloads do not
effectively utilize even relatively narrow instruction fetch
(e.g., four instructions per cycle). To do so, Little’s Law
suggests that a core must maintain enough instructions in
flight to match the product of fetch width and the average
time between dispatch and commit (or squash). These
buffered instructions constitute an instruction window—the
predicted future execution path. As memory latencies
increase, cores require large windows to exploit even
modest fetch bandwidth. Our work builds on this insight by
focusing on scaling window size to expose parallelism in
memory-intensive workloads.

However, not all instructions in the window are alike. In a
typical out-of-order design, instructions not yet eligible for
execution reside in an instruction scheduler. The scheduler
determines when an instruction is ready to execute
(wakeup) and when to actually execute it (selection), based
on operand availability. In general, instruction windows are
easily scalable because they are SRAM-based, while many
instruction schedulers are not because they rely on CAM-
based [36] or matrix-based [10, 27] broadcast for wakeup
and priority encoders for selection.

Because many workloads are limited by latency to memory,
it is important for high-performance cores—and scalable
cores when scaled up—to service as many memory accesses
concurrently as possible. However, a non-scalable instruc-
tion scheduler limits how much MLP a core can exploit, due
to a phenomenon called IQ (scheduler) clog [33], in which
the scheduler fills with instructions dependent on a long-
latency operation (such as a cache miss). Optimizations
exist to attack this problem, e.g., by steering dependent
instructions into queues [22], moving dependent instruc-
tions to a separate buffer [26], and tracking dependences on
only one source operand [17]. These proposals ameliorate,
but do not eliminate, the poor scalability of traditional
instruction schedulers.

Runahead Execution, Waiting Instruction Buffers, and
Continual Flow Pipelines address the scheduler problem by
draining a scheduler of non-ready instructions (e.g., by
buffering instructions [18,31] or by simply discarding them
[7, 21]). Drained instructions are no longer eligible for
scheduling, and therefore they cannot wake and issue until
they are re-inserted into the scheduler.

Another approach to improving scheduler scalability is to
name the first successor of a value explicitly with a pointer
[23, 24, 35], thereby reducing the likelihood of broadcasts
in the scheduling hardware—broadcasts become corner
cases but are still necessary. These approaches reduce
scheduler complexity and power in fixed-size cores because
most instructions have few successors [24, 27]. Our core
design exploits this observation ubiquitously, by using

��� ���� ���	

�
�
�
�

����������
�����	�
�

�����
��
�������
�

�

��
���

�

��
���

�

��
���

��	
���
����

��

�

����

������������������

����������������
	�
��������������
�����������������

Figure 1. Dataflow Queue Example

3

pointers to represent not only the first register dependency,
but all register and memory dependences (via NoSQ [28]),
thereby completely eliminating broadcasts. Like the
dataflow architectures that inspired this work [3,25], our
design leverages these same dependence pointers to direct
data flow within the core itself, rather than relying on a
centralized physical register file.

3 FORWARDFLOW ARCHITECTURE
In Forwardflow cores, inter-instruction dependences are
represented as linked lists of forward pointers [23, 24, 35],
instead of using physical register identifiers to label values.
These pointers, along with values for each operand, are
stored in the Dataflow Queue (DQ), shown in Figure 1,
which takes the place of the traditional scheduler and
centralized physical register file. Instead of broadcasting,
DQ update hardware chases pointers to implement instruc-
tion wakeup. Though most dependence lists are short,
serializing wakeup causes some slowdown. However, the
use of pointers throughout the design enables a large, multi-
banked DQ implementation, which allows independent lists
to be chased concurrently.

At the highest level, the Forwardflow pipeline (Figure 2) is
not unlike traditional out-of-order microarchitectures. The
Fetch stage fetches instructions on a predicted execution
path, and Decode detects and handles potential data depen-
dences, analogous to traditional renaming. Dispatch inserts
instructions into the Dataflow Queue (DQ) and instructions
issue when their operands become available. When instruc-
tions complete, scheduling logic wakes and selects
dependent instructions for execution. Instructions commit
in-order from the DQ.

3.1 Frontend
In Forwardflow, Fetch proceeds no differently than other
high-performance microarchitectures. Decode produces all
information needed for Dispatch, which inserts the instruc-
tion into the DQ and updates the forward pointer chains.
Decode must determine which pointer chains, if any, each
instruction belongs to. It does this using the Register
Consumer Table (RCT), which tracks the tails of all active
pointer chains in the DQ. Indexed by the architectural regis-
ter name, the RCT resembles a traditional rename table
except that it records the most-recent instruction (and
operand slot) to reference a given architectural register.

Each instruction that writes a register begins a new value
chain, but instructions that read registers also update the
RCT to maintain the forward pointer chain for subsequent
successors. The RCT also identifies registers last written by
a committed instruction, and thus which values can be read
at dispatch-time from the Architectural Register File (ARF).

The RCT is implemented as a RAM-based table. Since the
port requirements of the RCT are significant, we expect it to
be implemented aggressively and with some duplication.
Fortunately, the RCT itself is small: each entry requires only

 bits.

3.2 The Dataflow Queue (DQ)
The Dataflow Queue (DQ) is the heart of the Forwardflow
architecture, and is involved in instruction dispatch, issue,
completion, and commit. The DQ is essentially a CAM-free
Register Update Unit [30], in that it schedules and orders
instructions, but also maintains operand values. Each entry
in the DQ holds an instruction’s metadata (e.g., opcode,
ALU control signals, destination architectural register
name), three data values, and three forward pointers, repre-
senting up to two source operands and one destination
operand per instruction. Value and pointer fields have
empty/full and valid bits, respectively, to indicate whether
they contain valid information. Dispatching an instruction
allocates a DQ entry, but updates the pointer fields of previ-
ously dispatched instructions. Specifically, an instruction’s
DQ insertion will update zero, one, or two pointers belong-
ing to earlier instructions in the DQ to establish correct
forward dependences.

Figure 3 illustrates the dispatch process for a simple code
sequence, highlighting both the common case of a single
successor (the R4 chain) and the uncommon case of multi-
ple successors (the R3 chain). Fields read are bordered with
thick lines; fields written are shaded. The bottom symbol
(⊥) is used to indicate NULL pointers (i.e., cleared pointer
valid bits) and cleared empty/full bits.

In the example, Decode determines that the ld instruction is
ready to issue at Dispatch because both source operands are
available (R1’s value, 88, is available in the ARF, since its
busy bit in the RCT is zero, and the immediate operand, 44,
is extracted from the instruction). Decode updates the RCT
to indicate that ld produces R3 (but does not add the ld to
R1’s value chain, as R1 remains available in the ARF).

DQ

Decode

L1-I

Fetch

RCTRCTRCT

B
Pr

ed
UUUUCtrl

Issue Execute CommitDispatch

Figure 2. Pipeline diagram of the Forwardflow architecture. Forwardflow-specific structures are shaded.

ARF

2 N2 DQEntrieslog⋅ 4+

4

Dispatch reads the ARF to obtain R1’s value, writes both
operands into the DQ, and issues the ld immediately. When
the add is decoded, it consults the RCT and finds that R3’s
previous use was as the ld’s destination field, and thus
Dispatch updates the pointer from ld’s destination to the
add’s first source operand. Like the ld, the add’s immedi-
ate operand (55) is written into the DQ at dispatch.
Dispatching the add also reads the ld’s result empty/full
bit. Had the ld’s value been present in the DQ, the dispatch
of the add would stall while reading the value array.

The mult’s decode consults the RCT, and discovers that
both operands, R3 and R4, are not yet available and were
last referenced by the add’s source 1 operand and the add’s
destination operand, respectively. Dispatch of the mult
therefore checks for available results in both the add’s
source 1 value array and destination value array, and
appends the mult to R3’s and R4’s pointer chains. Finally,
like the add, the sub appends itself to the R3 pointer chain,
and writes its dispatch-time ready operand (66) into the
DQ.

Values for instruction operands may be obtained in four
ways, each of which are handled differently in Forwardflow:

• Immediate operands, extracted from the instruction
itself, are written into the instruction’s appropriate
operand value array in Dispatch (e.g., the add’s second
operand, 55).

•The Architectural Register File (ARF) is read in Dis-
patch to provide committed values to dispatching
instructions (e.g., the ld’s first source operand, R1).
Values from the ARF are written into the instruction’s
operand value array, to ensure that values are local to
instructions and can be accessed at issue-time without
consulting potentially distant structures (e.g., a central-
ized register file).

•Values produced by earlier in-flight instructions that
have not yet executed (i.e., values not available at the
successor’s dispatch) will be delivered to the instruction
by the pointer chasing hardware (e.g., this will be the
case for the add, mult, and sub instructions).

•Values from earlier in-flight instructions that have
already executed (identified via empty/full bits on value
arrays) are read from the previous successor’s (or pro-
ducer’s) value array and written into the dispatching
instruction’s value array (does not appear in the exam-
ple).

3.3 Wakeup, Selection, and Issue
Once an instruction has been inserted into the DQ, it waits
until its unavailable source operands are delivered by the
execution management logic. Each instruction’s DQ entry
number (i.e., its address in the RAM) accompanies the
instruction though the execution pipeline. When an instruc-
tion nears completion in its functional pipeline, pointer
chasing hardware reads the instruction’s destination value
pointer. This pointer defines the value chain for the result
value, and, in a distributed manner, locations of all succes-

��� ���� ���	

�
�
�
�

����������
�����	�
�

�����
��
�������
�

�

��
���

�

��
���

�

��
���

��	
���
����

��

�

����
����
����

���
����

�

	

�

�
�
��

�

	

�

�
��
�

�
�
	
�

����

������������������ ���������

�����������������������
�����
	�
���������������������
�����
���������������		 !��"
��#��

��� ���� ���	

�
�
�
�

������

������	�
�
�����
��
�������
�

�

��
���

�

��
���

�

��
���

��	
���
����

��

�

����
����
����

���
���

�

	

�

�
�
��

�

	

�

�
��
�

�
�
	
�

����

������������������ ���������

�����������������������
�����

�����
���������� !��"
��#��
�����������������

��� ���� ���	

�
�
�
�

������

������

�������
��
�������
�

�

��
���

�

��
���

�

��
���

��	
���
����

��

�

���
����
����

���
���

�

	

�

�
�
��

�

	

�

�
��
�

�
�
	
�

����

������������������ ���������
���������������

 !��"
��#��
	�
��������������
�����������������

��������	
����
��� ���� ���	

�
�
�
�

������

������

������

��������
�

�

��
���

�

��
���

�

��
���

��	
���
����

��

�

��

���
���

����
���
���

�

	

�

�
�
��

�

	

�

�
��
�

�
�
	
�

����

������������������ !��"
��#��$���������

����������������
	�
��������������
�����������������

Figure 3. Dispatch Example

5

sors through transitive pointer chasing. The complete
traversal of a chain is a multicycle operation, and successors
beyond the first will wakeup (and potentially issue) with
delay linearly proportional to their position in the chain.

The wakeup process is illustrated in Figure 4. Upon comple-
tion of the ld, the memory value (99) is written into the
DQ, and the ld’s destination pointer is followed to the first
successor, the add. Whenever a pointer is followed to a new
DQ entry, available source operands and instruction
metadata are read speculatively, anticipating that the arriv-
ing value will enable the current instruction to issue (a
common case [17]). Thus, in the next cycle, the add’s
metadata and source 2 value are read, and, coupled with the
arriving value of 99, the add may now be issued. Concur-
rently, the update hardware reads the add’s source 1
pointer, discovering the mult as the next successor.

As with the add, the mult’s metadata, other source
operand, and next pointer field are read. In this case, the
source 1 operand is unavailable, and the mult will issue at
a later time (when the add’s destination pointer chain is
chased). Finally, following the mult’s source 2 pointer to
the sub delivers 99 to the sub’s first operand, enabling the
sub to issue. At this point, a NULL pointer is discovered at
the sub instruction, indicating the end of the value chain.

After instructions have been executed (i.e., when the
empty/full bit on the destination operand’s field has been
set), instructions are removed from the head of the DQ and
committed in program order. Commit logic removes the
head instruction from the DQ by updating the DQ’s head
pointer and writes to the ARF where applicable. If the
RCT’s last writer field matches the committing DQ entry,
the RCT’s busy bit is cleared and subsequent successors
may read the value directly from the ARF. The commit logic
is not on the critical path of instruction execution, and the
write to the ARF is not timing critical as long as space is not
needed in the DQ for instruction dispatch.

As stated above, the pointer chasing hardware is responsible
for issuing instructions to functional units during traversal.
Should a particular instruction be unable to issue because of
a structural hazard (i.e., all functional units are busy), the
pointer chase must stall until the instruction can issue
normally. Nominally, this condition is only a minor perfor-
mance overhead. Rarely, a second structural hazard can
arise when pointer chain that would normally begin its
chase requires the use of stalled pointer-chasing control
circuitry. This forms a circular dependence, as the
functional unit cannot accept a new operation (i.e., the
current result must first be collected from the functional
unit) and the pointer-chasing hardware must stall until it can
issue the current instruction, resulting in deadlock. The
intersection of these two control hazards is rare, and can be
ameliorated by modest buffering. Should deadlock still
arise, the circular dependence is easily detected (i.e., all
functional units are stalled and the update hardware is
stalled), and can be resolved with a pipeline flush; ordering

��� ���� ���	

�
�
�
�

����������
�����	�
�

������
��
��������
�

�

��
���

�

��
���

�

��
���

��	
���
����

��

�

����

������������������ ��������
���������������

%��"�&�'����
	�
���������������������
�����
������������������������
�����

��
�
���

�
�

�����

���!(�������

��� ���� ���	

�
�
�
�

����������
������	�
�

������
��
��������
�

�

��
���

�

��
���

�

��
���

��	
���
����

��

�

����

������������������ ��������

��������������������������������

�����
����������
%��"�)�
��*��'����+
������������������������
�����

��
�
���

�
�

��� ���� ���	

�
�
�
�

�����������
������	�
�

������
��
��������
�

�

��
���

�

��
���

�

��
���

��	
���
����

��

�

����

������������������ ��������

��������������������������������
	�
���������������������
�����
���������������		
%��"�&�'����

��
�
���

�
�

�����

����!(����,��

Figure 4. Wakeup Example

��������	
����
��� ���� ���	

�
�
�
�

����������
�����	�
�

�����
��
��������
�

�

��
���

�

��
���

�

��
���

��	
���
����

��

�

����

������������������ ��������

�����������������������
�����
	�
���������������������
�����
������������������������
�����

��
�
���

�
�

������	��

6

properties of functional units guarantees forward progress
of at least one instruction.

3.4 Distributed Implementation
The number of value chains that may be followed concur-
rently in a given cycle is bounded by the number of banks
(and ports) on the DQ. Pointers that designate operands in a
distant bank must traverse a significant chip area. Figure 5
illustrates a conceptual Forwardflow floorplan that arranges
eight DQ banks in groups of four; pointers that cross bank
groups incur additional latency. Functional pipelines are
associated with groups, so execution resources can scale
with window size.

The DQ is sub-banked on low-order bits of the DQ entry
number to support concurrent access to contiguous
elements. Sub-banking delivers ample bandwidth to
dispatch and commit logic—which access the DQ contigu-
ously—without adding additional ports. Each field of the
DQ is implemented as a separate SRAM (e.g., value fields
are separate from each pointer field, etc.), to further simplify
the design, and to enable greater concurrency in the DQ
management logic.

Since the DQ is built entirely of small SRAMs, it can scale
to much larger sizes than a traditional instruction scheduler,
yet is accessed at finer granularity than a ROB. Each entry
in the DQ requires an estimated
bits of storage across all fields.

3.5 Pointer Chasing Hardware
In our design, each bank of the DQ is serviced by an
independent instance of the pointer chasing hardware shown
in Figure 6, consisting of a next pointer register, a current
value register, a pending queue of pointer/value pairs, and
buffered ports to the interconnect between the banks of the
DQ. The logical behavior is described in the accompanying
algorithm, which runs every cycle. Since DQ entry numbers
accompany instructions through functional pipelines, point-
ers to destination fields can be inferred as instructions
complete execution.

During a given cycle, the update hardware for a particular
bank will attempt to follow exactly one pointer. If no pointer
is available (line 8), the DQ is not accessed by the update
hardware, thereby conserving power. Otherwise, if next
designates a non-destination field (i.e., one of the two
source operands), the remaining source operand (if present)
and instruction opcode are read from the DQ, and the

instruction is passed to issue arbitration (line 15). If arbitra-
tion for issue fails, the update hardware stalls on the current
next pointer and will issue again on the following cycle.

The update hardware writes the arriving value into the DQ
(line 18) and reads the pointer at next (line 19), following
the list to the next successor. If the pointer designates a DQ
entry assigned to a different bank, the pair
<next,value> is placed in the bank transfer queue (line
23), and will traverse the interconnect in the next cycle.

The inter-DQ-bank interconnect itself is comprised of a
first-level crossbar between neighboring banks (refer to
Figure 5) for fast communication between logically adjacent
DQ entries. A second-level crossbar connects each bank
group, with additional communication delay. For maximum
performance, the update hardware optimizes the case where
next is initially NULL, the pending queue is empty, and a
new pointer/value pair arrives from the interconnect.

3.6 Control Speculation
Like other out-of-order machines, Forwardflow relies on
dynamic branch and target prediction to improve pipeline

CTL

DQ B0

CTL

DQ B1

CTL

DQ B2

CTL

DQ B3

CTL

DQ B4

CTL

DQ B5

CTL

DQ B6

CTL

DQ B7

Figure 5. Eight-Bank Hierarchical DQ Floorplan

Bank Group 0 Bank Group 1

200 3 N2 DQEntrieslog⋅+

Figure 6. Pointer Chasing Hardware and Algorithm

pt
r

va
l

pt
r

va
l

pt
r

va
l

ptr
val

ptr
val

next

value Pending Queue

Bank Transfer Queue

To
/F

ro
m

 D
Q

1 // Handle pending queue
2 if next == NULL:
3 next = in.ptr
4 value = in.val
5 in.pop()
6
7 if next == NULL:
8 return // No work to do
9
10 // Try to issue, if possible
11 if type(next) != Dest &&
12 dq[next].otherval.isPresent:
13 val2 = dq[next].otherval
14 opcode = dq[next].meta
15 if !Issue(opcode, val, val2):
16 return // Stall
17
18 dq[next].val = value
19 next = dq[next].ptr
20
21 // Handle DQ bank transfer
22 if bank(next) != bank(this):
23 out.push(next,value)
24 next = NULL

7

utilization. Branch recovery mechanisms must restore the
RCT’s state as it was before the instructions following the
branch were decoded, and invalidate all false-path instruc-
tions. The former is accomplished by checkpointing the
RCT on predicted branches, a technique identical to the
checkpointing of a register rename table. To accomplish the
latter, we augment the pointer fields with valid bits, which
are checkpointed with RCTs on branch predictions and
restored on misprediction events [24].

Not all forms of recovery can be handled by restoring from
checkpoints. When exceptions or interrupts occur, it is legal
to flush all instructions that follow the excepting instruction
and quiesce the pipeline. This allows decode to resume with
an empty RCT. So long as recoveries of this type are rare
cases, performance impact is limited.

3.7 Scaling Forwardflow Cores
The use of pointers throughout the design enables Forward-
flow’s control logic to handle window size reconfiguration
gracefully—pointers are already oblivious of the structure
to which they point. Since the DQ is managed as a FIFO, it
is a simple matter to modify the head and tail pointer
wraparound logic to accommodate variable DQ capacities
that are powers of two, using simple modulo-2N logic. DQ
size can be abstracted as a power-control state [14],
manageable by system software. Unused bank groups can
safely be power-gated. While some prior work has
examined techniques for dynamically adapting a core’s
aggressiveness in hardware [2], for now, we leave this
policy decision to software. This work is agnostic of the
precise mechanism that software might use to make scaling
decisions, but many solutions are possible, including static
profiling, online monitoring, and dynamic adaptation.

4 METHODOLOGY
Our target machine is an 8-way CMP, pictured in Figure 7.
Each node consists of a core, a private L1/L2 cache hierar-
chy, and one bank of a large, shared L3. We assume each
core and private cache hierarchy operates in its own voltage
domain, and furthermore that bank groups in the Forward-
flow designs can be independently powered off. We evaluate
Forwardflow using full-system cycle-accurate simulation,
using Virtutech Simics [19], GEMS’s Ruby [20], and in-
house timing-first processor models. We simulate SPEC
CPU 2006 [9], SPEC OMP [4], and Wisconsin commercial
workloads [1]. We report and as our measures of
energy efficiency.

We include a traditional out-of-order implementation as our
baseline (OoO), to show that a nominal Forwardflow core
performs comparably to a more traditional architecture. All
target machines use NoSQ [28] for memory disambigua-
tion. Our implementation of NoSQ represents memory
dependences by inserting artificial register dependences,

Frontend

L1-D

L2

BGBGBGBG L3B0

L2

P0

L2

P4

Figure 7. 8-Way CMP Target

L3B4

L3B1

L2

P1

L2

P5

L3B5

L3B2

L2

P2

L2

P6

L3B6

L3B3

L2

P3

L2

P7

L3B7

Table 1. Configuration Parameters

Component OoO F-1 F-2 F-4

Window Size 128 128 (One Bank Group) 256 (Two Bank Groups) 512 (Four Bank Groups)

Scheduler Type Hybrid [12] Forwardflow

Scheduler Size Unified 32-entry Full Window

Functional Units 2xI-ALU/2xFP-ALU/
2xD-MEM

2xI-ALU/2xFP-ALU/
2xD-MEM

4xI-ALU/4xFP-ALU/
2xD-MEM

8xI-ALU/8xFP-ALU/
2xD-MEM

Branch Prediction YAGS 4K PHT 2K Exception Table, 2KB BTB, 16-entry RAS

Disambiguation NoSQ [28] 1024-entry predictor, 1024-entry double-buffered SSBF

Fetch-Dispatch Time Min. 7 Cycles

L1-I Cache 32KB, 4-way, 64B line, 4-cycle pipelined, 2 lines per cycle, 2 processor-side ports

L1-D Cache 32KB, 4-way, 64B line, 4-cycle LTU, write-through, write-invalidate, included by L2

L2 Cache 1 MB, 8-way, 4 banks, 64B line, 11 (12) cycle load (store) latency, write back, private

L3 Cache 8 MB, 16-way, 8 banks, 64B line, 24 cycle latency, shared

Main Memory 2 QPI-like Links (Up to 64GB/s), 300 cycle latency

Coherence MOESI-based Directory Protocol

On-Chip Interconnect 2D Mesh, 16B bidirectional links, one transfer per cycle, 1-cycle 5-ary routers, 5 virtual channels per link

ED ED2

8

which are enforced by the DQ as though a genuine register
dependency existed. NoSQ’s predictions are verified via
store vulnerability filtering and load replay at commit-time.

We evaluate three Forwardflow configurations with progres-
sively larger DQs: F-1, F-2, and F-4. F-1 has the same
window size and the same number of execution resources as
OoO. F-1 has a four-way banked DQ; each bank has 32
entries. With the exception of cache bandwidth and capacity
(held constant, as we do not scale the L1-D or D-TLB), F-2
has twice the execution resources of F-1—it represents two
F-1 backends powered-on, similar to Figure 5. F-4 again
doubles backend resources (i.e., four powered-on
backends), for an aggregate window size of 512 entries,
peak issue rate of 18 (8 INT, 8 FP, 2 MEM).

Our target machines run unmodified SPARCv9 operating
systems and binaries. We model hardware-assisted TLB fill
and register window exceptions for all target machines. We
simulate each benchmark for one hundred million instruc-
tions. Multiple runs are used to achieve tight 95%
confidence intervals (error bars are not visible in most
cases). Benchmarks are fast-forwarded past their initializa-
tion phases, during which page tables, TLBs, predictors,
and caches are warmed. We have augmented our simulators
with Wattch [5] and CACTI 5 [29], which provide architec-
tural-level approximations of power consumed by logic and
memory structures in the 32nm process. Our model assumes
aggressive clock gating of logic structures not in use, with
no reactivation delay. L2 and L3 caches are implemented
with variable bias to control leakage and Low Standby
Power Devices [29] are used throughout the design,
accounting for low overall leakage power.

5 EVALUATION
We first consider the behavior of single threads on single
cores of our 8-way CMP. We assume the seven unused cores
are in an off state in which they consume no power (this
assumption also applies to their private L2 caches, but not to
their shared L3 banks—single-thread benchmarks observe
the full L3 capacity). We believe this mode of operation will
not be uncommon in future chips, as commodity multi-
threading remains elusive for many workloads.

A scalable core allows core configuration to be customized
by system software, so it is possible to have the best of all
worlds in most situations. We envision that this capability
will complement DVFS in the positive scaling direction
(i.e., can be used to scale performance up beyond what
frequency scaling alone can provide). However, for due

diligence, we evaluate all configurations, with the full
expectation that not all points will be favorable for all
configurations.

5.1 Single-Threaded Performance Results
Figure 8 presents runtimes for individual SPEC INT 2006
benchmarks, normalized to OoO. Figure 9.a presents the
geometric means for SPEC INT, SPEC FP and single-thread
versions of the commercial workloads. Overall, these show
the expected result that performance improves as window
size increases: the mean runtime of F-4 is 21% less than F-1
(23% vs. OoO)—indicating that Forwardflow delivers
performance scaling for single threaded workloads.

Figure 8. SPEC INT 2006 Runtime

0.0

0.5

1.0

N
or

m
. R

un
tim

e

O
oO F-

1
F-

2
F-

4

astar

O
oO F-

1
F-

2
F-

4
bzip2

O
oO F-

1
F-

2
F-

4

gcc

O
oO F-

1
F-

2
F-

4

gobmk

O
oO F-

1
F-

2
F-

4

h264ref

O
oO F-

1
F-

2
F-

4

hmmer

O
oO F-

1
F-

2
F-

4

libquantum

O
oO F-

1
F-

2
F-

4

mcf

O
oO F-

1
F-

2
F-

4

omnetpp

O
oO F-

1
F-

2
F-

4

perlbench

O
oO F-

1
F-

2
F-

4

sjeng

O
oO F-

1
F-

2
F-

4

xalancbmk

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
. R

un
tim

e

O
oO F-

1

F-
2

F-
4

INT

O
oO F-

1

F-
2

F-
4

FP

O
oO F-

1

F-
2

F-
4

COM

Figure 9. a) INT, FP, and COM Mean Runtime

Figure 9. b) INT, FP, and COM Mean MLP

0.0

1.0

2.0
N

or
m

. M
L

P

O
oO F-

1

F-
2

F-
4

INT

O
oO F-

1

F-
2

F-
4

FP

O
oO F-

1

F-
2

F-
4

COM

0

50

100

150

W
in

do
w

 O
cc

up
an

cy

Completed
Executing
Waiting

O
oO F
-1

F
-2

F
-4

INT

O
oO F
-1

F
-2

F
-4

FP

O
oO F
-1

F
-2

F
-4

COM

Figure 9. c) INT, FP, and COM Categorized Mean
Window Occupancy

9

To gain insight into the behavior of our design, we examine
the MLP and categorized window occupancy of each
configuration in Figures 9.b and 9.c, respectively. In the
latter, we classify post-dispatch instructions into three
categories: Waiting instructions are not yet eligible to
execute because of an unavailable operand (these instruc-
tions are scheduler-resident in OoO). Executing instructions
are currently being executed by the functional pipelines, or
are outstanding in the memory system. Completed instruc-
tions have finished execution, but have not yet committed,
due to an earlier Waiting or Executing instruction.

MLP and occupancy of Executing instructions (the
observed ILP) are of key importance to performance.
Across all single-thread benchmarks, univariate regression
of Forwardflow runtimes with respect to MLP and Execut-
ing occupancy yields median and ,
respectively, suggesting that both play an important role in
performance scaling.

OoO suffers from IQ clog in several cases (most dramati-
cally in libquantum), limiting performance. Instructions
dependent on cache misses fill OoO’s scheduler, preventing
dispatch—even if ready instructions follow in the subse-
quent instruction stream. The effect of IQ clog is evident in
Figure 9.c: OoO’s mean Waiting occupancy is very close to
the scheduler size, indicating that the scheduler is often full.
The Forwardflow designs, with no disjoint scheduler, do not
suffer from scheduler clog (and can therefore accommodate
more Waiting instructions). This yields a small runtime
reduction of 2.4% for F-1 versus OoO, in spite of the
latency of serialized wakeup in Forwardflow cores.

Further insight is offered by considering the throughput of
several on-chip structures (Figure 10) as the core is scaled
from F-1 to F-4. Not surprisingly, scaling the Forwardflow
DQ increases functional unit throughput (FUs), but also
more aggressively exercises unscaled portions of the chip.
Throughput at L2 and L3 input ports, on-chip links,
memory controllers, and the fetch logic all increase substan-
tially when the core is scaled up. In other words, core
scaling enables single threads to better utilize shared chip
resources (nominally provisioned for many cores), and to
better utilize portions of the core that are not scaled (e.g.,
Fetch).

In three cases, no Forwardflow configuration exceeds the
performance of OoO. bzip2 and hmmer both exhibit high
L1-D hit rates, and thus the latency of serialized wakeup

cannot be hidden by accesses to memory (gromacs from
SPEC FP 2006 behaves similarly). Some benchmarks are
not particularly sensitive to changes in window size (e.g.,
gcc, gobmk, sjeng), as these benchmarks are control
intensive, and performance gains are quickly lost to branch
misprediction. sjeng’s performance actually degrades as
the window size grows beyond a certain point. Forward-
flow’s performance does not scale perfectly: scaling larger
comes at the cost of increased wire delay when communi-
cating with distant DQ elements. Increased operand
network delay, and increased delay in dispatching instruc-
tions to distant DQ banks can overcome the benefit gained
from increased window capacity and issue bandwidth.

5.2 Single-Threaded Power
Figure 11 presents the mean chip-wide power breakdown
for each configuration. All power results are normalized to
the harmonic mean power consumed by OoO when running
SPEC INT. We organize power into twelve categories: of
those that are not self-explanatory, “Other” includes NoSQ
and control logic not suitable for other categories,
“Network” refers to the on-chip inter-processor network,
“DMEM” includes D-TLBs and L1-D caches, “Fetch”
includes I-TLBs and L1-I caches, “Bypass/ON” represents
power consumed by OoO’s bypassing network or Forward-
flow’s operand network, and “Sched/UH” represents OoO’s
scheduler and Forwardflow’s update hardware, respectively.

The general trend of power consumption is fairly uniform
across all workloads: F-1 consumes 9.9% less power overall
than OoO, due to Forwardflow’s efficient SRAM-based
design. F-2 and F-4 tend to exceed OoO’s consumption
(7.2% and 23% respectively), constituting a dynamic power
range of 37% between F-1 and F-4. However, merely
exceeding the power consumed by a single active OoO core
does not imply that the CMP’s power budget is exceeded—
the power required to operate all cores simultaneously (e.g.,
Figure 13) is substantially higher than operating F-4 alone
for any one benchmark.

The larger Forwardflow configurations consume more
power than OoO overall, but much of this increase in power
consumption arises because activity increases elsewhere on

0.0

0.5

1.0

N
or

m
. T

hr
ou

gh
pu

t

1.
1

1.
2e

-0
1

2.
2e

-0
3

5.
5e

-0
3

1.
6e

-0
3

2.
9

F-
1

F-
2

F-
4

FUs

F-
1

F-
2

F-
4

L2
F-

1
F-

2
F-

4

L3

F-
1

F-
2

F-
4

Links

F-
1

F-
2

F-
4

MCs

F-
1

F-
2

F-
4

Fetch

Figure 10. Scaling Effects on Throughput

R2 0.92= R2 0.94=

0.0

0.5

1.0

1.5

N
or

m
. P

ow
er

Sched/UH

PRF/ARF

Rename/RCT

ROB/DQ

Bypass/ON

Fetch

ALUs

DMEM

Network

L2/L3

Other

Static

O
oO F-

1

F-
2

F-
4

INT

O
oO F-

1

F-
2

F-
4

FP

O
oO F-

1

F-
2

F-
4

COM

Figure 11. Single-Thread Power Breakdown

10

the CMP—from the graph, it is evident that the power
consumed from Forwardflow-specific components (Sched,
RF, RCT, DQ) does not increase as substantially as other
core components (e.g., Fetch) or from the on-chip caches
(L2/L3). This is a desired result, and follows from the
throughputs shown in Figure 10. Forwardflow can scale
core performance without concentrating power dissipation
in the scaled components.

Figure 12 presents mean and . Because F-1 is both
faster and consumes less power than OoO, it is not surpris-
ing that F-1 is more efficient overall by these metrics. One
of the three Forwardflow configurations minimizes and

in 30 of 33 of the single-threaded benchmarks.
However, no single configuration is most efficient for all
workloads—12 benchmarks minimize with F-1, 6 with
F-2, and 12 with F-4. , with a heavier weight on perfor-
mance, is optimized in 13 benchmarks by F-2, and in 17 by
F-4. Because no one configuration best suits all workloads,
scalable cores in general and Forwardflow cores in particu-
lar enable system software to optimize the CMP for peak
performance, lowest power consumption, or optimum
efficiency, as the situation merits.

5.3 Multithreaded Workloads
We next evaluate the CMP when it is fully utilized by a
multithreaded application: either a commercial workload, or

one of the SPEC OMP benchmarks. We again evaluate the
performance, power, and efficiency of each configuration,
but now all eight cores on our CMP are in an active state. In
the multithreaded domain, the configuration space becomes
significantly more complicated, as the possibility of hetero-
geneity arises. Though we leave any evaluation of this
heterogeneity for future work, we observe that there are a
large cross-product of design points between all-F-1 and all-
F-4, considering the number of available benchmarks.

Figure 13 plots performance and power of multithreaded
benchmarks. Unlike previous runtime graphs, Figure 13
plots speedup normalized to that of OoO (OoO itself does
not explicitly appear on the plots). Each benchmark is repre-
sented by a line, beginning with the power/performance
point of F-1, and continuing to those of F-2 and F-4. Power
is normalized to the same scale as Figure 11: Y=1.0 is the
power consumed by one OoO-core running SPEC INT
2006. Note that SPEC OMP benchmark art is absent from
the figure, as its behavior is dominated by TLB fill, and does
not appear at the chosen scale because of very low overall
power consumption.

As with the single-threaded workloads, most of the multi-
threaded workloads scale in both power consumption and
performance from F-1 to F-4, though some benchmarks do
not scale at all (e.g., ammp and wupwise in SPEC OMP).
Mean runtime reduction is 12% (8.2%) for OMP (commer-
cial workloads), and is accompanied by an increase in chip
power of 32% (40%).

We observe a substantial power range in the objective
benchmarks, as each exercises the available resources in a
different manner. Depending on the available power budget,
it may not be possible to run even scaled-down cores at full
speed (e.g., DVFS may be required): F-1 running apsi
consumes more than 12x the power of an average single
thread of SPEC INT on OoO. With the aggressive clock
gating used in this study, these ranges are possible, as an
individual apsi thread is comparable in power consump-
tion to the most power-hungry threads of SPEC CPU (and,
of course, there are eight such threads in our OMP
benchmarks).

Because we set no quantitative upper bound on our CMP
power envelope, we cannot conclude which configurations

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
. E

*D

O
oO F-

1

F-
2

F-
4

INT O
oO F-

1

F-
2

F-
4

FP O
oO F-

1

F-
2

F-
4

COM

Figure 12. a) Normalized ED

0.0
0.2
0.4
0.6
0.8
1.0

N
or

m
. E

*D
^2

O
oO F-

1

F-
2

F-
4

INT O
oO F-

1

F-
2

F-
4

FP O
oO F-

1

F-
2

F-
4

COM

Figure 12. b) Normalized ED2

ED ED2

ED
ED2

ED
ED2

1 1.1 1.2 1.3 1.4
4

6

8

10

12

14

16

N
om

al
iz

ed
 P

ow
er

Nomalized Performance

ammp
applu
apsi
equake
fma3d
galgel
mgrid
swim
wupwise

0.98 1 1.02 1.04 1.06 1.08 1.1 1.12 1.14 1.16
4

6

8

10

N
om

al
iz

ed
 P

ow
er

Nomalized Performance

apache
jbb
oltp
zeus

Figure 13. SPEC OMP (left) and Commercial Workload (right) Power vs. Performance

11

are best. Instead, we briefly consider two hypothetical
power budgets. The first is Y=8.0, the power budget at
which the CMP is provisioned to allow each core to operate
at OoO’s power when running SPEC INT. Under this
constraint, OoO can run 9 of 14 benchmarks at full speed
(i.e., without any DVFS to hold power below the accepted
maximum). At least one Forwardflow configuration can run
without DVFS for all but two of these benchmarks, and
several benchmarks (e.g., equake, fma3d, jbb) can
safely scale to F-4. A second point of interest is Y=14.6, at
which all OoO configurations can run without employing
DVFS. At this power level, all Forwardflow configurations
are feasible, except F-4 running galgel or apsi.
Between these extremes of power budget, Forwardflow
configurations—both the evaluated homogeneous and the
possible heterogeneous configurations—provide a wealth of
dynamic power range for system software to exploit.

As in the single-thread experiments, no single configuration
is most efficient for all 14 benchmarks. is minimized by
F-1 in 9 cases, by F-2 in 1, and by F-4 in the remaining 4.
As before, additional performance weight in the metric
skews the minimum toward more aggressive designs, to F-1
for 6 benchmarks, F-2 for 1, and F-4 for the remaining 7.
OoO never minimizes , nor .

6 CONCLUSIONS AND FUTURE WORK
Though Moore’s Law endures, the fraction of simulta-
neously active transistors is dropping, and architects must
find new methods to deliver both ILP and TLP with a single
chip design. Single threads are likely to remain common
workloads in many scenarios, but the transition to threading
should not be hampered by lack of available parallelism in
the hardware. To this end, we have re-evaluated core micro-
architecture to design a processor that can scale its
execution resources to match the available TLP. Our design,
Forwardflow, is a scalable core architecture implementing
out-of-order execution with manageable size and complex-
ity. Forwardflow’s execution resources can be scaled up to
improve single-thread performance by 21% when few
threads are available, allowing greater utilization of CMP
resources by single threads than a traditional design. We
evaluate a Forwardflow design that is ISA-compatible with
existing SPARCv9 binaries and operating systems.

The Forwardflow core design itself is efficient and disaggre-
gated. It replaces centralized scheduling logic and register
files with a distributed, RAM-based Dataflow Queue (DQ),
which can scale gracefully from small to large instruction
windows, allowing the system to trade-off power and
performance depending on how many DQ banks the system
software provisions and enables. This design is more
energy-efficient in 44 of 47 studied workloads (by either

 or metrics).

Forwardflow joins and, we hope, will be followed by other
proposals to address the key issue of single-thread perfor-
mance in the CMP domain—the design of scalable cores
alone is an area worthy of future exploration. Perhaps most
importantly, in order for future scalable core designs to

flourish, much research remains exploring scaling policies.
In particular, it is not clear how system software (or some
other controlling entity) should go about choosing a core
configuration to best match a particular workload in absen-
tia of advance profiling. The complexities of managing
power consumption in a CMP are subtle, and as this work
has shown, there is no single configuration that will be
optimal in all cases. Moreover, benchmark behavior
changes in time, and this should be considered in future
work addressing these challenges.

ACKNOWLEDGEMENTS
This work is supported in part by the National Science
Foundation (NSF), with grants CCR-0324878, CNS-
0551401, CNS-0720565, and CCF-0916725, as well as
donations from Microsoft and Sun Microsystems/Oracle.
The views expressed herein are not necessarily those of the
NSF, Microsoft or Sun Microsystems/Oracle. Prof. Wood
has a significant financial interest in Microsoft. The authors
would like to acknowledge Mark Hill, Yasuko Watanabe,
Natalie Enright Jerger, and members of the Multifacet and
Multiscalar research groups (past and present), for encour-
agement, advice, and support. We further acknowledge the
attendees of the UW Computer Architecture Affiliates
conference for spirited discussion and suggestions, and our
anonymous reviewers for their very useful remarks.

REFERENCES
[1] A. R. Alameldeen, C. J. Mauer, M. Xu, P. J. Harper, M. M. K.

Martin, D. J. Sorin, M. D. Hill, and D. A. Wood. Evaluating
Non-deterministic Multi-threaded Commercial Workloads. In
Proc. of the 5th Workshop on Computer Architecture Evalua-
tion Using Commercial Workloads, pages 30–38, Feb. 2002.

[2] D. Albonesi, R., Balasubramonian, S. Dropsbo,
S. Dwarkadas, F. Friedman, M. Huang, V. Kursun,
G. Magklis, M. Scott, G. Semeraro, P. Bose,
A. Buyuktosunoglu, P. Cook, and S. Schuster. Dynamically
tuning processor resources with adaptive processing. IEEE
Computer, 36(2):49–58, Dec. 2003.

[3] K. Arvind and R. S. Nikhil. Executing a Program on the MIT
Tagged-Token Dataflow Architecture. IEEE Transactions on
Computers, pages 300–318, Mar. 1990.

[4] V. Aslot, M. Domeika, R. Eigenmann, G. Gaertner, W. Jones,
and B. Parady. SPEComp: A New Benchmark Suite for Mea-
suring Parallel Computer Performance. In Workshop on
OpenMP Applications and Tools, pages 1–10, July 2001.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Frame-
work for Architectural-Level Power Analysis and Optimiza-
tions. In Proc. of the 27th Annual Intnl. Symp. on Computer
Architecture, pages 83–94, June 2000.

[6] K. Chakraborty, P. M. Wells, and G. S. Sohi. Computation
Spreading: Employing Hardware Migration to Specialize
CMP Cores On-the-fly. In Proc. of the 12th Intnl. Conf. on
Architectural Support for Programming Languages and Oper-
ating Systems, Oct. 2006.

[7] J. Dundas and T. Mudge. Improving Data Cache Performance
by Pre-Executing Instructions Under a Cache Miss. In Proc. of
the 1997 Intnl. Conf. on Supercomputing, pages 68–75, July
1997.

[8] I. T. R. for Semiconductors. ITRS 2006 Update. Semiconduc-
tor Industry Association, 2006.
http://www.itrs.net/Links/2006Update/2006UpdateFinal.htm.

[9] J. L. Henning. SPEC CPU2006 Benchmark Descriptions.
Computer Architecture News, 34(4):1–17, 2006.

[10] A. Henstrom. US Patent #6,557,095: Scheduling operations
using a dependency matrix, Dec. 1999.

ED

ED2

ED ED2

ED ED2

12

[11] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore
Era. IEEE Computer, pages 33–38, July 2008.

[12] M. Huang, J. Renau, and J. Torrellas. Energy-efficient hybrid
wakeup logic. In ISLPED ’02: Proceedings of the 2002 inter-
national symposium on Low power electronics and design,
pages 196–201, New York, NY, USA, 2002. ACM.

[13] Intel. First the Tick, Now the Tock: Next Generation IntelÆ
Microarchitecture (Nehalem). http://www.intel.com/technol-
ogy/architecture-silicon/next-gen/whitepaper.pd% f, 2008.

[14] Intel. Intel and Core i7 (Nehalem) Dynamic Power Manage-
ment, 2008.

[15] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core
Fusion: Accomodating Software Diversity in Chip Multipro-
cessors. In Proc. of the 34th Annual Intnl. Symp. on Computer
Architecture, June 2007.

[16] C. Kim, S. Sethumadhavan, M. S. Govindan,
N. Ranganathan, D. Gulati, D. Burger, and S. W. Keckler.
Composable Lightweight Processors. In Proc. of the 40th
Annual IEEE/ACM International Symp. on Microarchitecture,
Dec. 2007.

[17] I. Kim and M. H. Lipasti. Half-price architecture. In Proc. of
the 30th Annual Intnl. Symp. on Computer Architecture, pages
28–38, June 2003.

[18] A. R. Lebeck, T. Li, E. Rotenberg, J. Koppanalil, and J. P.
Patwardhan. A Large, Fast Instruction Window for Tolerating
Cache Misses. In Proc. of the 29th Annual Intnl. Symp. on
Computer Architecture, May 2002.

[19] P. S. Magnusson et al. Simics: A Full System Simulation Plat-
form. IEEE Computer, 35(2):50–58, Feb. 2002.

[20] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,
M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood. Multifacet’s General Execution-driven Multiprocessor
Simulator (GEMS) Toolset. Computer Architecture News,
pages 92–99, Sept. 2005.

[21] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runahead
Execution: An Effective Alternative to Large Instruction Win-
dows. IEEE Micro, 23(6):20–25, Nov/Dec 2003.

[22] S. Palacharla and J. E. Smith. Complexity-Effective Supersca-
lar Processors. In Proc. of the 24th Annual Intnl. Symp. on
Computer Architecture, pages 206–218, June 1997.

[23] S. E. Raasch, N. L. Binkert, and S. K. Reinhardt. A scalable
instruction queue design using dependence chains. In Proc. of
the 29th Annual Intnl. Symp. on Computer Architecture, pages
318–329, May 2002.

[24] M. A. Ramirez, A. Cristal, A. V. Veidenbaum, L. Villa, and
M. Valero. Direct Instruction Wakeup for Out-of-Order Pro-
cessors. In IWIA ’04: Proceedings of the Innovative Architec-
ture for Future Generation High-Performance Processors and
Systems (IWIA’04), pages 2–9, Washington, DC, USA, 2004.
IEEE Computer Society.

[25] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh,
D. Burger, S. W. Keckler, and C. Moore. Exploiting ILP,
TLP, and DLP with the Polymorphous TRIPS Architecture. In
Proceedings of the 30th Annual International Symposium on
Computer Architecture, pages 422–433, June 2003.

[26] S. R. Sarangi, W. Liu, J. Torrellas, and Y. Zhou. ReSlice:
Selective Re-Execution of Long-Retired Misspeculated
Instructions Using Forward Slicing. In Proc. of the 38th
Annual IEEE/ACM International Symp. on Microarchitecture,
Nov. 2005.

[27] P. Sassone, J. R. II, E. Brekelbaum, G. Loh, and B. Black.
Matrix Scheduler Reloaded. In Proc. of the 34th Annual Intnl.
Symp. on Computer Architecture, pages 335–346, June 2007.

[28] T. Sha, M. M. K. Martin, and A. Roth. NoSQ: Store-Load
Communication without a Store Queue. In Proc. of the 39th
Annual IEEE/ACM International Symp. on Microarchitecture,
pages 285–296, Dec. 2006.

[29] T. Shyamkumar, N. Muralimanohar, J. H. Ahn, and N. P.
Jouppi. CACTI 5.1. Technical Report HPL-2008-20, Hewlett
Packard Labs, 2008.

[30] G. S. Sohi and S. Vajapeyam. Instruction Issue Logic for
High-Performance Interruptable Pipelined Processors. In
Proc. of the 14th Annual Intnl. Symp. on Computer Architec-
ture, pages 27–34, June 1987.

[31] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and
M. Upton. Continual Flow Pipelines. In Proc. of the 11th
Intnl. Conf. on Architectural Support for Programming Lan-
guages and Operating Systems, Oct. 2004.

[32] M. Tremblay and S. Chaudhry. A Third-Generation 65nm 16-
Core 32-Thread Plus 32-Scout-Thread CMT SPARC Proces-
sor. In ISSCC Conference Proceedings, 2008.

[33] D. M. Tullsen, S. J. Eggers, J. S. Emer, H. M. Levy, J. L. Lo,
and R. L. Stamm. Exploiting Choice: Instruction Fetch and
Issue on an Implementable Simultaneous Multithreading Pro-
cessor. In Proc. of the 23th Annual Intnl. Symp. on Computer
Architecture, pages 191–202, May 1996.

[34] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia,
V. Bryksin, J. Lugo-Martinez, S. Swanson, and M. B. Taylor.
Conservation Cores: Reducing the Energy of Mature Compu-
tations. In Proc. of the 9th Intnl. Conf. on Architectural Sup-
port for Programming Languages and Operating Systems,
Nov. 2000.

[35] R. Vivekanandham, B. Amrutur, and R. Govindarajan. A
scalable low power issue queue for large instruction window
processors. In Proc. of the 20th Intnl. Conf. on Supercomput-
ing, pages 167–176, June 2006.

[36] K. C. Yeager. The MIPS R10000 Superscalar Microprocessor.
IEEE Micro, 16(2):28–40, Apr. 1996.

