
                          978-1-4799-4394-4/14/$31.00 © 2014 IEEE 

Fine-grain Task Aggregation and Coordination on GPUs 

Marc S. Orr
†§

     Bradford M. Beckmann
§
     Steven K. Reinhardt

§
     David A. Wood

†§

†
University of Wisconsin–Madison 

Computer Sciences 

{morr,david}@cs.wisc.edu 

§
AMD Research 

 

{brad.beckmann,steve.reinhardt}@amd.com 

Abstract 

In general-purpose graphics processing unit (GPGPU) 

computing, data is processed by concurrent threads execut-

ing the same function. This model, dubbed single-

instruction/multiple-thread (SIMT), requires programmers 

to coordinate the synchronous execution of similar opera-

tions across thousands of data elements. To alleviate this 

programmer burden, Gaster and Howes outlined the chan-

nel abstraction, which facilitates dynamically aggregating 

asynchronously produced fine-grain work into coarser-

grain tasks. However, no practical implementation has been 

proposed. 

To this end, we propose and evaluate the first channel im-

plementation. To demonstrate the utility of channels, we 

present a case study that maps the fine-grain, recursive task 

spawning in the Cilk programming language to channels by 

representing it as a flow graph. To support data-parallel 

recursion in bounded memory, we propose a hardware 

mechanism that allows wavefronts to yield their execution 

resources. Through channels and wavefront yield, we im-

plement four Cilk benchmarks. We show that Cilk can scale 

with the GPU architecture, achieving speedups of as much 

as 4.3x on eight compute units. 

1. Introduction 

Graphics processing units (GPUs) are gaining popularity for 

general-purpose, high-performance computing because GPU 

architectures tolerate recent technology trends better than 

CPU architectures. The GPU’s data-parallel design, which 

amortizes front-end hardware across many threads, is more 

area- and power-efficient than the massive caches and com-

plex speculation logic that typify CPUs. By dedicating tran-

sistors to as many simple threads as possible, GPUs are 

suited better to continue capitalizing on Moore’s Law [1]. 

Many leading manufacturers now integrate CPUs and GPUs 

on the same die, producing what AMD calls accelerated 

processing units (APUs) [2][3][4]. This coupling is paving a 

path for improved architectural integration. For example, 

Heterogeneous System Architecture (HSA) incorporates a 

unified virtual address space and coherent shared memory 

spanning the APU, the ability of GPUs to spawn tasks, and 

user-level task queues for low offload latencies [5]. These 

features enable new general-purpose GPU (GPGPU) appli-

cations and are finding support in languages like CUDA 6 

[6] and OpenCL 2.0 [7]. 

Despite this progress, GPUs continue to be confined to 

structured parallelism, which requires programmers to coor-

dinate independent threads capable of executing the same 

function at the same time. Structured parallelism maps di-

rectly to the GPU’s data-parallel hardware, but many un-

structured applications cannot take advantage of the GPU. 

Channels, outlined by Gaster and Howes [8], are multi-

producer/multi-consumer data queues that have potential to 

expand GPGPU programming. Channels reside in virtual 

memory and act as a medium through which producers and 

consumers communicate in a data-flow manner. A given 

channel holds fine-grain data items—which we call channel 

elements (CEs)—that are processed by the same function. 

Constraining each channel to be processed by exactly one 

function facilitates efficient aggregation of work that then 

can be scheduled onto the GPU’s data-parallel hardware. 

While Gaster and Howes defined channels, they did not 

propose an implementation, leaving designers to question 

their practicality. To this end, we propose and evaluate the 

first implementation of channels. We find that GPU threads 

often write the same channel at the same time. Thus, we 

begin by developing a channel data structure that is lock-

free, non-blocking, and optimized for single-instruction-

multiple-thread (SIMT) accesses. 

The finer-grain parallelism enabled by channels requires 

more frequent and complex scheduling decisions. To man-

age this behavior, we leverage the existing task-scheduling 

hardware in today’s GPUs, which typically is implemented 

as a small, in-order, programmable processor, rather than 

fixed-function logic. We use this tightly integrated processor 

to monitor the channels, manage algorithmic dependencies 

among them, and dispatch ready work to the GPU. Our 

analysis suggests that replacing the existing in-order proces-

sor with a modest out-of-order processor can mitigate the 

scheduling overheads imposed by dynamic aggregation. 

Because no existing programs are written specifically for 

channels, we evaluate our implementation by mapping flow 

graph-based programs to channels. A flow graph is a data-

driven graph representation of a parallel application. It is a 

popular abstraction used by many modern parallel pro-

gramming languages, including Intel’s Threading Building 

Blocks (TBB) [9]. Flow-graph nodes represent the pro-

gram’s computation, while messages flowing over directed 

edges represent communication and coordination. We use 

channels to aggregate individual messages into coarser-



 

 

grain units that can be scheduled efficiently onto the GPU. 

Channel-flow graphs increase the diversity of applications 

that map well to GPUs by enabling higher-level program-

ming languages with less rigid task abstractions than today’s 

GPGPU languages. 

We specifically explore mapping programs written in Cilk 

to channels. Cilk is a parallel extension to C/C++ for ex-

pressing recursive parallelism. We define a set of transfor-

mations to map a subset of Cilk to a channel-flow graph so 

that it can execute on a GPU. This presented two important 

challenges. First, GPUs do not provide a call stack, which 

CPUs normally use to handle recursion. Our solution is to 

map Cilk’s task tree to “stacks of channels”. Second, previ-

ous Cilk runtimes use depth-first recursion to bound 

memory usage. However, although breadth-first scheduling 

is more effective at populating a GPU’s thousands of hard-

ware thread contexts, it requires exponential memory re-

sources [10]. To solve this problem, we propose a bounded 

breadth-first traversal, relying on a novel yield mechanism 

that allows wavefronts to release their execution resources. 

Through channels and wavefront yield, we implement four 

Cilk workloads and use them to demonstrate the scalability 

of Cilk in our simulated prototype. 

To summarize, our contributions are: 

 We enable efficient fine-grain task scheduling on GPUs 

by proposing the first channel implementation and as-

sociated hardware support. 

 We propose a mechanism for GPU wavefronts to yield 

their execution resources, enabling wavefronts to spawn 

tasks recursively while bounding memory consumption. 

 Using channels and wavefront yield, we enable Cilk on 

GPUs and show that its performance scales with the ar-

chitecture. 

2. GPU Architecture and Programming Model 

This section gives an overview of today’s GPU program-

ming abstractions and how they help programmers coordi-

nate structured parallelism so that it executes efficiently on 

the GPU’s data-parallel hardware. 

2.1 GPU Programming Model 

The GPU’s underlying execution resource is the single-

instruction/multiple-data (SIMD) unit, which is a number of 

functional units, or lanes, that execute in lockstep (64 on 

AMD GPUs and 32 on NVIDIA GPUs [6]). GPGPU lan-

guages, like OpenCL™ and CUDA, are called SIMT be-

cause they map the programmer’s view of a thread to a 

SIMD lane. Threads executing on the same SIMD unit in 

lockstep are called a wavefront (warp in CUDA). In SIMT 

languages, a task is defined by three components: 

1. A function (called a kernel). 

2. Data (the kernel’s parameters). 

3. A dense 1- to 3-dimensional index space of threads 

called an NDRange (grid in CUDA). 

Figure 1 shows an OpenCL NDRange. The smallest unit is a 

work-item (thread in CUDA), which is an SIMT thread that 

maps to a SIMD lane. Work-items are grouped into 1- to 3-

dimensional arrays called work-groups (thread blocks in 

CUDA). Multiple work-groups are combined to form the 

NDRange. The NDRange helps programmers schedule 

structured parallelism to the GPU’s data-parallel hardware, 

but makes mapping unstructured parallelism difficult. 

2.2 GPU Architecture 

Figure 2 highlights important architectural features of a ge-

neric GPU. Compute units (CUs, called streaming multipro-

cessors in CUDA), are defined by a set of SIMD units, a 

pool of wavefront contexts (CTX), a register file, and a pro-

grammer-managed cache called local data store (LDS, or 

shared memory in CUDA). A CTX maintains state for an 

executing wavefront. Each wavefront owns a slice of the 

register file that partially defines its state. Each CU has a 

private L1 cache that feeds into a shared L2 cache. While 

today’s GPUs and APUs provide some combination of co-

herent and incoherent caches, next-generation GPUs and 

APUs that adhere to HSA will provide a fully coherent 

cache hierarchy [5]. 

The control processor, also shown in the generic GPU archi-

tecture picture (Figure 2), obtains SIMT tasks from a set of 

task queues that it manages. To schedule a task, the control 

processor assigns its work-groups to available CUs. The 

control processor also coordinates simultaneous graphics 

and compute, virtualizes GPU resources, and performs pow-

er management. To carry out its many roles, this front-end 

hardware has evolved from fixed function logic into a set of 

scalar processors managed by firmware. 

 

Figure 1: OpenCL NDRange 
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3. Channel Definition and Implementation 

Gaster and Howes suggested channels to improve on today’s 

coarse-grain GPU task abstractions. In this section, we 

summarize their vision and propose the first channel imple-

mentation, which executes on forward-looking APUs. 

3.1 Prior Work on Channels 

A channel is a finite queue in virtual memory, through 

which fine-grain data (channel elements, or CEs) are pro-

duced and consumed in a data-flow manner. Channels re-

semble conventional task queues, but differ in three ways: 

1. Data in a channel is processed by exactly one function 

permanently associated with that channel. 

2. CEs are aggregated dynamically into structured, coarse-

grain tasks that execute efficiently on GPUs. 

3. Each channel has a “predicate” function for making 

dynamic scheduling decisions. 

Figure 3 shows data moving through channels in an APU-

like system that includes a CPU and a GPU connected to a 

coherent shared memory. The GPU’s control processor is 

extended to monitor and manage channels. Because we are 

concerned primarily with this new capability, we call the 

control processor the aggregator (labeled Agg in Figure 3) 

for the remainder of this paper. 

At time 0 (t0) in Figure 3, the host initializes two channels 

and populates them with CEs. At time 1 (t1), the aggregator, 

controlled through a user-defined scheduler, probes the 

channels; it detects enough CEs to justify a dispatch to GPU 

hardware. The GPU consumes the CEs at t2 and produces 

new CEs in a different channel at t3. 

Restricting each channel to processing by exactly one func-

tion avoids burdening the aggregator with inspecting indi-

vidual CEs. This constraint does not limit fine-grain task-

parallelism because channels are mapped to shared virtual 

memory and therefore are visible to all producers. 

The predicate is a Boolean function that assists the aggrega-

tor in making scheduling decisions. The simplest predicate 

is one that returns false unless enough CEs are available to 

populate all of a SIMD unit’s lanes. This is what we assume 

for this paper. 

3.2 Lock-free Channel Implementation 

To realize finer-grain task abstractions on GPUs, we intro-

duce a novel multi-producer/multi-consumer queue that is 

lock-free, non-blocking, and array-based. Lock-free queues 

have a rich history in the context of CPUs. Early work con-

sidered array-based designs [11][12][13], but linked lists are 

preferred [14][15]. Linked lists are not well suited for GPUs 

because different work-items in a wavefront consuming 

adjacent CEs are susceptible to memory divergence, which 

occurs when the work-items access different cache blocks; 

if the requests had been to the same cache block, the GPU’s 

coalescing hardware could have merged them. We find that 

our queue implementation accommodates the high levels of 

contention that are typical on a massively threaded GPU. 

3.2.1 Array-based Channel Implementation 

Our array-based channel is implemented as three structures: 

1. Data array: Buffer for produced CEs. 

2. Control array: Buffer of data-array offsets, populated 

by producers and monitored by the aggregator. 

3. Done-count array: Adjacent data-array elements can 

share a done-count element. The aggregator monitors 

the done-count array to free data-array elements in the 

order they were allocated. 

The size of the done-count array is the size of the data array 

divided by the number of data-array elements that share a 

done count. The control array is twice the size of the data 

array. Array elements can be in one of five states: 

1. Available: Vacant and available for reservation. 

2. Reserved: Producer is filling, hidden from aggregator. 

3. Ready: Visible to aggregator, set for consumption. 

4. Dispatched: Consumer is processing. 

5. Done: Waiting to be deallocated by aggregator. 

Figure 4 illustrates two wavefronts, each four work-items 

wide, operating on a single channel in system memory. For 

space, the control array is the same size as the data array in 

the figure, but in practice it is twice the size of the data ar-

ray. In the text that follows, producers operate on the tail 

end of an array and consumers operate on the head end. 
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At time 0 (t0), the data array’s head and tail pointers are 

initialized to the same element. Similarly, the control array’s 

head and tail pointers are initialized to the same element. 

The control array maintains two tail pointers (tail and re-

serveTail) because producers cannot instantaneously re-

serve space in the control array and write the data-array off-

set. All done counts are initialized to 0. 

At t1, each work-item in wavefront 0 reserves space for a 

CE. Four data-array elements are transitioned to the re-

served state by updating the data array’s tail pointer via 

compare-and-swap (CAS). At t2, each work-item in wave-

front 1 reserves space for a CE and at t3 those work-items 

finish writing their data-array elements. 

Data-array elements are made visible to the aggregator by 

writing their offsets into the control array. Specifically, at t4, 

wavefront 1 updates reserveTail via CAS to reserve space 

in the control array for its data-array offsets. At t5, the off-

sets are written and at t6 the control array’s tail, which is 

monitored by the aggregator, is updated to match reserve-

Tail. The array elements related to wavefront 1 are now in 

the ready state. The design is non-blocking because wave-

front 1 can make its CEs visible to the aggregator before 

wavefront 0 even though it reserved space after wavefront 0. 

At t7, the data-array elements generated by wavefront 1 are 

transitioned to the dispatched state when the aggregator 

points consumers at their respective control-array elements. 

Those control-array elements also transition to the dis-

patched state; they cannot be overwritten until their corre-

sponding data-array elements are deallocated because the 

control array is twice the size of the data array. 

At t8, wavefront 0 finishes writing its data-array elements 

and makes its CEs visible to the aggregator. At t9, wavefront 

0’s CEs are dispatched. Also at t9, the consumers of wave-

front 1’s CEs signal that they no longer need to reference the 

data-array elements by updating their respective done counts 

atomically; these data-array elements cannot be deallocated 

before wavefront 0’s data-array elements. At t10, the con-

sumers of wavefront 0’s CEs update their respective done 

counts. Finally, at t11, the aggregator deallocates space. 

3.2.2 Discussion and Optimization 

The array-based channel maps well to the GPU’s coalescing 

hardware. The CUs are responsible for allocation and con-

sumption while the aggregator handles deallocation, which 

is off the critical path of execution. The aggregator manages 

the channels without inspecting their individual CEs. 

Space is reserved in the data and control arrays through 

conditional fetch-and-update (via CAS). By leveraging intra-

wavefront communication instructions [16][17], this opera-

tion can be amortized across a wavefront, greatly reducing 

memory traffic. Figure 5 depicts pseudo-code with these 

optimizations that updates a channel array’s tail pointer. 

 

Figure 4: Lock free, non-blocking, array-based channel implementation 
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 1: int gpuReserveNElements(int numEl, int *tail) { 
 2:   int wfTail = 0; 
 3:   // 1. Choose one work-item to operate on tail 
 4:   bool update = most_sig_work_item(); 
 5:   // 2. Intra-wavefront prefix sum 
 6:   int offset = prefix_sum(numEl); 
 7:   int numElToRes = offset + numEl; 
 8:   // 3. Intra-wavefront synchronization 
 9:   join_wfbarrier(); 
10:   while(update) { 
11:     int oldTail = *tail; 
12:     int nextTail = oldTail + numElToRes; 
13:     int curTail = CAS(tail, oldTail, nextTail); 
14:     if(oldTail == curTail) { 
15:       wfTail = oldTail; 
16:       update = false; 
17:     } 
18:   } 
19:   wait_at_wfbarrier(); 
20:   // 4. Broadcast tail to entire wavefront 
21:   wfTail = reduction(wfTail); 
22:   return (wfTail + offset); 
23: } 

Figure 5: GPU fetch-and-update (ignores wrapping/overflow) 



 

 

4. Programming with Channels 

This section proposes a low-level API to interface channels 

and describes utilizing channels through flow graphs. 

4.1 Channel API 

Table 1 shows the channel API. Producers call talloc to 

allocate CEs. An allocated CE is made visible to the aggre-

gator via the enq function. A CE must be enqueued to the 

channel that was specified during its allocation. A consumer 

obtains work with the deq function; the specific channel and 

offset within that channel are managed by the aggregator. 

After data is consumed, the aggregator is signaled that deal-

location can occur via the tfree API. 

The talloc API enables minimum data movement between 

producers and consumers because the destination channel is 

written directly through the pointer that talloc returns. 

Figure 6, lines 3-19, demonstrate the API in Table 1. 

4.2 Channel-flow Graphs 

Flow graphs comprise a set of nodes that produce and con-

sume messages through directed edges; the flow of messag-

es is managed through conditions. Several popular parallel 

programming languages and runtimes support flow graphs. 

For example, Intel’s TBB provides a sophisticated flow-

graph abstraction [9]. MapReduce and StreamIt provide 

more constrained flow-graph frameworks [18][19]. 

GRAMPS, which had a strong influence on the original 

proposal for channels, explores scheduling flow graphs onto 

graphics pipelines [20]. 

Channels facilitate flow graphs with fine-grain messages. A 

channel-flow graph is specified as a directed graph com-

posed of kernel nodes and channel nodes. A kernel node 

resembles a GPGPU kernel that consumes and produces 

data. Kernel nodes are analogous to function nodes in TBB. 

A channel node is a buffer that accumulates messages pro-

duced by kernel nodes and routes them to be consumed by 

other kernel nodes. Channel nodes are similar to queue 

nodes in TBB, but bounded. 

Figure 7 shows an example flow graph to compute the 

fourth Fibonacci number. At time 0 (t0), the graph, made of 

one kernel node and one channel node, is initialized on the 

host; the CE is uniquely defined for that channel. At t1, an 

init node (the host) puts source CEs in the channel node. 

At t2, the kernel node consumes CEs from the channel node 

and produces new CEs. At t3, the kernel node consumes the 

remaining CEs and the computation is done. 

A simple graph API was prototyped for this research. Figure 

6 demonstrates how to build the channel-flow graph shown 

in Figure 7. A sophisticated flow-graph framework is be-

yond the scope of this work. The remainder of this paper 

focuses on other aspects of our design. 

 1: #define LEN 32768 
 2: 
 3: typedef struct { 
 4:   int val; 
 5: } FibObj; 
 6: 
 7: void FibKernel(int srcID, int srcOff, 
 8:                int destID, int *result) { 
 9:   FibObj *src = (FibObj *)deq(srcID, srcOff); 
10:   if(src->val <= 2) { 
11:     atomic_add(result, 1); 
12:   } else { 
13:     FibObj *ob = (FibObj *)talloc(destID, 2); 
14:     ob[0].val = src->val - 1; 
15:     ob[1].val = src->val - 2; 
16:     enq(destID, ob); 
17:   } 
18:   tfree(srcID, srcOff); 
19: } 

20: void main(int argc, char * argv[]) { 
21:   int n = atoi(argv[1]); 
22:   int res = 0; 
23: 
24:   Graph g; 
25:   ChannelNode *ch = g.ChannelNode(sizeof(FibObj), LEN); 
26:   KernelNode *kern = g.KernelNode(FibKernel); 
27:   kern->setConstArg(2, sizeof(int), ch->chID); 
28:   kern->setConstArg(3, sizeof(int *), &res); 
29:   ch->connectToKernelNode(kern); 
30: 
31:   FibObj *ob = (FibObj *)ch->talloc(1); 
32:   ob->val = n; 
33:   ch->enq(ob); 
34: 
35:   g.execute(); 
36:   g.waitForDone(); 
37:   printf(“fib(%d) = %d\n”, n, res); 
38: } 

Figure 6: Fibonacci example 

Table 1: Channel API 

API Function Description 

void *talloc(int id,int cnt) allocate cnt CEs in channel id. 

void enq(int id,void *ptr) place CEs at ptr in channel id. 

void *deq(int id,int off) get CE in channel id at off. 

void tfree(int id,int off) free CE in channel id at off. 

 

 

Figure 7: Channel-flow graph for naïve Fibonacci 

fib
kernel

fib channelinit
(host)

fib
kernel

init
4

fib
kernel

init
3 2

fib
kernel

init
2 1

t0

t2 t3

t1



 

 

5. Case Study: Mapping Cilk to Channels 

Channels facilitate mapping higher-level abstractions to 

GPUs. As an example, we discuss translating a subset of the 

Cilk programming language to a channel representation. 

5.1 Cilk Background 

Cilk extends C/C++ for divide-and-conquer parallelism 

[21]. Cilk programs use the keyword spawn before a func-

tion to schedule it as a task. The keyword sync forces its 

caller to block until all of its spawned tasks are complete. 

Figure 8 demonstrates how these keywords are used to cal-

culate the nth Fibonacci number. These two Cilk primitives 

form the basis of the language and are what we explore 

mapping to channels. Other primitives are left for future 

work. 

5.2 Cilk as a Channel-flow Graph 

One strategy to implement Cilk on channels is to divide 

kernels into sub-kernels that are scheduled respecting de-

pendencies. Specifically, a sub-kernel is created whenever 

sync is encountered. Each spawn is translated into a tal-

loc/enq sequence that reserves space in the correct channel, 

writes the task parameters, and schedules the work. Each 

sync is translated into a talloc/enq sequence that sched-

ules work to a channel connected to the “post-sync” sub-

kernel. It may be possible to automate these translations, but 

they are done manually for this research. 

Figure 9 shows the Cilk tree to calculate the fifth Fibonacci 

number. Shaded circles are “pre-spawn” tasks (lines 2-5 in 

Figure 8). White circles are “post-spawn” tasks (line 7 in 

Figure 8). Solid lines depict task spawns and dotted lines are 

dependencies. Each circle is labeled with a letter specifying 

the order in which it can be scheduled. 

Shaded circles, or pre-spawn tasks, have no dependencies. 

They are labeled “A” and are scheduled first. White circles, 

or post-spawn tasks, depend on shaded circles and other 

white circles. Dependencies on shaded circles are respected 

by scheduling white circles after all shaded circles are com-

plete. White circles are labeled “B” or lexicographically 

larger. Dependencies among white circles are inferred con-

servatively from the level of recursion from which they de-

rive. For example, the white circle representing the continu-

ation for the fourth Fibonacci number and labeled “C” de-

rives from the second level of the Cilk tree and depends on a 

continuation that derives from the third level. 

Continuations that derive from deeper levels of the Cilk tree 

can be scheduled first. This is achieved by maintaining 

“stacks of channels” for continuations and scheduling each 

continuation at the correct offset within the stack. Virtual 

memory is allocated up front for channel stacks, similar to 

how CPU threads are allocated private stacks. Tasks deter-

mine the correct offset within the stack by accepting their 

recursion depth as a parameter. The scheduler drains the 

channel at the top of the stack before scheduling channels 

below it. This strategy is called levelization [22]. 

Figure 10 shows the tasks from Figure 9 organized into a 

main channel for pre-spawn tasks and a stack of channels 

for post-spawn tasks. 

Figure 11 shows the channel-flow graph for the Cilk version 

of Fibonacci. Channel stack nodes (e.g., the dashed box in 

Figure 11) are added to the channel-flow-graph framework. 

Instead of atomically updating a global result, as is done by 

the flow graph in Figure 7, each thread updates a private 

result in the channel stack. Intermediate results are merged 

into a final result by a second continuation kernel node. 

Finally, it should be noted that the translations described for 

the Cilk version of Fibonacci generalize to other Cilk pro-

grams because they all have one logical recursion tree. 

1: int fib(int n) { 
2:   if(n <= 2) return 1; 
3:   else { 
4:     int x = spawn fib(n - 1); 
5:     int y = spawn fib(n - 2); 
6:     sync; 
7:     return (x + y); 
8:   } 
9: } 

Figure 8: Fibonacci in Cilk 

 

Figure 9: Cilk tree for Fibonacci 
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Figure 10: Managing dependencies with channels 
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Figure 11: Channel-flow graph for Cilk version of Fibonacci 
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5.3 Bounding Cilk’s Memory Footprint 

For CPUs, Cilk runtimes use a work-first scheduling policy 

to bound the memory footprint to the depth of the Cilk tree. 

In work-first scheduling, threads traverse the Cilk tree in a 

depth-first manner by scheduling the continuation for a task 

that calls spawn and executing the spawned task [21]. This 

does not generate work fast enough for GPUs. 

The scheduling policy described in Section 5.2 is called 

help-first. It generates work quickly by doing a breadth-first 

traversal of the Cilk tree, but consumes exponential memory 

relative to a workload’s input size [10]. To make this policy 

feasible, the memory footprint must be bounded. This is 

possible if hardware supports yielding a CTX. 

If a hardware context yields its execution resources when it 

is unable to obtain space in a channel, the scheduler can 

drain the channels by prioritizing work deeper in the recur-

sion. When a base-case task is scheduled, it executes with-

out spawning new tasks, freeing space in its channel. When 

a task near the base case executes, it spawns work deeper in 

the recursion. Because base-case tasks are guaranteed to free 

space, forward progress is guaranteed for the recursion prior 

to the base case. Inductively, forward progress is guaranteed 

for all channels. 

The scheduler can differentiate work from different recur-

sion levels if both pre- and post-spawn tasks are organized 

into channel stacks, as shown in Figure 12. 

An alternative approach is a hybrid scheduler that uses help-

first scheduling to generate work and then switches to work-

first scheduling to bound memory [23]. Future work will 

compare a help-first only scheduler to a hybrid scheduler. 

6. Wavefront Yield 

To facilitate Cilk and similar recursive models, we propose 

that future GPUs provide a “wavefront yield” instruction. 

Our yield implementation, depicted in Figure 13, relies on 

the aggregator to manage yielded wavefronts. After a wave-

front executes yield (), the GPU saves all of its state to 

memory () including registers, program counters, execu-

tion masks, and NDRange identifiers. LDS is not saved be-

cause it is associated with the work-group and explicitly 

managed by the programmer; a restarting wavefront must be 

assigned to the same CU on which it was previously execut-

ing. Memory space for yield is allocated for each CTX be-

fore dispatch and deallocated as wavefronts complete. This 

is the same strategy used for spill memory in HSA. 

In addition to the wavefront’s state, a restart context, used to 

restart the wavefront, is saved to a data structure in memory 

(). This data structure can be a finite size because the ag-

gregator will consume whatever is inserted into it; in our 

implementation, we use a channel. The restart context com-

prises a pointer to the wavefront’s saved state and the re-

source that the wavefront blocked on. The aggregator re-

trieves the restart context and inserts it into a software-

defined data structure that tracks blocked wavefronts (). 

The aggregator then schedules a new wavefront to occupy 

the yielded context (). The aggregator monitors resources 

and restarts wavefronts as appropriate. 

7. Methodology and Workloads 

We prototyped our channel implementation in the simulated 

system depicted in Figure 14. We used gem5 [24] enhanced 

with a proprietary GPU model. The GPU’s control processor 

is implemented as a programmable core that serves as the 

aggregator. It is enhanced with private L1 caches that feed 

into the GPU’s unified L2 cache. Each CU has a private L1 

data cache that also feeds into the GPU’s L2 cache. All CUs 

are serviced by a single L1 instruction cache connected to 

the GPU’s L2 cache. More details can be found in Table 2. 

 

Figure 12: Bounding memory for the Cilk version of Fibonacci 
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Figure 13: Wavefront yield sequence 
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Figure 14: Simulated system 
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To isolate the features required for channels, all caches are 

kept coherent through a read-for-ownership MOESI directo-

ry protocol [25] similar to the GPU coherence protocol pro-

posed by Hechtman et al. [26]. Future work will evaluate 

channels with write-combining caches [27]. 

We implemented wavefront yield as described in Section 6. 

CTXs require, at a minimum, 856 bytes for program coun-

ters, execution masks, NDRange identifiers, etc. Additional 

bytes are required for registers. There are three kinds of reg-

isters: 64 x 4 byte (s), 64 x 8 byte (d), and 64 x 1-bit (c). The 

number of registers varies across kernels. We save all regis-

ters (live and dead). A more sophisticated implementation 

would avoid saving dead registers. The numbers of registers 

for our workloads are shown in Table 3. In the worst case 

(Queens), 9,072 bytes are saved/restored. 

7.1 Workloads 

We wrote four Cilk workloads derived manually from Cilk 

source according to the transformations discussed in Section 

5. They are characterized in Table 3. 

1. Fibonacci: Compute the nth Fibonacci number. Partial 

results are stored in continuation channels and merged 

by a continuation kernel. 

2. Queens: Count the number of solutions to the NxN 

queens puzzle. In our implementation, derived from 

code distributed with the MIT Cilk runtime [21], the 

base case is a 4x4 sub-section of the chessboard. 

3. Sort: Recursively split an array into four smaller sub-

arrays until reaching a base case (64 elements), sort all 

of the base-case sub-arrays, and merge them. This 

workload also was derived from a version distributed 

with the MIT Cilk runtime [21]. 

4. Strassen: Repeatedly divide a matrix into four sub-

matrices down to a base case (16x16 elements), multi-

ply each pair of base-case matrices, and combine the re-

sults through atomic addition [28]. 

7.2 Scheduler 

A scheduling algorithm, which executes on the aggregator, 

was written for the Cilk workloads. It respects Cilk’s de-

pendencies by tracking the current level in the recursion, as 

described in Section 5.2. It also checks for wavefronts that 

have yielded and restarts them as resources (i.e., channels 

deeper in the recursion) become available. Because leveliza-

tion enforces dependencies, the GPU can block on the 

scheduler. We explore workload sensitivity to the aggregator 

in Section 8.3. 

8. Results 

We find that three of our four Cilk workloads scale with the 

GPU architecture, and show details in Figure 15. The aver-

age task size (average cycles/wavefront) for each workload, 

shown in Table 3, and cache behavior, depicted in Figure 16, 

help explain the trends. 

First, we examine the workload that does not scale up to 

eight CUs: Fibonacci. Given the small amount of work in its 

kernel nodes, we would not expect Fibonacci to scale. Even 

so, it is useful for measuring the overheads of the channel 

APIs because it almost exclusively moves CEs through 

channels. A consequence of Fibonacci’s small task size is 

that it incurs more GPU stalls waiting on the aggregator 

than workloads with larger task sizes. Larger task sizes al-

low the aggregator to make progress while the GPU is doing 

compute. At eight CUs, Fibonacci’s cache-to-cache transfers 

degrade performance; these occur because consumer threads 

execute on different CUs than their respective producer. 

The other three Cilk workloads scale well from one CU to 

eight CUs, with speedups ranging from 2.6x for Sort to 4.3x 

for Strassen. This is because the workloads perform non-

trivial amounts of processing on each CE, which is reflected 

in the average task size. Strassen’s wavefronts are approxi-

mately 37 times larger than Fibonacci’s. In contrast, Sort’s 

Table 2: Simulation configuration †See Section 8.3 

Compute Unit 

Clock 1GHz, 4 SIMD units 

Wavefronts (#/scheduler) 40 (each 64 lanes)/round-robin 

Data cache 
16kB, 64B line, 16-way, 4 cycles, 

delivers one line every cycle 

Instr. cache (1 for all CUs) 32kB, 64B line, 8-way, 2 cycles 

Aggregator 

Clock 2GHz, 2-way out-of-order core† 

Data cache 16kB, 64B line, 16-way, 4 cycles 

Instr. cache 32kB, 64B line, 8-way, 2 cycles 

Memory Hierarchy 

GPU L2/directory 1MB, 64B line, 16-way, 16 cycles 

DRAM 1GB, 30ns, 20GB/s 

Coherence protocol MOESI directory 

Host CPU (not active in region of interest) 

Clock 1GHz, gem5 TimingSimpleCPU 

L1D, L1I, L2 
(size/assoc/latency) 

64B lines across all caches 

(64kB/2/2), (32kB/2/2), (2MB/2/2) 

Channel 

Done count 64 (Section 8.2.1) 

 

Table 3: Workloads †Section 8.2.2 ††Measured from a one-wavefront execution (channel width=64, input=largest with no yields) 

Workload Data set Kernel nodes Registers/kernel Channel width† # of wavefronts Average cycles/wavefront†† 

Fibonacci 24 2 16s/8d/2c, 3s/4d/1c 32,768 2,192 7,046 

Queens 13x13 2 16s/8d/3c, 5s/5d/1c 16,384 1,114 35,407 

Sort 1,000,000 4 16s/8d/2c (all 4 kernels) 32,768 4,238 30,673 

Strassen 512x512 1 16s/6d/8c 8,192 587 259,299 

 



 

 

wavefronts are a little more than four times larger than Fib-

onacci’s, indicating that relatively small tasks can be coor-

dinated through channels to take advantage of the GPU. 

While few memory accesses hit in the L1 cache, many hit in 

the shared L2, facilitating efficient communication between 

producers and consumers. L2 cache misses degrade scalabil-

ity because main memory bandwidth is much lower than 

cache bandwidth. As illustrated in Figure 15, the aggregator 

overhead is constant with respect to the number of CUs, so 

we would not expect it to be a bottleneck for larger inputs. 

To help put these results in context, we compare channel 

workloads to non-channel workloads when possible. Specif-

ically, we compare Strassen to matrix multiply from the 

AMD SDK [29] and Queens to a version of the algorithm 

distributed with GPGPU-Sim [30]. We would expect chan-

nels to be slower than conventional GPGPU code because 

their fine-grain nature leads to more tasks, which imposes 

extra coordination overhead; both channel codes trigger 

more than 10 times the number of dispatches than their non-

channel counterparts. Surprisingly, we find that channels are 

on par with conventional GPGPU code because they facili-

tate more efficient algorithms. Specifically, Strassen has a 

lower theoretical complexity than AMD SDK’s matrix mul-

tiply. Meanwhile, for Queens the GPGPU-Sim version pays 

large overheads to flatten a recursive algorithm that is ex-

pressed naturally through channels. Both Strassen and 

Queens have fewer lines of code (LOC) than the non-

channel versions. These results are summarized in Table 4. 

8.1 Array-based Design 

Figure 17, which compares the baseline channel to a “GPU-

efficient channel” that has the intra-wavefront optimizations 

suggested in Section 3.2.2, shows the effectiveness of amor-

tizing synchronization across the wavefront. By reducing 

the number of CAS operations (where talloc and enq spend 

most of their time) by up to 64x, this optimization reduces 

the run-time drastically for all workloads. 

We compared the GPU-efficient channel to a version that is 

padded such that no two CEs share a cache line. Padding 

emulates a linked list, which is not likely to organize CEs 

consumed by adjacent work-items in the same cache line. In 

all cases, the padded channel performs worse, but the degra-

dation is less than expected because the CEs are organized 

as an array of structures instead of a structure of arrays. We 

plan to address this in future work. 

 

Figure 15: Scalability of Cilk workloads 

 

Figure 16: CU cache behavior 

 

Figure 17: GPU-efficient array quantified 
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Table 4: GPU Cilk vs. conventional GPGPU workloads 

 LOC reduction Dispatch rate Speedup 

Strassen 42% 13x 1.06 

Queens 36% 12.5x 0.98 

 



 

 

8.2 Channel Granularity 

8.2.1 Done Count 

Channel space is deallocated in order at the granularity of 

the done count. A done count of 64 limits deallocation to 

less than 3% of total stall time on average. 

8.2.2 Channel Width 

Figure 18 shows how channel width can affect performance. 

Narrow channels are unable to supply enough CEs to utilize 

the GPU adequately. Meanwhile, larger channels degrade 

the performance of Strassen because wavefronts are not able 

to use the L2 cache as effectively. We configured each 

workload with the channel width that resulted in peak per-

formance (shown in Table 3). Better cache-management 

policies, like cache-conscious thread scheduling [31], may 

eliminate the cache thrashing caused by wider channels. 

8.2.3 Wavefront Yield 

Figure 18 also shows the frequency and impact of yields. 

Saving and restoring CTXs generally has little impact on 

GPU active time because yields are relatively infrequent. 

However, at smaller channel widths, frequent yields in-

crease GPU stall time because the aggregator manages 

yields instead of dispatching new work. 

8.3 Aggregator Sensitivity Study 

We performed a sensitivity study to determine how complex 

the aggregator needs to be. The first design that we consid-

ered is a primitive core, called simple, which is not pipe-

lined and executes one instruction at a time; this extremely 

slow design increases pressure on the aggregator. We also 

considered a complex out-of-order (OoO) core, called 4-way 

OoO, to capture the other extreme. Finally, we looked at two 

intermediate designs: 2-way OoO and 2-way light OoO. 2-

way OoO resembles a low-power CPU on the market today. 

2-way light OoO is derived by drastically slimming 2-way 

OoO and provides insight into how an even simpler core 

might perform. Table 5 summarizes our findings. 4-way 

OoO provides little benefit relative to 2-way OoO. 2-way 

light OoO reduces the performance gap between simple and 

2-way OoO, but the aggregator overhead can still be as high 

as 35%. Hence, 2-way OoO strikes a good balance between 

performance and core complexity and was used to generate 

the results reported in previous sections. 

8.4 Divergence and Channels 

Figure 19 depicts branch divergence. Fibonacci and Queens 

have many wavefronts with base-case and non-base-case 

threads, leading to high divergence. Strassen has little diver-

gence because it distributes work very evenly. Sort, which 

spends most of its time in the base case, suffers severe di-

vergence. This is because the base-case code was obtained 

from a CPU version that uses branches liberally. 

 

Figure 18: Channel width (CEs) 
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Table 5: % of time GPU (8 CUs) is blocked on aggregator 

 Description Fibonacci Queens Sort Strassen 

Simple 
no pipelining, 

one instruction at a time 
41.5 2.9 8.9 3.4 

2-way 

light OoO 

physical registers: 64, 

IQ size: 2, ROB size: 8, 

ld/st queue size: 8/8 
35.1 2.0 7.2 2.5 

2-way 

OoO 

physical registers: 64, 

IQ size: 32, ROB size: 64, 

ld/st queue size: 32/32 
30.1 1.6 5.8 1.8 

4-way 

OoO 

physical registers: 128, 

IQ size: 64 ROB size: 128, 

ld/st queue size: 64/64 
29.8 1.5 5.6 1.9 

 

 

Figure 19: Branch divergence 
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9. Related Work 

We survey three categories of related work: multi-producer/ 

multi-consumer queues, dynamic aggregation of fine-grain 

work on data-parallel hardware, and GPU task runtimes and 

synchronization. 

9.1 Multi-producer/Multi-consumer Queues 

Prior work on lock-free, multi-producer/multi-consumer 

queues is skewed towards CPUs; it includes linked list- and 

array-based designs. Linked lists often are preferred because 

they are not fixed-length and are easier to manage [14][15]. 

Unfortunately, linked lists are a poor fit for the GPU’s 

memory-coalescing hardware. 

Array-based queues often require special atomic operations, 

limit the size of an element to a machine word, and usually 

are not as scalable [11][12]. Gottlieb et al. described an ar-

ray-based algorithm without these limitations, but their de-

sign is blocking [13]. Channels use conventional CAS, en-

capsulate user-defined data (of any size), are non-blocking, 

and scale well on GPUs. 

9.2 Dynamic Aggregation for Data-parallel Hardware 

GRAMPS, which inspired channels, maps flow graphs to 

graphics pipelines and provides packet queues to aggregate 

fine-grain work into data-parallel tasks [20]. Channels apply 

these concepts to more general computation. Our work gives 

a fresh perspective on how to implement aggregation queues 

and use them to realize higher-level languages on GPUs. 

Dynamic micro-kernels allow programmers to regroup 

threads using the keyword spawn [32]. To support this se-

mantic, a fully associative look-up table (LUT), indexed on 

the program counter of the branch destination, is proposed. 

While micro-kernels target mitigating branch divergence, 

they could be used for dynamic work aggregation. Com-

pared to channels, one limitation is that the number of tasks 

is limited to the number of entries in the LUT. 

Stream compaction uses global scan and scatter operations 

to regroup pixels by their consumption kernels [33]. Chan-

nels avoid regrouping by limiting each channel to one con-

sumption function. 

The Softshell GPU task runtime uses persistent GPU work-

groups to schedule and aggregate work from a monolithic 

task queue [34]. Channels instantiate a separate queue for 

each consumption function and leverage the GPU’s control 

processor to manage those queues. 

9.3 GPU Tasks and Synchronization 

Aila and Laine proposed a scheme that they call persistent 

threads, which bypasses the GPU scheduler and places the 

scheduling burden directly on the programmer [35]. Exactly 

enough threads are launched to fill the machine and poll a 

global work queue. In contrast, channels fill the machine in 

a data-flow manner and only launch consumers that will 

dequeue the same work, which encourages higher SIMT 

utilization. 

Tzeng et al. also explored task queues within the confines of 

today’s GPUs [36]. Their approach was to operate on a 

queue at wavefront granularity. They allocated a queue per 

SIMD unit and achieved load-balance through work steal-

ing/sharing. Channels use dynamic aggregation to provide a 

more conventional task abstraction. 

Heterogeneous System Architecture (HSA) supports de-

pendencies among kernels [5]. Similarly, dynamic parallel-

ism in CUDA enables coarse-grain work coordination [6]. 

These approaches require programmers to reason about par-

allelism at a coarse granularity. We found that specifying 

dependencies at a coarse granularity, while scheduling work 

at a fine granularity, worked well for Cilk. 

Fung et al. proposed that a wavefront’s state be checkpoint-

ed to global memory for the purposes of recovering from a 

failed transaction [37]. We propose a wavefront yield in-

struction to facilitate Cilk on GPUs. While similar, we go a 

step further by allowing the wavefront to relinquish its exe-

cution resources. In contrast, CUDA and HSA only support 

context switches at kernel granularity. 

10. Conclusion 

Channels aggregate fine-grain work into coarser-grain tasks 

that run efficiently on GPUs. This section summarizes our 

work on channels, discusses its implications, and anticipates 

future work. 

We proposed the first channel implementation. While our 

design scales to eight compute units, there are several im-

provements that future work should consider. Our imple-

mentation is a flat queue, but a hierarchical design may 

scale even better. We also used a read-for-ownership coher-

ence protocol in our evaluation, but future work should 

quantify the effects of write-combining caches. Finally, fu-

ture designs should optimize the layout of CEs in memory 

for SIMT hardware. 

We described a set of transformations to map Cilk to a 

channel-flow graph. Future work should investigate map-

ping other high-level languages to GPUs through channels. 

Our implementation of Cilk on top of channels hard-codes 

both Cilk’s dependencies and the subset of channels from 

which to schedule in the aggregator’s firmware. Future work 

should explore general abstractions for managing the chan-

nels and their dependencies. For example, it may be possible 

to apply the concept of guarded actions to channels [38]. 

We used the GPU’s control processor, which we called the 

aggregator, to manage channels and restart yielded wave-

fronts. We found that its architecture had a crucial impact on 

the performance of channels. While the out-of-order design 

that we used worked well for our workloads, a more effi-

cient design might achieve similar results. Future work 

should explore control processor architectures that enable 

other novel GPGPU programming models and abstractions. 
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