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ABSTRACT 

Our analysis shows that many “big-memory” server workloads, 
such as databases, in-memory caches, and graph analytics, pay a 
high cost for page-based virtual memory. They consume as much 
as 10% of execution cycles on TLB misses, even using large pag-
es. On the other hand, we find that these workloads use read-write 
permission on most pages, are provisioned not to swap, and rarely 
benefit from the full flexibility of page-based virtual memory. 

To remove the TLB miss overhead for big-memory workloads, 
we propose mapping part of a process’s linear virtual address space 
with a direct segment, while page mapping the rest of the virtual 
address space. Direct segments use minimal hardware—base, limit 
and offset registers per core—to map contiguous virtual memory 
regions directly to contiguous physical memory. They eliminate 
the possibility of TLB misses for key data structures such as data-
base buffer pools and in-memory key-value stores. Memory 
mapped by a direct segment may be converted back to paging 
when needed. 

We prototype direct-segment software support for x86-64 
in Linux and emulate direct-segment hardware. For our workloads, 
direct segments eliminate almost all TLB misses and reduce the 
execution time wasted on TLB misses to less than 0.5%. 

Categories and Subject Descriptors: 
B.3.2 [Virtual Memory] OS-Hardware Virtual Memory manage-
ment.  
General Terms: 
Design, Performance. 

Key Words: 
Virtual Memory, Tanslation Lookaside Buffer. 
 

1. INTRODUCTION 
“Virtual memory was invented in a time of scarcity.  

Is it still a good idea?”  
– Charles Thacker, 2010 ACM Turing Award Lecture. 

Page-based virtual memory (paging) is a crucial piece of 
memory management in today’s computing systems.  Notably, its 
basic formulation remains largely unchanged since the late 1960s 
when translation-lookaside buffers (TLBs) were introduced [13]. 
In contrast, virtual memory usage has changed dramatically in 
recent years. For example, historically, a key motivation behind 
page-based virtual memory was to virtualize and overcommit 
scarce physical memory without programmer intervention. Today, 
the availability of 64-bit addressing and the decline in memory 
price have led to servers with tens of gigabytes or even terabytes of 
physical memory: HP’s DL980 currently ships with up to 4TB 
physical memory, and Windows Server 2012 supports 4TB memo-
ries, up from 64GB a decade before. 

However, page-based virtual memory as of today is far from a 
free lunch. The primary cost comes from indirection: on each ac-
cess to virtual memory, a processor must translate the virtual ad-
dress to a physical address. While address translation can be accel-
erated by TLB hits, misses are costly, taking up to 100s of cycles, 
and frequent TLB lookups cost non-negligible energy [5, 41] 

To reevaluate the cost and benefit of decades-old page-based vir-
tual memory in today’s context, we focus on an important class of 
emerging big-memory workloads. These include memory intensive 
“big data” workloads such as databases, key-value stores, and 
graph algorithms as well as high-performance computing (HPC) 
workloads with large memory requirements.  

Our experiments reveal that these big-memory workloads incur 
high virtual memory overheads due to TLB misses. For example, 
on a test machine with 96GB physical memory, graph500 [19] 
spends 51% of execution cycles servicing TLB misses with 4KB 
pages and 10% of execution cycles with 2 MB large pages. The 
combination of application trends—large memory footprint and 
lower reference locality [17, 35]—contributes to high TLB miss 
rates and consequently we expect even higher address translation 
overheads in future. Moreover, the trends to larger physical 
memory sizes and byte-addressable access to storage class memory 
[37, 47] increase address mapping pressure. 

 Despite these costs, we find big-memory workloads seldom use 
the rich features of page-based virtual memory (e.g., swapping, 
copy-on-write and per-page protection). These workloads typically 
allocate most of the memory at startup in large chunks with uni-
form access permission. Furthermore, latency-critical workloads 
also often run on servers with physical memory sized to the work-
load needs and thus rarely swap. For example, databases carefully 
size their buffer pool according to the installed physical memory. 
Similarly, key-value stores such as memcached request large 
amounts of memory at startup and then self-manage it for caching. 
We find that only a small fraction of memory uses per-page protec-
tion for mapping files, for executable code. Nevertheless, current 
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Table 1. Test machine configuration 
 Description 
Processor  Dual-socket Intel Xeon E5-2430 (Sandy 

Bridge), 6 cores/socket, 2 threads/core, 2.2 GHz  
L1 DTLB 4KB pages: 64-entry, 4-way associative;  

2MB pages: 32-entry 4-way associative; 
1GB pages: 4-entry fully associative  

L1 ITLB 4KB pages: 128-entry, 4-way associative;  
2MB pages: 8-entry, fully associative 

L2 TLB (D/I) 4 KB pages: 512-entry, 4-way associative  
Memory  96 GB DDR3 1066MHz 
OS Linux (kernel version 2.6.32) 
 

Table 2. Workload  Description 

graph500 Generation, compression and breadth-first 
search of large graphs. http://www.graph500.org/ 

memcached In-memory key-value cache widely used by 
large websites (e.g., Facebook). 

MySQL MySQL with InnoDB storage engine running 
TPC-C (2000 warehouses). 

NPB/BT 
NPB/CG 

HPC benchmarks from NAS Parallel Bench-
mark Suite.  
http:// nas.nasa.gov/publications/npb.html 

GUPS 
Random access benchmark defined by the High 
Performance Computing Challenge. 
http://www.sandia.gov/~sjplimp/algorithms.html 

 designs apply page-based virtual memory for all memory regions, 
incurring its cost on every memory access.   

In light of the high cost of page-based virtual memory and its 
significant mismatch to “big-memory” application needs, we pro-
pose mapping part of a process’s linear virtual address with a di-
rect segment rather than pages. A direct segment maps a large 
range of contiguous virtual memory addresses to contiguous physi-
cal memory addresses using small, fixed hardware: base, limit and 
offset registers for each core (or hardware context with multi-
threading). If a virtual address V is between the base and limit 
(base ≤ V < limit), it is translated to physical address V + offset 
without the possibility of a TLB miss. Addresses within the seg-
ment must use the same access permissions and reside in physical 
memory. Virtual addresses outside the segment’s range are trans-
lated through conventional page-based virtual memory using TLB 
and its supporting mechanisms (e.g., hardware page-table walker). 

The expected use of a direct segment is to map the large amount 
of virtual memory that big-memory workloads often allocate con-
sidering the size of physical memory. The software abstraction for 
this memory is called a primary region, and examples include 
database buffer pools and in-memory key-value stores.  

Virtual memory outside a direct segment uses conventional pag-
ing to provide backward compatibility for swapping, copy-on-
write, etc. To facilitate this, direct segments begin and end on a 
base-page-sized boundary (e.g., 4KB), and can dynamically shrink 
(to zero) or grow (to near physical memory size).  While doing so 
may incur data-movement costs, benefits can still accrue for long-
running programs. 

Compared to past segmentation designs, direct segments have 
three important differences. It (a) retains a standard linear virtual 
address space, (b) is not overlaid on top of paging, and (c) co-
exists with paging of other virtual addresses. Compared to large-

page designs, direct segments are a one-time fixed-cost solution for 
any size memory. In contrast, the size of large pages and/or TLB 
hierarchy must grow with memory sizes and requires substantial 
architecture, and/or operating system and applications changes.  
Moreover, being a cache, TLBs rely on access locality to be effec-
tive. In comparison, direct segments can map arbitrarily large 
memory sizes with a small fixed-size hardware addition. 

The primary contributions of this paper are: 
• We analyze memory usage and execution characteristics of big-

memory workloads, and show why page-based virtual memory 
provides little benefit and high cost for much of memory usage. 

• We propose direct-segment hardware for efficient mapping of 
application-specified large primary regions, while retaining full 
compatibility with standard paging.  

• We demonstrate the correctness, ease-of-use and perfor-
mance/efficiency benefits of our proposal. 

2. BIG-MEMORY WORKLOAD ANALYSIS 
We begin with a study of important workloads with big-memory 

footprints to characterize common usage of virtual memory and 
identify opportunities for efficient implementations. Our study 
includes the following three aspects: 
1. Use of virtual memory: we study what virtual memory function-

alities are used by such big-memory workloads; 
2. Cost of virtual memory: we measure the overhead of TLB miss-

es with conventional page-based virtual memory; 
3. Execution environment: we study common characteristics of the 

execution environment of big-memory workloads. 
Table 1 describes the test machine for our experiments. 
Table 2 describes the workloads used in our study. These appli-

cations represent important classes of emerging workloads, ranging 
from in-memory key-value stores (memcached), web-scale data-
bases (MySQL), graph analytics (graph500) and supercomputing 
(NAS parallel benchmark suite). Further, we also studied the GUPS 
micro-benchmark designed by HPC community to stress-test ran-
dom memory access in high-performance computing settings. 

2.1 Actual Use of Virtual Memory 
Swapping. A primary motivation behind the invention of page-
based virtual memory was automatic management of scarce physi-
cal memory without programmer intervention [15]. This is 
achieved by swapping pages in and out between memory and sec-
ondary storage to provide the illusion of much more memory than 
is actually available.  

We hypothesize that big-memory workloads do little or no 
swapping, because performance-critical applications cannot afford 
to wait for disk I/Os. For example, Google observes that a sub-
second latency increase can reduce user traffic by 20% due to user 
dissatisfaction with higher latency [28]. This drives large websites 
such as Facebook, Google, Microsoft Bing, and Twitter to keep 
their user-facing data (e.g., search indices) in memory [12]. Enter-
prise databases and in-memory object-caches similarly exploit 
buffer-pool memory to minimize I/O. These memory-bound work-
loads are therefore either sufficiently provisioned with physical 
memory for the entire dataset or carefully sized to match the phys-
ical memory capacity of the server. We examine this hypothesis by 
measuring the amount of swapping in these workloads with the 
vmstat Linux utility. As expected, we observe no swapping activi-
ty, indicating little value in providing the capability to swap.  
Memory allocation and fragmentation. Frequent allocation and 
de-allocation of different size memory chunks can leave holes in 
physical memory that prevent subsequent memory allocations, 



  
  

called external fragmentation. To mitigate such external fragmen-
tation, paging uses fixed (page-sized) allocation units. 

     Big-memory workloads, on the other hand, rarely suffer from 
OS-visible fragmentation because they allocate most memory 
during startup and then manage that memory internally. For exam-
ple, databases like MySQL allocate buffer-pool memory at startup 
and then use it as a cache, query execution scratchpad, or as buff-
ers for intermediate results.  Similarly, memcached allocates space 
for its in-memory object cache during startup, and sub-allocates the 
memory for different sized objects.  

We corroborate this behavior by tracking the amounts of 
memory allocated to a workload over its runtime. We use Linux’s 
pmap utility [26] to periodically collect total allocated memory 
size for a given process. Figure 1 shows the allocated memory 
sizes in 5-second intervals over 25 minutes of execution for each 
workload on our test machine described in Table 1.  

     Across our workloads, we see most memory is allocated early 
in the execution and very little variation in allocation thereafter. 
These data confirm that these workloads should not suffer OS-
visible fragmentation. A recent trace analysis of jobs running in 
Google’s datacenter corroborates that memory usage changes little 
over runtime for long-running jobs [38].  Furthermore, because 
memory allocation stabilizes after startup, these workloads have 
predictable memory usage. 
Per-page permissions. Fine-grain per-page protection is another 
key feature of paging.  To understand how page-grain protection is 
used by big-memory workloads, we examine the kernel metadata 
for memory allocated to a given process. Specifically, we focus on 
one type of commonly used memory regions—anonymous regions 
(not backed by file) (excluding stack regions). Table 3 reports the 
fraction of total memory that is dynamically allocated with read-
write permission over the entire runtime (averaged over measure-
ments at 5-second intervals).  

We observe that nearly all of the memory in these workloads is 
dynamically allocated memory with read-write permission. While 
unsurprising given that most memory comes from large dynamic 
allocations at program startup (e.g., MySQL’s buffer pool, in-
memory object cache), this data confirms that fine-grain per-page 
permissions are not necessary for more than 99% of the memory 
used by these workloads. 

There are, however, important features enabled by page-grain 
protection that preclude its complete removal. Memory regions 
used for inter-process communication use page-grain protection to 
share data/code between processes. Code regions are protected by 
per-page protection to avoid overwrite. Copy-on-write uses page-

grain protection for efficient implementation of the fork() system 
call to lazily allocate memory when a page is modified. Invalid 
pages (called guard pages) are used at the end of thread stacks to 
protect against stack overflow. However, our targeted big-memory 
workloads do not require these features for most of the memory 
they allocate. 

 

2.2 Cost of Virtual Memory 
Here we quantify the overhead of page-based virtual memory for 

the big-memory workloads on real hardware.  
Modern systems enforce page-based virtual memory for all 

memory through virtual-to-physical address translation on every 
memory access. To accelerate table-based address translation, 
processors employ hardware to cache recently translated entries in 
TLBs. TLB reach is the total memory size mapped by a TLB 
(number of entries times their page sizes). Large TLB reach tends 
to reduce the likelihood of misses. TLB reach can be expanded by 
increasing the number of TLB entries or by increasing page size. 

However, since TLB lookup is on the critical path of each 
memory access, it is very challenging to increase the number of 
TLB entries without adding extra latency and energy overheads. 
Modern ISAs instead provide additional larger page sizes to in-
crease TLB reach. For example, x86-64 supports 2MB pages and 
1GB pages in addition to the default 4KB pages. Table 1 describes 
the TLB hierarchy in the 32 nm Intel Sandy Bridge processors 
used in this paper. The per-core TLB reach is a small fraction of 
the multi-TB physical memory available in current and future 
servers. The aggregate TLB reach of all cores is somewhat larger 
but still much less than a terabyte, and summing per-core TLB 
reaches only helps if memory is perfectly partitioned among cores. 

To investigate the performance impact of TLB misses, we use 
hardware performance counters to measure the processor cycles 
spent by the hardware page-table walker in servicing TLB misses. 
In x86-64, a hardware page-table walker locates the missing page-
table entry on a TLB miss and loads it into the TLB by traversing a 
four-level page table. A single page-table walk here may cause up 
to four memory accesses. Our estimate for TLB-miss latency is 
conservative as we do not account for L1 TLB misses that hit in L2 
TLB (for 4KB pages), which can take around 7 cycles [27]. We 
run the experiments with base (4KB), large (2MB) and huge page 
(1GB).  

We report TLB miss latency as a fraction of total execution cy-
cles to estimate its impact on the execution time.  Table 4 lists our 
findings (the micro-benchmark GUPS is separated at the bottom). 
First, we observe that TLB misses on data accesses (D-TLB miss-

Observation 1: For the majority of their address space, big-
memory workloads do not require, swapping, fragmentation 
mitigation, or fine-grained protection afforded by current virtual 
memory implementations. They allocate memory early and have 
stable memory usage.  

 
Figure 1. Memory allocated over time by workloads. 
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Table 3. Page-grain protection statistics 

 Percentage of allocated memory 
with read-write permission 

graph500 99.96% 
memcached 99.38% 

MySQL 99.94% 
NPB/BT 99.97% 
NPB/CG 99.97% 

GUPS 99.98% 
 



  
  

es), account for significant percentage of execution cycles with 
4KB pages (e.g., 51% of execution cycles for graph500). The TLB 
misses on instruction fetches (I-TLB misses), however, are mostly 
insignificant and thus are ignored in the rest of the study. With 
2MB pages, the effect of D-TLB miss moderates across all work-
loads as expected: for NPB:CG cost of D-TLB misses drops from 
30% to 1.45%. However, across most of the workloads (graph500, 
memcached, MySQL) D-TLB misses still incur a non-negligible 
cost of 4.9% - 9.9%.  

Use of 1GB pages reveals more interesting behavior. While most 
of the workloads observe a reduction in time spent servicing TLB 
misses, NPB:CG observes a significant increase compared to 2MB 
pages.  This stems from almost 3X increase in TLB miss rate likely 
due to the smaller number of TLB entries available for 1GB pages 
(4 entries) compared to 2MB pages (32 entries). A sparse memory 
access pattern can result in more misses with fewer TLB entries. 
This possibility has been observed by VMware, which warns users 
of possible performance degradation with large pages in their ESX 
server [25]. 

In summary, across most workloads (graph500, memcached, 
MySQL) we observe substantial overhead for servicing TLB misses 
on our 96 GB machine (4.3% to 9.9%), even using large pages. 
Results will likely worsen for larger memory sizes. While the la-
tency cost of TLB misses suffice to show the significant overhead 
of paging, there are several other costs that are beyond the scope of 
this analysis: the dynamic energy cost of L1 TLB hit [41], the en-
ergy cost of page table walk on TLB miss,  and the memory and 
cache space for page tables. 

 

2.3 Application Execution Environment 
Finally, we qualitatively summarize other properties of big-

memory workloads that the rest of this paper exploits.  
First, many big-memory workloads are long-running programs 

that provide 24x7 services (e.g., web search, database). Such ser-
vices receive little benefit from virtual memory optimizations 
whose primary goal is to allow quick program startup, such as 
demand paging. 

Second, services such as in-memory caches and databases typi-
cally configure their resource use to match the resources available 
(e.g., physical memory size).  
Third, many big-memory workloads provide a service where pre-
dictable, low latency operation is desired. Thus, they often run 

either exclusively or with a few non-interfering tasks to guarantee 
high performance [29], low latency and performance predictability. 
A recent study by Reiss et al. [38] finds that in Google’s datacen-
ters, a small fraction of long-running jobs use more than 90% of 
system resources. Consequently, machines running big-memory 
workloads often have one or a few primary processes that are the 
most important processes running on a machine and consume most 
of the memory. 

 
3. MORE EFFICIENT VIRTUAL MEMORY 

Inspired by the observations in Section 2, we propose a more ef-
ficient virtual memory mechanism that enables fast and minimalist 
address translation through segmentation where possible, while 
defaulting to conventional page-based virtual memory where need-
ed. In effect, we develop a hardware-software co-design that ex-
ploits big-memory workload characteristics to significantly reduce 
the virtual memory cost for most of its memory usage that does not 
benefit from rich features of page-based virtual memory. Specifi-
cally, we propose direct-segment hardware (Section 3.1) that is 
used via a software primary region (Section 3.2). 

3.1 Hardware Support: Direct Segment 
Our goal is to enable fast and efficient address translation for a 

part of process’s address space that does not benefit from page-
based virtual memory, while allowing conventional paging for the 
rest.  To do this, we translate a contiguous virtual address range 
directly onto a contiguous physical address range through hard-
ware support called a direct segment—without the possibility of a 
TLB miss. This contiguous virtual address range can be arbitrarily 
large (limited only by the physical memory size of the system) and 
is mapped using a small fixed-sized hardware. Any virtual address 
outside the aforementioned virtual address range is mapped 
through conventional paging. Thus, any amount of physical 
memory can be mapped completely through a direct segment, 
while allowing rich features of paging where needed (e.g., for 
copy-on-write, guard pages). It also ensures that the background 

Observation 2: Big-memory workloads pay a cost of page-
based virtual memory: substantial performance lost to TLB 
misses. 

Observation 3: Many big-memory workloads: 
a) Are long running, 
b) Are sized to match memory capacity, 
c) Have one (or a few) primary process(es).  

Table 4. TLB miss cost. 

 

Percentage of execution cycles servicing  
TLB misses 

Base Pages 
(4KB) 

Large Pages 
(2MB) 

Huge Pages 
(1GB) 

D-TLB I-TLB D-TLB D-TLB 

graph500 51.1 0 9.9 1.5 

memcached 10.3 0.1 6.4 4.1 

MySQL 6.0 2.5 4.9 4.3 

NPB:BT 5.1 0.0 1.2 0.06 
NPB:CG 30.2 0.0 1.4 7.1 

GUPS 83.1 0.0 53.2 18.3 
 

 
Figure 2. Logical view of address translation with direct seg-

ment. Added hardware is shaded. 
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(non-primary) processes are unaffected and full backward compat-
ibility is maintained.  

The proposed direct-segment hardware adds modest, fixed-sized 
hardware to each core (or to each hardware thread context with 
hardware multithreading). Figure 2, provides a logical view with 
the new hardware shaded. The figure is not to scale, as the D-TLB 
hardware is much larger. For example, for Intel’s Sandy Bridge, 
the L1 D-TLB (per-core) has 100 entries divided across three sub-
TLBs and backed by a 512-entry L2 TLB. 

As shown in Figure 2, direct segments add three registers per 
core as follows: 
• BASE holds the start address of the contiguous virtual address 

range mapped through direct segment, 
• LIMIT holds the end address of the virtual address range mapped 

through direct segment, and, 
• OFFSET holds the start address of direct segment’s backing 

contiguous physical memory minus the value in BASE. 
Direct segments are aligned to the base page size, so page offset 

bits are omitted from these registers (e.g., 12 bits for 4KB pages).   
Address translation: As depicted in Figure 2, on each data 

memory reference, data virtual address V is presented to both the 
new direct-segment hardware and the D-TLB. If virtual address V 
falls within the contiguous virtual address range demarcated by the 
direct segment’s base and limit register values (i.e., BASE ≤ V < 
LIMIT), the new hardware provides the translated physical address 
as V + OFFSET and suppresses the D-TLB translation process. 
Notably, addresses translated using direct segments never suffer 
from TLB misses. Direct-segment hardware permits read-write 
access only. 

 A given virtual address for a process is translated either through 
direct segment or through conventional page-based virtual memory 
but never both. Thus, both direct segment and D-TLB translation 
can proceed in parallel. A virtual address outside the direct seg-
ment may hit or miss in L1 TLB, L2 TLB, etc., and is translated 
conventionally. This simplifies the logic to decide when to trigger 
hardware page-table walk and only requires that the delay to com-
pare the virtual address against BASE and LIMIT be less than the 
delay to complete the entire D-TLB lookup process (which in-
volves looking up multiple set-associative structures). 

The OS is responsible for loading proper register values, which 
are accessible only in privileged mode. Setting LIMIT equal to 
BASE disables the direct segment and causes all memory accesses 
for the current process to be translated with paging. We describe 
how the OS calculates and handles the value of these registers in 
the next section. 

Unlike some prior segment-based translation mechanisms [14, 
21] direct segments are also notable for what they do not do. Direct 
segments: 
(a) Do not export two-dimensional address space to applications, 

but retain a standard linear address space. 
(b) Do not replace paging: addresses outside the segment use 

paging. 
(c) Do not operate on top of paging: direct segments are not 

paged.  

3.2 Software Support: Primary Region 
System software has two basic responsibilities in our proposed 

design. First, the OS provides a primary region abstraction to let 
applications specify which portion of their memory does not bene-
fit from paging. Second, the OS provisions physical memory for a 

primary region and maps all or part of the primary region through a 
direct segment by configuring the direct-segment registers.   
3.2.1 Primary Regions  

A primary region is a contiguous range of virtual addresses in a 
process’s address space with uniform read-write access permission. 
Functionalities of conventional page-based virtual memory like 
fine-grain protection, sparse allocation, swapping, and demand 
paging are not guaranteed for memory allocated within the primary 
region. It provides only the functionality described in Section 2.1 
as necessary for the majority of a big-memory workload’s memory 
usage, such as MySQL’s buffer cache or memcached’s cache. 
Eschewing other features enables the primary region of a process 
to be mapped using a direct segment.  
   The software support for primary regions is simple: (i) provision 
a range of contiguous virtual addresses for primary region; and (ii) 
enable memory requests from an application to be mapped to its 
primary region.  
Provisioning virtual addresses: Primary regions require a contig-
uous virtual address range in a process’s address space. During 
creation of a process the OS can reserve a contiguous address par-
tition in the infant process to be used exclusively for memory allo-
cations in the primary region.  This guarantees contiguous space 
for the primary region. Conservatively, this partition must be big 
enough to encompass the largest possible primary region—i.e., the 
size of the physical memory (e.g., 4TB). Since 64-bit architectures 
have an abundance of virtual address space—128TB for a process 
in Linux on x86-64—it is cheap to reserve space for the primary 
region. Alternatively, the operating system can defer allocating 
virtual addresses until the application creates a primary region; in 
this case the request may fail if the virtual address space is heavily 
fragmented.  

In Figure 3, the top outermost rectangular box shows the virtual 
address space layout of a process with primary region. The lightly 
shaded inner box represents the address range provisioned for the 
primary region. The remainder of the address space can be mapped 
through conventional pages (narrow rectangles).  
Memory allocations in primary region: The OS must decide 
which memory allocation requests use the primary region. As men-
tioned earlier, any memory allocation that does not benefit from 
paging is a candidate. 

There are two broad approaches: opt in and opt out. First, a pro-
cess may explicitly request that a memory allocation be put in its 
primary region via a flag to the OS virtual-memory allocator (e.g., 
mmap() in Linux), and all other requests use conventional paging. 
Second, a process may default to placing dynamically allocated 
anonymous (not file-backed) with uniform read-write permission 
in the primary region. Everything else (e.g., file-mapped regions, 
thread stacks) use paging. Anonymous memory allocations can 
include a flag to “opt out” of the primary region if paging features 
are needed, such as sparse mapping of virtual addresses to physical 
memory.  
3.2.2 Managing Direct-Segment Hardware 

The other major responsibility of the OS is to set up the direct-
segment hardware for application use. This involves two tasks. 
First, the OS must make contiguous physical memory available for 
mapping primary regions. Second, it must set up and manage the 
direct-segment registers (BASE, LIMIT, and OFFSET).  
Managing physical memory: The primary task for the OS is to 
make contiguous physical memory available for use by direct seg-
ments. As with primary regions, there are two broad approaches. 
First, the OS can create contiguous physical memory dynamically 



  
  

through periodic memory compaction, similar to Linux’s Trans-
parent Huge Pages support [46]. The cost of memory compaction 
can be amortized over the execution time of long-running process-
es. We measured that it takes around 3 seconds to crate a 10GB 
range of free, contiguous physical memory. For this memory size, 
compaction incurs a 1% overhead for processes running 5 minutes 
or longer (and 0.1% overhead for one hour).  

The second, simpler approach is to use physical memory reserva-
tions and set aside memory immediately after system startup. The 
challenge is to know how much memory to reserve for direct-
segment mappings. Fortunately, big-memory workloads are al-
ready cognizant of their memory use. Databases and web caches 
often pre-configure their primary memory usage (e.g., cache or 
buffer pool size), and cluster jobs, like those at Google, often in-
clude a memory size in the job description [38].  
Managing direct-segment registers: The OS is responsible for 
setting up and managing direct-segment registers to map part or all 
of the primary region of one or few critical primary processes on to 
contiguous physical memory. To accomplish this task the OS first 
needs to decide which processes in a system should use direct 
segment for address translation. To minimize administration costs, 
the OS can monitor processes to identify long-running processes 
with large anonymous memory usage, which are candidates for 
using direct segments. To provide more predictability, the OS can 
provide an explicit admission control mechanism where system 
administrators identify processes that should map their primary 
region with a direct segment.  

With explicit identification of processes using direct segments, 
the system administrator can specify the desired amount of 
memory to be mapped with a direct segment. The OS then finds a 
contiguous chunk of physical memory of the desired size from the 
reserved memory. If no such chunk is found then the largest avail-
able contiguous physical memory chunk determines the portion of 
the primary region mapped through the direct segment. However, 
this region can be dynamically extended later on as more contigu-
ous physical memory becomes available, possibly through com-
paction or de-allocations.  

Figure 3 provides a pictorial view of how the values of three di-
rect-segment registers are determined; assuming all of primary 
region of the process is mapped through direct segment in the ex-
ample. As shown in the figure, the OS uses the BASE and LIMIT 
register values to demarcate the part of the primary region of a 
process to be mapped using direct segment (dark-shaded box in the 
upper rectangle). OFFSET register is simply the difference be-
tween BASE and the start address of the physical memory chunk 
mapping the direct segment. The OS disables a process’s direct 
segment by setting BASE and LIMIT to the same value, e.g., zero. 

The values of the direct-segment registers are part of the context 
of a process and maintained within the process metadata (i.e. pro-
cess control block or PCB). When the OS dispatches a thread; it 
loads the BASE, LIMIT, and OFFSET values from the PCB.  
Growing and shrinking direct segment: A primary region can be 
mapped using a direct segment, conventional pages, or both. Thus, 
a process can start using primary regions with paging only (i.e., 
BASE = LIMIT). Later, the OS can decide to map all or part of the 
primary region with a direct segment. This may happen when con-
tiguous physical memory becomes available or if the OS identifies 
the process as “big-memory”. The OS then sets up the direct-
segment registers and deletes the page table entries (PTEs) for the 
region. This can also be used to grow the portion of primary region 
mapped through a direct segment. For example, initially the new 
space can be mapped with paging, and later converted to use an 
expanded direct segment if needed. 

The OS may also decide to revert to paging when under memory 
pressure so it can swap out portions. The OS first creates the nec-
essary PTEs for part or all of the memory mapped by the direct 
segment, and then updates the direct-segment registers. As with 
other virtual-memory mapping updates, the OS must send 
shootdown-like inter-process interrupts to other cores running the 
process to update their direct-segment registers. 

3.3 Discussion 
In this section, we discuss possible concerns regarding primary 

region/direct segment. 
Why not large pages? Modern hardware supports large pages to 
reduce TLB misses. Large pages optimize within the framework of 
page-based virtual memory and are hence constrained by its limita-
tions, such as alignment restrictions. In contrast, our proposal is 
based on analysis of the memory needs of big-memory workloads, 
and meets those needs with minimal hardware independent of the 
TLB.  In the following paragraphs we describe major shortcoming 
of large pages that we overcome in our proposal. 

First, large pages and their TLB support do not automatically 
scale to much larger memories. To support big-memory workloads, 
the size of large pages and/or size of TLB hierarchy must continue 
to scale as memory capacity increases. This requires continual 
updates to the processor micro-architecture and/or operating sys-
tem, and application’s memory management functionality. Being a 
cache, TLBs are reliant on memory-access locality to be effective 
and it can be a mismatch for future big-memory workloads with 
poor locality (e.g., streaming and random access) [35, 37]. In con-
trast, direct segments only need a one-time, much simpler change 
in processor, OS, and applications, with full backward compatibil-
ity. It can then map arbitrarily large amounts of memory, providing 
a scalable solution for current and future systems.  

Second, efficient TLB support for multiple page sizes is difficult. 
Because the indexing address bits for large pages are unknown 
until the translation completes, a split-TLB design is typically re-
quired where separate sub-TLBs are used for different page sizes 
[43]. This design, as employed in recent Intel processors such as 
Westmere, Sandy Bridge, and Ivy Bridge, can suffer from perfor-
mance unpredictability while using larger page sizes as observed in 
experiments described in Section 2.2. For the application NPB:CG 
the fraction of processor cycles spent on servicing TLB misses 
rises substantially when 1GB pages are used instead of 2MB pag-
es. This demonstrates that performance with large pages can be 
micro-architecture dependent. An alternative design could use a 
unified, fully associative TLB, but this increases TLB power and 
access latency while limiting its size. In contrast, direct segment 

 
Figure 3.  Virtual Address and Physical Address layout 
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obviate such TLB design complexities and is micro-architecture 
agnostic.  

Third, large page sizes are often few and far apart. For example 
in x86-64, the large page sizes correspond to different levels in the 
hardware-defined multi-level radix-tree structure of the page table. 
For example, recent x86-64 processors have only three page sizes 
(4KB, 2MB, 1GB), each of which is 512 times larger than the pre-
vious. This constant factor arises because 4KB pages that hold 
page tables contain 512 8-byte-wide PTEs at each node of the page 
table. Such page-size constraints make it difficult to introduce and 
flexibly use large pages. For example, mapping a 400GB physical 
memory using 1GB pages can still incur substantial number of 
TLB misses, while a 512GB page is too large. A direct segment 
overcomes this shortcoming, as its size can adapt to application or 
system needs.  
Virtual machines with direct segment: Direct segments can be 
extended to reduce TLB miss overhead in virtualized environments 
as well. In a virtualized environment the memory accesses goes 
through two levels of address translations: (1) guest virtual address 
(gVA) to guest physical address (gPA) and (2) guest physical ad-
dress (gPA) to system physical address (sPA). In x86-64 with 
hardware virtualization of the MMU, a TLB miss in a virtual ma-
chine is serviced by a 2-D page-table walker that may incur up to 
24 memory references [2]. Direct segments could be extended to 
substantially reduce this cost in the following ways. 

The simplest extension of direct segment to virtualized environ-
ment would be to map the entire guest physical memory (gPA) to 
system physical memory (sPA) using a direct segment. This exten-
sion can reduce a 2-D page-table walk to 1-D walk where each 
TLB miss incurs at most 4 memory accesses instead of 24. 

Further, a direct segment can be used to translate addresses from 
gVA to gPA for primary processes inside the guest OS, similar to 
use in a native OS. This also reduces the 2-D page-table walk to 
one dimension.  

Finally, direct segments can be used for gVA to sPA translations.  
This can be accomplished in two ways. First, similar to shadow 
paging [1], a hypervisor can populate the direct segment OFFSET 
register with the two-step translation of the direct-segment base 
from gVA to sPA. Any update by the guest OS to segment registers 
must trap into the hypervisor, which validates the base and limit, 
and calculates and installs the offset. Second, if a trap is deemed 
costly then nested BASE/LIMIT/OFFSET registers in hardware, 
similar to hardware support for nested paging, could be added 
without significant cost. However, evaluation of these techniques 
is beyond the scope of this paper. We also note that, similar to 
large pages use of direct segment may reduce opportunities for de-
duplication[48].  
Direct segments for kernel memory: So far, we have focused on 
TLB misses to user-mode application memory. However, work-
loads like memcached that exercise the kernel network stack can 
waste up to additional 3.2% of execution cycles servicing TLB 
misses for kernel memory. 

Direct segments may be adapted to kernel memory by exploiting 
existing regularity in kernel address space. For example, Linux’s 
kernel memory usage is almost entirely direct-mapped, wherein 
the physical address is found by subtracting a static offset from the 
virtual address. This memory matches direct segments’ capabili-
ties, since they enable calculating physical address from a virtual 
address in similar fashion. If direct segments are not used in user 
mode, they can be used by the kernel for this memory (using pag-
ing for processes that do use a direct segment). Alternatively, addi-

tional segment registers can be added to each hardware thread 
context for a second kernel-mode direct segment.  

The Linux kernel maps some memory using variable virtual ad-
dresses, which cannot use a direct segment. However, we empiri-
cally measured that often nearly 99% of kernel TLB misses refer-
ence direct-mapped addresses and thus can be eliminated by a 
direct segment. 
Not general (enough): Direct segments are not a fully general 
solution to TLB performance. We follow Occam’s razor to develop 
the simplest solution that works for many important big-memory 
workloads, and thus propose a single direct segment. Future work-
loads may or may not justify more complex support (e.g., for ker-
nels or virtual machines) or support for more segments. 
Limitations: While our approach simultaneously achieves address 
translation efficiency and compatibility, it should not be misused in 
environments with mismatching characteristics. In general, our 
proposed technique is less suitable for dynamic execution envi-
ronments where many processes with unpredictable memory usage 
execute for short periods. However, we believe that it is straight-
forward to identify, often without human intervention, whether a 
given workload and execution environment is a good fit (or not) 
for direct segments and avoid misuse. 

In addition, software that depends on sparse virtual memory al-
locations may waste physical memory if mapped with direct seg-
ments. For example, malloc() in glibc-2.11 may allocate separate 
large virtual-memory heap regions for each thread (called an are-
na), but expects to use a small fraction of this region. If these per-
thread heaps are mapped using a direct segment then the allocator 
could waste physical memory.  Our experiments use Google’s 
tcmalloc() [45], which does not suffer from this idiosyncrasy. 

4. SOFTWARE PROTOTYPE  
We implement our prototype by modifying Linux kernel 2.6.32 

(x86-64). Our code has two parts: implementation of the primary 
region abstraction, which is common to all processor architectures, 
and architecture-specific code for instantiating primary regions and 
modeling direct segments. 

4.1 Architecture-Independent Implementation 
The common implementation code provisions physical memory 

and assigns it to primary regions. The prototype implementation is 
simplified by assuming that only one process uses a direct segment 
at any time (called the primary process), but this is not a constraint 
of the design. Further, our prototype uses explicit identification of 
the primary process and physical memory reservations, although 
more automatic implementations are possible as detailed in Section 
3.2. Below we describe the main aspects of our implementation—
identifying the process using a direct segment, managing virtual 
address and managing physical memory. 
Identifying the primary process: We implemented a new system 
call to identify the executable name of the primary process. The 
kernel stores this name in a global variable, and checks it when 
loading the binary executable during process creation. If a new 
process is identified as primary process then OS sets an 
“is_primary” flag in the Linux task structure (process control 
block). The OS must be notified of the executable name before the 
primary process launches.  
Managing virtual address space: When creating a primary pro-
cess, the OS reserves a contiguous address range for a primary 
region in the process’s virtual address space that is the size of the 
physical memory in the system. This guarantees the availability of 



  
  

a contiguous virtual address range for memory allocations in the 
primary region. 

Our prototype uses an “opt in” policy and places all anonymous 
memory allocations with read-write permission contiguously in the 
address range reserved for the primary region. This way, all heap 
allocations and mmap() calls for anonymous memory are allocated 
on the primary region, unless explicitly requested otherwise by the 
application with a flag to mmap().  
Managing physical memory:  Our prototype reserves physical 
memory to back direct segments.  Specifically, the new system call 
described above notifies the OS of the identity of the primary pro-
cess also specifies the estimated size of its primary region. We then 
reserve a contiguous region of physical memory of the given size 
using Linux’s memory hotplug utility [31], which takes a contigu-
ous physical memory region out of the kernel’s control (relocating 
data in the region if needed). During startup of a primary process, 
the kernel maps this physical memory region into the reserved 
virtual memory region described above. Our current prototype 
does not support dynamic resizing primary regions or direct seg-
ments. 

4.2 Architecture-Dependent Implementation  
The direct segment design described in Section 3.1 requires new 

hardware support. To evaluate primary region with direct segment 
capability on real hardware without building new hardware, we 
emulate its functionality using 4KB pages. Thus, we built an archi-
tecture-dependent implementation of direct segments.  

The architecture-dependent portion of our implementation pro-
vides functions to create and destroy virtual-to-physical mappings 
of primary regions to direct segments, and functions to context 
switch between processes. 

On a machine with real direct-segment hardware, establishing 
virtual-to-physical mapping between a primary region and a direct 
segment would require calculating and setting the direct-segment 
registers for primary processes as described in Section 3.2. The OS 
creates direct-segment mappings when launching a primary pro-
cess. It stores the values of the direct-segment registers as part of 
process’s metadata. Deleting a direct segment destroys this infor-
mation. On a context switch the OS is responsible for loading the 
direct-segment registers for the incoming process.  

Without real direct-segment hardware, we emulate direct-
segment functionalities using 4KB pages. More specifically, we 
modify Linux’s page fault handler so that on a page fault within 
the primary region it calculates the corresponding physical address 
from the faulting virtual page number. For example, let us assume 
that VAstart_primary and VAend_primary are the start and end virtual ad-
dresses of the address range in the primary region mapped through 
direct segment, respectively. Further, let PAstart_chunk be the physi-
cal address of the contiguous physical memory chunk for the direct 
segment mapping. The OS then sets the BASE register value to 
VAstart_primary, LIMIT register value to VAend_primary +1, and OFFSET 
register value to (PAstart_chunk - VAstart_primary). If VAfault is the 4KB 
page-aligned virtual address of a faulting page, then our modified 
page-fault handler first checks if BASE ≤ VAfault < LIMIT. If so, 
the handler adds a mapping from VAfault to VAfault + OFFSET to the 
page table. 

This implementation provides a functionally complete implemen-
tation of primary region and direct segments on real hardware, 
albeit without its performance. It captures all relevant hardware 
events for direct segment and enables performance estimation of 

direct segment for big-memory workloads without waiting for new 
hardware. Section 5.1 describes the details of our performance 
evaluation methodology. 

5. EVALUATION 
In this section we describe our evaluation methodology for quan-

tifying the potential benefits of direct-segment. To address the 
challenges of evaluating long-running big-memory workloads, 
which would have taken months of simulation time, we devise an 
approach that uses kernel modification and hardware performance 
counters to estimate the number of TLB misses avoided by direct 
segments. 

5.1 Methodology 
Evaluating big-memory workloads for architectural studies is it-

self a challenging task. Full-system simulations would require very 
high memory capacity and weeks, if not months, of simulation 
time. Actually, a single simulation point using the gem5 simulator 
[10] would take several weeks to months and at least twice as 
much physical memory as the actual workload. It is particularly 
difficult for TLB studies, where TLB misses occur much less often 
than other micro-architectural events (e.g., branch mispredictions 
and cache misses). Downsizing the workloads not only requires 
intimate knowledge and careful tuning of the application and oper-
ating system, but also can change the virtual memory behavior that 
we want to measure.  

We address this challenge using a combination of hardware per-
formance counters and kernel modifications that together enable 
performance estimation. With this approach, we can run real work-
loads directly on real hardware. We first use hardware performance 
counters to measure the performance loss due to hardware page-
table walks triggered by TLB misses. We then modify the kernel to 
capture and report the fraction of these TLB misses that fall in the 
primary region mapped using direct-segment hardware. Because 
these TLB misses would not have happened with direct-segment 
hardware, this allows us to estimate the reduction in execution 
cycles spent on servicing TLB misses. We conservatively assume 
that TLB miss rate reduction directly correlates to the reduction in 
time spent on TLB misses, although our design can improve the 
TLB performance for addresses outside direct segments by freeing 
TLB and page-walk-cache resources.  
1. Baseline: We use hardware performance counters to estimate 
the fraction of execution cycles spent on TLB misses. We collect 
data with oprofile [34] by running each of the workloads for sever-
al minutes on the test platform described in Table 1.  
2. Primary Region/Direct Segment: To estimate the efficacy of 
our proposed scheme, we determine what fraction of the TLB 
misses would fall in the direct segment. To achieve this, we need 
to determine whether the miss address for each TLB miss falls in 
the direct segment. Direct segments eliminate these misses. 

Unfortunately, the x86 architecture uses a hardware page table 
walker to find the PTEs on a TLB misses so an unmodified system 
cannot immediately learn the address of a TLB miss. We therefore 
tweaked the Linux kernel to artificially turn each TLB miss into a 
fake page fault by making PTEs invalid after inserting them into 
the TLB. This mechanism follows from the methodology similar to 
Rosenblum’s context-sensitive page mappings [39]. We modify the 
page fault handler to record whether the address of each TLB miss 
comes from the primary or conventional paged memory. See Box 1 
for more details on this mechanism. 



  
  

 
Figure 4. Percentage of cycles spent on DTLB misses. Values 
larger than 35% are shown above the bars, while very small 

values shown by straight arrows. 
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We then estimate the reduction in TLB-miss-handling time with 
direct-segment using a linear model. This is similar to a recent 
work on coalesced TLB by Pham et al. [36]. More specifically, we 
find the fraction of total TLB misses that fall in the primary region 
mapped with a direct segment using the methodology described 
above. We also measure the fraction of execution cycles spent by 
hardware page walker on TLB misses in the baseline system using 
performance counters. Finally, we estimate that the fraction of 
execution cycles spent on TLB misses with direct segment is line-
arly reduced by the fraction of TLB misses eliminated by direct 
segment over that of the baseline system.    

This estimation makes the simplifying assumption that average 
TLB miss latency remains same across different number of TLB 
misses. However, this is likely to underestimate the benefit of di-
rect segments, as it does not incorporate the gains from removing 
L1 TLB misses that hit in L2 TLB.  A recent study shows that L2 
TLB hits can potentially have non-negligible performance impact 
[27]. Further, unlike page-based virtual memory the direct-segment 
region does not access page tables and thus, it does not incur data 
cache pollution due to them. The direct segment also frees up ad-
dress translation resources (TLB and page-walk cache) for others 
to use. However, we omit these potential benefits in our evalua-
tion. 

5.2 Results 
In this section we discuss two aspects of performance:  

1. What is the performance gain from primary region/direct seg-
ments?  

2. How does the primary region/direct-segment approach scale 
with increasing memory footprint?  

Performance gain: Figure 4 depicts the percentage of total execu-
tion cycles spent by the workloads in servicing D-TLB misses (i.e., 
the TLB miss overhead). For each workload we evaluate four 
schemes. The first three bars in each cluster represent conventional 
page-based virtual memory, using 4KB, 2MB and 1GB pages, and 
are measured using hardware performance counters. The fourth bar 
(often invisible) is the estimated TLB overhead for primary re-
gion/direct segments. As observed earlier, we find that even with 
larger page sizes significant execution cycles can be spent on ser-
vicing TLB misses. 

With primary regions and direct segments, our workloads waste 
practically no time on D-TLB misses. For example, in graph500 
the TLB overhead dropped to 0.01%.  Across all workloads, the 
TLB overhead is below 0.5%. 

Such results are hardly surprising: from the Table 5, as we ob-
serve most of the TLB misses are captured by the primary region 
and thus avoided by the direct segment. This correlates well with 
Table 3, which shows that more than 99% of allocated memory 
belongs to anonymous regions that can be placed in a primary 
region and direct segment.  The only exception is MySQL, where 
the direct segment captured only 92% of TLB misses. We found 
that MySQL creates 100s of threads and many TLB misses occur 
in the thread stacks and the process’s BSS segment memory that 
holds compile-time constants and global data structures. Many 
TLB misses also occur in file-mapped regions of memory as well. 
Scalability: Direct segments provide scalable virtual memory, 
with constant performance as memory footprint grows. To illus-
trate this benefit, Figure 5 compares the fraction of execution cy-
cles spent on DTLB misses with different memory footprints for 

Table 5. Reduction in TLB misses 
 Percent of D-TLB misses in 

the direct secgment 
graph500 99.99 
memcached 99.99 
mySQL 92.40 
NBP:BT 99.95 
NBP:CG 99.98 
GUPS 99.99 
 

Box 1. TLB tracking method 

We track TLB misses by making an  x86-64 processor act as if 
it had a software-filled TLB by making TLB misses trap to the 
OS.  
Forcing traps: In x86-64, page table entries (PTEs) have a set 
of reserved bits (41-51 in our test platform) that cause a trap 
when loaded into the TLB. By setting a reserved bit, we can 
ensure that any attempt to load a PTE will cause a trap. 
TLB Incoherence: The x86-64 architecture does not automat-
ically invalidate or update a TLB entry when the corresponding 
memory-resident PTE is modified. Thus, a TLB entry can con-
tinue to be used even after its corresponding PTE in the 
memory has been modified to set a reserved bit. 
Trapping on TLB misses: We use these two features to inten-
tionally make PTEs incoherent and generate a fake page fault 
on each TLB miss. All user-level PTEs for a primary process 
are initially marked invalid. The first access to a page triggers a 
page fault. In this handler, we make the PTE valid and then 
take two additional actions. First, we force the TLB to load the 
correct PTE by touching the page with the faulting address. 
This puts the correct PTE into the TLB. Second, we poison the 
PTE by setting a reserved bit. This makes the PTE in memory 
invalid and inconsistent with the copy in the TLB. When the 
processor tries to re-fetch the entry on a later TLB miss, it will 
encounter the poisoned PTE and raises an exception with a 
unique error code identifying that reserved bit was set.  

When a fake page fault occurs (identified by the error code), 
we record whether the address falls in the primary region 
mapped using direct segment. We then perform the two actions 
above to reload the PTE into the TLB and re-poison the PTE in 
memory. 

 



  
  

three x84-64 page sizes and direct segments. We evaluate GUPS, 
whose dataset size can be easily configured with a scale parameter. 
We however note that GUPS represents worst-case scenario of 
random memory access. 

As the workload scales up, the TLB miss overhead grows to an 
increasing portion of execution time across all page sizes with 
varying degree (e.g., from 0% to 83% for 4KB pages, and from 0% 
to 18% for 1GB pages). More importantly, we notice that there are 
distinct inflection points for different page sizes, before which 
TLB overhead is near zero and after which TLB overhead increas-
es rapidly as the workload’s working set size exceeds TLB reach. 
Use of larger pages can only push out, but not eliminate, these 
inflection points. The existence of these inflection points and the 
upward overhead trends demonstrate the TLB’s scalability bottle-
neck. In contrast, primary regions with direct segments provide a 
scalable solution where the overhead of address translation remains 
constant and negligible when memory footprints increase.  

6. RELATED WORK 
Virtual memory has long been an active research area. Past and 

recent work has demonstrated the importance of TLBs to the over-
all system performance [5,9,13,11,19]. We expect big-memory 
workloads and multi-TB memories to make this problem even 
more important. 
Efficient TLB mechanisms: Prior efforts improved TLB perfor-
mance either by increasing the TLB hit rate or reducing/hiding the 
miss latency. For example, recent proposals increase the effective 
TLB size through co-operative caching of TLB entries [42] or a 
larger second-level TLB shared by multiple cores [7]. Prefetching 
was also proposed to hide the TLB miss latency [6,17,22]. 
SpecTLB [3] speculatively uses large-page translations while 
checking for overlapping base-page translations. Zhang et al. pro-
posed an intermediate address space between the virtual and physi-
cal addresses, under which physical address translation is only 
required on a cache miss [50]. Recently, Pham et al. [36] proposed 
hardware support to exploit naturally occurring contiguity in virtu-
al to physical address mapping to coalesce multiple virtual-to-
physical page translations into single TLB entries.  

Since servicing a TLB miss can incur a high latency cost, several 
processor designs have incorporated software or hardware PTE 
caches. For example, UltraSPARC has a software-defined Transla-
tion Storage Buffer (TSB) that serves TLB misses faster than walk-
ing the page table [32]. Modern x86-64 architectures also use 
hardware translation caches to reduce memory accesses for page-
table walks [4].   

There are also proposals that completely eliminate TLBs with a 
virtual cache hierarchy [22, 49], where all cache misses consult a 

page table. However, these techniques work only for uniprocessors 
or constrained memory layout (e.g., to avoid address synonyms).   

While these techniques make TLBs work better or remove them 
completely by going straight to the page table, they still suffer 
when mapping the large capacity of big-memory workloads. In 
contrast, we propose a small hardware and software change to 
eliminate most TLB misses for these workloads, independent of 
memory size and available hardware resources (e.g., TLB entries).  
Support for large pages: Almost all processor architectures in-
cluding MIPS, Alpha, UltraSPARC, PowerPC, and x86 support 
large page sizes. To support multiple page sizes these architectures 
implement either a fully associative TLB (Alpha, Itanium) or a set-
associative split-TLB (x86-64). Talluri et al. discusses the tradeoffs 
and difficulties of supporting multiple page sizes in hardware [43]. 
However, system software has been slow to support the full range 
of page sizes: operating system support for multiple pages sizes  
can be complicated [18, 44] and generally follows two patterns. 
First, applications can explicitly request large pages either through 
use of libraries like libHugeTLBFS [20] or through special mmap 
calls (in Linux). Second, the OS can automatically use large pages 
when beneficial [33, 44, 46].  

Although useful, we believe large pages are a non-scalable solu-
tion for very large memories as discussed in detail in Section 3.3. 
Unlike large pages, primary regions and direct segments do not 
need to scale the hardware resources (e.g., adding more TLB en-
tries or new page size) or change the OS, which are required to 
support new page sizes as memory capacity scales. 
TLB miss reduction in virtualized environment: Under virtual 
machine operation, TLB misses can be even more costly because 
addresses must be translated twice [6]. Researchers have proposed 
solutions specific to the virtualized environment.  For example, 
hardware support for nested page tables avoids the software cost of 
maintaining shadow page tables [6], and recent work showed that 
the VMM page table could be flat rather than hierarchical [2].  As 
mentioned in Section 3.3, we expect our proposed design can be 
made to support virtual machines to further reduce TLB miss costs. 
Support for segmentation:  Several past and present architectures 
supported a segmented address space. Generally, segments are 
either supported without paging, as in early Intel 8086 processors 
[21], or more commonly on top of paging as in MULTICS [14], 
PowerPC, and IA-32 [23]. Use of pure segmentation is incompati-
ble with current software, while segmentation on top of paging 
does not reduce the address translation cost of page-based virtual 
memory. In contrast, we use both segments and paging, but never 
for the same addresses, and retains the same abstraction of a linear 
address space as page-based virtual memory. 

7. CONCLUSION 
We find that many big-memory server workloads suffer from 

high TLB misses (consuming up to 51% of execution cycles) but 
rarely use swapping or fine-grained page protection, paying the 
cost of page-based virtual memory without exploiting its full bene-
fits. We also find that most memory accesses in each of these 
workloads is to a large anonymous region allocated considering 
available physical memory. We eliminate almost all TLB misses to 
this region with a primary region software abstraction supported in 
hardware with a direct segment while other virtual addresses use 
conventional page-based virtual memory for compatibility. With a 
Linux 2.6.32 prototype and hardware approximation, we show that 
our proposal eliminates almost all TLB performance loss in these 
big-memory workloads. 

 
Figure 5.  DTLB miss overheads when scaling up GUPS. 
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