
To Appear in the International Symposium on Computer Architecture (ISCA), June 2010
WiDGET: Wisconsin Decoupled Grid Execution Tiles
Yasuko Watanabe* John D. Davis† David A. Wood*

*Department of Computer Sciences
University of Wisconsin—Madison

1210 W. Dayton Street
Madison, WI 53706

{watanabe, david}@cs.wisc.edu

†Microsoft Research — Silicon Valley Lab
1065 La Avenida

Mountain View, CA 94043
john.d@microsoft.com
ABSTRACT

The recent paradigm shift to multi-core systems results in
high system throughput within a specified power budget.
However, future systems still require good single thread per-
formance—no longer the predominant design priority—to
mitigate sequential bottlenecks and/or to guarantee service-
level agreements. Unfortunately, near saturation in voltage
scaling necessitates a long-term alternative to dynamic volt-
age and frequency scaling.

We propose an energy-proportional computing infra-
structure, called WiDGET, that decouples thread context
management from a sea of simple execution units (EUs).
WiDGET’s decoupled design provides flexibility to alter
resource allocation for a particular power-performance tar-
get while turning off unallocated resources. In other words,
WiDGET enables dynamic customization of different com-
binations of small and/or powerful cores on a single chip,
consuming power in proportion to the delivered perfor-
mance.

Over all SPEC CPU2006 benchmarks, WiDGET pro-
vides average per-thread performance that is 26% better
than a Xeon-like processor while using 8% less power.
WiDGET can also scale down to a level comparable to an
Atom-like processor, turning off resources to reduce average
power by 58%. WiDGET achieves high power efficiency
(BIPS3/W), exceeding Xeon-like and Atom-like processors
by up to 2x and 21x, respectively.

Categories and Subject Descriptors
C.1.4 [Parallel Architectures]: Distributed architectures

General Terms
Performance, Design, Experimentation

Keywords
Power proportional computing, power efficiency, hard-
ware, performance, instruction steering
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISCA’10, June 19-23, 2010, Saint-Malo, France.
Copyright 2010 ACM 978-1-4503-0053-7/10/06...$10.00.

1

1. INTRODUCTION
Current trends in microprocessor design have appropri-

ately recast Moore’s law from the GHz race to the cores
(threads) per die race. Designers trade off design complexity
for power and area efficiency. Furthermore, ever increasing
wire delays favor many small hardware structures over a few
large monolithic structures. As a result, we have observed a
paradigm shift to chips with multiple simple in-order cores,
such as Intel’s Larrabee [32] and Sun’s Niagara [20]. Small
cores deliver high thread-level parallelism and power effi-
ciency, but Amdahl’s Law dictates that we not ignore single
thread performance [2,13]. Ignoring Amdahl’s Law would
lead to systems that are highly susceptible to sequential bot-
tlenecks and/or fail to meet service-level agreements [28].

A key challenge in the multi-core era is developing an
energy-proportional computing infrastructure and, at the
same time, balancing system throughput and sequential
thread performance. An Intel Nehalem processor, for
instance, relies on dynamic voltage and frequency scaling
(DVFS) to tackle the challenge [15]. By power gating a sub-
set of cores, it can raise the voltage and frequency of the
remaining cores to boost their performance without exceed-
ing the power budget. Unfortunately, DVFS is no longer suf-
ficient. Figure 1 shows that while maximum supply voltage
has declined over the past decade, minimum supply voltage
has remained almost the same (operating in the subthreshold
regime is never energy-efficient [40]). This shrinking operat-
ing voltage range significantly reduces the benefit of DVFS.

Figure 1. Operating voltage ranges

We seek to provide an alternative approach to achieving
energy-proportional computing. We propose WiDGET (Wis-
consin Decoupled Grid Execution Tiles), a hardware design
that decouples thread context management (i.e., instruction
engines or IEs) from a sea of simple computation resources
(i.e., execution units or EUs), loosely defining core bound-
aries. Rather than scaling voltage like DVFS, WiDGET
scales cores up and down through global resource allocation,
varying the number of enabled IEs and the number of EUs
assigned to each IE. This decoupled design activates only the

computation resources needed for a particular power-perfor-
mance target—turning off the rest to save power—permit-
ting dynamically and individually customized cores on a
single chip.

In this paper, we focus on WiDGET’s single thread
power and performance with emphasis on power proportion-
ality. We define power proportionality as power dissipation
in proportion to single thread performance, adapted from
Barroso and Hölzle’s definition of energy proportionality
[4]. WiDGET achieves power proportionality through EU
provisioning, under system software control, as demon-
strated in Figure 2. With the maximum number of EUs,
WiDGET provides 8% power savings for 26% better perfor-
mance than a high performance Xeon-like processor
(Section 5.1 presents configuration details) running SPEC
CPU2006 benchmarks. With the minimum number of EUs,
WiDGET uses 58% less power, approximating the power
and performance of a low power Atom-like processor. In
addition, between these two extremes, WiDGET affords a
wide power-performance range.

Figure 2. Power proportionality

WiDGET’s decoupled modular design enables flexible
EU configuration, but makes distributing instructions to the
disjoint EUs a key challenge. By taking into account com-
munication overheads, we show that simplified steering
logic can yield good performance.

The key contributions of this paper are:
•A power proportional design enabled by EU modular-

ity, allowing WiDGET to scale across the power-perfor-
mance spectrum.

•A unified framework that dynamically exploits pro-
grams’ parallelism within a power budget. WiDGET
decouples thread context management from a sea of
computation resources. We trade off complexity for
power, replacing the monolithic, power-hungry out-of-
order (OoO) issue logic in a conventional OoO machine
with simple in-order EUs.

•WiDGET’s high power efficiency (BIPS3/W) exceeds
the Xeon-like and Atom-like processors by up to 2x and
21x, respectively.

The rest of the paper first presents a high-level overview
of our design and compares it to related proposals
(Section 2). We present a cost model that accounts for com-
munication overheads, making a case for an implementable
hardware instruction steering design (Section 3). We then
present details of the WiDGET microarchitecture
(Section 4), and evaluate the power proportionality

(Section 5). Finally, we present our conclusions and future
work (Section 6).

2. OVERVIEW AND RELATED WORK

Figure 3. The general paradigm of balancing TLP and ILP
Each system uses the shaded components to accelerate single
thread performance. (a)WiDGET. (b) Heterogeneous CMPs. (c)
Dynamic multi-core processors. (d) TLS.

(a) (b)

(d)

(c)

The goal of this work is a power proportional framework,
in which cores gracefully transition across the power-perfor-
mance spectrum. To address this goal, we harness multiple
in-order issue resources, instead of relying on power-hungry
OoO logic. This design delivers power efficiency, but three
constraints must be met to preserve OoO-like performance.
First, ready instructions must be exposed to the heads of the
in-order issue buffers. Second, stalled instructions must not
block the execution of later ready instructions. Third, the
design should provide enough buffering capacity to prevent
instruction queue clog—a pathologic stall condition in
which dispatch is halted while all scheduling resources are
occupied by earlier waiting instructions. Satisfying all of
these constraints requires intelligent management of in-
order issue resources.

Figure 3(a) illustrates WiDGET’s sea of resources
design. An instruction engine (IE) resembles a conventional
OoO core’s front-end and back-end pipeline functions with
the addition of instruction steering logic for the distributed
EUs. Each EU is capable of buffering and executing instruc-
tions in order. A hierarchical operand network connects a
cluster of four adjacent EUs via full bypass, while a 1-cycle
link bridges two adjacent clusters. An IE has an associated
EU cluster, which is enough to deliver the performance of a
comparable OoO machine (Section 5.2). Yet the decoupled
design provides the flexibility to further scale up the core by
borrowing up to four EUs from the neighboring IE. The
hardware has control paths to distribute instructions and
commands to any assigned EU in one cycle.

By varying the number of in-order EUs, which include
some amount of instruction buffering, we can select a point
on the power-performance spectrum best suited to the cur-
rent situation. When the workload calls for aggressive
exploitation of instruction-level parallelism (ILP), addi-
tional EUs can be allocated to service demands. On the
other hand, the number of EUs can be reduced to conserve
power, e.g., when running many threads.
2

2.1 Related Work
Table 1 summarizes the key aspects of WiDGET in com-

parison to the relevant prior proposals. Notably, WiDGET
stands out by focusing on scaling both up and down (column
2) to achieve power proportionality (cols. 3-7) while retain-
ing ISA compatibility (col. 8). We are not aware of any ear-
lier work that demonstrates a core that can scale power and
performance from close to an Atom to better than a Xeon.
We briefly discuss closely related work, referencing Table 1.
2.1.1 Power-Proportional Computing

Chandrakasan et al. are among the first to introduce the
concept of power-proportional computing [7]. They pointed
out that once computational capability of a design meets
service-level agreements, the remaining transistor budget
should be devoted to power saving techniques, including
DVFS [22] and power gating [14]. Barroso and Hölzle made
a case for energy proportionality, especially for servers that
rarely reach complete idle or near-peak utilization [4].
Whereas PowerNap proposes system-level techniques for
idle-power reduction [25], Thread Motion employs several
statically set voltage/frequency domains for non-idle power
management [27]. Lastly, previously proposed adaptive
cores focus on power savings [1,10,8], and thereby are lim-
ited to scaling cores down (col. 2).
2.1.2 Single-Thread Performance Techniques
Heterogeneous CMPs. A heterogeneous CMP (Figure 3(b))
combines a small number of aggressive superscalar cores
for ILP with many lightweight cores for thread-level paral-
lelism (TLP) (col. 3) [21]. Due to the statically set core
designs for the target class of applications (col. 2), it has
limited effectiveness for applications outside of the target
class [31].
Dynamic Multi-Core Processors. Dynamic multi-core pro-
cessors execute independent threads on a collection of small
homogeneous cores (col. 3) to provide TLP, but dynamically
fuse these cores together to provide greater ILP for a single
thread (Figure 3(c)). Core Fusion enlarges the resources in
each pipeline stage (col. 4) by aggregating OoO cores (col.
5) [16]. In contrast, Composable Lightweight Processors
(CLP) leverages the EDGE ISA (col. 8) to eliminate central-
ized structures, such as rename logic, even in a fused mode
[18], but requires recompilation, unlike WiDGET.
Thread-Level Speculation (TLS). TLS relies on software to
divide a dynamic instruction stream into contiguous seg-
ments at control-flow boundaries (col. 7) [11,36]. The hard-
ware speculatively executes the resulting chain of control
dependent threads, using buffered state to recover from mis-
speculation (Figure 3(d)). The control driven execution
makes TLS susceptible to thread squash propagation [29],
which WiDGET avoids by being dataflow driven.
Clustered Architectures. The goal of early clustered archi-
tectures was to continue the superscalar trend of wider and
deeper pipelines with minimum complexity for perfor-
mance. Hence, each cluster may utilize complex OoO exe-
cution (col. 5). In addition, they trade off inter-cluster
communication latencies for load balancing so long as the
latencies can be hidden (cols. 6, 7). WiDGET, on the other
hand, attacks both performance and power aspects of com-

munication, as the next section explains, by using small
units immune to long wire delays and localizing operand
transfers.

Table 1: Comparison to Prior Related Work

Design

Sc
al

e U
p

&
 D

ow
n?

Sy
m

m
et

ric
?

D
ec

ou
pl

ed
 E

xe
c?

In
-O

rd
er

?

W
ire

 D
ela

ys
?

D
at

a D
riv

en
?

IS
A

 C
om

pa
tiv

ili
ty

?

WiDGET Y Y Y Y Y Y Y
Adaptive Cores [1,10,8] N - Y/N Y/N - - Y
Heterogeneous CMPs [21] N N N Y/N - - Y
Core Fusion [16] Y Y N N Y - Y
CLP [18] Y Y Y Y Y Y N
TLS [13] N Y N Y/N - N Y
Multiscalar [42] N Y N N - N N
Complexity-Effective [26] N Y Y Y N Y Y
Salverda & Zilles [31] Y Y N Y N Y Y
ILDP [19] & Braid [38] N Y Y Y - Y N
Quad-Cluster [3] N Y Y N Y Y/N Y
Access/Execute [35] N N N Y - Y N
Cost-Effective [6] N N Y N Y Y Y

3. INSTRUCTION STEERING COST
MODEL

Limits to CMOS scaling and increasing wire delays
prompt a decentralized design, such as WiDGET. In this
design regime, the instruction steering policy becomes an
integral part of the performance equation. It determines
issue time, which is governed by data dependencies, struc-
tural hazards, and the EUs’ issue policy. As a result of this
complex interaction, providing a cost model for instruction
steering guides some of the design decisions for our archi-
tecture. We extend Salverda and Zilles’s cost model by add-
ing communication-latency-awareness [31] and discuss the
implications of this new model.

3.1 Extending the Salverda and Zilles Model
Salverda and Zilles evaluated steering cost of an instruc-

tion i as a function of the dataflow (i.e., horizon) and in-
order issue constraints (i.e., frontier) [31]. The horizon
marks the time when an instruction becomes ready to issue,
which is imposed by the dispatch time, disp(i), and compu-
tation of the source operands, data(i). Hence, the horizon of
i is h(i) = max{disp(i), data(i)}. Throughout this section, we
use Figure 4 to help explain their cost model and our exten-
sion. Figure 4(a) shows an example sequence of instruc-
tions, each of which takes one cycle to execute on one of the
two available EUs. Both i2 and i3 depend on i1 and must
execute before i4. Assuming all three instructions dispatch
in cycle 0, then the horizon of i3 is 2 because it must wait
for the result of i1 to become available, as the arrow and
3

shaded region in Figure 4(b) show. On the other hand, the
frontier of an in-order EU e, f(e), denotes the earliest time an
instruction becomes the head of the FIFO queue. In
Figure 4(b), the frontier of EU 1 is 3, whereas that of EU 2
is 1 due to the unutilized resource.

Figure 4. Limitations of the Salverda and Zilles cost model (a) An example instruction sequence and the dataflow graph.
(b) Steering cost of i3. (c) Steering under idealized communication assumption. (d) Impacts of adding a 1-cycle latency
between EUs using the ideal cost model. (e) Communication-latency-aware cost model under a 1-cycle latency between EUs.

(a) (b) (c) (d) (e)

The cost of steering an instruction to an EU becomes:
Cost(i, e) = h(i) - f(e). A negative cost indicates a true cost
of the instruction because earlier instructions in the steered
EU delay the issue time. This is the case of steering i3 to
EU 1. Although i3 becomes ready at cycle 2, it cannot issue
until i2 finishes execution at cycle 3. A positive cost, on the
other hand, reflects an opportunity cost. The instruction
becomes the earliest instruction in the EU while still waiting
for the operands, potentially deferring execution of later
instructions. Steering i3 to EU 2 incurs an opportunity cost
by leaving EU 2 idle at cycle 1. Thus, an ideal steering
occurs when Cost(i, e) is zero, issuing the instruction as
soon as it becomes ready without lowering EU utilization.
This example has no zero-cost steering. The Salverda and
Zilles cost model prefers minimal true cost to opportunity
cost in order to increase parallelism, steering i3 to EU 2.
i4 can be steered to either EU 1 or EU 2, but in either case
completes in cycle three as illustrated in Figure 4(c).

Although Salverda and Zilles assumed idealized inter-
EU communication, the communication cost cannot be
ignored as wire delay increasingly dominates with decreas-
ing CMOS feature scaling. If just a single-cycle inter-EU
delay is added, Figure 4(d) shows that the same sequence
now takes five cycles. The clouds depict the incurred oper-
and transfer delays that did not exist under the idealized

communication assumption in Figure 4(c). A cost model
that is sensitive to communication overheads will instead
keep all four instructions in the same EU, completing the
sequence in four cycles as shown in Figure 4(e).

Figure 5 demonstrates the importance of accounting for
communication delays. Figure 5(a) shows the harmonic
means of IPC speedup for the SPEC CPU2006 benchmark
suite by varying the communication delay from zero to four
cycles. Each speedup is based on a four-EU configuration
with the same delay. The idealized communication enables
26% speedup from four to eight EUs, whereas it drops to
19% under four-cycle delays. Thus, as one would expect,
performance gains from increased EU count degrade as
communication becomes more expensive.

Figure 5. Performance sensitivity under realistic communication delays

(a) Unclustered EUs: EU count impact on performance (b) Clustered EUs: Cluster size impact on performance

However, assuming delays between every EU is rather
pessimistic. A more realistic design will cluster a few EUs
with no intra-cluster delay, while imposing inter-cluster
delays. Figure 5(b) plots the performance implications of
cluster size. It fixes the EU count to eight and assumes a 1-
cycle delay per inter-cluster hop. The speedups are normal-
ized to an unclustered design, in which inter-EU communi-
cation increases one cycle. By assigning two EUs per
cluster, performance increases 64%. A cluster size of four
further improves the speedup by another 4%, but the
speedup gain becomes negligible beyond that point. Despite
the similar performance of the 2- and 4-EU clusters, WiD-
GET employs the latter for more scalable power proportion-
ality (Section 5.3).

Our extension of the Salverda and Zilles cost model
incorporates the impact of communication delays. Specifi-
cally, operand availability is now governed by two variables:
4

operand computation time by the producer and the operand
transfer time to reach the consumer EU. We denote the latter
as comm(i, e). The horizon is therefore a function of an EU
as well: h(i, e) = max{disp(i), data(i) + comm(i, e)}. In the
example of Figure 4, the horizon of i3 is calculated as the
following, provided it is dispatched at time 0 and i1 is
steered to EU 1:

h(i3, EU 1) = max{0, 2 + 0} = 2
h(i3, EU 2) = max{0, 2 + 1} = 3
We call the extended model the Communication-

Latency-Aware Cost Model and measure the steering cost:
Cost(i, e) = h(i, e) - f(e). An ideal steering decision, there-
fore, sends an instruction to a different EU from the pro-
ducer’s EU only when the operand transfer latency can be
hidden. In contrast, the Salverda and Zilles cost model,
assuming no communication penalties, spreads computation
across the EUs to minimize true cost, benefiting from higher
EU count. Salverda and Zilles therefore conclude that data-
flow properties constrain the performance improvement
from fusing in-order cores. It requires either a very convo-
luted steering mechanism that keeps track of each EU’s
frontier in relation to an instruction’s horizon or fusing so
many cores that fusion overheads become impractical.
Under realistic communication delays, however, our model
tends to mitigate the pressure for more EUs and obviate the
need for considering distant EUs. This reduces the number
of available instruction steering slots, leading to an imple-
mentable steering policy.

3.2 Toward Practical Steering
WiDGET approximates the communication-latency-

aware cost model by controlling often known variables,
disp(i) and comm(i, e), and simplifying hard-to-predict vari-
ables, data(i) and f(e). We try to steer a consumer directly
behind the producer, similar to the dependence-based steer-
ing proposed by Palacharla et al. [26]. The important differ-
ence is accounting for communication, thereby keeping
dependent instructions nearby to reduce the latency and
power from operand transfers. Hence, WiDGET only con-
siders a subset of the available EUs for a given instruction,
making the steering complexity tractable.

4. MICROARCHITECTURE
The current technological trends favor a hardware design

based on a sea of resources. This design naturally maps well
to TLP, but makes achieving high ILP very challenging.
WiDGET addresses this issue by aggregating in-order-issue
EUs to approximate OoO-issue capability. We therefore
employ steering to distribute instructions, localizing depen-
dent instructions into the same cluster whenever possible.
The routing network forwards operands to intra-cluster EUs
in time for back-to-back execution, but incurs an additional
cycle for each inter-cluster transfer. Conversely, indepen-
dent instructions are steered to any empty EUs and execute
in parallel. When there is a long-latency instruction, the EU
that is executing the instruction acts as a buffer for the chain
of dependent instructions; other EUs remain in an
unblocked state and can continue execution. Thus, our sea
of resources design enables independent instructions to run

ahead of the earlier stalled instructions in available EUs,
extracting ILP and memory-level parallelism from a pro-
gram. Figure 6 illustrates an example WiDGET chip with
eight instruction engines (IEs), each of which consists of
front-end and back-end pipeline functions comparable to a
conventional OoO core. An IE therefore manages thread
specific information, including the register file and the re-
order buffer (ROB), for a thread fetched and dispatched
from the IE. The following sections provide more details
about the IE and EU functionality.

Figure 6. WiDGET microarchitecture

4.1 Pipeline Stages
Figure 7 shows WiDGET’s pipeline stages, highlighting

those that are unique to WiDGET. The non-shaded stages
resemble a conventional OoO design except for the addi-
tional NoSQ (short for No Store Queue) support to elimi-
nate a centralized memory disambiguation mechanism
during execution [33].

WiDGET makes steering decisions at the Steer Stage so
that instructions are dispatched to the appropriate EUs the
following cycle. Section 4.2 provides detailed description of
our steering heuristic.

Figure 7. Pipeline Stages

The Execute stage can take multiple cycles depending on
the operation and the utilization of the selected EU. Each
EU independently manages instruction execution and no
more than one operation issues at a time per EU. The total
issue width is a function of the aggregate EU count, as each
EU provides an additional execution engine. Executed
instructions are removed from their EUs and forward the
results directly to the consumer EUs, if any, and to the regis-
ter file in the dispatching IE. Section 4.3 describes the
detailed implementation.

4.2 Front-End
Figure 8 illustrates the detailed front-end of our architec-

ture, which resembles a conventional OoO core’s with the
5

addition of the NoSQ mechanism (Bypassing Predictor) and
instruction steering. We derive the steering heuristic from
the observation made in Section 3 that dependent instruc-
tions must be kept nearby, obviating the need for consider-
ing every EU each time. Specifically, we send consumers
directly behind the producer or to an empty EU in the same
EU cluster. If no such EU is found, we simply stall steering
until either a desirable EU becomes available or the pro-
ducer finishes execution. It is through stalling that we ensure
steering complexity is manageable and communication
overheads do not diminish the benefits from parallelism.

Figure 8. Front-End

The heuristic requires three pieces of information: a pro-
ducer’s steered EU, whether a producer has another con-
sumer steered to the same instruction buffer, and a list of
empty EUs. We employ a Last Producer Table (LPT) and an
empty bit vector to keep track of the first two and the last
information, respectively. The LPT is indexed by a register
and contains two fields. The first field indicates the instruc-
tion buffer ID to which the producing instruction of the
given register is steered. The second field consists of a sin-
gle bit; when set, this bit indicates at least one instruction
has been steered as a result of the producer-consumer rela-
tionship. An LPT entry is updated when an instruction is
steered and is invalidated when the register value is written
back to the register file. An invalid entry, therefore, indicates
that the value has been computed and is available in the reg-
ister file. The empty bit vector is sized to the total number of
instruction buffers, marking the corresponding buffer’s
occupancy status. We similarly use a full bit vector to ensure
a producer instruction buffer still has room for the consumer
instruction. Feedback from the EUs updates both of the bit
vectors every cycle.

Figure 9. Pseudo-code for instruction steering

/* Let I be an instruction under
consideration. Also, let s and EUps be I’s
source operand and the producer EU of operand
s, respectively. s is omitted when only a
single operand is outstanding. */

0: switch (numOutstandingOps(I)){
1: case 0:
2: return getEmptyEU();
3: case 1:
4: if (!hasInstrBehind(s))
5: return EUp;
6: else
7: return getEmptyEUInCluster(EUp);
8: case 2:
9: if (!hasInstrBehind(s1))
10: return EUp1;
11: else if (!hasInstrBehind(s2))
12: return EUp2;
13: else
14: return getEmptyEUInCluster(EUp1,EUp2);
15:}

Figure 9 provides pseudo-code for the steering heuristic.
The location of a producer (EUp) is tracked by accessing
LPT with the consumer’s source operand. If the indexed

entry’s buffer ID is null, the producer has already computed
the operand. getEmptyEU() accesses the empty bit vector
and returns an ID whose corresponding entry is set to 1. If
more than one entry is set, it randomly chooses an ID from
an EU cluster with more empty buffers for load balancing. If
all of the entries are set to 0, the function returns -1, indicat-
ing a steering stall. hasInstrBehind(s) returns true if an LPT
entry indexed by s has the consumer field set to 1; other-
wise, it returns false. Given one or more EU IDs, getEmpty-
EUInCluster() searches the empty bit vector only within the
corresponding EU cluster(s). It returns either an available ID
similarly to getEmptyEU() or -1 if no empty buffers are
found in the cluster(s), stalling the steering.

This is best explained with an example, illustrated in
Figure 10. Suppose eight EUs spanning two clusters are
dedicated to this instruction engine. Further assume all oper-
ands are initially available in the register file and all EUs are
empty. Figure 10(a) shows a dataflow graph of instructions
with each node denoting an instruction sequence number
and the destination register in parenthesis.

In the first cycle, instructions i1 through i4 are steered.
Since i1 has no data dependencies, it is steered to the
empty EU 0 (line 2 in Figure 9). It marks the steered EU ID
in the LPT entry for the destination register r1, leaving the
consumer field unchanged. It also resets the empty bit vector
for EU 0. Conversely, i2 depends on i1. An access to the
LPT entry for r1 reveals the producer of i1 is steered to
EU 0 and no other instructions have followed i1 yet.
Hence, i2 is steered to the producer EU 0 (line 5). It
updates the corresponding LPT entry as well as i1’s to pre-
vent other consumers of i1 from steering to EU 0. i3
begins a new independent chain. It selects the empty EU 4 in
Cluster 1 to balance the load (line 2). Both the LPT entry for
r3 and the empty bit vector are updated accordingly. i4 is
analogous to the case of i2, following the producer EU 4
(line 5). As both of the head instructions in EUs 0 and 4 are
ready, they execute in their EUs. Figure 10(b) shows the
steering result at the end of cycle 1.

In the second cycle, i5 through i8 are steered. i5 is
sent to the producer EU 0 (line 5), setting the consumer field
in the r2’s LPT entry. i6 also depends on i2, yet an LPT
lookup informs that the slot immediately succeeding r2 has
been claimed. i6 therefore finds the empty EU 2 in the
same Cluster 0 by accessing the Empty Bit Vector (line 7).
Note that i2 will forward the result to EU 2 at the end of the
execution, enabling both i5 and i6 to execute in parallel.
i7 depends on both i5 and i4 which are in EUs 0 and 4,
respectively. Although both of the producers have empty
slots behind them, i7 selects the producer EU 0 of the first
source operand r5 (line 10). Finally, i8 is sent to the pro-
ducer EU 2 (line 5). Figure 10(c) displays the final state at
the end of cycle 2.

The naive implementation of steering is serial, since it is
constrained by the serial dependencies among a group of
instructions to be steered. However, we utilize a parallel pre-
fix computation. The parallel dependence-check performed
in renaming is employed to detect dependencies in the same
steering group [30]. Concurrently, each instruction accesses
the LPT and the bit vectors to choose a candidate EU. Then
6

the candidate EUs are compared and are modified if neces-
sary to reflect the intra-group dependencies, followed by
updating the LPT and the bit vectors accordingly.

(a) (b) (c)

Figure 10. Instruction Steering Example

4.3 Execution Unit
Figure 11 shows an EU, con-
sisting of a small instruction
buffer (IB) FIFO, execution
engine (an integer ALU, float-
ing-point unit, and address
generation unit), operand
buffer, and router connections
at the input and output. The IB
is configured to be four times
larger than the fetch width to
minimize front-end stalls.
Each entry has four fields:

instruction, operand 1, operand 2, and a bit vector of con-
sumer EU IDs. The consumer EU ID field indicates EUs to
forward the result to. Although our dynamic instruction
steering provides the ability to adjust to dynamic events, the
caveat is that consumer EUs are not known until the depen-
dent instructions are steered. Therefore, an instruction has to
send its EU ID to the producer EU via control paths after
steering is performed. However, a race can occur if a pro-
ducer has finished execution and has been removed from the
IB by the time the consumer reaches the producer EU. To
prevent this situation, an operand buffer holds the result of
an instruction for a cycle, which is the latency of register file
write backs.

Figure 11. Execution Unit

The units in the execution engine are pipelined, though
an EU can only issue one instruction per cycle. Note that
each additional EU increases both issue bandwidth and
buffer space for scheduled instructions. This primarily con-
tributes to WiDGET’s high single thread performance with
simple in-order EUs.

4.4 Back-End
The back-end resembles a conventional OoO core’s. The

ROB ensures in-order commit, and stores write their values
to the data cache at commit as in a traditional pipeline.

5. EVALUATION
This section evaluates the microarchitecture described in

Section 4 and the potential for power-proportional comput-
ing. Since this paper focuses on single thread performance,
we leave the evaluation of parallelism management as future
work. Instead, we focus on two crucial properties of power
proportionality: wide performance and power ranges.

5.1 Simulation Methodology
We use a full-system execution-driven simulator, com-

posed of three parts: 1) A detailed timing-first microarchi-
tecture-level processor simulator, which models
dynamically-scheduled SPARC v9 processors, 2) Wisconsin
GEMS [24,39] for memory system timing, and 3) Virtutech
Simics [23] for full-system functionality and to verify the
timing-first components. Wattch [5] and CACTI [34] are
integrated for modeling power.

For the single thread performance evaluation, we use the
entire SPEC CPU2006 benchmark suite, which is a collec-
tion of sequential workloads. All programs were compiled
for the 64-bit SPARC ISA using the Sun Studio 11 compiler
with base tuning.

WiDGET’s power proportionality can be best assessed
by commercial processors on the opposite ends of a design
spectrum. Hence, we use two baselines designed after a low
power Intel Atom Silverthorne [9] and a high performance
Intel Xeon Tulsa [37]. We call the former Mite and the latter
Neon. The memory hierarchy of the baselines and WiDGET
is configured to emulate Neon’s in order to isolate the per-
formance of the three different core designs. We evaluate
WiDGET configurations with 1 through 8 EUs allocated to
an instruction engine. These initial experiments assume a
priori static allocation of EUs, as might be done by low-
level system software. The mechanisms and policies to
trade-off ILP and TLP via EU provisioning are beyond the
scope of this paper.

Table 2 lists the key configuration parameters. The area
estimate only accounts for a single-threaded core with the
listed memory hierarchy. We derived the area of the Neon
and Mite from published die area and attributed core com-
7

ponent or unit area. The Neon’s area was then halved
because of the process technology change from 65 and
45nm. Note, our more aggressive memory hierarchy
increases Mite’s memory die area. WiDGET’s area estimate
includes an instruction engine, 8 EUs, and the memory hier-
archy. We estimate that the Atom’s core area is roughly
equivalent to WiDGET with 2 EUs due to the similar core
structure sizes. The area of an each additional EU is based
on a TRIPS processor’s Execution Tile [17], which resem-
bles the EU composition. Despite WiDGET’s greater ALU
resources, our area model concludes that WiDGET is
smaller than the Neon, mainly due to WiDGET’s simpler
structures.

Table 2: Machine configurations

Mite Neon WiDGET

LI-I / L1-D 32 KB, 4-way, 1 cycle; Next-line prefetching for L1-I
BR Predictor 4K-entry Bimodal branch predictor; 16-entry RAS; 64-entry, 4-way BTB
Instruction Engine 2-wide FE and BE 4-wide FE and BE; 128-entry ROB
Execution Core 16-entry unified in-order

instruction queue;
2 INT, 2 FP, 2 Addr Gen

32-entry unified OoO instruc-
tion queue;
3 INT, 3 FP, and 2 Addr Gen;
0-cycle operand bypass to any-
where in core

16-entry in-order IB per EU;
1 INT, 1 FP, and 1 Addr Gen per EU;
0-cycle operand bypass within a clus-
ter of four EUs;
1-cycle inter-cluster link

Disambiguation NoSQ; 256-entry, 4-way store-load bypassing predictor; 1K-entry T-SSBF
L2 / L3 / DRAM 1 MB, 8-way, 12 cycles / 4 MB, 16-way, 24 cycles / ~300 cycles, 16-entry MSHR
Area Estimate (45nm) ~30 mm2 ~41 mm2 ~33 mm2 (8 EUs)

In this evaluation, we fully provision ports on the register
file and L1-D cache. When modeling power consumption,
we outfit the register file with read ports numbering twice
the dispatch width (8), and write ports numbering the com-
mit width (4). A similar simplifying assumption is applied
to the L1-D power model.

5.2 Performance Range of WiDGET
A wide performance range is vital for power proportion-

ality, yet WiDGET’s in-order issue constraint makes it chal-
lenging to match OoO execution performance. Therefore,
we first evaluate single thread performance of WiDGET
when configured with the maximum number of EUs: 8 EUs
with an instruction buffer per EU. Figure 12 presents IPCs
relative to the high-performance Neon baseline, with integer
benchmarks on the left and floating-point benchmarks on
the right. Even with more than double the ALU resources,
one third of the benchmarks fail to match the Neon’s perfor-
mance. In particular, WiDGET is only able to produce 35%

of the Neon performance for the outlier libquantum, drasti-
cally impacting the integer harmonic mean.

Figure 13 demonstrates the average EU utilization,
revealing the sources of the performance degradation.
Empty is when an EU has no instructions in the instruction
buffer (IB). Waiting for Producer and Waiting for Op Trans-
fer are when EU utilization is wasted because the head
instruction in the IB has at least one outstanding operand.
The former is waiting for the operand to be computed,
whereas the latter indicates that the operand has been com-
puted but has not yet reached the EU due to the inter-cluster
communication delay. Finally, Accessing Memory and Exe-
cuting ALU are when an EU is executing memory and non-
memory instructions, respectively. Since instructions reside
in IBs until execution is complete, memory-intensive work-
loads cause EUs to spend much of the time waiting for load
data (Accessing Memory).

Figure 12. 8-EU performance relative to the Neon

0.0

0.5

1.0

N
or

m
al

iz
ed

 I
PC

Neon
8 EUs

pe
rl

be
nc

h

bz
ip

2

gc
c

m
cf

go
bm

k

hm
m

er

sj
en

g

Integer

lib
qu

an
tu

m

h2
64

om
ne

tp
p

as
ta

r

xa
la

nc
bm

k

 IN
T

 H
M

ea
n

bw
av

es

ga
m

es
s

m
ilc

ze

us
m

p

gr
om

ac
s

 ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d

de
al

II

FP

so
pl

ex

po
vr

ay

ca
lc

ul
ix

 G
em

sF
D

T
D

to
nt

o

lb
m

w
rf

sp
hi

nx
3

FP
 H

M
ea

n

The under-performing benchmarks demonstrate common
characteristics: frequent stalls due to memory access and
outstanding producers. This increases the pressure on the
EUs to buffer more dependent instructions for a longer
period of time. As a result, the steering logic becomes more
prone to stalls due to the lack of desirable EUs. libquantum
is the most prominent example. It spends 62% and 37% of
the time on memory accesses and waiting for producers,
respectively, leaving non-memory execution to a mere 1%.
In contrast, benchmarks that have comparable performance
to the Neon have the opposite trends. They have a larger
portion of time spent on executing non-memory instructions
and are less likely to waste EU utilization by waiting for
operands. Hence, fewer EUs are necessary to buffer stalled
chains of instructions, leveraging more EUs to execute inde-
8

pendent chains. Note that WiDGET’s hierarchical operand
network in lieu of the Neon’s full operand bypass has little
effect on the EUs. EUs spend less than 1% of the time on
waiting for operands to be transferred, which is accom-
plished by enforcing cluster affinity at the steering logic.

Figure 13. Average cycles spent on each EU state with 8 EUs

0

20

40

60

80

100

T
im

e
Sp

en
t (

%
) Empty

Waiting for Producer
Waiting for Op Transfer
Accessing Memory
Executing ALU

pe
rl

be
nc

h

bz
ip

2

gc
c

m
cf

go
bm

k

hm
m

er

sj
en

g

Integer
lib

qu
an

tu
m

h2

64

om
ne

tp
p

as
ta

r

xa
la

nc
bm

k

IN
T

 H
M

ea
n

bw
av

es

ga
m

es
s

m
ilc

ze
us

m
p

gr
om

ac
s

ca
ct

us
A

D
M

le
sl

ie
3d

na
m

d

de
al

II

FP

so
pl

ex

po
vr

ay

ca
lc

ul
ix

G
em

sF
D

T
D

to
nt

o

lb
m

w
rf

sp
hi

nx
3

FP
 H

M
ea

n

As Salverda and Zilles observed [31], the limiting factor
of WiDGET’s performance is the number of independent
instruction chains the system can expose, not the issue band-
width. To overcome this, we expand the buffering capability
by allocating multiple IBs to each EU. Despite the same
issue bandwidth, an EU can now buffer more than one
stalled chain while permitting an independent chain in
another IB to utilize the otherwise idle execution engine.
This change, however, requires each EU to have simple
instruction issue selection logic; we use an oldest-instruc-
tion-first policy. Nevertheless, the logic is much less com-
plex than that of a monolithic OoO as long as the number of
IBs per EU is kept small. WiDGET’s selection logic, with 8
EUs and 4 IBs each, only consumes 3% of the Neon’s cen-
tralized instruction selection logic power. We also enlarge
the size of the empty and full bit vectors in the steering logic
to the total number of IBs. The steering complexity is man-
aged by keeping the cluster locality invariant.

Figure 14(a) summarizes the performance benefits of
increased buffering. The harmonic mean IPCs of the entire
SPEC CPU2006 benchmark suite is presented, normalized
to the Neon. WiDGET performs comparably to the Neon
with at least 12 IBs, which is explained by the benchmarks’
dataflow characteristics. When an ROB has 128 entries,
which is our configuration, the integer and floating-point
benchmarks have 8 and 12 extractable independent chains,

respectively (these results not shown). With 4 IBs per EU, as
few as 3 EUs are sufficient, while 8 EUs outperform the
Neon by 26%—a sharp contrast to 18% degradation by the 1
IB counterpart. Therefore, mapping chains of dependent
instructions to the sufficient number of buffers achieves
extraction of ILP and memory-level parallelism despite the
in-order issue constraints. WiDGET can also scale down
with a single EU and an IB with performance slightly less
than the Mite, offering a wide performance range of 3.8.

It is clear that the performance sees diminishing returns
after 7 EUs with 4 IBs each, obviating the need for more
than 2 clusters. Rather, an interesting comparison is to 8
EUs with 3 IBs, which yield similar performance. 7 EUs
with 4 IBs deploy more buffers than 8 EUs with 3 IBs, while
the latter uses more ALUs. We evaluate the tradeoff from
the power dissipation perspective in Section 5.4.

IBs

Figure 14. Harmonic mean IPCs relative to the Neon (a) 4-EU cluster size. (b) 2-EU cluster size.
(c) IPC degradation (%) of the 2-EU cluster size compared to the 4-EU cluster size.

(c)

E
U

s

1 2 3 4

1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0

3 -1.9 -8.1 -22 -24

4 -1.8 -3.1 -4.3 -2.7

5 -3.4 -7.0 -2.3 -3.4

6 -1.5 -3.0 -2.4 -2.0

7 -3.2 -6.6 -7.3 -8.8

8 -1.1 -4.1 -3.3 -2.3

(a) (b)

5.3 Impacts of a Cluster Size
Cluster sizes impact WiDGET performance, making it

non-monotonic with increasing EU count. Figure 14(a)
illustrates this anomaly for the 5-EU case with three or four
IBs, which is caused by the hierarchical operand network
that employs a single-cycle link to bridge two adjacent clus-
ters of 4 fully bypassed EUs. Hence, the 5-EU design forms
a highly unbalanced system of a cluster of 4 EUs and a sin-
gle EU. As dependent instructions are steered to the same
cluster for locality, instruction chains steered to the single-
EU cluster are likely to stall the front-end due to a lack of
buffers. Increased buffer count mitigates the stalls, though it
also creates opportunities for other independent chains to be
steered to the single-EU cluster, causing structural hazards.
9

mcf, which has a complex dataflow, is primarily responsible
for degrading the harmonic mean IPC.

Reducing the cluster size to 2 has more dramatic perfor-
mance impacts. Even though it can simplify steering logic
and intra-cluster full-bypass network, Figure 14(b) demon-
strates that the performance becomes highly sensitive to the
cluster formation. With 3 or more IBs per EU, the odd EU
configurations degrade the performance of the even EU con-
figurations once 2 EUs are assigned. Therefore, under this
cluster size, WiDGET must allocate a pair of EUs to gain
benefits, resulting in coarser-grained power proportionality.
We thus use a cluster size of 4 for the rest of the paper.

5.4 Power Range of WiDGET
Figure 15 presents the harmonic mean system power of

the SPEC CPU2006 benchmark suite, normalized to the
Neon. We did a best-effort validation of the Neon and Mite
power consumption against Atom [9] and Xeon [37] proces-
sors, respectively, by first configuring them using the pub-
lished data. We power down non-provisioned EUs [14].

The shape of WiDGET’s curve resembles that of the per-
formance curve in Figure 14, demonstrating the power pro-
portionality. WiDGET, composed of simple building blocks,
achieves 8-58% power savings compared to the Neon. Fur-
thermore, WiDGET’s EU modularity enables scaling down
the power by up to 2.2 to approximate the Mite’s low power.
The crossing of the 4- and 5-EU lines, unlike the rest of the
monotonic power increase with EU count, is due to the rela-
tionship of the hierarchical operand network and the steer-
ing heuristic as before.

Figure 15. Harmonic mean system power relative to the Neon

Figure 15 elucidates the previous section’s performance
and EU provisioning tradeoff. Since power consumption of
7 EUs with 4 IBs and 8 EUs with 3 IBs are almost identical,
one can resort to the former, the slightly higher performing

configuration. This has additional benefits of stealing less
EUs from a neighbor, allowing more threads to run in paral-
lel as the power budget permits.

WiDGET’s power increase from dedicating more EUs is
not solely due to the additional resources, but is also the
result of higher utilization in the existing resources. As
Figure 16 shows, the breakdown for harmonic mean system
power of the SPEC CPU2006 benchmark suite is divided
into two broad categories, each with four subcategories:
caches and core logic. Fetch/Decode/Rename, which
includes a branch predictor and an instruction translation
buffer, accounts for most of the front-end logic. WiDGET’s
instruction steering logic, despite residing in the front-end,
and the execution core are included in the Execution compo-
nent to make a fair comparison with Neon and Mite for
power stemming from the execution model. Hence, this cat-
egory encompasses in-order instruction queues for the Mite
and WiDGET, an OoO instruction queue for the Neon, oper-
and network, and a data translation lookaside buffer. Back-
end and ALU include the commit logic and the ALU
resources, respectively.

Figure 16. Power breakdown relative to the Neon

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
ow

er

L3
L2
L1D
L1I
Fetch/Decode/Rename
Backend
ALU
ExecutionNeon

Mite
1 2 3 4

1 EU
1 2 3 4

2 EUs
1 2 3 4

3 EUs
1 2 3 4

4 EUs
1 2 3 4

5 EUs
1 2 3 4

6 EUs
1 2 3 4

7 EUs
1 2 3 4

8 EUs

Enlarging resource allocation has a first-order impact on
the ALU and execution power, whereas a second-order
impact is increased activity in the system caused by the
larger effective window size, resulting in proportional power
growth in Fetch/Decode/Rename, L1D, and L2. Yet, WiD-
GET’s considerable power savings compared to Neon
comes from the difference in the execution models. WiD-
GET effectively replaces the Neon’s associative search in
the OoO issue queue and the full bypass with simple in-
order EUs and the hierarchical operand network, resulting in
24-29% reduction in the execution power. This is sufficient
to mask out WiDGET’s additional power resulting from the
higher ALU count, even in the 8-EU case.

The breakdown is also useful to understand the power
gap between Mite and WiDGET’s 1 EU with 1 IB configu-
ration. WiDGET’s OoO support in the instruction engine,
namely register renaming and ROB, is primarily responsible
for the extra power. Nonetheless, WiDGET achieves a wide
power range of 2.2.

Figure 17 puts together the power-performance relation-
ship of the three designs. It is the same graph as Figure 2,
except with differentiation of WiDGET’s EU count. WiD-
GET consumes 21% less power than the Neon for the same
performance (i.e., 3 EUs with 4 IBs), and yields 8% power
savings for 26% better performance (i.e., 8 EUs with 4 IBs).
WiDGET dissipates power in proportion to the perfor-
mance, covering both the high-performance Neon and the
low-power Mite on a single chip.
10

For a more detailed look at Figure 17, we provide a
blown-up cutout focusing on the 4- and 5-EU data points
that do not follow the rest of the power-performance trend
due to the unbalanced clusters. The data points of each EU
count correspond to 1 through 4 IBs from left to right. The
distance between the 4- and 5-EU points shrinks as the num-
ber of IBs per EU increases from 1 to 2. With 3 or 4 IBs, the
positions of the 4- and 5-EU points are swapped; the 5-EU
points are to the left and lower than their 4-EU counterparts.
Hence, it is not beneficial to increase buffers after allocating
2 IBs to the 5-EU configuration.

1 IB

2 IBs

3 IBs

4 IBs

Figure 17. Power Proportionality of WiDGET compared to Neon and Mite

Finally, Figure 18 compares power efficiency of the three
processor designs. We use BIPS3/W as the metric, which is
appropriate for evaluating efficiency differentials caused by
microarchitectural designs [12]. Notably, the diagonal line
in the figure demarks the seven of WiDGET’s configurations
below the line that deliver higher power efficiency than the
Neon despite the lower performance: 6-8 EUs with 1 IB, 3-5
EUs with 2 IBs, and 3 EUs with 3 IBs. Furthermore, WiD-
GET is 48% more power efficient than the Neon when
achieving the same performance and exceeds the Neon and
Mite by up to 2x and 21x, respectively.

6. CONCLUSION
We proposed a power proportional design called WiD-

GET. The decoupling of the computation resources enables
flexibility to provision EUs to meet different power-perfor-
mance goals. WiDGET can be optimized for high through-
put and low power by provisioning a small number of EUs
to each instruction engine. When one or more powerful
cores are needed to meet service-level agreements, for
instance, system software can dedicate more EUs to acceler-
ate single thread performance. By using only as many
resources as necessary to deliver target performance, WiD-
GET achieves power-proportional computing.

Despite the use of in-order EUs to save power, WiDGET
yields even higher performance than the aggressive Neon by
deploying sufficient buffering for scheduled instructions and
steering based on dependences. This distributed instruction
buffering was the key to single thread performance and we
believe global distributed buffering, if managed well, can
yield performance for other forms of parallelism. The dis-
tributed instruction buffers improve latency tolerance,
allowing independent chains to execute ahead of earlier,

stalled chains, which is our mechanism to extract ILP and
memory level parallelism. Furthermore, the removal of OoO
execution logic contributes to the primary power savings of
WiDGET, resulting in 24-29% reduction in the execution
power compared to Neon. We experimentally showed that
WiDGET consumes 21% less power than the Neon for the
same performance and achieves 8% power savings for 26%
better performance than Neon.

Figure 18. Geometric mean power efficiency (BIPS3/W)

Higher performance &
higher efficiency than the Neon

Lower performance &
higher efficiency than the Neon

This paper focused on the single thread capability of
WiDGET. In the future, we will evaluate it in a multi-
threaded context, generalizing power proportionality to
energy proportionality. Many open questions still remain,
including policies for dynamic EU provisioning both within
and across instruction engines, guaranteeing service-level
agreements in the hardware, and harnessing other shared
resources, such as the L2 and off-chip bandwidth. We would
also like to explore multithreading the instruction engines
for further power savings. A case where this is valuable is
multithreaded applications with high cache miss rates. Since
instruction engines would spend most of the time idle wait-
ing for the memory requests, it is more energy efficient to
consolidate such threads onto a single instruction engine and
turn off other instruction engines. In this case, the distrib-
uted instruction buffers within an EU could also be used for
thread instruction buffers, providing another level of multi-
threading beyond what could be available in the IE. EUs
may also be specialized to better accommodate different
11

types and phases of applications. An example is a deploy-
ment of a few EUs tuned for streaming memory accesses
and a computation-intensive EU.

WiDGET is the first step towards a grand goal of a uni-
fied framework for extracting parallelism with high energy
efficiency. Specifically, we would like to achieve an energy
proportional design that reconfigures the cores to meet a
power-performance target of a given workload mix.

7. ACKNOWLEDGMENTS
This work is supported in part by the National Science

Foundation (NSF), with grants CCR-0324878, CNS-
0551401, CNS-0720565, and CCF-0916725, as well as
donations from Microsoft and Sun Microsystems/Oracle.
The views expressed herein are not necessarily those of the
NSF, Microsoft or Sun Microsystems/Oracle. Prof. Wood
has a significant financial interest in Microsoft.

We thank Dan Gibson, Steven Kunkel, James Laudon,
Charles P. Thacker, Philip M. Wells, and anonymous
reviewers for their comments on the paper.

8. REFERENCES
[1] D. Albonesi, R., Balasubramonian, S. Dropsbo, S. Dwarkadas,

F. Friedman, M. Huang, V. Kursun, G. Magklis, M. Scott,
G. Semeraro, P. Bose, A. Buyuktosunoglu, P. Cook, and S. Schuster.
Dynamically tuning processor resources with adaptive processing.
IEEE Computer, 36(2):49–58, Dec. 2003.

[2] G. M. Amdahl. Validity of the Single-Processor Approach to Achiev-
ing Large Scale Computing Capabilities. In AFIPS Conference Proceed-
ings, pages 483–485, Apr. 1967.

[3] A. Baniasadi and A. Moshovos. Instruction distribution heuristics for
quad-cluster, dynamically-scheduled, superscalar processors. In Proc.
of the 27th Annual Intnl. Symp. on Computer Architecture, June 2000.

[4] L. A. Barroso and U. Hölzle. The Case for Energy-Proportional Com-
puting. IEEE Computer, 40(12), 2007.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations. In Proc. of the
27th Annual Intnl. Symp. on Computer Architecture, pages 83–94, June
2000.

[6] R. Canal, J.-M. Parcerisa, and A. Gonzalez. A Cost-Effective Clustered
Architecture. In Proc. of the Intnl. Conf. on Parallel Architectures and
Compilation Techniques, Oct. 1999.

[7] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen. Low-Power
CMOS Digital Design. IEEE Journal of Solid-State Circuits, 27(4):473–
484, April 1992.

[8] M. S. Floyd, S. Ghiasi, T. W. Keller, K. Rajamani, F. L. Rawson, J. C.
Rubio, and M. S. Ware. System power management support in the
IBM POWER6 microprocessor. IBM Journal of Research and Develop-
ment, 51(6), 2007.

[9] G. Gerosa, S. Curtis, M. D’Addeo, B. Jiang, B. Kuttanna, F. Merchant,
B. Patel, M. Taufique, and H. Samarchi. A Sub-2 W Low Power IA
Processor for Mobile Internet Devices in 45 nm High-k Metal Gate
CMOS. IEEE Journal of Solid-State Circuits, 44(1):73–82, 2009.

[10] J. González and A. González. Dynamic Cluster Resizing. In Proceed-
ings of the 21st International Conference on Computer Design, 2003.

[11] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and
K. Olukotun. The Stanford Hydra CMP. IEEE Micro, 20(2):71–84,
March-April 2000.

[12] A. Hartstein and T. R. Puzak. Optimum Power/Performance Pipeline
Depth. In Proc. of the 36th Annual IEEE/ACM International Symp. on
Microarchitecture, Dec. 2003.

[13] M. D. Hill and M. R. Marty. Amdahl’s Law in the Multicore Era. IEEE
Computer, pages 33–38, July 2008.

[14] Z. Hu, A. Buyuktosunoglu, V. Srinivasan, V. Zyuban, H. Jacobson,
and P. Bose. Microarchitectural techniques for power gating of execu-
tion units. In International Symposium on Low Power Electronics and
Design, pages 32–37, Aug. 2004.

[15] Intel and Core i7 (Nehalem) Dynamic Power Management, 2008.
[16] E. Ipek, M. Kirman, N. Kirman, and J. F. Martinez. Core Fusion: Ac-

comodating Software Diversity in Chip Multiprocessors. In Proc. of
the 34th Annual Intnl. Symp. on Computer Architecture, June 2007.

[17] S. Keckler, D. Burger, K. Sankaralingam, R. Nagarajan, R. McDonald,
R. Desikan, S. Drolia, M. Govindan, P. Gratz, D. Gulati, H. H. amd
C. Kim, H. Liu, N. Ranganathan, S. Sethumadhavan, S. Sharif, and
P. Shivakumar. Architecture and Implementation of the TRIPS Proces-
sor. CRC Press, 2007.

[18] C. Kim, S. Sethumadhavan, M. S. Govindan, N. Ranganathan,
D. Gulati, D. Burger, and S. W. Keckler. Composable Lightweight
Processors. In Proc. of the 40th Annual IEEE/ACM International
Symp. on Microarchitecture, Dec. 2007.

[19] H. S. Kim and J. E. Smith. An instruction set and microarchitecture for
instruction level distributed processing. In Proc. of the 29th Annual
Intnl. Symp. on Computer Architecture, May 2002.

[20] P. Kongetira, K. Aingaran, and K. Olukotun. Niagara: A 32-Way Mul-
tithreaded Sparc Processor. IEEE Micro, 25(2):21–29, Mar/Apr 2005.

[21] R. Kumar, D. Tullsen, P. Ranganathan, N. Jouppi, and K. Farkas. Sin-
gle-ISA Heterogeneous Multi-core Architectures for Multithreaded
Workload Performance. In Proc. of the 31st Annual Intnl. Symp. on
Computer Architecture, pages 64–75, June 2004.

[22] G. Magklis, G. Semeraro, D. H. Albonesi, S. G. Dropsho,
S. Dwarkadas, and M. L. Scott. Dynamic Frequency and Voltage Scal-
ing for a Multiple-Clock-Domain Microprocessor. IEEE Micro,
23(6):62–68, Nov/Dec 2003.

[23] P. S. Magnusson et al. Simics: A Full System Simulation Platform.
IEEE Computer, 35(2):50–58, Feb. 2002.

[24] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu,
A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood. Multifac-
et’s General Execution-driven Multiprocessor Simulator (GEMS)
Toolset. Computer Architecture News, pages 92–99, Sept. 2005.

[25] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: Eliminating
Server Idle Power. In Proc. of the 14th Intnl. Conf. on Architectural
Support for Programming Languages and Operating Systems, Mar.
2009.

[26] S. Palacharla and J. E. Smith. Complexity-Effective Superscalar Pro-
cessors. In Proc. of the 24th Annual Intnl. Symp. on Computer Archi-
tecture, pages 206–218, June 1997.

[27] K. K. Rangan, G.-Y. Wei, and D. Brooks. Thread Motion: Fine-
Grained Power Management for Multi-Core Systems. In Proc. of the
36th Annual Intnl. Symp. on Computer Architecture, June 2009.

[28] V. J. Reddi, B. Lee, T. Chilimbi, and K. Vaid. Web Search Using Small
Cores: Quantifying the Price of Efficiency. Technical Report MSR-TR-
2009-105, Microsoft Research, Aug. 2009.

[29] J. Renau, K. Strauss, L. Ceze, W. Liu, S. Sarangi, J. Tuck, and
J. Torrellas. Energy-Efficient Thread-Level Speculation on a CMP.
IEEE Micro, 26(1), Jan/Feb 2006.

[30] A. Roth and G. S. Sohi. Register Integration: A Simple and Efficient
Implementation of Squash Reuse. In Proc. of the 33rd Annual IEEE/
ACM International Symp. on Microarchitecture, pages 223–234, Dec.
2000.

[31] P. Salverda and C. Zilles. Fundamental performance constraints in
horizontal fusion of in-order cores. In Proc. of the 14th IEEE Symp. on
High-Performance Computer Architecture, pages 252–263, Feb. 2008.

[32] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski,
T. Juan, and P. Hanrahan. Larrabee: a many-core x86 architecture for
visual computing. In Proceedings of the International Conference on
Computer Graphics and Interactive Techniques, 2008.

[33] T. Sha, M. M. K. Martin, and A. Roth. NoSQ: Store-Load Communi-
cation without a Store Queue. In Proc. of the 39th Annual IEEE/ACM
International Symp. on Microarchitecture, pages 285–296, Dec. 2006.

[34] T. Shyamkumar, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi.
CACTI 5.1. Technical Report HPL-2008-20, Hewlett Packard Labs,
2008.

[35] J. E. Smith. Decoupled Access/Execute Computer Architecture. In
Proc. of the 9th Annual Symp. on Computer Architecture, pages 112–
119, Apr. 1982.

[36] G. Sohi, S. Breach, and T. Vijaykumar. Multiscalar Processors. In
Proc. of the 22nd Annual Intnl. Symp. on Computer Architecture, pages
414–425, June 1995.

[37] S. Tam, S. Rusu, J. Chang, S. Vora, B. Cherkauer, and D. Ayers. A
65nm 95W Dual-Core Multi-Threaded Xeon Processor with L3
Cache. In Proc. of the 2006 IEEE Asian Solid-State Circuits Conference,
Nov. 2006.

[38] F. Tseng and Y. N. Patt. Achieving Out-of-Order Performance with
Almost In-Order Complexity. In Proc. of the 35th Annual Intnl. Symp.
on Computer Architecture, June 2008.

[39] Wisconsin Multifacet GEMS Simulator. http://www.cs.wisc.edu/
gems/.

[40] B. Zhai, D. Blaauw, D. Sylvester, and K. Flaunter. Theoretical and
Practical Limits of Dynamic Voltage Scaling. In Proc. of the 41st Annu-
al Design Automation Conference, pages 868–873, June 2004.
12

	WiDGET: Wisconsin Decoupled Grid Execution Tiles
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. INTRODUCTION
	Figure 1. Operating voltage ranges
	Figure 2. Power proportionality

	2. OVERVIEW AND RELATED WORK
	Figure 3. The general paradigm of balancing TLP and ILP Each system uses the shaded components to accelerate single thread performance. (a)WiDGET. (b) Heterogeneous CMPs. (c) Dynamic multi-core processors. (d) TLS.
	2.1 Related Work
	2.1.1 Power-Proportional Computing
	2.1.2 Single-Thread Performance Techniques
	Heterogeneous CMPs
	Dynamic Multi-Core Processors
	Thread-Level Speculation (TLS)
	Clustered Architectures
	Table 1: Comparison to Prior Related Work

	3. INSTRUCTION STEERING COST MODEL
	3.1 Extending the Salverda and Zilles Model
	Figure 4. Limitations of the Salverda and Zilles cost model (a) An example instruction sequence and the dataflow graph. (b) Stee...
	Figure 5. Performance sensitivity under realistic communication delays

	3.2 Toward Practical Steering

	4. MICROARCHITECTURE
	Figure 6. WiDGET microarchitecture
	4.1 Pipeline Stages
	Figure 7. Pipeline Stages

	4.2 Front-End
	Figure 8. Front-End
	Figure 9. Pseudo-code for instruction steering
	Figure 10. Instruction Steering Example

	4.3 Execution Unit
	Figure 11. Execution Unit

	4.4 Back-End

	5. EVALUATION
	5.1 Simulation Methodology
	Table 2: Machine configurations

	5.2 Performance Range of WiDGET
	Figure 12. 8-EU performance relative to the Neon
	Figure 13. Average cycles spent on each EU state with 8 EUs
	Figure 14. Harmonic mean IPCs relative to the Neon (a) 4-EU cluster size. (b) 2-EU cluster size. (c) IPC degradation (%) of the 2-EU cluster size compared to the 4-EU cluster size.

	5.3 Impacts of a Cluster Size
	5.4 Power Range of WiDGET
	Figure 15. Harmonic mean system power relative to the Neon
	Figure 16. Power breakdown relative to the Neon
	Figure 17. Power Proportionality of WiDGET compared to Neon and Mite

	6. CONCLUSION
	Figure 18. Geometric mean power efficiency (BIPS3/W)

	7. ACKNOWLEDGMENTS
	8. REFERENCES

