
Appears in the proceedings of the
30th Annual International Symposium on Computer Architecture (ISCA-30)

San Diego, CA, June 9-11, 2003

g

Using Destination-Set Prediction to Improve the Latency/Bandwidth
Tradeoff in Shared-Memory Multiprocessors

Milo M. K. Martin, Pacia J. Harper, Daniel J. Sorin‡, Mark D. Hill, and David A. Wood

Computer Sciences Department
University of Wisconsin-Madison

‡Department of Electrical and Computer Engineerin
Duke University

http://www.cs.wisc.edu/multifacet/
a
ry
ad-
at-

se
nd
l
s-
cy
a
s
t
ce
nd

d-

ast
re-
nt
r-
e
ly,

c-

s, or
d to
Abstract

Destination-set prediction can improve the latency/band-
width tradeoff in shared-memory multiprocessors. The
destination set is the collection of processors that receive a
particular coherence request. Snooping protocols send
requests to the maximal destination set (i.e., all proces-
sors), reducing latency for cache-to-cache misses at the
expense of increased traffic. Directory protocols send
requests to the minimal destination set, reducing band-
width at the expense of an indirection through the direc-
tory for cache-to-cache misses. Recently proposed hybrid
protocols trade-off latency and bandwidth by directly
sending requests to a predicted destination set.

This paper explores the destination-set predictor design
space, focusing on a collection of important commercial
workloads. First, we analyze the sharing behavior of these
workloads. Second, we propose predictors that exploit the
observed sharing behavior to target different points in the
latency/bandwidth tradeoff. Third, we illustrate the effec-
tiveness of destination-set predictors in the context of a
multicast snooping protocol. For example, one of our pre-
dictors obtains almost 90% of the performance of snoop-
ing while using only 15% more bandwidth than a directory
protocol (and less than half the bandwidth of snooping).

1 Introduction

In a cache-coherent shared-memory multiprocessor, the
destination setis the collection of processors (or nodes)
that receive a particular coherence request. Destination-set
size represents a key factor in the trade-off between
latency and bandwidth in a multiprocessor system. Direc-
tory protocols first send all requests to a directory (often
co-located with memory) that forwards the request as
needed to the owner and/or sharers of the block. This
approach conserves bandwidth, but it adds indirection

latency tocache-to-cache misses1 that must be serviced
from other caches. Traditional snooping systems use
maximal destination set of all processors, since eve
coherence request is broadcast to all processors. Bro
casting optimizes cache-to-cache miss latency by elimin
ing indirection, but it requires (end-point) bandwidth
proportional to the square of the number of processors.

As illustrated in Figure 1, system designers must choo
between the high bandwidth use of snooping protocols a
the high sharing latency of directory protocols. An idea
protocol would directly send requests to only those proce
sors that need to observe them, combining the low laten
of broadcast snooping with the bandwidth efficiency of
directory protocol. This latency/bandwidth tradeoff i
especially important for the commercial workloads tha
dominate the current use of multiprocessor servers, sin
many of these workloads exhibit high cache miss rates a
a large fraction of cache-to-cache misses [5, 18, 30].

One emerging approach for improving this latency/ban
width trade-off is destination-set prediction. Multicast
Snooping [7] reduces bandwidth compared to broadc
snooping, by multicasting a coherence request to a p
dicted destination set. If the destination set is sufficie
(e.g., includes the processor or memory module that cu
rently owns the block), the request avoids indirection (lik
all requests in a broadcast snooping system). Similar
Acacio et al. add prediction to a conventional directory
protocol, converting some misses from three interconne
tion network hops to only two [1, 2]. Moreover, the

This work is supported in part by the National Science Foundation (EIA-
9971256, EIA-0205286, CDA-9623632, and CCR-0105721), a Norm
Koo Graduate Fellowship and an IBM Graduate Fellowship (Martin), a
Los Alamos Computer Science Institute Fellowship (Harper), an Intel
Graduate Fellowship (Sorin), a Warren Faculty Scholarship (Sorin),
Spanish Secretaría de Estado de Educación y Universidades (Hill sabbat-
ical), two Wisconsin Romnes Fellowships (Hill and Wood), and dona-
tions from Intel Corporation, IBM, and Sun Microsystems.

1. Cache-to-cache misses are also called dirty misses, 3-hop misse
cache-to-cache transfers. Cache-to-cache misses are closely relate
sharing misses and are often the result of true or false sharing.

bandwidth use

latency

directory protocol

broadcast snoopingideal

Figure 1. Tradeoff Between Latency and Bandwidth

(indirections)
1

er
ta
to
).

re-
-
e

ec-
-

or

by
e

a

g
-

y

ce
ly

ls
gle
ing

ral
s-

ns.
rks.
in
ly
s.
as
ific
to

in
ics
g

f
d

od-
4,
ur
e
in
e

recently-proposed Token Coherence protocol [23] allows
systems to implement destination-set prediction without
requiring a totally-ordered interconnect [7] or introducing
difficult-to-debug protocol races [1, 2, 7].

This paper is the first to explore several predictors in the
destination-set predictor design space and the first to eval-
uate their effectiveness using commercial workloads.
Section 2 explores the potential of destination-set predic-
tion by analyzing the sharing patterns of multiple commer-
cial workloads. We examine the degree of instantaneous
sharing, the degree of sharing over time, and the temporal
and spatial locality of cache-to-cache misses. In particular,
we show that cache-to-cache miss patterns in commercial
workloads have substantial temporal and spatial locality
that can be captured by destination-set predictors.

Section 3 introduces destination-set predictors inspired by
our analysis of sharing patterns, and each predictor targets
different points in the latency/bandwidth design space.

Proposed predictors send to only the previous own
(emphasizing bandwidth over latency), broadcast if da
appear shared (latency over bandwidth), or multicast
recent sharing groups (balancing latency and bandwidth

In Sections 4 and 5 we evaluate these destination-set p
dictors using trace-driven and full-system execution
driven timing simulation, respectively. We compare thes
predictors against a broadcast snooping protocol, a dir
tory protocol, and multicast snooping’s original destina
tion-set predictor [7]. For our workloads on 16 process
systems, these results show that:

• destination-set predictors can reduce indirections
up to 90%, with respect to a directory protocol, whil
using less than one third the request bandwidth of
broadcast snooping system;

• destination-set predictors benefit from aggregatin
information from spatially-related data by using mac
roblock indexing (e.g., 1024-byte macroblocks);

• destination-set predictors perform well with relativel
few entries (e.g., 8192 entries);

• destination-set prediction can substantially redu
execution time (compared to directories) while great
reducing bandwidth (versus broadcast snooping).

Section 6 summarizes related work on hybrid protoco
and destination-set predictors that has focused on sin
points in the destination-set predictor design space us
scientific workloads (e.g., SPLASH-2 benchmarks [34]).

2 Commercial Workload Sharing Behaviors
In this section, we analyze the sharing behaviors of seve
commercial workloads. We use this analysis to guide de
tination-set predictor designs in subsequent sectio
Table 1 describes the workloads we use as benchma
Due to the growing prevalence of information services
our society, commercial workloads are increasing
important for high performance multiprocessor system
Thus, we concentrate on commercial workloads, such
database and web servers, but also include two scient
workloads for comparison. We refer interested readers
Alameldeenet al. [3] for more detailed description and
characterization of these commercial workloads. We beg
by presenting our methodology and general characterist
of our workloads before delving into detailed sharin
behavior analysis.

2.1 Methodology
We use Simics [22] to perform full-system simulation o
systems running commercial workloads. The simulate
machine is a 16-processor SPARC system running unm
ified Solaris 8. For the results in this section and Section
we collected traces of second-level cache misses for o
workloads by running simulations with a MOSI coherenc
protocol (the simulated target system is described
Section 5.1). We use the first one million misses in th

Table 1. Benchmark Descriptions
Static Web Content Serving: Apache.Web servers such as
Apache are an important enterprise server application. We use
Apache 2.0.39 for SPARC/Solaris 8 configured to use pthread
locks and minimal logging at the web server. Our experiments
use a repository of 20,000 files (~500 MB) and 160 simulated
users (10 per processor). The system is warmed up for 1.6 mil-
lion requests, and results are based on runs of 5,000 requests.

Scientific Applications: Barnes-Hut and Ocean.We selected
two applications from the SPLASH-2 benchmark suite [34]:
barnes-hutwith 64k bodies andoceanwith a 514 x 514 grid.
We begin measurement at the start of the parallel phase to
avoid measuring thread forking.

Java Server Workload: SPECjbb. SPECjbb2000 is a server-
side Java benchmark that models a 3-tier system, focusing on
the middleware server business logic. We use Sun’s HotSpot
1.4.0 Server JVM, and our experiments use 24 driver threads
and 24 warehouses (with a data size of approximately 500MB).
The system is warmed up for 100,000 transactions, and our
results are based on runs of 100,000 transactions.

Online Transaction Processing (OLTP): DB2 with a TPC-
C-like workload. The TPC-C benchmark models the database
activity of a wholesale supplier. Our OLTP workload is based
on the TPC-C v3.0 benchmark using IBM’s DB2 v7.2 EEE
database management system. Our experiments use 128 simu-
lated users (8 per processor) that access an 800MB database
with 4,000 warehouses stored on five raw disks. The database
is warmed up for 10,000 transactions before taking measure-
ments, and our results are based on runs of 1,000 transactions.

Dynamic Web Content Serving: Slashcode.Our Slashcode
benchmark is based on an open-source dynamic web message
posting system used by slashdot.org. We use Slashcode 2.0,
Apache 1.3.20 and Apache’smod_perl 1.25 module for the
web server, and we use MySQL 3.23.39 as the database engine.
A multithreaded user emulation program simulates browsing
and posting behavior of 48 users (3 per processor). The data-
base contains 3,000 messages. The system is warmed up for
240 transactions before taking measurements, and our results
are based on runs of 100 transactions.
2

-
a

n

ne
.

e
or,
ors
s-
ad-
of
es-
ry

be
h-
ll

to
hat
n
e
xe-
f

In
f

rs
is-
are
re
an

at
ect
trace to warm up the caches (and later our destination-set
predictors). For each coherence request, trace records con-
tain the data address, program counter (PC) address,
requester, and request type.

Traces allow for quick workload characterization and
exploration of the predictor design space and enable deter-
ministic and precise comparisons. However, traces capture
neither the effects of timing races nor their impact on over-
all performance. In Section 5 we address these limitations
by presenting execution-driven timing results from full-
system simulations using a detailed performance model.

2.2 General Properties

Studies of multiprocessor commercial workloads and their
properties have found that second-level (L2) cache misses,
especially misses due to sharing, can dominate perfor-
mance. Table 2 shows that our commercial workloads
have large data footprints, in terms of total memory
touched in 64-byte blocks (column 2, second from the left)
and 1024-byte macroblocks (column 3), and a large num-
ber of static instructions that cause cache misses (column
4). The commercial workloads have relatively high cache
miss rates from a 4 MB, 4-way set associate L2 cache (col-
umns 5 and 6). The rightmost column in the table (column
7) lists the percent of L2 cache misses that would cause
indirections in a directory protocol. As discussed in the
next section, these workloads have a larger percentage of
indirections, providing ample opportunity for destination-
set prediction to improve their performance.

2.3 Cache-to-Cache Misses

Prior studies have shown that commercial workloads incur
a large fraction of cache-to-cache misses [5, 18, 30]. Our
results, shown in the rightmost column of Table 2 (column
7), corroborate these previous results by finding that 35-
96% of all L2 cache misses for our commercial workloads
would suffer from indirection in a directory protocol. The
high miss rate and high rate of indirections in commercial

workloads provide sufficient opportunity for destination
set prediction. While Barnes-Hut and Ocean also incur
large fraction of indirections, their low miss rates result i
lower rates of directory indirectionsper instruction. Thus,
workload analysis based on Barnes-Hut and Ocean alo
would be a poor basis for designing commercial servers

2.4 Instantaneous Sharing

While the majority of misses for our workloads cannot b
completed without contacting at least one other process
the number of misses that need to contact many process
is relatively small. For example, at most one other proce
sor (the owner) needs to observe a request to obtain a re
only copy of a block. Figure 2 shows the percentage
requests that need to contact various numbers of proc
sors. For our workloads, many requests require directo
indirections, but only about 10% of all requests need to
sent to more than one other processor. This result hig
lights the inefficiency of broadcast snooping, in which a
processors in the system observe all requests.

2.5 Degree of Sharing

While the instantaneous number of processors that need
observe a request is small, the number of processors t
read or write a block during the execution is larger. I
Figure 3(a), we plot a histogram of the number of uniqu
processors that access a block at least once during the e
cution. The data show a non-uniform distribution; most o
the blocks are touched by only one processor.
Figure 3(b), we weight each block by the number o
misses (i.e., if a block had ten misses and four processo
accessed it, we add ten to the four-processor bin of the h
togram). The scaled data show that most of the misses
concentrated on the small number of blocks that a
accessed by most or all of the processors. Ocean is
exception; the majority of its misses are to blocks th
have been touched by four or fewer processors, a dir
result of its column-blocked stencil structure [34].

Table 2. Workload Properties

Workload M
em

or
y

to
uc

he
d

(6
4

by
te

 b
lo

ck
s)

M
em

or
y

to
uc

he
d

(1
02

4
by

te
 b

lo
ck

s)

S
ta

tic
 in

st
rs

 th
at

ca
us

e
L2

 m
is

se
s

To
ta

l L
2

m
is

se
s

L2
 m

is
se

s
pe

r
1,

00
0

in
st

ru
ct

io
ns

D
ire

ct
or

y
in

di
re

ct
io

ns

Apache 46 MB 71 MB 18,745 22 M 5.9 89%

Barnes-Hut 11 MB 13 MB 7,912 3 M 0.4 96%

Ocean 52 MB 61 MB 11,384 5 M 0.5 58%

OLTP 57 MB 125 MB 21,921 18 M 7.0 73%

Slashcode 181 MB 316 MB 42,770 13 M 1.0 35%

SPECjbb 341 MB 558 MB 24,023 21 M 3.3 41%

0

20

40

60

80

Pe
rc

en
t o

f
m

is
se

s

Reads
Writes

0 1 2 3+
Apache

0 1 2 3+
Barnes-Hut

0 1 2 3+
Ocean

0 1 2 3+
OLTP

0 1 2 3+
Slashcode

0 1 2 3+
SPECjbb

Figure 2. Sharing Histogram.This graph shows the
number of processors that must see an indirection in
a directory protocol for read and write requests.
3

t
e
rk-

ss
ce
st

a-
th
ng

lock.
2.6 Sharing Locality

Our workloads exhibit a high degree of locality among
cache-to-cache misses. Figure 4(a) shows the cumulative
distribution of cache-to-cache misses for 64-byte data
blocks. These data show, for example, that the hottest
1,000 data blocks in SPECjbb account for 80% of all
cache-to-cache misses. Figure 4(b) shows the distribution
of cache misses for 1024-byte macroblocks (i.e., aligned
regions of 16 64-byte cache blocks), and we observe even
more locality. For all of our workloads, the 10,000 hottest
macroblocks account for over 80% of all cache-to-cache
misses. Figure 4(c) shows the cumulative distribution of
unique instructions that cause cache-to-cache misses.
These figures reveal significant amounts of temporal and
spatial locality in the cache-to-cache miss stream, a result

that corroborates prior work [18, 30]. Predictors tha
exploit the locality in data blocks or instructions (uniqu
PCs) can capture the sharing working sets of these wo
loads without requiring prohibitive storage.

3 Destination-Set Prediction

Destination-set predictors exploit sharing patterns to gue
which processors must observe a particular coheren
request. For MOESI write-invalidate protocols, a reque
to read (i.e., request for shared)must find the current
owner, while a request to write (i.e., request for exclusive)
must find the owner and all sharers. With accurate destin
tion-set prediction, a hybrid protocol can use bandwid
comparable to directory-based systems while achievi
the low cache-to-cache miss latency of snooping.

0

20

40

60

80

100
Pe

rc
en

t o
f

al
l b

lo
ck

s

(a) Percent of data blocks (64B) touched by n processors

1 4 8 12 16
Apache

1 4 8 12 16
Barnes-Hut

1 4 8 12 16
Ocean

1 4 8 12 16
OLTP

1 4 8 12 16
Slashcode

1 4 8 12 16
SPECjbb

0

20

40

60

80

100

Pe
rc

en
t o

f
al

l m
is

se
s

(b) Percent of misses to data blocks (64B) touched by n processors

1 4 8 12 16
Apache

1 4 8 12 16
Barnes-Hut

1 4 8 12 16
Ocean

1 4 8 12 16
OLTP

1 4 8 12 16
Slashcode

1 4 8 12 16
SPECjbb

Figure 3. Number of blocks touched by various numbers of processors during execution.Part (a) shows a histo-
gram with one entry for each unique block (64B). In part (b), the data is weighted by the number of misses to the b

0 2000 4000 6000 8000 10000

(a) Number of data blocks (64B)

0

20

40

60

80

100

Pe
rc

en
t o

f
ca

ch
e-

to
-c

ac
he

 m
is

se
s

Apache
Barnes-Hut
Ocean
OLTP
Slashcode
SPECjbb

0 2000 4000 6000 8000 10000

(b) Number of data macroblocks (1024B)

0

20

40

60

80

100

Pe
rc

en
t o

f
ca

ch
e-

to
-c

ac
he

 m
is

se
s

Apache
Barnes-Hut
Ocean
OLTP
Slashcode
SPECjbb

0 2000 4000 6000 8000 10000

(c) Number of static instructions

0

20

40

60

80

100

Pe
rc

en
t o

f
ca

ch
e-

to
-c

ac
he

 m
is

se
s

Apache
Barnes-Hut
Ocean
OLTP
Slashcode
SPECjbb

Figure 4. Sharing Locality
4

et
.

to
and
rns

ve
sts,

es-
a

es-
s,
r
t.

e
-
n-

sti-

te
r
al

dic-

age
ors

are
d-
Predictor design involves a trade-off between accuracy
(latency) and bandwidth. Predicting too many processors
increases bandwidth usage with no increase in accuracy
(decrease in latency). Predicting too few processors may
reduce bandwidth (depending upon the protocol specifics),
but it decreases accuracy (increases latency). Snooping
and directory protocols are effectively the two extremes:
snooping always predicts broadcast (perfect accuracy, but
high bandwidth usage), while directory protocols always
initially “predict” the minimal destination set and rely
upon the directory to forward the request as necessary
(low bandwidth usage, but low accuracy). In this section,
we present a predictor framework and a set of policies that
target different points in this design space.

3.1 Predictor Model

Each L2 cache controller in the system contains a destina-
tion-set predictor. Since only coherence controllers are
responsible for interacting with the predictor, we require
no modifications to the processor core, but in Section 3.4
we explore an optional enhancement of exporting the pro-
gram counter of an instruction that misses. Predictors are
tagged, set-associative, and (by default) indexed by data
block address. The coherence controller performs the pre-
dictor access in parallel with the cache access. In the event
of a cache miss, the controller uses the predicted destina-
tion set when initiating the resulting coherence transac-
tion. If the predictor hits, it generates a prediction
according to the policies discussed below. On a predictor
miss, the predictor returns by default theminimal destina-
tion set(e.g., depending on the specific protocol, the set
might include only the home module of the block).

Since a small set of data blocks account for most cache-to-
cache misses (recall Figure 4), the predictor can improve
its effective capacity by allocating predictor entries only
for blocks likely to be shared. In our experiments, the pre-

dictor allocates an entry only if the minimal destination s
proves insufficient to directly locate the requested block

3.2 Training Information

The policies we discuss use two types of training cues
predict sharing behavior: external coherence requests
coherence responses. In both cases, the predictor lea
the identity of one or more other processors that ha
recently accessed a block. On external coherence reque
the predictor automatically receives the requesting proc
sor’s identity (since this information is required to permit
response). For responses, we extend data-response m
sages to include the sender’s identity. Specific policie
described next, use this information either to “train up” o
“train down”, i.e., increase or decrease the destination se

3.3 Prediction Policies

Different prediction policies can use some or all of th
training information to target different points in the band
width/latency spectrum. This section describes three ge
eral policies, specified in Table 3, and one hybrid policy.

The Owner predictor. Owner targets scenarios in which
either (a) only one other processor needs to be in the de
nation set (e.g., pairwise sharing) or (b) bandwidth is lim-
ited. The predictor records the last processor to invalida
or respond with a block. On a prediction, the predicto
returns the union of the predicted owner and the minim
destination set.Owner works well for pairwise sharing,
because both processors include each other in their pre
tions. Owner also works well under limited bandwidth
because it sends at most one additional control mess
for each request, independent of the number of process
in the system.

The Broadcast-If-Sharedpredictor. Broadcast-If-Shared
targets scenarios in which either (a) most shared data
widely shared, (b) most data are not shared, or (c) ban

Table 3. Predictor Policies

Name Owner Broadcast-If-Shared Group

Entry Structure Owner ID andValid bit 2-bit saturating counter,
Counter

N 2-bit saturating counters,Counters[0..N-1]
5-bit saturatingRolloverCounter

Entry Size
log2N bits + 1 bit + tag
(approximately 4 bytes)

2 bits + tag
(approximately 4 bytes)

2N bits + 5 bits + tag
(approximately 8 bytes)

Prediction Action
(for Shared or Exclusive)

If Valid, predictOwner
Otherwise, minimal set

If Counter > 1, broadcast
Otherwise, minimal set

For each processorn, if Counters[n]> 1, addn
to minimal set

Tr
ai

ni
ng

A
ct

io
n

Data
Response

If response from memory,
clearValid. Else, setOwner
to responder, and setValid

If response from memory,
decrementCounter. Else,
incrementCounter

If response not from memory, increment
Counters[responder].
IncrementRolloverCounter†

Other Request
(Exclusive)

SetOwnerto requester and
setValid

IncrementCounter
IncrementCounters[requester].
IncrementRolloverCounter†

Other Request
(Shared)

ignore

N is the number of processor nodes in the system.†If RolloverCounter rolls over, decrementCounter[i] for all i.
5

ed
al-
y

k
or,

l-

he
es
g

he

tial
s-
n-

c-

ol
he
en
y

te
st
ike
ul-
set

on a
n
the
ry
k,

in
e
r

ul.
y)
ry
ite
width is plentiful.Broadcast-If-Sharedselects either a des-
tination set that includes all processors (if the block is
predicted shared) or the minimal destination set (other-
wise). A two-bit saturating counter—incremented on
requests and responses from other processors and decre-
mented otherwise—determines which prediction to make.
Broadcast-If-Sharedperforms comparably to snooping,
but it uses less bandwidth by not broadcasting all requests.

The Group predictor. Group targets scenarios in which
(a) groups of processors (less than all processors) share
blocks and (b) bandwidth is neither extremely limited nor
plentiful. Each predictor entry contains a two-bit counter
per processor in the system. On each request or response,
the predictor increments the corresponding counter.Group
also increments the entry’s 5-bitrollover counter; on over-
flow, the predictor decrements all 2-bit counters in the
entry. This training-down mechanism ensures that the pre-
dictor eventually removes inactive processors (i.e., proces-
sors no longer accessing the block) from the destination
set.Group should work well on a large multiprocessor in
which not all processors are working on the same aspect of
the computation or if the system is logically partitioned.

The Owner/Grouphybrid predictor. Owner/Grouptar-
gets (a) stable sharing patterns and (b) more limited band-
width thanGroup. Owner/Groupuses aGrouppredictor to
handle requests for exclusive and anOwner predictor to
handle requests for shared. This policy works well for sta-
ble sharing patterns because all processors in the sharing
set observe all requests for exclusive, and thus they can
track the current owner in most cases. Thus, requests for
shared can be sent only to the current predicted owner,
reducing the bandwidth demand.

3.4 Alternative Indexing

By default, the predictors use data-block address indexing,
but we also explore program counter (PC) indexing and
“coarse-grain” macro-block indexing.

Program counter indexing. Figure 4(c) showed that a
small number of static instructions cause most cache-to-
cache misses. This observation, supported by prior work
(e.g., [16]), suggests that we index the predictor with the
PC. To enable this indexing alternative, the processor sup-
plies the PC of the load or store instruction causing the
miss. The cache controller includes this PC in the coher-
ence request (extending the message format) and remem-
bers the PC until the coherence response arrives (used for
predictor training).

Macroblock indexing. Figure 4(b) showed that cache-to-
cache misses exhibit significant spatial locality. For exam-
ple, consider a processor reading a large buffer that was
recently written by another processor. The last processor
to write the buffer may be difficult to predict; however,
once a processor observes that several data blocks of the
buffer were supplied by one processor, a macroblock-

based predictor can learn to find other spatially relat
blocks at that same processor. To exploit this spatial loc
ity, we index the predictor with macroblock addresses b
simply dropping the least significant bits. Macrobloc
indexing also increases the effective reach of the predict
thereby reducing pressure on the predictor’s capacity.

3.5 Prior Work: Sticky-Spatial(1)

We compare our predictors to a variant of the original mu
ticast snooping predictor developed by Biliret al. [7]. The
Sticky-Spatial(1)predictor is “sticky” because it only
trains up, relying on predictor replacements to reduce t
destination-set size. It is “spatial” because it aggregat
information from neighboring predictor entries (restrictin
it to a direct-mapped implementation).Sticky-Spatial
trains up by observing responses and retries from t
memory controller (described in Section 4.1).

Our predictors improve uponSticky-Spatialin two impor-
tant ways. First, macroblock addressing captures spa
locality with a single entry. This approach reduces pre
sure on finite predictors, allows set-associative impleme
tations, and eliminates aliasing (Sticky-Spatialignores the
tag when making predictions). Second, all of our predi
tors have explicit mechanisms to train down.

4 Evaluation of Destination-Set Predictors

This section summarizes the multicast snooping protoc
we evaluate, describes our method of analyzing t
latency/bandwidth tradeoff, and presents trace-driv
results for our prediction policies using the methodolog
described earlier in Section 2.1.

4.1 Multicast Snooping Protocol

To evaluate our destination-set predictors in a concre
context, we implemented them as part of a multica
snooping system [7, 32]. Processors in this system act l
they do in broadcast snooping, except that processors m
ticast coherence requests to a predicted destination
(called amulticast maskin the original paper). To enforce
the necessary ordering requirements, requests are sent
totally-ordered interconnect and the minimal destinatio
set includes both the requester and the home node for
requested block. The home node maintains a directo
structure to track the owner and sharers of each bloc
allowing it to detect if a request wassufficient(i.e., sent to
all necessary processors). A destination set is sufficient
multicast snooping if it includes the requester, the hom
node, the owner of the block, and, if the request is fo
write permission, all processors sharing the block.

If a destination set is sufficient, the request is successf
In this case (1) the owner (which could be the memor
responds to the requester with data, (2) the directo
updates its state, and (3) if the request was for read/wr
access, all sharers invalidate their copies of the block.
6

nd
st

l a

0
i-
s.

he

s
e-
ve
in
s
B

r-
-

f a
),
e.
e
-

If a destination set is insufficient, the request must be
retried. Our implementation uses the optimization pro-
posed by Sorinet al. [32], in which the directory re-issues
the coherence request with an improved destination set
that reflects the current owner and sharers. A reissued
request has latency similar to an indirected (3-hop) request
in a directory protocol.

As in the original protocol, however, a window of vulnera-
bility exists between the retry’s issue and when the inter-
connection network orders it. During this window, a racing
request can intervene, changing the owner and/or sharers
such that the retry’s destination set is now insufficient. The
directory must detect this infrequent race condition and
retry the request again. To avoid deadlock and livelock in
pathological cases, on the third retry the directory resorts
to broadcasting, which is guaranteed to succeed.

4.2 Predictor Evaluation Methodology

Each predictor and base protocol represent one point in the
trade-off between latency and bandwidth. To visualize this
tradeoff, we plot results on a two dimensional plane. The
horizontal dimension represents request bandwidth per
miss (i.e., the bandwidth per miss used by requests, for-
wards, and retries). The vertical dimension represents
latency, measured as the percent of misses that require
indirection (i.e., three-hop requests in a directory protocol
or requests retried by the directory in multicast snooping).
The dashed vertical line represents the directory protocol
bandwidth, which is the best case for multicast snooping.

We compare our predictors against base snooping a
directory protocols. We assume a typical MOSI broadca
snooping protocol (denoted by✖ in our results) that relies
on a totally-ordered broadcast interconnect. We mode
bandwidth-efficient MOSI directory protocol (denoted
by ✚) based on the AlphaServer GS320 [11]. The GS32
also uses a totally-ordered interconnection network, elim
nating the need for explicit acknowledgment message
Using such a directory protocol allows us to assume t
same interconnect configuration for all protocols.

4.3 Predictor Policy Evaluation

Figure 5 displays the results for the four predictor policie
(note the different y-axis for each workload). These pr
dictors use 1024-byte macroblock indexing and ha
8,192 entries. Since our predictor entry size (shown
Table 3) ranges from approximately four to eight byte
(including tags), the total predictor size ranges from 32k
to 64kB (less than 2% of our L2 cache size).

We find that destination-set prediction provides a favo
able bandwidth/latency tradeoff over a range of work
loads. The best predictors approach the low latency o
snooping protocol (by substantially reducing indirections
while reducing the request bandwidth by a factor of thre
Alternatively, the predictors allow for systems that us
bandwidth comparable to a directory protocol while sub
stantially reducing indirections (and hence latency).

Owner predictor (denoted by ●). Figure 5 shows that
Owner achieves its goal of reducing indirections while

0 5 10 15
0

20

40

60

80

request messages per missin
di

re
ct

io
ns

 (
pe

rc
en

t o
f

m
is

se
s) Apache

0 5 10 15
0

20

40

60

80

request messages per missin
di

re
ct

io
ns

 (
pe

rc
en

t o
f

m
is

se
s) Barnes-Hut

0 5 10 15
0

10

20

30

40

50

request messages per missin
di

re
ct

io
ns

 (
pe

rc
en

t o
f

m
is

se
s) Ocean

0 5 10 15
0

20

40

60

request messages per missin
di

re
ct

io
ns

 (
pe

rc
en

t o
f

m
is

se
s) OLTP

0 5 10 15
0

10

20

30

request messages per missin
di

re
ct

io
ns

 (
pe

rc
en

t o
f

m
is

se
s) Slashcode

0 5 10 15
0

10

20

30

40

request messages per missin
di

re
ct

io
ns

 (
pe

rc
en

t o
f

m
is

se
s) SPECjbb

Figure 5. Standout Predictor Results (8,192 entries, 1,024-byte block indexing)

Directory
Broadcast Snooping
Owner
Broadcast-If-Shared
Group
Owner/Group
7

y
.

k-
e
s-

x-
f
t-

e
cy,
th

n
nd
s

nd
off

e-
l
Cs
C

s
k

ed

te
g
nd
r,
using only incrementally more bandwidth than the direc-
tory protocol. In five of our six benchmarks,Owner
reduces the rate of indirections to less than 25% of all
misses. The reduction of indirections comes at the cost of
less than a 25% increase in request traffic for five of six
benchmarks (less than a 15% increase in total traffic).

Broadcast-If-Sharedpredictor (■). In contrast to the
Owner predictor, the goal ofBroadcast-If-Sharedis to
achieve performance similar to broadcast snooping sys-
tems while using less bandwidth.Broadcast-If-Shared
meets its goal by keeping indirections to less than 6% of
misses for all of our benchmarks while using less band-
width. In those workloads with a low percentage of cache-
to-cache misses (Slashcode and SPECjbb),Broadcast-If-
Sharedreduces the request bandwidth used by more than
half. In those workloads with a high percentage of cache-
to-cache misses (Apache, Barnes-Hut, and OLTP), the pre-
dictor broadcasts most requests and performs like broad-
cast snooping.

Group predictor (▲). While Owner and Broadcast-If-
Sharedare often too conservative or aggressive, respec-
tively, Groupprovides an attractive alternative to these two
extreme predictors. For all workloads,Group reduces
request traffic to no more than half that of snooping, while
keeping indirections below 15% of misses.Group works
particularly well on Slashcode, using one fifth the request
bandwidth of snooping with only 4% of requests requiring
indirection (a factor of ten improvement).

Owner/Group predictor (▼). Owner/Groupperforms like
Group, but it uses less bandwidth at the cost of more indi-
rections. Not surprisingly, for most of our benchmarks, the
results for this predictor lie between those ofGroup and
Owner. However, for Ocean,Owner/Groupincurs only 6%
indirections, while using one fifth the request bandwidth
of broadcast snooping. As revealed in Figure 3(b), Ocean
has a large number of misses to blocks that are only shared
among a small number of processors (a consequence of its
column-blocked data layout [34]). The “Group” aspect of
Owner/Groupdetects this stable, limited sharing, and the

“Owner” aspect reduces the bandwidth even further b
sending requests for shared only to the predicted owner

Predictor policy conclusions.There is no “best choice”
among these four destination-set predictors for all wor
loads. The right choice will depend upon the relativ
importance of latency and the cost of bandwidth in the sy
tem being designed. However, for many systems,Owner
andOwner/Group appear to present attractive options.

4.4 Sensitivity Analysis

We now examine the sensitivity of these results to inde
ing method and predictor size. To limit the number o
graphs, we only present data for the OLTP workload, no
ing significant differences in other workloads. To facilitat
comparisons between predictors using the same poli
Figure 6 “connects the dots” for those data points wi
similar prediction policies but different configurations.

Program counter indexing. Figure 6(a) illustrates (for
OTLP with unbounded predictors) the trade-off betwee
using data block or PC-based indexing. These results, a
others not shown, indicate that data block indexing yield
better predictions in many cases (e.g., for Owner and
Owner/Group). In other cases, the choice between PC a
data block indexing creates a bandwidth/latency trade
(e.g., for Group and Broadcast-If-Shared). These results
indicate that PC-indexing does not provide sufficient ben
fit for these simple predictors to justify the additiona
design cost and complexity required to send miss P
from the processor core to the coherence controller. P
indexing performs relatively better for finite predictor
(not shown), but this effect is dwarfed by macrobloc
indexing, discussed next.

Macroblock indexing. Macroblock indexing exploits the
spatial predictability of coherence requests (as describ
in Section 3.4). Figure 6(b) shows (for OLTP with
unbounded predictors) that using 256-byte or 1024-by
macroblock indexing improves prediction by reducin
both traffic and indirections in most cases. Apache a
Slashcode exhibit performance similar to OLTP; howeve

0 5 10 15
0

20

40

60

request messages per missin
di

re
ct

io
ns

 (
pe

rc
en

t o
f

m
is

se
s)

Figure 6. Sensitivity Analysis Using OLTP.(a) The effect of program counter (PC) versus data block indexing. (b) The
effect of macroblock indexing. (c) Sensitivity to size with 1024B macroblocks and comparison toStickySpatial(1).

0 5 10 15
0

20

40

60

request messages per missin
di

re
ct

io
ns

 (
pe

rc
en

t o
f

m
is

se
s)

0 5 10 15
0

20

40

60

request messages per missin
di

re
ct

io
ns

 (
pe

rc
en

t o
f

m
is

se
s)

Directory
Broadcast Snooping
Owner
Broadcast-If-Shared
Group
Owner/Group
StickySpatial(1)

64B block index
PC index

64B block index
256B block index
1024B block index

unbounded size
32,768 entries
8192 entries

(a) (b) (c)
8

fit
re

s-
s
n-

al
al
r

t
to

ally
ate
ed
se
cy.
we
n-
ur
r-
p-

ve
to

an-
u-
ng
ns

ia a
e

using macroblocks with SPECjbb and Ocean has little
effect due to an already low percentage of indirections.

For unbounded predictors, most of the benefit of capturing
spatial locality is achieved by 256-byte macroblocks, but
1024-byte macroblocks perform still better while further
increasing predictor reach (in the case of a finite size pre-
dictor). Experiments with even larger macroblocks and
unbounded predictors (not shown) indicate little additional
benefit.

Finite sized predictors.Figure 6(c) compares (for OLTP)
the performance of unbounded predictors to those with
8,192 and 32,768 entries. The results show that predictors
in this range perform comparably to unbounded predictors
(for these workloads). Limited experiments with smaller
predictors (not shown) indicate an increase in indirections
but a corresponding decrease in bandwidth. This result is
expected, since on a miss, our predictors default to predict-
ing the minimal destination set (reducing traffic, but also
increasing indirections).

Comparison to previous predictors.The original desti-
nation-set predictor isSticky-Spatial(1), which was
described in Section 3.5.Sticky-Spatial(1)is also shown in
Figure 6(c), denoted by◆, for a range of predictor sizes.
For OLTP, our predictors perform better thanSticky-Spa-
tial(1) (e.g., our Owner/Grouppredictor uses less band-
width and has fewer indirections). In general, our
predictors either perform similarly or better thanSticky-
Spatial in one or both criteria.

5 Runtime Performance Evaluation
This section evaluates the impact of destination-set predic-
tion policies on runtime performance. We first present the
methodology and then summarize the key results.

5.1 Target System
We evaluate 16-node systems in which each node contains
a dynamically scheduled processor core, split first level
instruction and data caches, unified second level cache,
cache controller, and memory controller for part of the
globally shared memory. Table 4 lists the parameters for
the memory system and the processor. We choose memory
system parameters to approximate the published latencies
of systems like the Alpha 21364 [13]. These assumed
latencies result in a 180 ns latency to obtain a block from
memory, a 112 ns latency for a cache-to-cache transfer for
both a broadcast snooping and a successful multicast
snooping request, and a 242 ns latency for both a cache-to-
cache transfer in the directory protocol and a retried multi-
cast snooping request. All request, forwarded request, and
retried request messages are 8 bytes, and data responses
are 72 bytes (64 byte data with an 8 byte header).

Destination-set predictors are accessed in parallel with
second level caches. Predictor updates complete in a single
cycle, and the predictors train only on data responses or on
requests from other processors. Since multiple misses are

generated in parallel, later misses do not always bene
from the training responses from the earlier misses befo
being issued into the memory system.

5.2 Simulation Methods

We simulate our target systems with the Simics full-sy
tem multiprocessor simulator [22], and we extend Simic
with detailed processor, memory hierarchy, and interco
nection network models to compute execution times [3].

Full-system simulation.Simics is a system-level archi-
tectural simulator that can run unmodified commerci
applications and operating systems. Simics is a function
simulator only, but it provides an interface to support ou
detailed timing models.

Processor models.We present results using two differen
processor models. For some results we use TFsim [25]
model superscalar processor cores that are dynamic
scheduled, exploit speculative execution, and gener
multiple outstanding coherence requests. We configur
TFsim to model the processor described in Table 4 and u
an aggressive implementation of sequential consisten
For other results, due to excessive simulation runtimes,
use a faster (by an order of magnitude) but simple, i
order, blocking processor model that would complete fo
billion instructions per second if the L1 caches were pe
fect. The results using the detailed processor model ca
ture effects due to parallel misses and speculati
execution, while the simple processor model allows us
simulate a larger number of cycles for all workloads.

Memory system model.Our memory system simulator
captures timing races and all coherence protocol state tr
sitions (including non-stable states). To warm up the sim
lated caches and predictors before beginning the timi
simulations, we use traces similar to those used in Sectio
2 and 4. The processor/memory nodes are connected v
single physical link to an interconnection network. Sinc

Table 4. Target System Parameters

Coherent Memory System
L1 instruction cache 128kBytes, 4-way, 2 cycles
L1 data cache 128kBytes, 4-way, 2 cycles
L2 cache (unified) 4MBytes, 4-way, 12ns
block size 64 Bytes
memory 2 GBytes total, 80ns
interconnect link bandwidth 10 GBytes/s
interconnect latency 50ns traversal

Dynamically Scheduled Processor
clock frequency 2 Ghz
reorder buffer 64 entry
pipeline width 4-wide fetch & issue
pipeline stages 11
direct branch predictor 1kBytes YAGS
indirect branch predictor 64 entry (cascaded)
9

ar-

s)
nd
r
re

-

are
d
o
al

nt-
n-
ct
all of the coherence protocols we consider—broadcast
snooping, multicast snooping, and directory—require a
total order of requests, we model a single crossbar switch.
This interconnect model includes contention effects
caused by limited link bandwidth.

Workload variability. To address the runtime variability
of commercial workloads, we simulate each design point
multiple times with small, pseudo-random perturbations as
described by Alameldeenet al. [3]. The reported runtime
results are averages of these multiple simulations.

5.3 Results
While trace-driven simulation (Section 4) allows rapid
exploration of the design space, this section presents the
bottom line: execution time and interconnect traffic. How-
ever, which protocol performs best depends upon the num-
ber of processors and the available interconnect

bandwidth. Rather than evaluate these protocols for a p
ticular design point (and arbitrarily pick a winner), we
simulate a system with ample bandwidth (10 GB/s link
and examine the tradeoff between execution time a
bandwidth. Although snooping always performs best fo
such a system, we believe these results provide mo
insight than arbitrarily picking a single bandwidth-con
strained design point that would have many critics.

Simple processor model results.Figure 7 shows results
generated using the simple processor model that comp
the runtime (normalized to the directory protocol) an
interconnect traffic (bytes of traffic per miss normalized t
broadcast snooping). The dotted lines indicate the ide
cases: the traffic usage of a directory protocol and the ru
ime of a snooping protocol. For our particular system co
figuration, snooping uses about twice the interconne

0 20 40 60 80 100
0

20

40

60

80

100

normalized traffic per miss

no
rm

al
iz

ed
 r

un
tim

e

Apache

0 20 40 60 80 100
0

20

40

60

80

100

normalized traffic per miss

no
rm

al
iz

ed
 r

un
tim

e

Barnes-Hut

0 20 40 60 80 100
0

20

40

60

80

100

normalized traffic per miss

no
rm

al
iz

ed
 r

un
tim

e

Ocean

0 20 40 60 80 100
0

20

40

60

80

100

normalized traffic per miss

no
rm

al
iz

ed
 r

un
tim

e

OLTP

0 20 40 60 80 100
0

20

40

60

80

100

normalized traffic per miss

no
rm

al
iz

ed
 r

un
tim

e
Slashcode

0 20 40 60 80 100
0

20

40

60

80

100

normalized traffic per miss

no
rm

al
iz

ed
 r

un
tim

e

SPECjbb

0 20 40 60 80 100
0

20

40

60

80

100

normalized traffic per miss

no
rm

al
iz

ed
 r

un
tim

e

Apache

0 20 40 60 80 100
0

20

40

60

80

100

normalized traffic per miss

no
rm

al
iz

ed
 r

un
tim

e

SPECjbb

0 20 40 60 80 100
0

20

40

60

80

100

normalized traffic per miss

no
rm

al
iz

ed
 r

un
tim

e

OLTP

Figure 8. Detailed Processor Model Runtime Performance Results

Figure 7. Simple Processor Model Runtime Performance Results

Directory
Broadcast Snooping
Owner
Broadcast-If-Shared
Group
Owner/Group
10

of

ith
ory
ped
],
r-
-
g
pt-

n-
to
o-
e
y
en
of
th

tra
-

st
e
sci-
ed

d
d

n,
t
-

n-
in

e
-

n

e

n

bandwidth of the directory protocol, but it also outper-
forms the directory protocol by up to a factor of two.
Snooping only uses twice the interconnect bandwidth,
since point-to-point response messages (72 bytes) are
much larger than request messages (8 bytes) that are
broadcast to all 16 processors. Not surprisingly, the work-
loads that benefit most from snooping (OLTP and Apache)
have the highest miss rates and cache-to-cache miss rates
(recall Table 2). Even those benchmarks with relatively
low miss rates improve by approximately 10% to 25%.

Figure 7 also shows that the runtime/bandwidth tradeoff
qualitatively mirrors the indirection/request-message
tradeoff in Figure 5. The quantitative benefits are some-
what smaller for reasons analogous to why cache miss
ratio reductions translate to more modest runtime gains;
the predictors help cache-to-cache misses but not private
misses or computation. As before, our predictors capture
most of the performance benefit of snooping protocols
while using significantly less bandwidth. For example, our
predictors obtain almost 90% of the performance of
snooping while using only approximately 15% more band-
width than a directory protocol (and less than half the
bandwidth of snooping).

Detailed processor model results.Figure 8 displays simi-
lar results using our complex processor model for three of
our workloads. To enable reasonable simulation runtimes,
we only simulated three workloads, and we simulated an
order of magnitude fewer transactions for these runs than
the earlier trace-based or simple processor model simula-
tions. Normalized runtime and bandwidth numbers are
similar to results with the simple processor model,
although the absolute runtimes are different.

6 Related Work
Several papers have examined shared memory behavior.
Gupta and Weber [12] analyzed invalidation patterns in
parallel scientific and engineering applications and
observed that different data structures exhibit specific
sharing patterns and that most invalidations affect few pro-
cessors. Recent research has studied commercial work-
loads (e.g., [5, 18, 28, 29, 30]) but not the distribution of
sharers. To our knowledge, this paper is the first paper to
perform a detailed analysis of sharing patterns for com-
mercial workloads and their impact on multiple destina-
tion-set predictors.

Previous work on destination-set predictors has focused on
the correctness of the hybrid protocols and single points in
the destination-set predictor design space using scientific
workloads (e.g., SPLASH-2 benchmarks [34]). Acacioet
al. studied a two-level owner predictor, with the first level
decidingwhetherto predict an owner and the second level
decidingwhich nodemight be the owner [1]. In a second
paper, Acacioet al. studied a single-level predictor to pre-
dict sharers [2]. Biliret al. [7] studied multicast snooping
with a 4K-entry StickySpatial(1) destination-set predictor.

Many papers have examined or exploited other forms
coherence prediction (e.g., dynamic self-invalidation [20,
21]). Coherence predictors have been indexed w
addresses [27], program counters [16], message hist
[19], and other state [17]. Researchers have also develo
protocols that optimize for specific sharing behaviors [6
read-modify-write sequences [28, 29], and migratory sha
ing [8, 33]. Other hybrid protocols adapt between write
invalidate and write-update [4, 9, 15, 26, 31], by migratin
data near to where it is being used [10, 14, 35] or by ada
ing to available bandwidth [24].

7 Conclusions
In this paper, we used commercial workloads to demo
strated the potential of destination-set prediction
improve the latency/bandwidth tradeoff in coherence pr
tocols. While broadcast snooping protocols optimiz
latency and directory protocols optimize bandwidth, the
represent the extreme points in the design space. Ev
simple destination-set predictors, used in the context
multicast snooping, can (a) greatly reduce the bandwid
usage, with respect to snooping, for a small cost in ex
indirections, or (b) greatly reduce the number of indirec
tions, with respect to directory protocols, for a small co
in extra bandwidth. While commercial workloads hav
larger footprints and more cache-to-cache misses than
entific workloads, we have shown that reasonably-siz
predictors can still achieve high accuracy.

Acknowledgments
We thank Virtutech AB, the Wisconsin Condor group, an
the Wisconsin Computer Systems Lab for their help an
support. We thank Alaa Alameldeen, Brad Beckman
Carl Mauer, Kevin Moore, the Wisconsin Multiface
group, and the Wisconsin Computer Architecture Affili
ates for their comments on this work.

References
[1] M. E. Acacio, J. González, J. M. García, and J. Duato. Ow

er Prediction for Accelerating Cache-to-Cache Transfers
a cc-NUMA Architecture. InProceedings of SC2002, Nov.
2002.

[2] M. E. Acacio, J. González, J. M. García, and J. Duato. Th
Use of Prediction for Accelerating Upgrade Misses in cc
NUMA Multiprocessors. InProceedings of the International
Conference on Parallel Architectures and Compilatio
Techniques, pages 155–164, Sept. 2002.

[3] A. R. Alameldeen, M. M. K. Martin, C. J. Mauer, K. E.
Moore, M. Xu, D. J. Sorin, M. D. Hill, and D. A. Wood.
Simulating a $2M Commercial Server on a $2K PC.IEEE
Computer, 36(2):50–57, Feb. 2003.

[4] C. Anderson and A. R. Karlin. Two Adaptive Hybrid Cache
Coherency Protocols. InProceedings of the Second IEEE
Symposium on High-Performance Computer Architectur,
Feb. 1996.

[5] L. A. Barroso, K. Gharachorloo, and E. Bugnion. Memory
System Characterization of Commercial Workloads. InPro-
ceedings of the 25th Annual International Symposium o
Computer Architecture, pages 3–14, June 1998.
11

n

n

c-

m-

-
nt

f
rk-

ad
s-

o.
ry

-
s

e
e-
on

ol.
s

e
r-
-

a.
d-

f
ti-
[6] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Adaptive
Software Cache Management for Distributed Shared Memo-
ry Architectures. InProceedings of the 17th Annual Interna-
tional Symposium on Computer Architecture, pages 125–
135, May 1990.

[7] E. E. Bilir, R. M. Dickson, Y. Hu, M. Plakal, D. J. Sorin,
M. D. Hill, and D. A. Wood. Multicast Snooping: A New
Coherence Method Using a Multicast Address Network. In
Proceedings of the 26th Annual International Symposium on
Computer Architecture, pages 294–304, May 1999.

[8] A. L. Cox and R. J. Fowler. Adaptive Cache Coherency for
Detecting Migratory Shared Data. InProceedings of the 20th
Annual International Symposium on Computer Architecture,
pages 98–108, May 1993.

[9] F. Dahlgren. Boosting the Performance of Hybrid Snooping
Cache Protocols. InProceedings of the 22nd Annual Inter-
national Symposium on Computer Architecture, pages 60–
69, June 1995.

[10] B. Falsafi and D. A. Wood. Reactive NUMA: A Design for
Unifying S-COMA and CC-NUMA. InProceedings of the
24th Annual International Symposium on Computer Archi-
tecture, pages 229–240, June 1997.

[11] K. Gharachorloo, M. Sharma, S. Steely, and S. V. Doren.
Architecture and Design of AlphaServer GS320. InPro-
ceedings of the Ninth International Conference on Architec-
tural Support for Programming Languages and Operating
Systems, pages 13–24, Nov. 2000.

[12] A. Gupta and W.-D. Weber. Cache Invalidation Patterns in
Shared-Memory Multiprocessors.IEEE Transactions on
Computers, 41(7):794–810, July 1992.

[13] L. Gwennap. Alpha 21364 to Ease Memory Bottleneck.Mi-
croprocessor Report, Oct. 1998.

[14] E. Hagersten and M. Koster. WildFire: A Scalable Path for
SMPs. In Proceedings of the Fifth IEEE Symposium on
High-Performance Computer Architecture, pages 172–181,
Jan. 1999.

[15] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator.
Competitive Snoopy Caching.Algorithmica, 3(1):79–119,
1988.

[16] S. Kaxiras and J. R. Goodman. Improving CC-NUMA Per-
formance Using Instruction-Based Prediction. InProceed-
ings of the Fifth IEEE Symposium on High-Performance
Computer Architecture, Jan. 1999.

[17] S. Kaxiras and C. Young. Coherence Communication Pre-
diction in Shared-Memory Multiprocessors. InProceedings
of the Sixth IEEE Symposium on High-Performance Com-
puter Architecture, Jan. 2000.

[18] S. Kunkel, B. Armstrong, and P. Vitale. System Optimiza-
tion for OLTP Workloads.IEEE Micro, pages 56–64,
May/June 1999.

[19] A.-C. Lai and B. Falsafi. Memory Sharing Predictor: The
Key to a Speculative Coherent DSM. InProceedings of the
26th Annual International Symposium on Computer Archi-
tecture, pages 172–183, May 1999.

[20] A.-C. Lai and B. Falsafi. Selective, Accurate, and Timely
Self-Invalidation Using Last-Touch Prediction. InProceed-
ings of the 27th Annual International Symposium on Com-
puter Architecture, pages 139–148, June 2000.

[21] A. R. Lebeck and D. A. Wood. Dynamic Self-Invalidation:
Reducing Coherence Overhead in Shared-Memory Multi-
processors. InProceedings of the 22nd Annual International
Symposium on Computer Architecture, pages 48–59, June
1995.

[22] P. S. Magnusson et al. Simics: A Full System Simulatio
Platform.IEEE Computer, 35(2):50–58, Feb. 2002.

[23] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token Co-
herence: Decoupling Performance and Correctness. InPro-
ceedings of the 30th Annual International Symposium o
Computer Architecture, June 2003.

[24] M. M. K. Martin, D. J. Sorin, M. D. Hill, and D. A. Wood.
Bandwidth Adaptive Snooping. InProceedings of the Eighth
IEEE Symposium on High-Performance Computer Archite
ture, pages 251–262, Feb. 2002.

[25] C. J. Mauer, M. D. Hill, and D. A. Wood. Full System Tim-
ing-First Simulation. InProceedings of the 2002 ACM Sig-
metrics Conference on Measurement and Modeling of Co
puter Systems, pages 108–116, June 2002.

[26] F. Mounes-Toussi and D. J. Lilja. The Potential of Compile
Time Analysis to Adapt the Cache Coherence Enforceme
Strategy to the Data Sharing Characteristics.IEEE Transac-
tions on Parallel and Distributed Systems, 6(5):470–481,
May 1995.

[27] S. S. Mukherjee and M. D. Hill. Using Prediction to Accel-
erate Coherence Protocols. InProceedings of the 25th Annu-
al International Symposium on Computer Architecture, pag-
es 179–190, June 1998.

[28] J. Nilsson and F. Dahlgren. Improving Performance o
Load-Store Sequences for Transaction Processing Wo
loads on Multiprocessors. InProceedings of the Internation-
al Conference on Parallel Processing, pages 246–255, Sept.
1999.

[29] J. Nilsson and F. Dahlgren. Reducing Ownership Overhe
for Load-Store Sequences in Cache-Coherent Multiproce
sors. InProceedings of the 2000 International Parallel and
Distributed Processing Symposium, May 2000.

[30] P. Ranganathan, K. Gharachorloo, S. Adve, and L. Barros
Performance of Database Workloads on Shared-Memo
Systems with Out-of-Order Processors. InProceedings of
the Eighth International Conference on Architectural Sup
port for Programming Languages and Operating System,
pages 307–318, Oct. 1998.

[31] A. Raynaud, Z. Zhang, and J. Torrellas. Distance-Adaptiv
Update Protocols for Scalable Shared-Memory Multiproc
sors. In Proceedings of the Second IEEE Symposium
High-Performance Computer Architecture, Feb. 1996.

[32] D. J. Sorin, M. Plakal, M. D. Hill, A. E. Condon, M. M. K.
Martin, and D. A. Wood. Specifying and Verifying a Broad-
cast and a Multicast Snooping Cache Coherence Protoc
IEEE Transactions on Parallel and Distributed System,
13(6):556–578, June 2002.

[33] P. Stenström, M. Brorsson, and L. Sandberg. Adaptiv
Cache Coherence Protocol Optimized for Migratory Sha
ing. InProceedings of the 20th Annual International Sympo
sium on Computer Architecture, pages 109–118, May 1993.

[34] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupt
The SPLASH-2 Programs: Characterization and Metho
ological Considerations. InProceedings of the 22nd Annual
International Symposium on Computer Architecture, pages
24–37, June 1995.

[35] Q. Yang, G. Thangadurai, and L. N. Bhuyan. Design o
Adaptive Cache Coherence Protocol for Large Scale Mul
processors.IEEE Transactions on Parallel and Distributed
Systems, 3(3):281–293, May 1992.
12

	Using Destination-Set Prediction to Improve the Latency/Bandwidth Tradeoff in Shared-Memory Multi...
	Milo M. K. Martin, Pacia J. Harper, Daniel J. Sorin‡, Mark D. Hill, and David A. Wood
	Computer Sciences Department University of Wisconsin-Madison ‡Department of Electrical and Comput...
	http://www.cs.wisc.edu/multifacet/
	Abstract
	1 Introduction
	Figure 1. Tradeoff Between Latency and Bandwidth
	Table 1. Benchmark Descriptions

	2 Commercial Workload Sharing Behaviors
	2.1 Methodology
	2.2 General Properties
	Table 2. Workload Properties

	2.3 Cache-to-Cache Misses
	2.4 Instantaneous Sharing
	Figure 2. Sharing Histogram. This graph shows the number of processors that must see an indirecti...

	2.5 Degree of Sharing
	Figure 3. Number of blocks touched by various numbers of processors during execution. Part (a) sh...

	2.6 Sharing Locality
	Figure 4. Sharing Locality

	3 Destination-Set Prediction
	3.1 Predictor Model
	3.2 Training Information
	3.3 Prediction Policies
	Table 3. Predictor Policies
	The Owner predictor
	The Group predictor

	3.4 Alternative Indexing
	Macroblock indexing

	3.5 Prior Work: Sticky-Spatial(1)

	4 Evaluation of Destination-Set Predictors
	4.1 Multicast Snooping Protocol
	Figure 5. Standout Predictor Results (8,192 entries, 1,024-byte block indexing)

	4.2 Predictor Evaluation Methodology
	4.3 Predictor Policy Evaluation
	Owner/Group predictor (t)
	Predictor policy conclusions

	4.4 Sensitivity Analysis
	Figure 6. Sensitivity Analysis Using OLTP. (a) The effect of program counter (PC) versus data blo...
	Macroblock indexing
	Comparison to previous predictors

	5 Runtime Performance Evaluation
	5.1 Target System
	5.2 Simulation Methods
	Full-system simulation
	Processor models
	Table 4. Target System Parameters

	Memory system model

	5.3 Results
	Figure 7. Simple Processor Model Runtime Performance Results
	Figure 8. Detailed Processor Model Runtime Performance Results

	6 Related Work
	7 Conclusions
	Acknowledgments
	References

