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Abstract

Many emerging processor microarchitectures seek to
manage technological constraints (e.g., wire delay,
power, and circuit complexity) by resorting to non-
uniform designs that provide resources at multiple qual-
ity levels (e.g., fast/slow bypass paths, multi-speed func-
tional units, and grid architectures). In such designs,
the constraint problem becomes a control problem, and
the challenge becomes designing a control policy that
mitigates the performance penalty of the non-uniformity.
Given the increasing importance of non-uniform control
policies, we believe it is appropriate to examine them in
their own right.

To this end, we develop slack for use in creating con-
trol policies that match program execution behavior to
machine design. Intuitively, the slack of a dynamic in-
struction i is the number of cycles i can be delayed with
no effect on execution time. This property makes slack a
natural candidate for hiding non-uniform latencies.

We make three contributions in our exploration
of slack. First, we formally define slack, distinguish
three variants (local, global and apportioned), and
perform a limit study to show that slack is prevalent
in our SPEC2000 workload. Second, we show how
to predict slack in hardware. Third, we illustrate how
to create a control policy based on slack for steering
instructions among fast (high power) and slow (lower
power) pipelines.

1 Introduction

Recent years have witnessed a proliferation of technol-
ogy constraint-aware design proposals. For example,
physical clustering of functional units has attacked wire
delays [7, 8], multi-frequency functional-units have ad-
dressed power consumption [13], and grid architectures
have sought to reduce cycle time [11]. More importantly,
it appears that wire, power, and circuit-complexity trends
will make constraint-aware designs even more prevalent
in the future.

A challenging feature of many constraint-aware de-
signs is that they introduce non-uniformity, where one or

more resources are available at multiple “quality” levels.
For example, clustering introduce bypasses of multiple
latencies, multi-speed functional units offer several exe-
cution latencies and effective issue bandwidths, and grid
architectures come with a non-uniform L1-cache latency.

A key observation thus is that constraint-aware de-
signs often turn the constraint problem into a control
problem. Using a control policy, these designs hide non-
uniformity by steering each dynamic instruction to an ap-
propriate resource. For example, clustering comes with
a register-dependence instruction-steering policy [8],
multi-speed functional units come with a criticality-based
steering policy [13], and grid-architecture come with a
static hyperblock scheduler [11].

Common to these control policies is the goal of at-
tempting to eliminate the performance impact of non-
uniformity. The common underlying goal motivates this
paper to treat the non-uniform control as a problem in its
own right. Specifically, we ask: “Should control poli-
cies be guided by the same inputs?” and if so, “What
might those unifying inputs be?” The answer to these
questions may facilitate effective design of future control
policies, especially in aggressively non-uniform designs
where multiple control policies must coexist.

A common practice is to guide the policies with (ad
hoc) design-specific inputs (such as register-dependence
information that guides cluster steering). A natural and
more general input is the criticality of a dynamic instruc-
tion. Motivated by the observation that the performance
penalty is eliminated if low-quality resources never ap-
pear on an execution’s critical path, one may use a crit-
icality predictor [4, 13, 16] in an attempt to steer critical
instructions to high-quality resources.

Unfortunately, criticality has several limitations.
First, criticality does not tell us how many cycles a
non-critical instruction can be delayed without impact.
Second, criticality partitions instructions into only two
classes (critical and non-critical), making it less suit-
able for multi-way control policies, which are needed
when resources are available at more than two quality
levels. Third, the relative sizes of the two classes may
not match the balance desired by the control policy (typ-
ically, 95% of instructions are non-critical, which makes
it difficult to obtain, for instance, a 1:1 ratio).
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To address these deficiencies, we advocate guiding
control policies with slack. Slack is a concept taken from
network analysis [1] and recently applied to microarchi-
tecture [3, 6, 12]. Intuitively, the slack of a dynamic in-
struction i is the number of cycles i can be delayed with
no effect on the execution. Slack is inherently more pow-
erful than criticality: since it reveals the “degree of crit-
icality” of an instruction, it enables splitting instructions
into more than two classes and tuning their sizes to match
the needs of the various non-uniform resources.

Despite its simple definition, slack is a complex phe-
nomenon. Even simply exploring its potential warrants
closer examination of the definition. In particular, does
“no effect on the execution” mean no effect on any dy-
namic instruction or no effect on the last dynamic instruc-
tion? Furthermore, how does one compute slack without
having to delay the instruction and observing whether ex-
ecution time increased? The task of exploiting slack in
practice poses further challenges. In particular, how does
one build a dynamic slack predictor and how should slack
be used to guide a policy? This paper makes the follow-
ing contributions in understanding and exploiting slack:

Modeling and characterizing microarchitectural slack.
Section 2 makes three contributions. First, it defines
slack formally, using a dependence-graph model that cap-
tures data dependences as well as microarchitectural re-
source constraints [4]. Second, it distinguishes three
slack variants—local, global, and apportioned—that are
appropriate to different control situations. Finally, a limit
study reveals the existence of considerable slack. For ex-
ample, 75% of dynamic instructions can be delayed by
five or more cycles with no impact on program execu-
tion time. This result provides encouragement that future
control policies may be able to use slack to hide the non-
uniformities of emerging constraint-aware designs.

Slack prediction. To apply slack in practice, Section 3
contributes two algorithms for dynamic slack prediction.
The first algorithm predicts explicit slack, i.e., the actual
value of an instruction’s slack. The second algorithm, for
which we evaluate a hardware design, predicts implicit
slack, i.e., whether an instruction can tolerate the delay
of a particular slow (non-uniform) resource. The predic-
tor effectively matches the slack available in the micro-
execution with the non-uniformity in the machine design,
with the goal of hiding non-uniform delays. The predic-
tor is relatively easy to implement, since it consists of
only a simple state machine and the token-passing ana-
lyzer of Fields, et al. [4].

Application of slack in non-uniform control. In Sec-
tion 4, we provide an example use of slack as a control
mechanism. We show that slack can successfully guide
a steering-and-scheduling policy on a non-uniform ma-
chine in which some pipelines (including the instruction
window, register file, and functional units) run at half the
frequency. Specifically, our slack-based policy improves
performance on such a machine by up to 20% (10% on
average) over the best existing policies, coming within
3% of a higher-power machine with all fast pipelines.

2 Characterizing Microarchitectural Slack

This section presents a study of microarchitectural slack.
We explain its nature, measure its amount, and also dis-
cuss its implications on what non-uniform microarchitec-
tures it encourages us to build.

The slack of an instruction i is the number of cycles
i can be delayed without increasing the overall execution
time. (Note that in this section, whenever we refer to
an instruction, we mean a dynamic instruction.) Before
conducting our experiments, we must carefully refine this
seemingly simple definition and develop algorithms for
its efficient computation. In the following subsections,
we address four main issues:

Modeling microarchitectural slack (Section 2.1): In a
complex processor, the impact of delaying an instruction
i depends not only on program dependences but also on
the resource constraints of the machine. What are the im-
portant machine resources to consider when computing
slack, and how do we account for them?

Apportioning slack (Section 2.2): When an instruction
has slack, that slack can be exploited either by the instruc-
tion itself, or by its dependent instructions. In general, the
slack can be apportioned among multiple instructions that
will be delayed simultaneously. What is a good way to re-
port the amount and “apportioning flexibility” of slack?

Methodology (Section 2.3): To compute an optimal ap-
portioning of slack across multiple instructions, it is nec-
essary to examine large segments of the execution. How
do we compute the apportioned slack efficiently?

Analysis (Section 2.4): The amount of slack affects mi-
croarchitectural decisions. What are the implications of
our empirical observations on non-uniform control poli-
cies, and on the non-uniform machines that make sense
to build in the future?

2.1 Modeling Slack

In order to experimentally determine microarchitec-
turally accurate slack, we must understand what im-
pact delaying an instruction has on the complex mecha-
nisms of an out-of-order processor—where resource con-
straints, as opposed to data dependences, sometimes dic-
tate the amount of slack an instruction has. For exam-
ple, if no instructions data dependent on i are fetched, we
may be able to delay execution of i until just before it
must be committed to avoid stalling the reorder buffer.
We use the term microexecution to include all aspects
of a given program execution on a given microarchitec-
ture. Understanding microexecutions is important both
for measuring slack via offline analysis (which we ex-
plore in this section) as well as predicting slack in hard-
ware (discussed in Section 3).

A natural way to account for all microarchitectural
effects on slack is to do so indirectly (but accurately),
by employing a delay-and-observe approach: to deter-
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mine the slack of an instruction, delay its execution by
n cycles and observe if the overall execution time is in-
creased. If it is not, the instruction has at least n cycles
of slack. There are two serious complications with the
practicality of this approach. First, to determine the pre-
cise value of slack, one needs to iterate over various val-
ues of n for a particular dynamic instruction, potentially
restarting the simulation. Second, short of executing the
whole program, it is not clear how to determine whether
a given value of delay, n, actually slowed down the exe-
cution. These two problems make the delay-and-observe
approach challenging for computing the slack of every
dynamic instruction in the program.

Srinivasan, et al. [15] made the delay-and-observe ap-
proach feasible by sacrificing some accuracy. To avoid
restarting the whole simulation, they equipped their sim-
ulator with a capability to roll back to the delayed instruc-
tion (which was always a load). To avoid rolling back
from afar, they estimated early, using a set of heuristics,
whether the delay actually slowed down the entire ex-
ecution. The heuristics, such as whether the issue rate
drops below a threshold, resulted in a measurement error
of about 8%. While this methodology provided powerful
(and reasonably efficient) analysis of load instructions, it
may be difficult to extend its delay-and-observe approach
to determining the slack when multiple non-load instruc-
tions are delayed (as opposed to a single load).

To avoid the problems with the delay-and-observe ap-
proach, our study uses an off-line method based on con-
structing a dependence-graph model of the execution.
The graph is built by the simulator during the execution,
with each edge corresponding to a dependence and an-
notated with the dependence’s observed latency. After
the execution, the slack is computed by determining how
much latencies can be extended without growing the crit-
ical path of the graph (see Section 2.3).

Clearly, the graph composed of only data depen-
dences will not provide much microarchitectural accu-
racy. The problem with a data dependence graph (DDG)
is that it omits microarchitectural resource constraints,
which can severely skew our slack measurements. Con-
sider the extreme case of an instruction that writes a
memory location that no other instruction in the program
reads. According to the DDG, this instruction may have
millions of cycles of slack. Its microarchitecturally ac-
curate slack, however, is much shorter, as delaying the
instruction by millions of cycles would stall the reorder
buffer and cause a degradation in performance.

Casmira and Grunwald [3] avoid this problem by
computing a “scheduling slack,” which is the slack ob-
served on a DDG constructed from instructions present
in the instruction window each cycle. While this restric-
tion adds a degree of resource sensitivity, it is still conser-
vative in its estimation of slack. For instance, if there is
only one instruction in the window, it will be determined
to have a slack of zero (as it will be on the critical path),
whereas this instruction may in fact have a great deal of
slack (if none of its data-dependent instructions are going
to be fetched for many cycles).

Fundamentally, a dependence graph is microarchitec-
turally accurate only when it models all dependences that
govern the corresponding processor (or, equivalently, its
simulator model). To obtain a microarchitecturally sensi-
tive graph model, we use the model of Fields, et al. [4].
The model, summarized in Table 1 and Figure 1, accounts
for in-order fetch (with edges from Di to Di+1), in-
order commit (with edges from Ci to Ci+1), and out-of-
order execution (by constraining pairs of E-nodes only
with data-dependence edges). It also models fetch stalls
due to the reorder buffer (with edges between C-nodes
and D-nodes) and branch mispredictions (with edges be-
tween E-nodes and D-nodes, e.g., E7 → D8). Fi-
nally, the graph also models functional-unit contention,
by adding observed contention cycles into the execution
latency (which is placed on EE and EC edges).

Once we have built the graph, we can identify the
amount of slack an instruction has by determining how
far it is from the critical path. In Figure 1, all instruc-
tions not on the critical path (marked in bold) have some
amount of slack.

While this model omits some dependences, (for ex-
ample, between loads that share a cache line), our valida-
tion described in Section 2.4 found that our slack calcu-
lation error is only about 1%.

2.2 Apportioning Slack

While the dependence-graph model solves the problem
of how to accurately identify microarchitectural slack, it
leaves open the question of how to report the slack avail-
able in the graph. The problem is that we want to dis-
tribute available slack among potentially many instruc-
tions (to be delayed simultaneously) but that distribution
will vary depending on the non-uniformity to be hidden.

For example, to quantify the amount of slack available
to a set of instructions that are to be delayed simultane-
ously, we define a notion of apportioned slack. Before
we define apportioned slack, however, we will define lo-
cal slack and global slack, which characterize the slack
available to an individual instruction.

Local slack of a dynamic instruction i is the maxi-
mum number of cycles the execution of i can be delayed
without delaying any subsequent instructions. From our
measurements, approximately 20% of instructions have
local slack greater than five cycles. Local slack is con-
servative because it prevents delaying any instruction in
the program. To avoid impairing the overall execution,
however, it suffices to ensure that the program completes
in the original number of cycles. This more aggressive
notion is captured by global slack.

Global slack of a dynamic instruction i is the max-
imum number of cycles the execution of i can be de-
layed without delaying the last instruction in the pro-
gram. From our measurements, approximately 40% of
instructions have global slack greater than 50 cycles. In
other words, there is a particular set of 40% of all instruc-
tions of which one instruction can be picked and delayed
by 50 cycles without increasing execution time. Global
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I0:  r5=0
I1: r3=ld[r2]

L1:  I2: r1=r3*6
I3:  r6=ld[r1]
I4:  r3=r3+1
I5:  r5 = r6 + r5
I6: cmp R6,0
I7: br L1
I8: r5 = r5+100
I9: r0 = r5 / 3 
I10: Ret r0
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Figure 1: An instance of the critical-path model from Table 1. The dependence graph represents a sequence of dynamic instruc-
tions. Nodes are events in the lifetime of an instruction (the instruction being dispatched, executed, or committed); the edges are
dependences between the occurrences of two events. A weight on an edge is the latency to resolve the corresponding dependence.
The critical path is in bold.

name constraint modeled edge
DD In-order dispatch Di−1 → Di

CD Finite re-order buffer Ci−w → Di
a

ED Control dependence Ei−1 → Di
b

DE Execution follows dispatch Di → Ei

EE Data dependences Ej → Ei
c

EC Commit follows execution Ei → Ci

CC In-order commit Ci−1 → Ci

aw = size of the re-order buffer
binserted if i − 1 is a mispredicted branch
c inserted if instruction j produces an operand of i

Table 1: Dependences captured by the critical-path model,
grouped by the target of the dependence.

slack thus reflects a policy that would seek to delay one
instruction by many cycles. Global slack also serves as
an upper bound on the amount of tolerable delay, since
it is the maximum amount a particular instruction can be
delayed without increasing execution time.

Apportioned slack captures slack available when
we desire to delay multiple instructions simultaneously.
Namely, we want to determine how many instructions can
be delayed together by a certain amount of slack without
impacting the execution. The desired amount of delay
for each instruction depends on the apportioning strategy,
which in turn depends on the particular non-uniformity
whose latency we seek to hide. Thus, while global slack
indicates how much one instruction can be delayed, ap-
portioned slack indicates how much a set of instructions
can be delayed simultaneously.

More formally, let S be an assignment of some
amount of slack (possibly zero) to each instruction in
such a way that the last instruction is not delayed. Given
an assignment of slack S, the apportioned slack of in-
struction i is S(i), i.e., the slack assigned to i. The as-
signment can be arbitrary (as long as it does not delay the
last instruction) and is intentionally left up to the appor-

tioning strategy. Next, we define two such strategies we
use later in our experiments.

Five-cycle apportioning. One way to apportion slack
is to attempt to give each instruction, say, five cycles
of slack. This strategy might be useful if we wanted to
know how many instructions could tolerate a long (non-
uniform) bypass. From our measurements (described in
Section 2.4), approximately 75% of instructions have ap-
portioned slack of five cycles. In other words, the ex-
ecution contains a particular set of 75% of instructions
that can be simultaneously delayed by five cycles. This
surprising observation suggest tremendous optimization
opportunities.

Latency-plus-one-cycle apportioning. Another appor-
tioning strategy that we consider reflects a control pol-
icy for a constraint-aware processor that has a (power-
efficient) ALU that runs at half the frequency of the other
ALU. The goal of the control policy would be to maxi-
mize the number of instructions steered to the slow ALU,
while maintaining the performance of a two-fast-ALUs
machine. The corresponding apportioning strategy would
be to maximize the number of instructions whose appor-
tioned slack equals their original execution latency plus
one cycle (so that they can tolerate the doubled latency of
the slow unit plus some bypass overhead).

2.3 Algorithms for Calculating Slack

Next, we outline the algorithms for efficiently comput-
ing the three variants of slack on the dependence graph
constructed during the simulation. For simplicity, we il-
lustrate our algorithms using simple dependence graphs
where each node is a dynamic instruction, but our exper-
imental results use the graph of Section 2.1.

Local slack. The local slack of a node is determined
by first computing the local slack of each edge in the
graph. The local slack of an edge e = u → v is simply
the number of cycles that the latency of e can be increased
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(a) Computing local slack. (b) Computing global slack.

Figure 2: Computing local and global slack. Local slack is computed as the difference in arrival times of incoming edges. Global
slack is computed via a reverse topological sort. Edges with nonzero local slack are dashed. In (b), the critical path is in bold.

without delaying the target node v. The local slack of e
is computed as the difference between the arrival time of
the latest (i.e., last-arriving) edge sinking on v and the
arrival time of e (see Figure 2(a) for an example). The
local slack of a node v is then the smallest local slack
among the outgoing edges of v. Thus, the local slack of
the middle node in the figure is min(L3, L5) = 1 cycle.

Global slack. As with local slack, we start by comput-
ing global slack of edges. The global slack of an edge e is
the number of cycles that the latency of e can be increased
without extending the graph’s critical path. As with local
slack, the global slack of a node v is the smallest global
slack available among v’s outgoing edges.

While local slack was computed by merely exam-
ining nodes and their edges, the computation of global
slack involves backward propagation that accumulates lo-
cal slack. Consider Figure 2(b) as an example. We start
by knowing the value of local slack Li of each edge ei

and end up computing, for each edge ei, the value of
global slack Gi for each edge.

In the example, G3, the global slack of edge e3, equals
the sum of the local edge slacks L3 and L6. We can
compute G3 recursively, as the sum of L3 and G6. In
general, the expression for computing the global slack of
an edge e is Ge = Le + min(Gout1 , Gout2 , .., Goutn

)
where Gout1 to Goutn

are the global slacks of the outgo-
ing edges of e’s target node. This overall computation is
a simple, linear time, reverse topological sort.

Apportioned slack. Having computed global slack,
we are ready to compute apportioned slack. The goal
of the algorithm is to apportion a certain amount of slack
to as many nodes as possible, so that all nodes can be
delayed (together) by the amount of slack apportioned
to them without extending the critical path. The exact
amount of slack we attempt to apportion to each node de-
pends on the apportioning strategy.

The algorithm we use does not perform an optimal
apportioning, but instead greedily apportions slack to the
first nodes encountered during a forward pass. Due to
space constraints, we only sketch the algorithm here, us-
ing the five-cycle apportioning strategy for illustration.
Basically, the backward global-slack pass accumulates
local slacks and deposits them on the earliest possible
nodes, from where it is picked up by the forward ap-
portioning pass. As the forward pass encounters each

node v, it is decided whether enough global slack ex-
ists to apportion v five cycles of slack. If enough ex-
ists, v is apportioned five cycles, and it is ensured that
no other nodes further downstream are apportioned those
five cycles. This process continues until the forward pass
reaches the end of the program.

2.4 Experimental Characterization of Slack

This section presents experimental characterization of lo-
cal, global and apportioned slack. Our results show that
slack has a tremendous potential for hiding non-uniform
latencies, in particular when large local slacks are appor-
tioned to multiple instructions across dependence chains.
This section also addresses the implications of slack: we
discuss what types of design non-uniformities can be tol-
erated with slack and what cannot. Finally, we vali-
date our methodology, demonstrating that our findings
are very accurate.

First, we explore the amount of available slack, focus-
ing on microexecutions of typical SPEC2000 programs
on an unclustered version of the 6-wide processor de-
scribed in Section 4.2. We compute slack using the graph
of Section 2.1, and when we refer to the slack of an in-
struction, we mean the slack of that instruction’s E node.
Figures 3(a)-3(c) plot the local, global and apportioned
slack found in gcc, gzip, and perl, respectively. These
three benchmarks were chosen because they illustrate the
two extreme results (gcc and gzip) and a typical result
(perl) from the full set of measurements we performed.

Local and global slack. The slack measurements re-
ported in the charts should be interpreted as follows: for
each data point (x, y), y% of (dynamic) instructions have
x or more cycles of slack. In gcc, for instance, approx-
imately 36% of instructions have local slack of five or
more cycles. In general, we observe that relatively few
instructions contain local slack that is large enough to be
exploitable: on average only about 20% of instructions
have local slack of five or more cycles. At the same time,
we notice that a small number of instructions contain ex-
tremely large local slack (in gzip, about 2% of instruc-
tions have more than 80 cycles of local slack). This large
local slack is promising because a single instruction is un-
likely to be able to exploit it all, allowing us to apportion
it to instructions without enough local slack.
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(a) gcc slack results. (b) gzip slack results.
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(c) perl slack results. (d) All slack apportioned to loads.

Figure 3: Across benchmarks, there is enormous potential for exploitation of slack. (a)-(c) Measurements of local, appor-
tioned, and global slack for SPEC2000 versions of gcc, gzip, and perl. gcc and gzip represent the two extremes in the amount
of slack available in the full set of benchmarks we ran; perl is more typical. The measurements indicate that even in the least
slackful benchmark, gzip, there is enormous potential for hiding delays introduced by nonuniform machines. (d) Measurements
of apportioned slack when all available slack is apportioned to load instructions. These results show it may be possible to tolerate
technologically-induced bottlenecks on load instructions if, for instance, wire delays cause some instructions to endure longer L1
data cache access times than others.

Note that, while the figures only show local slack
for the execution of instructions (E nodes in our model),
other micro-operations associated with an instruction
may also exhibit local slack. For instance, we may be
able to delay the commit of an instruction (represented
by C nodes in our model) without delaying any other in-
structions. Since our dependence-graph model accounts
for this commit micro-operation, we can also apportion
this local slack to other instructions.

To determine to what extent large local slacks can
be used by neighboring instructions, we examine global
slack. Since the global slack of an instruction is the ac-
cumulation of all local slacks that could be “stolen” from
other instructions, observing a lot of global slack on many
instructions would speak well for the potential for ex-
ploitation, since this would mean that lots of local slack is
“freely movable” across the microexecution. Indeed, this
is the case: about 40% of instructions have more than
50 cycles of global slack. The key question now is what
fraction of this global slack remains if we spread it out

across neighboring instructions. We answer this question
using apportioned slack.

Apportioned slack. To calculate apportioned slack,
we must first decide on the apportioning strategy. Let
us first consider giving x cycles of slack to as many in-
structions as possible. The amount of such apportioned
slack is shown along with local and global slack in Fig-
ures 3(a)-3(c) for a range of values of x.

Again, the experiments present good news: not only
does the microexecution contain a lot of apportionable
local slack (which we knew from global slack measure-
ments), but this slack is also able to satisfy many instruc-
tions: on average, 75% of instructions can be apportioned
slack of five cycles. Even in the least slackful benchmark,
gzip, there are 64% of instructions that have 5 cycles of
slack. This means, for instance, that most instructions can
tolerate long-latency communication across a chip with-
out hurting performance—as long as the delayed instruc-
tions are chosen wisely (i.e, with a good slack predictor
and a good policy).
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Figure 4: Limit studies. Measurements for two apportioning
strategies are shown: latency-plus-one-cycle and five-cycle ap-
portioning. These measurements provide an indication as to
what types of non-uniform machine designs can be tolerated
by a slack-based policy. For instance, latency-plus-one-cycle
apportioning is relevant for the fast/slow pipeline microarchi-
tecture studied in Section 4.

Of course, the above apportioning strategy does not
reflect all non-uniformities that a control policy may have
to tolerate. For instance, another interesting question is
how many loads can tolerate a long latency to the L1 data
cache, a concern of wire-constrained designs such as the
Grid Architecture [11]. To maximize slack on loads, we
modify the above apportioning strategy such that no slack
is apportioned to non-load instructions. Figure 3(d) re-
ports the results of such an apportioning. We see that a
remarkable number of loads could tolerate a long-latency
L1 data cache hit. Namely, there are more than 65% of
load instructions with a slack of 12 cycles, enough to tol-
erate an L2 hit. Together, the data suggest an opportunity
to build selective L1-cache bypasses.

Breakdown of slack per opcode. In Figure 4, we ex-
amine how much apportioned slack is available to in-
structions of various types. The figure computes the
breakdown for the two apportioning strategies described
in Section 2.2: five-cycles-per-instruction and latency-
plus-one-cycle. The figure classifies instructions into
four categories: loads, stores, integer operations, and
floating-point operations. (Note that our simulator dis-
cards all NOP instructions after fetch, and, thus, they are
not included in any of the slack measurements.)

Figure 4 leads to several conclusions about what types
of non-uniformities can be tolerated with slack.

• Most instructions (on average, greater than 75%)
have enough slack to tolerate doubling their latency.
This means we can run most functional units at
half-speed without losing performance, provided we
are successful at predicting which instructions have
slack. This result is good news for the fast/slow
pipelines microarchitecture we study in Section 4.

• A large percentage of instructions of each type
can have their latency doubled; this holds even for
longer latency floating-point operations.

• There is no instruction type which nearly always has
slack. Thus, a machine design that simply makes all
functional units of a particular type slower is likely
to degrade performance.

Validation. We need to validate our experiments since
(as previously mentioned) the dependence-graph model
we use to compute slack only includes the most signif-
icant microarchitectural dependences. Thus, the slack
measurements have some error.

We confirm correctness of the slack measurements by
the following two-step process: (1) we identify appor-
tioned slack on the graph, as usual; and, then, (2) we re-
run the simulation on which the graph was constructed,
but in this new run, each dynamic instruction is delayed
by its apportioned slack. Since we are delaying the in-
struction in the actual (simulated) execution, errors in the
graph-computed slack will be manifested as increases in
the execution time of the simulation.

We performed this validation with several different
apportioning strategies: latency-plus-one-cycle and five-
cycle apportioning from Figure 4 and 12-cycles to loads
from Figure 3(d). Space limitations prohibit detailed
presentation of results, but the maximum error observed
across all benchmarks and apportioning strategies was
less than 3%, with an average error of about 1%, which
is less than previous related efforts [15].

3 Predicting Slack

Our slack predictors follow the history-based approach
used in most hardware predictors: the slack of a dynamic
instruction, known after the instruction commits, trains a
PC-indexed predictor, which is then used to predict the
slack of future instances of the same static instruction.
An alternative would be a context-based approach that
would predict slack based on the current state of, say, the
scheduling window [5]. The advantage of the history-
based approach is that it allows predicting slack early in
the pipeline.

Two conditions must be met to enable history-based
slack prediction. First, there must be a locality of slack,
in that dynamic instances of a given static instruction ex-
hibit roughly the same slack. Second, we must design a
hardware mechanism for measuring slack of a dynamic
instruction. We meet the two conditions in the following
two subsections. Then, equipped with a hardware slack
detector, we develop two slack predictors. The predic-
tors differ in what is stored in the predictor table: the
explicit-slack predictor learns the actual value of slack of
the static instruction; the implicit-slack predictor learns
whether the static instruction can tolerate the delay of a
particular non-uniform resource.

3.1 Locality of Slack

Since slack arises partly due to microarchitectural events,
like reorder-buffer stalls caused by cache misses, one
might expect that dynamic slack is distributed across the
instruction stream more or less randomly, complicating
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Figure 5: Mapping dynamic slack behavior to static in-
structions. Uses latency-plus-one-cycle apportioning. On the
y-axis, the number of slackful static instructions is weighted
by the number of each static instruction’s dynamic instances.

predictability. Our experiments present good news: 68%
of static instructions (dynamically weighted) almost al-
ways have enough slack to double their latency (precisely,
they have enough slack on at least 90% of their dynamic
instances; see Figure 5). More significantly, this slack
represents about 80% of all apportioned slack (that is,
80% of slack exploitable by an oracle predictor that cor-
rectly predicts the slack of every dynamic instruction).

In more detail, our experiments used the following
methodology. First, we computed the apportioned slack
using the latency-plus-one strategy introduced in Sec-
tion 2. Next, we identified slackful static instructions. A
static instruction is slackful if D% of its dynamic instruc-
tions contained apportioned slack, where D was varied
from 90 to 100. Figure 5 plots the amount of slackful
static instructions. The chart also plots the total amount
of apportioned slack (labeled ideal). This slack could
be exploited with an oracle predictor that is correct on
each dynamic instruction. Note that while relatively few
static instructions are slackful all the time (28%, on av-
erage), allowing just 5% “misprediction rate” (i.e., re-
quiring them to be slackful 95% of the time) brings this
amount to 62%, on average.

3.2 Measuring Slack in Hardware

In Section 2.1, we described the delay-and-observe ap-
proach, as a natural—but expensive approach—for accu-
rately measuring slack in a processor simulator. In that
approach, a dynamic instruction is delayed by n cycles,
after which the execution is observed. If the overall exe-
cution is not slowed down, the instruction has at least n
cycles of (global) slack.

In this section, we use the delay-and-observe
paradigm to design hardware for measuring slack. We
accomplish this goal by elegantly solving the two imple-
mentation challenges of the delay-and-observe approach.
Specifically, the challenges are: (1) measuring slack of
a dynamic instruction requires repeatedly delaying the
instruction for various values of delay, which involves

rolling back the execution; and (2) determining (naively)
whether the overall execution was affected by the delay
requires comparing the original and the perturbed exe-
cution. To solve the first challenge, we sample each dy-
namic instruction at most once. Such sampling avoids the
need for rollback yet is sufficient to determine the slack of
a static instruction, since we exploit the locality of slack
presented in Section 3.1.

To solve the second problem (determining whether
the execution was affected by the delay), we exploit the
following observation: the overall execution is slowed
down by the delay if and only if the delayed instruc-
tion appears on the critical path of the micro-execution.1

With this observation, we can reduce the problem of de-
tecting slack to that of determining criticality, which can
be easily performed using our token-passing criticality
detector [4].

For the sake of completeness, we sketch here the algo-
rithm behind the token-passing detector of criticality [4].
For simplicity, we will explain its operation on data de-
pendences, but the detector actually operates on the graph
model illustrated in Figure 1. The detector is based on
the observation that a dynamic instruction i is not critical
if either of two conditions hold: (1) the value v com-
puted by i arrives at each consumer j before one of j’s
remaining operands arrives (i.e., if v is not last-arriving
and, hence, has non-zero local slack at j); or (2) if the
consuming instruction j is not critical. Thus, we need to
determine if the value v computed by i traverses a long
chain of data dependences where consumers are always
waiting for it (i.e., where it was always last arriving). If
this situation occurs, i is predicted critical—otherwise it
is known to be non-critical.

This observation lends itself to an efficient hardware
implementation: to determine if dynamic instruction i is
critical, plant a token into i (the token can be thought of
as an extra bit appended to the data computed by the in-
struction). The token is then propagated together with the
data to all dependent instructions, except that it is killed
whenever the data is not last-arriving at a consumer in-
struction. After a few hundred instructions, the detector
examines the machine: if at least one copy of the token is
alive, the dynamic instruction was critical (because there
must have been at least one chain of data dependences
on which the data was always last arriving.) With high
probability, i is part of the critical path, since delaying i
would delay all instructions on this long chain.

To put the pieces together, our slack detector works as
follows. Given a dynamic instruction i and a value n, the
slack detector answers the question “does i have at least
n cycles of slack?” The slack detector is a simple delay-
and-observe extension of the criticality detector [4]: it
first delays the instruction by n−1 cycles (see footnote 1)
and then observes, by planting a token into i, whether the
delayed instruction i is critical. If i is critical, then it does
not have n cycles of slack; otherwise it does.

1Strictly speaking, this observation makes a one-cycle mistake, because a
delay may make the dynamic instruction critical without making the critical path
any longer.
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3.3 Explicit-Slack Predictor

The explicit slack predictor learns and predicts the ac-
tual number of cycles of slack available in each static in-
struction. The predictor is trained by sampling dynamic
instructions—using the slack detector described above—
under various values of slack n. The goal of sampling is
to converge to the average value of slack for each static
instruction, which can be achieved with a binary search
(assuming the instruction has good slack locality).

It should be noted that training the predictor by de-
laying a dynamic instruction is not likely to noticeably
slow down the program because (i) sampling is sparse (in
our designs, the sampling rate is roughly 1 instruction per
100 instructions, and can be even sparser), and (ii) the in-
serted delay is typically just large enough to make the in-
struction critical, which means that the delay may extend
the critical path by at most a few cycles.

Predicting explicit slack, however, produces some
challenges. Most importantly, it is not clear how to avoid
measurement perturbation due to non-uniform resources.
For example, on a machine with both fast and slow func-
tional units, an instruction will appear to have different
slack, depending on which functional units it (and its de-
pendents) were executing when its slack was sampled.

3.4 Implicit-Slack Predictor

We address the measurement perturbation problems with
an implicit-slack predictor, which, instead of predict-
ing exactly how much slack an instruction has, predicts
whether it has enough slack to tolerate a particular non-
uniform resource—for instance, whether its execution la-
tency can be doubled without impact on performance.

The implicit-slack predictor works by dividing in-
structions into slack bins, according to the resources that
these instructions can tolerate. The number of bins is
determined by the number of decisions a control pol-
icy must make for each instruction. For an example,
let us consider the non-uniform machine used in Sec-
tion 4 for our experiments. The control policy for this
machine must make two decisions for each instruction i:
(1) should i be steered to the fast or slow pipeline? and
(2) should i be scheduled with high priority or low pri-
ority within a pipeline? These two decisions lead to four
slack bins:

1. steer to fast pipeline & schedule with high priority,

2. steer to fast pipeline & schedule with low priority,

3. steer to slow pipeline & schedule with high priority,

4. steer to slow pipeline & schedule with low priority.

These four bins can be viewed as corresponding to four
virtual non-uniform resources, where each dynamic in-
struction is assigned to one resource. In general, if a con-
trol policy must make k decisions for each instruction, we
have 2k virtual resources, each corresponding to a slack
bin.
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Figure 6: The non-uniform microarchitecture used in our
experiments. The processor consists of one fast and one (or
two) slow pipelines.

Measuring implicit slack has four important advan-
tages. First, when sampling the slack, we don’t need
dedicated logic to artificially delay the instruction. In-
stead, the predictor can delay the instruction naturally, by
steering it to the sampled non-uniform resource. Second,
as desired, by measuring tolerance to non-uniform de-
lays, we effectively remove the impact of perturbation on
the measurement. Third, bin membership can be trained
faster than the actual slack. Dealing with bins, rather than
with the actual slack, can be much easier for the control
policy.

Finally, it should be noted that while the four slack
bins above are ordered in seemingly decreasing priority,
it does not mean that the slack of instructions in bin 3 is
greater than those in bin 2. In general, into which bin an
instruction falls depends purely on which resource it can
tolerate, which is the fourth advantage of the the implicit-
slack approach.

4 Example Use of Slack in Non-Uniform Control

In this section, we evaluate the success of slack in guid-
ing a non-uniform control policy. We define an ag-
gressively non-uniform (power-aware) microarchitecture
and design a slack-based control policy for hiding its
non-uniformities. We compare the slack-based policy
with several policies based on existing control techniques
and discover that slack is remarkably more successful at
hiding the performance penalties that arise due to non-
uniform resources.

Specifically, we evaluate a slack-based control policy
on the machine pictured in Figure 6. In this design, the
microarchitecture is divided into two pipelines, with each
pipeline consisting of half of the instruction window, is-
sue logic, and functional units; and a copy of the regis-
ter file. The design saves power by running one pipeline
at half frequency, exploiting the (approximate) relation-
ship P ∝ FV 2 between power P , voltage V and fre-
quency F . By halving the frequency, we can reduce
voltage enough that the overall power consumption is re-
duced roughly to a fourth (P ∝ F 2). (Note that reducing
the frequency of such a large portion of the pipeline is a
more aggressive power-aware design than one that only
reduces the functional-unit speed.)
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4.1 Control Policies

At a first glance, it may seem that reducing the fre-
quency on one pipeline introduces only one kind of non-
uniformity. The reality is that in our design we need to
deal with three forms of non-uniformity:

1. The execution latencies of functional units in the
slow pipeline will be twice as large as those in the
fast pipeline.

2. The bypass latency between the two pipelines will
be longer than the intra-pipeline bypass latency, due
to physical distance and due to crossing voltage do-
mains.

3. The effective issue bandwidth of the slow pipeline
will be half of the bandwidth of the fast pipeline,
because the slow pipeline issues instructions every
other fast cycle. This reduction in issue bandwidth
manifests itself as increased contention (which hap-
pens to be the hardest constraint to deal with).

The important consequence of the third point is that fre-
quency reduction reduces the effective bandwidth of the
entire machine. This observation is important because it
sets the correct expectation on the control policy: when
a workload is bandwidth-limited (i.e., exhibits high IPC
rate), no control policy will be able to avoid the perfor-
mance penalty.

To attack the above three non-uniformities, we design
a slack-based policy that controls two machine aspects:

• Instruction steering, which determines into which
pipeline a dynamic instruction is sent.

• Instruction scheduling, which determines which of
the data-ready instructions in a pipeline are exe-
cuted.

We assume that the steering decision is performed before
any scheduling decisions are carried out.

Our slack-based policy employs four bins, as intro-
duced and motivated in Section 3.4. These four bins
control to which pipeline an instruction will be steered,
and also how the instruction will be scheduled within
the pipeline (see Table 3). Note that we also experi-
mented with two-bin policies (which performed steering
but no slack-based scheduling), but the four-bin scheme
performed up to 5% better.

To assign a slack bin to each static instruction, our
slack policy uses a 4K-entry array of 6-bit saturating
counters, indexed by PC. The counter is decremented
by one if the slack sampling (see Section 3.4) detects
that the instruction can tolerate a given pipeline and
a given scheduling policy (i.e., is slackful enough for
the pipeline/scheduling combination). The instruction is
moved to a lower-numbered bin when the counter reaches
zero and to a higher-bin if it is detected that it does not
have enough slack for the given level.

We compare our slack-based policy to several poli-
cies based on existing (non-slack-based) control tech-

Name Policy
Reg-Dependence Perform load balancing if one pipeline

is four times as full as another.
Otherwise, steer instruction to pipeline
that will produce one or more of its
inputs. Steer to least-filled pipeline
if all operands are ready

Fast-first Window Send instructions to the fast pipeline
until its window becomes half full, then
apply register-dependence steering.

Fast-first Ready Send instructions to fast pipeline until
there were more ready instructions then
issue slots over the last 5 cycles. Then,
apply register-dependence steering.

Table 2: Baseline policies for controlling fast/slow pipeline
microarchitecture.

niques. While we experimented with many such poli-
cies, we only present three that performed best (see Ta-
ble 2). The first is a simple register-dependence steering
policy, while the other two “favor” the fast pipeline over
the slow one in that instructions are steered to the fast
pipeline until some condition is met. We also evaluate
the use of the ALOLD criticality predictor from Tune, et
al. [16], as a replacement for the token-passing critical-
ity analyzer [4] in the slack detector (see Section 2.4).
(We also experimented with the QOLD criticality predic-
tor from the same work [13, 16], but the ALOLD predic-
tor performed considerably better in our context.)

4.2 Methodology

Our evaluation uses a typical dynamically-scheduled su-
perscalar processor as a baseline whose configuration is
detailed in Table 4. The simulator is built upon the Sim-
pleScalar tool set [2]. Our benchmarks consist of a subset
of the SPEC2000 benchmark suite; all are optimized Al-
pha binaries using reference inputs. Initialization phases
were skipped and detailed simulation ran until 100 mil-
lion instructions were committed.

4.3 Experimental Evaluation

We evaluate the set of control policies on a machine with
one 3-wide fast pipeline and one 3-wide slow pipeline
(3f+3s). The results, presented in Figure 7, yield two
overall conclusions. First, our slack-based policy per-
forms better than any non-slack policy, by 10% on aver-
age. Second, using slack reduces the performance degra-
dation (with respect to the high-power 3f+3f configura-
tion) from an average of 16% to only 3%.

It is interesting to observe the effect of replacing the
token-passing detector with the ALOLD predictor: while
ALOLD performs better than the non-slack schemes, de-
grading performance by 10%, it appears that the token-
passing detector is needed to accurately measure slack.

In an attempt to recoup the small performance loss of
3f+3s, we experimented with other configurations where
issue bandwidth is made equal to 3f+3f through the ad-
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Slack bin # Policy decisions Hysteresis counter
4 Fast pipeline, high priority schedule Initialize to 0 upon entering level.

Increase by 8 if detected not slackful.
3 Fast pipeline, low priority schedule Initialize to 63 upon entering level.

Immediately go to level 4 if detected not slackful.
2 Slow pipeline, high priority schedule Initialize to 63 upon entering level.

Immediately go to level 3 if detected not slackful.
1 Slow pipeline, low priority schedule Initialize to 63 upon entering level.

Immediately go to level 2 if detected not slackful.

Table 3: Hysteresis implementing the four slack bins. Note: if the slow instruction window contains four times as many instruc-
tions as the fast pipeline, the slack-based steering decision is overridden, and the incoming instruction is sent to the fast pipeline.
Such load balancing never sends instructions to the slow pipeline.

Dynamically 128-entry instruction window (64 entries in each of 2 pipelines) with critical-first scheduling,
Scheduled Core 256-entry re-order buffer, 6-way issue, 12-cycle pipeline, perfect memory disambiguation,

fetch stops at second taken branch in a cycle, 1 cycle normal bypass latency plus
one cycle extra delay if sending data from one clock domain to another.

Branch Prediction Combined bimodal (8k entry)/gshare (8k entry) predictor with an 8k meta predictor,
4K entry 2-way associative BTB, 64-entry return address stack.

Memory System 64KB 2-way associative L1 instruction and data (2 cycle latency) caches,
shared 1 MB 4-way associative 12 cycle latency L2 cache, 100 cycle memory latency,
128-entry DTLB; 64-entry ITLB, 30 cycle TLB miss handling latency.

Functional Units In each of 2 pipelines: 3 Integer ALUs (1), 1 Integer MULT (3),
(latency) 2 Floating ALU (2), 1 Floating MULT/DIV (4/12), 1 LD/ST ports (2).
Token-passing 4K-entry array for storing predictions (2 bit bin, 6 bit hysteresis per entry),
Slack Predictor 768-byte training array—(8 tokens x 3 nodes x 256-entry ROB) bits

Table 4: Configuration of simulated processor.

dition of another slow pipeline. In these equi-bandwidth
configurations, we found that our slack-based policy ac-
tually slightly improved performance over 3f+3f, while
the non-slack policies significantly degraded it, by 12–
15% on average.

Specifically, the two additional configurations were
3f+3s+3s and Half 3f+3s+3s, each with one 3-wide
fast pipeline and two 3-wide slow pipelines; but, in
Half 3f+3s+3s, the window size of each slow pipeline
is halved (so that the effective window size is equal
to that of 3f+3f ). The decrease in window size of
Half 3f+3s+3s resulted in only a modest performance
loss of 1–2% compared to 3f+3s+3s,

To estimate the power savings obtained from the con-
figurations, we can directly apply the relationship P ∝

F 2. For the 3f+3s configuration, we save 37.5% of the
power of the core (including the instruction window, is-
sue logic, register file, and functional units), and for the
3f+3s+3s configuration, we save 25%. The latter result
is interesting, since it suggests we can obtain significant
power savings with some cost in area, but no loss in per-
formance, by exploiting a control policy based on slack.

5 Related Work

As most related work has already been discussed in rel-
evant sections, we will only summarize here. Srinivasan
and Lebeck [15] and Rakvic, et al. [10] perform mea-
surements of load latency tolerance in out-of-order pro-
cessors. The concept of using dynamic scheduling slack
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Figure 7: Comparing control policies on fast/slow pipeline
microarchitecture. All measurements are normalized to the
baseline of two fast 3-wide pipelines (3f+3f ). Also, results
are shown for a single fast 3-wide pipeline (3f ) for reference.
The rest of the measurements are different control policies for
a 3f+3s machine.

for controlling microarchitectures through clustered volt-
age scaling was proposed by Casmira and Grunwald [3].
In these works, no slack predictor design was studied.

Much research has explored using critical-path pre-
dictions in control policies for various optimizations, in-
cluding power optimizations [9, 13], cluster steering [4,
16], dynamic instruction scheduling [4], value predic-
tion [4,16], and cache optimizations [5,14]. In our work,
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we characterize and exploit the more powerful property
of slack and show how to predict it. We show how to
exploit prior research into criticality predictors when de-
signing an efficient slack predictor, principally by “bin-
ning” instructions based on the latency they can tolerate.

Semeraro, et al. [12] use a dependence-graph model
similar to ours for doing an offline slack analysis to deter-
mine when different parts of the machine can be executed
at a slower rate, for power efficiency. Our work charac-
terizes slack more fully and provides an online predictor.
Grunwald [6] describes a hardware predictor based on
measuring how much an instruction’s execution can be
delayed without delaying subsequent instructions. This
hardware appears to predict what we call local slack in
our work. As shown in Section 2, local slack is only a
small part of all the slack that is available.

The model and token-passing criticality detector we
used came from our previous work on critical-path pre-
diction [4]. We have extended this research to measure
and predict slack, as opposed to simple criticality, and
showed how slack can be exploited to hide the latencies
of nonuniform machine designs.

6 Conclusion

We have developed slack as a useful input for guiding
control policies in modern processors. We defined three
variants of slack (having in mind various applications of
slack) and presented a novel methodology for accurately
measuring the amount of slack available in programs. We
have shown there is a surprisingly large amount of ex-
ploitable slack and that most of it can be predicted easily
with a token-passing criticality analyzer.

Finally, we showed how to design a slack-based con-
trol policy for a power-efficient microarchitecture with
fast and slow pipelines. Our experiments showed that
the slack-based policy eliminates most of the penalty due
to the non-uniformities, such that the fast/slow pipeline
microarchitecture performs nearly as well as a uniform
machine with only fast pipelines. This experiment has
significant implications for future machine designs: we
may be able to mitigate technological constraints (e.g.,
wire delay, power, and circuit complexity) by building
non-uniform machines and then controlling them with a
slack-based policy.
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