AGILE PAGING FOR EFFICIENT MEMORY
VIRTUALIZATION

VIRTUALIZATION PROVIDES BENEFITS FOR MANY WORKLOADS, BUT THE ASSOCIATED

Jayneel Gandhi
Mark D. Hill
Michael M. Swift
University of
Wisconsin—Madison

OVERHEAD IS STILL HIGH. THE COST COMES FROM MANAGING TWOQ LEVELS OF ADDRESS

TRANSLATION WITH EITHER NESTED OR SHADOW PAGING. THIS ARTICLE INTRODUCES

AGILE PAGING, WHICH COMBINES THE BEST OF BOTH NESTED AND SHADOW PAGING

WITHIN A PAGE WALK TO EXCEED THE PERFORMANCE OF BOTH TECHNIQUES.

e o o o o o Iwo important trends in comput-
ing are evident. First, computing is becoming
more data-centric, wherein low-latency access
to a very large amount of data is critical. Sec-
ond, virtual machines are playing an increas-
ingly critical role in server consolidation,
security, and fault tolerance as substantial
amounts of computing migrate to shared
resources in cloud services. Because software
accesses data using virtual addresses, fast
address translation is a prerequisite for effi-
cient data-centric computation and for pro-
viding the benefits of virtualization to a wide
range of applications. Unfortunately, the
growth in physical memory sizes is exceeding
the capabilities of the most widely used
virtual memory abstraction—paging—which
has worked for decades.

Translation look-aside buffer (TLB) sizes
have not grown in proporton to growth in
memory sizes, causing a problem of limited
TLB reach: the fraction of physical memory
that TLBs can map reduces with each hardware
generation. There are two key factors causing
limited TLB reach: first, TLBs are on the crit-
ical path of accessing the L1 cache and thus
have remained small in size, and second, mem-
ory sizes and the workload’s memory demands
have increased exponentially. This has intro-

Published by the IEEE Computer Society

duced significant performance overhead due
to TLB misses causing hardware page walks.
Even the TLBs in the recent Intel Skylake pro-
cessor architecture cover only 9 percent of a
256-Gbyte memory. This mismatch between
TLB reach and memory size will keep growing
with time.

In addition, our experiments show virtu-
alization increases page-walk latency by two
to three times compared to unvirtualized exe-
cution. The overheads are due to two levels
of page tables: one in the guest virtual
machine (VM) and the other in the host vir-
tual machine monitor (VMM). There are
two techniques to manage these two levels of
page tables: nested paging and shadow pag-
ing. In this article, we explain the tradeoffs
between the two techniques that intrinsically
lead to high overheads of virtualizing mem-
ory. With current hardware and software, the
overheads of virtualizing memory are hard to
minimize, because a VM exclusively uses one
technique or the other. This effect, com-
bined with limited TLB reach, is detrimental
for many virtualized applications and makes
virtualization unattractive for big-memory
applications.'

This article addresses the challenge of

high overheads of virtualizing memory in a

0272-1732/17/$33.00 © 2017 IEEE

Table 1. Tradeoffs provided by memory virtualization techniques as compared to base native. Agile paging
exceeds the best of both worlds.

"gVA—hPA: guest virtual address to host physical address.

Properties Base native Nested paging Shadow paging Agile paging
Translation look-aside Fast (QVA—hPA) Fast (QVA—hPA) Fast (QVA—hPA) Fast (QVA—hPA)
buffer (TLB) hit
Memory accesses per 4 24 4 Approximately 4 to 5
TLB miss on average
Page table updates Fast: direct Fast: direct Slow: mediated by the virtual Fast: direct
machine monitor (VMM)

Hardware support Native page Nested + native Native page walk Nested + native page

walk page walk walk with switching

comprehensive manner. It proposes a hard-
ware/software codesign called agile paging
for fast virtualized address translation to
address the needs of many different big-
memory workloads. Our goal, originally set
forth in our paper for the 43rd Interna-
tional Symposium on Computer Architec-
ture,” is to minimize memory virtualization
overheads by combining the hardware (nested
paging) and software (shadow paging) techni-
ques, while exceeding the best performance of
both individual techniques.

Techniques for Virtualizing Memory

A key component enabling virtualization is
its support for virtualizing memory with two
levels of page tables:

o gVA—gPA: guest virtual address
(gVA) to guest physical address trans-
lation (gPA) via a per-process guest
OS page table.

o gPA—hPA: guest physical address to
host physical address (hPA) transla-
tion via a per-VM host page table.

Table 1 shows the tradeoffs between nested
paging and shadow paging, the two techniques
commonly used to virtualize memory, and
compares them to our agile paging proposal.

Nested Paging

Nested paging is a widely used hardware tech-
nique to virtualize memory. The processor has
two hardware page-table pointers to perform

a complete translation: one points to the guest
page table (gcr3 in x86-64), and the other
points to the host page table (ncr3).

In the best case, the virtualized address
translation has a hit in the TLB to directly
translate from gVA to hPA with no overheads.
In the worst case, a TLB miss needs to per-
form a nested page walk that muldplies over-
heads vis-a-vis native (that is, unvirtualized 4-
Kbyte pages), because accesses to the guest
page table also require translation by the host
page table. Note that extra hardware is
required for nested page walk beyond the base
native page walk. Figure 1a depicts virtualized
address translation for x86-64. It shows
how page table memory references grow
from a native 4 to a virtualized 24 references.
Although page-walk caches can elide some of
these references,” TLB misses remain sub-
stantially more expensive with virtualization.

Despite the expense, nested paging allows
fast, direct updates to both page tables without
any VMM intervention.

Shadow Paging
Shadow paging is a lesser-used software tech-
nique to virtualize memory. With shadow
paging, the VMM creates on demand a
shadow page table that holds complete trans-
lations from gVA—hPA by merging entries
from the guest and host tables.

In the best case, as in nested paging, the
virtualized address translation has a hit in the
TLB to directly translate from gVA to hPA

MAY/JunE 2017 H]

TOP PICKS

Guest page table

Guest page
table (read only)

hPA
y

Memory accesses = 4

(b)

Figure 1. Nested paging has a longer page walk as compared to shadow
paging, but nested paging allows fast, in-place updates whereas shadow
paging requires slow, mediated updates (guest page tables are read-only).
(a) Nested paging. (b) Shadow paging.

Guest virtual address space

Fully static address space r —l
Shadow paging preferred

"estea paging prores - LML I

Only a small fraction of
address space is dynamic

Opportunity for agile paging

Figure 2. Opportunity that agile paging uses to improve performance.
Portions in white denote static portions, stripes denote dynamic portions,
and solid gray denotes unallocated portions of the guest virtual address
space.

same as a base native walk. For example, x86-
64 requires up to four memory references on a
TLB miss for shadow paging (see Figure 1b).
In addition, as a software technique, there is
no need for any extra hardware support for
page walks beyond base native page walk.
Even though TLB misses cost the same as
native execution, this technique does not allow
direct updates to the page tables, because the
shadow page table needs to be kept consistent
with guest and host page tables.” These updates
occur because of various optimizations, such as
page sharing, page migrations, setting accessed
and dirty bits, and copy-on-write. Every page
table update requires a costly VMM interven-
tion to fix the shadow page table by invalidat-
ing or updating its entries, which causes
significant overheads in many applications.

Opportunity

Shadow paging reduces overheads of virtual-
izing memory to that of native execution if
the address space does not change. Our key
observation is that empirically page tables are
not modified uniformly: some regions of an
address space see far more changes than
others, and some levels of the page table,
such as the leaves, are updated far more often
than the upper-level nodes. For example,
code regions might see little change over the
life of a process, whereas regions that mem-
ory-map files might change frequendy. Our
experiments showed that generally less than
1 percent and up to 5 percent of the address
space changes in a 2-second interval of guest
application execution (see Figure 2).

Proposed Agile Paging Design

We propose agile paging as a lightweight sol-
ution to reduce the cost of virtualized address
translation. We use the opportunity we just
described to combine the best of shadow and
nested paging by using

e shadow paging with fast TLB misses
for the parts of the guest page table
that remain static, and

with no overheads. On a TLB miss, the hard-

ware performs a native page walk on the o nested paging for fast in-place

updates for the parts of the guest

shadow page table. The native page table page tables that dynamically change.

pointer points to the shadow page table
(scr3). Thus, the memory references
required for shadow page table walk are the

In the following subsections, we describe
the mechanisms that enable us to use both

Hz |EEE MICRO

constituent techniques at the same time
for a guest process, and we discuss policies
used by the VMM to select shadow or

nested mode.

Mechanism: Hardware Support

Agile paging allows both techniques for the
same guest process—even on a single address
translation—using modest hardware support
to switch between the two. Agile paging has
three hardware architectural page table
pointers: one each for shadow, guest, and
host page tables. If agile paging is enabled,
virtualized page walks start in shadow paging
and then switch, in the same page walk, to
nested paging if required.

To allow fine-grained switching from
shadow paging to nested paging on any
address translation at any level of the guest
page table, the shadow page table needs to
logically support a new switching bit per
page table entry. This notifies the hardware
page table walker to switch from shadow to
nested mode. When the switching bit is set
in a shadow page table entry, the shadow
page table holds the hPA (pointer) of the
next guest page table level. Figure 3a depicts
the use of the switching bit in the shadow
page table for agile paging. Figure 3b shows
a page walk that is possible with agile paging.
The switching is allowed at any level of the
page table.

Mechanism: VMM Support

Like shadow paging, the VMM for agile pag-
ing manages three page tables: guest, shadow,
and host. Agile paging’s page table manage-
ment is closely related to that of shadow pag-
ing, but there are subde differences.

Guest page table (gVA—gPA). With all
approaches, the guest page table is created and
modified by the guest OS for every guest pro-
cess. The VMM in shadow paging, though,
controls access to the guest page table by
marking its pages read-only. With agile pag-
ing, we leverage the support for marking guest
page tables read-only with one subtle change.
The VMM marks as read-only just the parts
of the guest page table covered by the partial
shadow page table. The rest of the guest page
table (handled by nested mode) has full read-

write access.

A

Shadow

Guest
pagetable / M [QEg— . - 7 page table

‘/ Host |
page table

hPA

[Switoh modes at level 4 of guest page table}

Memory accesses 1 + 1 + 1 +5 =8

(b)

Figure 3. Agile paging support. (a) Mechanism for agile paging: when the
switching bit is set, the shadow page table points to the next level of the
guest page table. (b) Example page walk possible with agile paging, wherein
it switches to nested mode at level four of the guest page table.

Shadow page table (¢VA— hPA). For all guest
processes with agile paging enabled, the VMM
creates and maintains a shadow page table.
However, with agile paging, the shadow page
table is partial and cannot translate all gVAs
fully. The shadow page table entry at each
switching point holds the hPA of the next
level of the guest page table with the switch-
ing bit set. This enables hardware to perform
the page walk correctly with agile paging
using both techniques.

Host page table (gPA—hPA). The VMM
manages the host page table to map from
gPA to hPA for each VM. As with shadow
paging, the VMM merges this page table
with the guest page table to create a shadow
page table. The VMM must update the
shadow page table on any changes to the host
page table. The host page table is updated
only by the VMM, and during that update,

MAY/JunE 2017 H?l

Shadow

Write to page table Shadow

Subsequent writes
(no VMM traps)

(VMM trap) (1 write)

Figure 4. Policy to move a page between nested mode and shadow mode in

agile paging.

|EEE MICRO

the shadow page table is kept consistent by
invalidating affected entries.

Policy: What Level to Switch?

Agile paging provides a mechanism for vir-
tualized address translation that starts in
shadow mode and switches at some level of
the guest page table to nested mode. The
purpose of a policy is to determine whether
to switch from shadow to nested mode for a
single virtualized address translation and at
which level of the guest page table the switch
should be performed.

The ideal policy would determine that
page table entries are changing rapidly
enough and the cost of corresponding
updates to the shadow page table outweighs
the benefit of faster TLB misses in shadow
mode, and so translation should use nested
mode. The policy would quickly detect the
dynamically changing parts of the guest
page table and switch them to nested mode
while keeping the rest of the static parts of
the guest page table under shadow mode.

To achieve this goal, a policy will move
some parts of the guest page table from
shadow to nested mode and vice versa. We
assume that the guest process starts in full
shadow mode, and we propose a simple algo-
rithm for when to change modes.

Shadow— Nested mode. We start a guest
process in the shadow mode to allow the
VMM to track all updates to the guest page
table (the guest page table is marked read only

in shadow mode, requiring VMM interven-
tions for updates). Our experiments showed
that the updates to a single page of a guest
page table are bimodal in a 2-second time
interval: only one update or many updates
(for example, 10, 50, 100). Thus, we use a
two-update policy to move a page of the
guest page table from shadow mode to nested
mode: two successive updates to a page trig-
ger a mode change. This allows all subse-
quent updates to frequently changing parts of
the guest page table to proceed without
VMM interventions.

Nested— Shadow mode. Once we move parts
of the guest page table to the nested mode, all
updates to those parts happen without any
VMM intervention. Thus, the VMM cannot
track if the parts under the nested mode have
stopped changing and thus can be moved
back to the shadow mode. So, we use dirty
bits on the pages containing the guest page
table as a proxy to find these static parts of
the guest page table after every time interval,
and we switch those parts back to the shadow
mode. Figure 4 depicts the policy used by
agile paging.

To summarize, the changes to the hard-
ware and VMM to support agile paging are
incremental, but they result in a powerful,
efficient, and robust mechanism. This mech-
anism, when combined with our proposed
policies, helps the VMM detect changes
to the page tables and intelligently make a
decision to switch modes and thus reduce
overheads.

Our original paper has more details on
the agile paging design to integrate page walk
caches, perform guest context switches, set
accessed/dirty bits, and handle small or
short-lived processes. It also describes possi-
ble hardware optimizations.”

Methodology

To evaluate our proposal, we emulate our
proposed hardware with Linux and proto-
type our software in Linux KVM.” We
selected workloads with poor TLB perform-
ance from SPEC 2006,° BioBench,” Parsec,’
and big-memory workloads.” We report
overheads using a combination of hardware
performance counters from native and vir-
tualized application executions, along with

TLB performance emulation using a modi-
fied version of BadgerTrap'® with a linear

.. 90 1
performance model. Our original paper has 80 -
more details on our methodology, results, 70
and analysis.2 60

50
40

Evaluation

Figure 5 shows the execution time overheads
associated with page walks and VMM inter-
ventions with 4-Kbyte pages and 2-Mbyte
pages (where possible). For each workload,
four bars show results for base native paging
(B), nested paging (N), shadow paging (S),

& 90 -
and agile paging (A). Each bar is split into g 80
two segments. The bottom represents the 8701
. . = 60 A
overheads associated with page walks, and g
g 504
the top dashed segment represents the over- 2 40 -
heads associated with VMM interventions. = 30 4
. . . . o 4
Agile paging outperforms its constituent 220
. . o 10 -
techniques for all workloads and improves g @d
wl

performance by 12 percent over the best of
nested and shadow paging on average, and
performs less than 4 percent slower than
unvirtualized native at worst. In our original

30
20
10

Execution time overheads (%

o

graph500 memcached

—_—
)
-~

graph500

(b)

canneal

Figure 5. Execution time overheads for (a) 4-Kbyte pages and (b) 2-Mbyte
pages (where possible) with base native (B), nested paging (N), shadow
paging (S), and agile paging (A) for four representative workloads. All

paper,” we show that more than 80 percent
of TLB misses are covered under full shadow
mode, thus having four memory accesses

for TLB misses. Overall, the average number
of memory accesses for a TLB miss comes
down from 24 to between 4 and 5 for all
workloads.

We and others have found that the
overheads of virtualizing memory
can be high. This is true in part because guest
processes currently must choose between
nesting paging with slow nested page table
walks and shadow paging, in which page
table updates cause costly VMM interven-
tions. Ideally, one would want to use nested
paging for addresses and page table levels that
change and use shadow paging for addresses
and page table levels that are relatively static.
Our proposal—agile paging—approaches
this ideal. With agile paging, a virtualized
address translation usually starts in shadow
mode and then switches to nested mode only
if required to avoid VMM interventions.
Moreover, agile paging’s benefits could be
greater in the future, because Intel has
recently added a fifth level to its page table'’
that makes a virtualized nested page walk up

virtualized execution bars are in two parts: the bottom solid parts represent
page walk overheads, and the top hashed parts represent VMM intervention

overheads. The numbers on top of the bars represent the slowdown with

respect to the base native case.

to 35 memory references, and emerging non-
volatile memory technology promises vast
physical memories. liicho

Acknowledgments

This work is supported in part by the US
National ~Science Foundation (CCEF-
1218323, CNS-1302260, CCF-1438992,
and CCF-1533885), Google, and the Uni-
versity of Wisconsin (John Morgridge chair
and named professorship to Hill). Hill and
Swift have significant financial interests in
AMD and Microsoft, respectively.

References

1. J. Buell et al., “Methodology for Perform-
ance Analysis of VMware vSphere Under
Tier-1 Applications,” VMware Technical J.,
vol. 2, no. 1, 2013, pp. 19-28.

MAY/JunE 2017

TOP PICKS

Hﬁ |EEE MICRO

2. J. Gandhi, M.D. Hill, and M.M. Swift,
“Agile Paging: Exceeding the Best of
Nested and Shadow Paging,” Proc. 43rd
Int’l Symp. Computer Architecture, 2016,
pp. 707-718.

3. R. Bhargava et al., "Accelerating Two-
Page Walks for Virtualized
Systems,” in Proceedings of the 13th Inter-

Dimensional

national Conference on Architectural Sup-
port for Programming Languages and
Operating Systems, 2008, pp. 26-35.

4. K. Adams and O. Agesen, “A Comparison
of Software and Hardware Techniques for
x86 Virtualization,” Proc. 12th Int’l Conf.
Architectural Support for Programming Lan-
guages and Operating Systems, 2006, pp.
2-13.

5. A. Kivity et al., “"KVM: The Linux Virtual
Machine Monitor,” Proc. Linux Symp., vol.
1,2007, pp. 225-230.

6. J.L. Henning, “"SPEC CPU2006 Benchmark
Descriptions,” SIGARCH Computer Archi-
tecture News, vol. 34, no. 4, 2006, pp.
1-17.

“BioBench: A

Bioinformatics

7. K. Albayraktaroglu et al,
Suite of
Applications,” Proc. IEEE Int'| Symp. Per-
formance Analysis of Systems and Soft-
ware, 2005, pp. 2-9.

Benchmark

8. C. Bienia et al., “The Parsec Benchmark
Suite:
Implications,” Proc. 17th Int’l Conf. Parallel
Architectures and Compilation Techniques,
2008, pp. 72-81.

Characterization and Architectural

9. A. Basu et al., "Efficient Virtual Memory for
Big Memory Servers,” Proc. 40th Ann. Int’|
Symp. Computer Architecture, 2013, pp.
237-248.

10. J. Gandhi et al., “BadgerTrap: A Tool to
Instrument x86-64 TLB Misses,” SIGARCH
Computer Architecture News, vol. 42, no. 2,
2014, pp. 20-23.

11. 5-Level Paging and 5-Level EPT, white
paper, Intel, Dec. 2016.

Jayneel Gandhi is a research scientist at
VMware Research. His research interests
include computer architecture, operating
systems, memory system design, virtual
memory, and virtualization. Gandhi has a

PhD in computer sciences from the Univer-
sity of Wisconsin—Madison, where he com-
pleted the work for this article. He is a mem-
ber of ACM. Contact him at gandhij@

vmware.com.

Mark D. Hill is the John P Morgridge
Professor, Gene M. Amdahl Professor of
Computer Sciences, and Computer Sciences
Department Chair at the University of Wis-
consin—Madison, where he also has a cour-
tesy appointment in the Department of
Electrical and Computer Engineering. His
research interests include parallel computer
system design, memory system design, and
computer simulation. Hill has a PhD in
computer science from the University of
California, Berkeley. He is a fellow of IEEE
and ACM. He serves as vice chair of the
Computer Community Consortium. Con-
tact him at markhill@cs.wisc.edu.

Michael M. Swift is an associate professor
in the Computer Sciences Department at
the University of Wisconsin-Madison. His
research interests include operating system
reliability, the interaction of architecture
and operating systems, and device driver
architecture. Swift has a PhD in computer
science from the University of Washington.
He is a member of ACM. Contact him at
swift@cs.wisc.edu.

Read your subscriptions through
the myCS publications portal at
http://mycs.computer.org.

myCS

