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ABUNDANT CORES PER CHIP WILL ENCOURAGE A GREATER USE OF SPACE SHARING,

WHERE WORK STAYS ON A GROUP OF CORES FOR LONG TIME INTERVALS.

VIRTUAL HIERARCHIES CAN IMPROVE PERFORMANCE AND PERFORMANCE ISOLATION

OF SPACE-SHARED WORKLOADS, WHILE STILL SUPPORTING GLOBALLY SHARED

MEMORY TO FACILITATE DYNAMIC PARTITIONING AND CONTENT-BASED

PAGE SHARING.

......Memory system hierarchies are
fundamental to computing systems. They
have long improved performance because
most programs temporally concentrate ac-
cesses to code and data. However, emerging
many-core chip multiprocessors (CMPs)
provide a new computing landscape. Rather
than just time-sharing jobs on one or a few
cores, we expect abundant cores will
encourage a greater use of space sharing,
where single-threaded or multithreaded jobs
are simultaneously assigned to separate
groups of cores for long time intervals.

To optimize for space-shared workloads,
we propose using virtual hierarchies to
overlay a coherence and caching hierarchy
onto a physical system. Unlike a fixed
physical hierarchy, a virtual hierarchy can
adapt to fit how the work is space shared for
improved performance and performance
isolation. Moreover, a virtual hierarchy
might make tiled (repeatable) architectures
more compelling by offering the latency and
bandwidth characteristics of a physical
hierarchy without actually building one.

Virtual hierarchies
Many of today’s many-core CMPs use a

physical hierarchy of two or more cache
levels that statically determine where cache

blocks allocate, how many copies of the
block coexist, and how the block is found
for satisfying a read request or invalidation
for a write request. For example, the eight
cores in the Sun Niagara processor share an
L2 cache. On the other hand, cores in the
AMD Barcelona processor have private L1
and L2 caches but share an L3 cache. Like
many design choices, hardwired hierarchies
don’t adapt to the optimal arrangement for
a given workload. Nevertheless, the more
abundant resources of future many-core
CMPs will make adaptable cache hierarchies
more valuable.

A virtual hierarchy is a cache hierarchy that
can adapt to fit the workload or mix of
workloads. The hierarchy’s first level locates
data blocks close to the cores needing them
for faster access, establishes a shared-cache
domain, and establishes a point of coherence
for faster communication. When a miss
leaves a tile, it first attempts to locate the
block (or sharers) within the first level. In the
common case, this can greatly reduce access
latency when the resources in the first level are
assigned close to one another. The first level
can also provide isolation between indepen-
dent workloads. If the miss can’t be serviced
in the first level, the first-level controller
invokes the hierarchy’s second level.
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We argue for virtual hierarchies with a
case study of a 64-tile flat CMP running
several consolidated multithreaded work-
loads. As Figure 1 illustrates, we use space
sharing to assign each workload to several
adjacent cores. We tentatively assume that
each workload runs in its own virtual
machine (VM). However, space sharing
equally applies within a single operating
system.

Conventional caching and coherence
schemes for tiled architectures don’t opti-
mize for space-shared workloads. A global
broadcast for all coherence across a large
number of tiles is expensive and time
consuming. And using a global directory
in DRAM or SRAM forces many memory
accesses to unnecessarily cross the chip,
failing to minimize memory access time or
isolate performance between workloads or
VMs. Statically distributing the directory
among tiles can do much better, provided
operating systems or hypervisors carefully

map virtual pages to physical frames within
the workload’s assigned tiles. However,
requiring the hypervisor and OS to manage
cache layout complicates memory alloca-
tion, resource reassignment, and scheduling,
and it might limit sharing opportunities.

For our case study, we recommend a two-
level virtual coherence and caching hierar-
chy that harmonizes with the assignment of
tiles to VMs. Figure 2 illustrates a logical
view of such a virtual hierarchy. Each VM
operates in its own, isolated first level of the
hierarchy, which minimizes both miss access
time and performance interference with
other workloads or VMs. Moreover, the
shared resources of cache capacity, inter-
connect links, miss-status handling registers
(MSHRs), and more are mostly isolated
between VMs. The second level maintains
globally shared memory. This facilitates
dynamically repartitioning resources with-
out costly cache flushes. Furthermore,
maintaining globally shared memory min-

Figure 1. Tiled chip multiprocessors (CMP) running consolidated servers.
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imizes changes to existing system software
and allows virtualization features such as
content-based page sharing.1

Virtual hierarchy implementation
We implemented a virtual hierarchy with

a two-level coherence protocol. The two
protocols operate like a two-level protocol
on a physical hierarchy but have two key
differences. First, the virtual hierarchy isn’t
tied to a physical hierarchy that might or
might not match the VM assignment.
Second, the virtual hierarchy can change
dynamically when VM assignment changes.

First-level protocol
We first developed a first-level directory

protocol for intra-VM coherence. When a
memory reference misses in a tile, it is
directed to a home tile that either contains
the block with appropriate permission, a
directory entry (in an L2 tag) pertaining to
the block, or has no information. The latter
case implies the block isn’t present in this
VM. When a block isn’t present or the
directory entry contains insufficient coher-
ence permissions—for example, when the
new request seeks to modify the block and it
finds only a shared copy—the request is
issued to the directory at the second level.

A surprising challenge for an intra-VM
first-level protocol is finding the home tile
(that is local to the VM) for any given
memory block address. For a system with a
physical hierarchy, the home tile is usually
determined by a simple interleaving of fixed
power-of-two tiles in the local part of the
hierarchy. For an intra-VM protocol, the
home tile is a function of two properties:
which tiles belong to a VM, and how many
tiles belong to a VM. Moreover, dynamic
VM reassignment can change both. Also, it
isn’t desirable to require all VM sizes to be a
power of two.

To this end, we support dynamic home
tiles in VMs of arbitrary sizes using a simple
table lookup that must be performed before
a miss leaves a tile (but may be overlapped
with L2 cache access). As Figure 3 illus-
trates, each of the 64 tiles includes a table
with 64 six-bit entries indexed by the block
number’s six least-significant bits. The
figure further shows table values set to

distribute requests approximately evenly
among the three home tiles in this VM
(p12, p13, and p14). At VM (or process)
reassignment, a hypervisor (or OS) would
set tables. (Alternatively, a dynamic home
tile could be selected on a per-page basis,
either by explicitly encoding a home tile
location into the page table or using
automatic hardware-based predictors. We
don’t explore these approaches in this
work.)

Similar to a tile naming the dynamic
home is allowing an intra-VM (level-one)
directory entry to name the tiles in its
current VM (for example, which tiles could
share a block). In general, the current VM
could be as large as all 64 tiles, but it can
contain any subset of the tiles. We use the
simple solution of having each intra-VM
directory entry include a 64-bit vector for
naming any of the tiles as sharers. This
solution can be wasteful if VMs are small,
because only bits for tiles in the current VM
will ever be set. Of course, more compact
representations are possible at a cost of
additional bandwidth or complexity.

Figure 4 illustrates how the first level
protocol in our virtual hierarchy enables
localized sharing within the VM to meet
our goals of minimizing average memory
access time and mitigating the performance
impact of one VM on another. The
requestor also sends a completion message

Figure 2. A logical view of a virtual hierarchy that harmonizes with

workload assignments.
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to the dynamic home tile upon finishing a
request (not shown in Figure 4) to facilitate
our race-handling scheme, which we de-
scribe in the next section.

Second-level protocols
We specify two virtual hierarchy protocol

classes that differ in how they perform level-
two coherence. Protocol VHA uses a
directory logically in memory. It’s a virtua-
lized version of a two-level directory
protocol in a physical hierarchy with two
key differences.

First, a level-two directory entry must
name subsets of level-one directories. This is
straightforward in a physical hierarchy
where the names and numbers of level-one
directories are hardwired into the hardware.
In a virtual hierarchy, any tile can function
as a first-level directory for any block.
Therefore, we use a full bit-vector to name
any tile as a possible first-level directory.

Second, a key challenge in two-level
directory protocols is resolving races, a
matter not well discussed in the literature.
Protocol VHA manages races within proto-
cols and between protocols with blocking
directories.2 However in a two-level direc-
tory protocol, a naive implementation of
blocking can lead to a deadlock because of
dependences between blocked first-level
directories. The protocol can avoid a
deadlock by always handling second-level
messages at first-level directories, but this
might cause an explosion of states when a
second-level message can interrupt any
pending first-level operation. We instead
establish a smaller set of safe states, which
includes all stable states and a subset of the
transient states. A safe state can immediately
handle any second-level message, otherwise
the second-level message must wait until a
safe state is reached. First-level requests
either complete or cause the first-level

Figure 3. Tiles use a configuration table to select dynamic homes within the VM.
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directory to enter a safe state before issuing
a second-level request. Safe states reduce the
state-space explosion of the protocol at a
cost of some concurrency between first- and
second-level actions. (More details on
resolving races are available elsewhere.7)

Figure 5 shows how the second level of
coherence allows for inter-VM sharing due
to VM migration, reconfiguration, or page
sharing between VMs.

We also propose Protocol VHB to reduce
the space requirement of the in-memory
directory to a single bit per block by relying
on a broadcast for second-level coherence. It
reduces resource overhead, facilitates opti-
mizations, and only uses broadcast for rarer
second-level coherence. VHB augments
cached copies of blocks with a token count3

to achieve two primary advantages. First,
tiles without copies of a block don’t need to
acknowledge requests (one cache responds
in the common case4). Second, the single
per-block bit in memory can be thought of
as representing presence of either all of the
tokens or no tokens.5 This property enables
the single bit-per-block directory state.
Moreover, a broadcast combined with token
counting can reduce complexity6 and enable
orthogonal optimizations.

Discussion
Both VHA and VHB create a two-level

virtual hierarchy that can adapt to space-
shared workloads. When applied to consol-
idated server workloads in VMs, the virtual
hierarchy minimizes memory access time,
minimizes inter-VM performance interfer-
ence, facilitates VM reassignment, and
supports inter-VM sharing.

A virtual hierarchy can also optimize
space-sharing workloads within a single
operating system because global cache
coherence is maintained in hardware. On
the other hand, in a virtualized environ-
ment, designers might consider using a
virtual hierarchy’s first-level of coherence
without a backing second-level coherence
protocol. This option, VHnull, could still
accomplish many of our goals with suffi-
cient hypervisor support. Nonetheless, we
see many reasons why designers might
prefer VHA and VHB’s two coherence
levels.

First, VHnull impacts dynamic VM
reassignment as each reconfiguration or
rescheduling of VM resources requires the
hypervisor to explicitly flush all the caches
of the tiles affected and to atomically update
the VM configuration tables. VHA and
VHB, on the other hand, avoid this
complexity by implicitly migrating blocks
to their new homes on demand and don’t
require atomic updates of VM configura-
tion tables. Second, VHnull might support
read-only content-based page sharing
among VMs, but on a miss, it would obtain
the data from off-chip DRAM. VHA and
VHB improve the latency and reduce off-
chip bandwidth demands of these misses by
often finding the data on chip. Third,
VHnull adds complexity to the hypervisor
because some of its memory accesses must
either explicitly bypass caches or access
modified data in the cache of any VM’s
tile. VHA and VHB allow the hypervisor to
use caching transparently. Fourth, VHA and
VHB’s second level of coherence allows

Figure 4. First level of coherence in a virtual hierarchy enables fast and

isolated intra-VM coherence: A processor issues a request to the dynamic

home tile that is local to the VM (1). A directory tag is found and the

request redirects to the owning tile with dirty data (2). The owner responds

to the requestor (3).
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subtle optimizations at the first level that
aren’t easily done with VHnull.

Evaluation
We evaluated our virtual-hierarchy pro-

tocols with a full-system simulation using
Virtutech Simics (www.simics.com), ex-
tended with the GEMS toolset.8 GEMS
provides a detailed memory system timing
model, which accounts for all protocol
messages and state transitions.

Target system
The target system we simulated is a tiled

64-core CMP similar to Figure 1. Each core
consists of a two-issue in-order SPARC
processor with 64-Kbyte L1 instruction and
data caches. Each tile also includes a 1-
Mbyte L2 bank. The 2D 8 3 8 grid
interconnect consists of 16-byte links. We
modeled the total latency per link as five

cycles, which includes the wire and routing
delay. Messages adaptively route in a
packet-switched interconnect. DRAM, with
a modeled access latency of 275 cycles,
attaches directly to the CMP via eight
memory controllers along the edges of the
CMP. The physical memory size depends
on the configuration simulated, ranging
from 16 to 64 Gbytes. We set the memory
bandwidth artificially high to isolate inter-
ference between VMs—actual systems can
use memory controllers with fair queueing.9

Workloads
We simulated consolidated commercial-

grade server workloads, where each workload
is considered a virtual machine and runs its
own instance of Solaris 9. We used an online
transaction processing workload (OLTP),
static Web-serving workloads (Apache and
Zeus), and a Java middleware workload
(SpecJBB). (See related work for a descrip-
tion of all workload configurations.10)

Our results show workloads of the same
type and size consolidate (homogenous) and
workloads of different types and sizes consol-
idate (heterogeneous). These homogenous
configurations let us report overall runtime
after completing some number of transactions
because all units of work are equivalent—that
is, all VMs complete the same type of
transaction. For heterogeneous consolidation,
the simulator ran for a chosen number of
cycles, and we counted the number of
transactions completed for each VM. We
then reported the cycles per transaction (CPT)
for each VM. To account for nondeterminism
in multithreaded workloads, we pseudoran-
domly perturbed simulations and calculated
runtime error bars to 95 percent confidence.11

Table 1 lists the configurations.
We approximated a virtualized environ-

ment by interleaving the execution and
memory references of multiple functional
simulators onto a single, detailed memory
timing model. Thus, we didn’t simulate the
execution or scheduling effects of a true
hypervisor and instead statically scheduled
workloads to adjacent cores.

Protocols
We implemented our protocols using

writeback L1 caches, and L2 cache banks

Figure 5. VHA’s second-level coherence (dashed lines) facilitates tile

reassignment and content-based page sharing. The request issues to the

home tile serving as the level-one directory and finds insufficient

permission within the VM (1). A second-level request issues to the global

level-two directory (2). Coherence messages forward to other level-one

directories (3), which then in turn handle intra-VM actions (4) and send an

Ack or data on behalf of the entire level-one directory (5). Finally, the

originating level-one directory finishes the request on behalf of the

requestor (6). (Completion messages not shown.)
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that don’t require inclusion with the tile’s
local L1. VHA implemented the virtual
hierarchy with the two-level directory
protocol we previously described. The L2
bank at the dynamic home tile holds the
only L2 copy of a cache block, and each L2
tag contains a bit-vector of sharers.

VHB implemented the virtual hierarchy
with the same first-level protocol as VHA,
but it used the token-based broadcast for
second-level coherence. VHB also included
additional optimizations that we didn’t
implement for VHA. One optimization
placed nonshared private data in a tile’s
local L2 bank without allocating a tag at the
dynamic home tile to store unneeded
directory state. This improved access latency
for private data. To distinguish between
private and shared data, we initially treated
a clean miss from memory as private data
and denoted it with an extra bit in the L1
tag. The first sharing miss locates the block
with the second-level global broadcast,
which then clears the bit and allocates a
tag at the dynamic home tile. Other subtle
optimizations VHB implemented include
allowing the victimization of an L2 tag
without invalidating active sharers and
returning memory data directly to the
requestor instead of first to the dynamic
home tile.

We compared VHA and VHB against
several alternative directory protocols (see
the example in Figure 6). In all three
protocols, a sharing miss within a VM
results in a global indirection to either a
directory in DRAM (DRAM-DIR), an
interleaved directory based on memory
address (STATIC-BANK-DIR), or a direc-
tory implemented as a duplicate tag store
(TAG-DIR).

DRAM-DIR uses a full bit-vector direc-
tory implemented in DRAM. The directory
considers the cache hierarchy in each tile
private, but we limited the number of
copies of a block that can be stored in L2
banks to increase overall cache capacity. To
do so, we implemented a policy that uses a
simple heuristic based on the block’s
coherence state. In our MOESI (Modified,
Owned, Exclusive, Shared, Invalid) imple-
mentation, an L1 replacement victim in
state M, O, or E always allocates in the local
L2 bank. However, a block in the S-state
won’t allocate in the local bank because it’s
likely that another tile holds the corre-
sponding O-block. If the O-block replaces
to the directory, then the subsequent
requestor will become the new owner. To
reduce indirection overhead, we also imple-
mented a generous 1-Mbyte directory cache
at each of the eight memory/directory
controllers.

STATIC-BANK-DIR implements a
MESI (Modified, Exclusive, Shared, Invalid)
protocol with directory state stored in the L2
tags of a statically assigned home tile for each
block.12,13 Home tiles interleave by the lowest
six bits of the page frame address. L1 caches
always replace the block to the static home
tile. Thus, logically there is a single shared L2
cache interleaved across all tiles.

TAG-DIR implements a protocol with a
directory state stored in an exact duplicate
tag store14–16 located in the middle of the
chip. We charge three cycles to access the
1,024-way content-addressable memory
(CAM) required to access all tags of possible
cache locations—that is, 64 tiles with 16-
way associative L2 caches. TAG-DIR im-
plements the same heuristic as DRAM-DIR
to increase the overall cache capacity.

Table 1. Server consolidation configurations.

Configuration Description

OLTP 8x8p Eight eight-processor OLTP VMs

Apache 8x8p Eight eight-processor Apache VMs

Zeus 8x8p Eight eight-processor Zeus VMs

JBB 8x8p Eight eight-processor SpecJBB VMs

Mixed Two eight-processor Apache VMs, two 16-processor

OLTP VMs, one eight-processor JBB VM, and two

four-processor JBB VMs
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Results
Figure 7 shows the normalized runtime

for the consolidated server workloads run-
ning multiple VMs of the same workload
type (homogenous consolidation). DRAM-
DIR performed the worst because of long
indirection latencies. Latencies were espe-
cially penalized by misses to the on-chip
directory caches, which achieved a hit rate
of 43 to 65 percent. VHB performed 22 to
42 percent better than STATIC-BANK-
DIR and 4 to 46 percent better than TAG-
DIR (with its arguably unimplementable
duplicate tag directory). VHA performed
similarly to VHB and outperformed the
baseline directory protocols. Nonetheless,
VHB’s private data optimization gave a 6 to
8 percent edge over VHA for three of the
workloads.

Figure 8 shows the breakdown of mem-
ory system stall cycles. The bars show the
normalized amount of cycles spent on
servicing off-chip misses, hits in the local
L2 bank, hits in remote L2 banks, and hits
in remote L1 caches. The figure indicates
that off-chip misses contributed to the
majority of time spent in the memory
system. However, the figure shows how
VHA and VHB significantly reduced the
cycles spent on sharing misses serviced by
remote L1 and L2 caches. VHA averaged 45
cycles for such a miss in an Apache
workload compared with 102 cycles for
TAG-DIR.

Figure 9 shows the normalized cycles per
transaction (CPT) of each VM running the
mixed configuration. We compared CPT
within VMs because the units of work differ
between workload type and VM size. VHB

offered the best overall performance by
showing the lowest CPT for the majority of
VMs. STATIC-BANK-DIR slightly out-

r

Figure 6. An intra-VM sharing miss in our

baseline directory protocols: directory in

DRAM (DRAM-DIR) (a), an interleaved

directory based on memory address

(STATIC-BANK-DIR) (b), or a directory

implemented as a duplicate tag store

(TAG-DIR) (c).
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performed VHB for the OLTP VMs in the
mixed configuration. This is because the
OLTP working set is large and the
STATIC-BANK-DIR protocol allows one
VM to utilize the cache resources of other
VMs. However, where STATIC-BANK-

DIR slightly improved the performance of
the OLTP VMs, it made the JBB VMs
perform more poorly because of the
interference. On the other hand, VHB

isolated the cache resources between VMs,
thereby offering good overall performance.

Figure 8. Normalized memory stall cycles, by type, for homogenous consolidation.

Figure 7. Normalized runtime for homogenous consolidation.
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V irtual hierarchies offer a new frame-
work for designing the vast memory

hierarchy of many-core CMPs. A virtual
hierarchy adapts to space-shared workloads
like multiprogramming and server consoli-
dation. Although our case study focused on
consolidated server workloads in a tiled
architecture, our virtual hierarchy idea can
apply to other architectures and use cases.
For example, our two-level virtual hierarchy
readily applies to nonuniform cache arrays
(NUCA) not interleaved with cores (a
dance-hall organization). Our implementa-
tion can also optimize for space-shared
multiprogrammed workloads in a single-
OS environment with little change to
system software. Extensions to our imple-
mentation include fully automatic hierarchy
configuration and better mechanisms for
implementing fairness and quality-of-ser-
vice policies. MICRO
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