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PERFORMANCE PATHOLOGIES IN
HARDWARE TRANSACTIONAL MEMORY

.....................................................................................................................................................................................................................................................

TRANSACTIONAL MEMORY IS A PROMISING APPROACH TO EASE PARALLEL

PROGRAMMING. HARDWARE TRANSACTIONAL MEMORY SYSTEM DESIGNS REFLECT

CHOICES ALONG THREE KEY DESIGN DIMENSIONS: CONFLICT DETECTION, VERSION

MANAGEMENT, AND CONFLICT RESOLUTION. THE AUTHORS IDENTIFY A SET OF

PERFORMANCE PATHOLOGIES THAT COULD DEGRADE PERFORMANCE IN PROPOSED HTM

DESIGNS. IMPROVING CONFLICT RESOLUTION COULD ELIMINATE THESE PATHOLOGIES SO

DESIGNERS CAN BUILD ROBUST HTM SYSTEMS.

......Transactional memory (TM)1 sim-
plifies concurrent programming by providing
atomic execution for a block of code. A
programmer can invoke a transaction in a
multithreaded application and rely on the
TM system to make its execution appear
atomic in a global serial order (that is, the
execution is serializable). TM systems seek
high performance by speculatively executing
transactions concurrently and only commit-
ting serializable transactions. Two concurrent
transactions conflict when they access the
same item (such as a word, block, or object)
and at least one access is a write. Transactions
can be concurrently committed if they don’t
conflict. TM systems might resolve some
conflicts by stalling one or more transactions,
but must be able to abort transactions with
cyclic conflicts. Although some TM systems
operate completely in software (STMs) or in
software with hardware acceleration,2 we
focus on those implemented with hardware
support (HTMs).

An HTM records the addresses a trans-
action reads (read set) and writes (write set)
to perform three critical functions: conflict

detection, version management, and conflict
resolution (see the ‘‘Dimensions in HTM
Design’’ sidebar). Each of these functions
represents a major dimension in the HTM
design space. We evaluated three generic
HTM systems built on a common chip
multiprocessor framework representing the
three points in design space (see the ‘‘Existing
HTM Designs’’ sidebar). We found that the
design point has a first-order effect on
performance and that no one design point
performs best for all workloads.

Without realistic TM workloads, we do not
attempt to determine which of these systems is
best. Instead, this work seeks to identify

N execution behaviors, or pathologies,
that can degrade performance through
stalls or aborts in HTM systems, and

N program characteristics that provoke
these pathologies in existing TM
workloads.

A key insight from this analysis is that, as
Scherer and Scott found for STMs,3 conflict
resolution (also known as contention man-
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agement) is central to avoiding many
pathologies. We use this insight to develop
four enhanced systems that use different
combinations of known techniques—write-
set prediction, time stamps, and back off—
to achieve good performance across all of
our workloads.

Performance pathologies
The interaction of TM system design and

program transactions leads to patterns of
execution that can degrade performance.
We identify a set of performance patholo-
gies (see Figure 1) that harm performance
by stalling a transaction or by performing
useless work that’s discarded on transaction
abort. These pathologies help explain the
performance differences between HTM
systems. Although our pathologies have
proven valuable, they are not (yet) mutually
exclusive or complete. The following sec-
tions briefly describe these pathologies;
Table 1 lists important characteristics.

FriendlyFire
This pathology (Figure 1a) arises when

one transaction conflicts with and aborts
another, and then subsequently aborts before
committing any useful work. In the worst
case, this pathology repeats indefinitely, with
concurrent transactions continually aborting
each other, resulting in livelock. Because a
simple requester-wins policy exhibits the
FriendlyFire pathology and frequently results
in livelock under high contention, our
baseline eager conflict detection/lazy version

management (EL) system uses randomized
linear back off after an abort.

StarvingWriter
This pathology (Figure 1b) arises when a

transactional writer conflicts with a set of
concurrent transactional readers. The writer
stalls waiting for readers to finish their
transactions and release isolation. As with
simple reader-writer locks, the writer might
starve if new readers arrive before existing
readers commit. In some cases, the readers
progress and only the writer starves. In the
worst case, none of the transactions progress

Figure 1. Hardware transactional memory (HTM) performance pathologies.

.....................................................................................................................................................................

Dimensions in HTM Design

We describe the three critical functions in HTM design as follows:

N Conflict detection determines when to examine read and write sets to detect conflicts. With

eager conflict detection, an HTM detects conflicts when a transactional thread makes a

memory reference. With lazy conflict detection, an HTM detects conflicts when the first of

two or more conflicting transactions commits.

N Version management allows simultaneous storage of newly written values (for commit) and

old values (for abort). Lazy version management leaves old values in memory, which makes

aborts fast (good for getting conflicting transactions out of the way), but usually must move

data on the more-common commits. Conversely, eager version management stores old values

elsewhere, such as in a log. This makes commits faster, because the new values are already

in place, but slows aborts and could exacerbate the effects of contention.

N Conflict resolution involves the actions a system will take when it detects a conflict. Eager

conflict-detection systems resolve the conflict when a requester seeks data that conflicts

with one or more other transactions. The resolution policy can stall or abort the requester, or

abort the others. Lazy conflict detection systems resolve conflicts when a committer seeks to

commit a transaction that conflicts with one or more other transactions. The resolution policy

can abort all others, or stall or abort the committer.

........................................................................
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because the readers encounter a cyclic
dependence with the writer after reading
the block, abort (releasing isolation), but
then retry before the writer acquires access.

SerializedCommit
HTM systems that use lazy conflict detec-

tion serialize transactions during commit to
ensure a global serial order. Thus, committing
transactions could stall waiting for other
transactions to commit. The performance
impact might be significant in a program with
many small transactions. However, guarantee-
ing the completing transaction will commit
with a committer-wins resolution policy will
reduce the overhead. In the example in
Figure 1c, none of the transactions conflict
so all could safely commit simultaneously, but
instead the commits serialize due to the HTM
system’s limitations.

FutileStall
Eager conflict detection might cause a

transaction to stall for another transaction
that ultimately aborts. In this case, the stall
represents wasted time, because it didn’t
resolve a conflict with a transaction that
performed useful work. Eager version
management exacerbates this pathology,
because the HTM system must maintain
isolation on its write set while it restores the
old values. In Figure 1d, the transaction on
the right is stalled waiting for a transaction
(on the left) that ultimately aborts.

StarvingElder
Systems that use lazy conflict detection

and a committer-wins policy might let small
transactions starve longer transactions. This
arises because small transactions reach their
commit phase faster and the committer-
wins policy allows repeated small transac-
tions to always abort the longer transaction.
The resulting load imbalance might have
broad performance repercussions. In Fig-
ure 1e, small transactions executed by the
thread on the right repeatedly abort the
transaction on the left.

RestartConvoy
Convoys arise in HTM systems with lazy

conflict detection when one committing
transaction conflicts with (and aborts)
multiple instances of the same static
transaction. The aborted transactions restart
simultaneously and, because of their similar-
ity, finish together. The crowds of transactions
compete to commit, and the winner aborts

.....................................................................................................................................................................

Existing HTM Designs

Existing HTM systems fall into three regions of the HTM design space. They differ not only

in how they address conflict detection (CD), version management (VM), and conflict

resolution (CR), but also in the system assumptions that affect performance (for example,

write-through versus write-back caches, system interconnects, and even instruction set

architectures). To compare these designs, we develop three generic HTM systems built on a

common chip multiprocessor framework. These systems represent points within each of the

three regions of the design space. Figure A shows the relative performance of these generic

systems for three benchmarks on 32 processors, normalized to eager CD and eager VM (EE).

.....................................................................................................................................................................

Lazy CD/lazy VM/committer wins (LL)

LL systems, such as Transactional Coherence and Consistency1 (TCC) and Bulk,2 buffer new

values until a transaction commits. A completing transaction arbitrates for a commit token or

commit bus to achieve a global serial order, and then commits by informing other transactions of

its write set and revealing its updates. If another transaction has read a location in the

committing transaction’s write set, the HTM detects a conflict and aborts the reader transaction.

Thus, the committing transaction always wins. This policy has two advantages. First, it

guarantees forward progress by always ensuring that some transaction commits even if other

transactions abort. Second, an aborting transaction never delays the committing transaction.
.....................................................................................................................................................................

Eager CD/lazy VM/requester wins (EL)
EL systems, such as Large Transactional Memory3 (LTM) and the eager system evaluated

by Ceze et al.,2 detect conflicts on individual memory references, but defer updates until

commit. On a conflicting request, the requester always succeeds and the conflicting

transactions must abort. Like LL, the EL system simplifies aborts because old values remain

in place until commit. The EL system appeals to early adopters because, unlike EE systems, it

is compatible with existing coherence protocols that always respond to coherence requests.
.....................................................................................................................................................................

Figure A. Relative performance of generic HTM systems.
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the others. Convoys can persist indefinitely if
a thread that commits a transaction rejoins the
competition before all other transactions have
had a chance to commit. A transaction convoy
degrades performance in two ways. First,
convoys force the program to serialize on a
single transaction when there may be other
portions of the program that could execute
concurrently. Second, the restarted transac-
tions might cause contention because they
share the same system resources, such as cache
banks.

Figure 1f illustrates the convoy effect that
can arise in restarting transactions. As the
transaction on the left commits, the other
threads’ transactions abort. Those threads
restart and complete at nearly the same time,
and again one commits and the rest abort. The
convoy can persist if threads that passed the
transaction return and re-enter the convoy.

DuelingUpgrades
This pathology arises when two concur-

rent transactions read and later attempt to
modify the same cache block. Because both
transactions add the block to their read sets,

only one can succeed, causing the other to
abort. Although this behavior can manifest
in any TM system, it’s pathologic only for
eager conflict detection/eager version man-
agement (EE) systems because of their
slower aborts. The requester-stalls resolu-
tion policy further exacerbates the problem,
because the committing transaction might
first stall on one that aborts (that is, the
FutileStall pathology).

Figure 1g illustrates DuelingUpgrades.
The two transactions begin and read the
same block, then the transaction on the left
attempts to upgrade (that is, get write
permission to) the block and stalls because
of the conflict. Deadlock occurs when the
transaction on the right also tries to upgrade.
The system resolves the deadlock by aborting
the younger transaction, in this case the left
one. When the left transaction restarts, it
stalls trying to read the now-exclusive block
until the right transaction commits. If the
right thread immediately starts another
identical transaction, it can repeat the
conflict, but will lose the conflict resolution
because it is now the younger transaction.

Eager CD/eager VM/requester stalls (EE)

EE systems, such as LogTM variants,4–6 also detect conflicts on individual memory references, but perform

updates in place, writing old values to a per-thread log. EE resolves conflicts by stalling the requester, and aborts

only if a stall would create a potential deadlock cycle (conservative deadlock avoidance). EE time-stamps

transactions to detect potential cycles (that is, when a transaction that has stalled an older transaction would

itself stall on an older transaction). Eager VM streamlines commit, especially for transactions that overflow

private caches, because new values need not be speculatively buffered. Conversely, the need to process the log

slows aborts.
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Platforms and methodology
We present a brief overview of our HTM

implementations, TM workloads, and the
simulation methodology. Our earlier work
provides further details.4

Base HTM systems
We chose a 32-core chip-multiprocess-

ing (CMP) system as the baseline system
to illustrate the differences between HTM
designs (described in the ‘‘Existing HTM
Designs’’ sidebar), which are more pro-
nounced under heavy loads on larger
systems. The in-order, single-issue cores
each have 32 Kbytes of private write-back
L1 instruction and data caches. All cores
share a multibanked 8-Mbyte L2 cache
consisting of 32 banks interleaved by
block address. Four on-chip memory

controllers connect to standard DRAM
banks. We maintain on-chip cache coher-
ence via an on-chip directory (at the L2
cache banks), which maintains a bit vector
of sharers and implements the MESI
protocol.

Our HTM systems use idealized struc-
tures to isolate the key differences between
points in our design space. Each processor
records exact transactional read and write
sets to approximate ideal hardware and
remove approximation artifacts. All trans-
actional conflict detection is done on cache-
block granularity. We enhance the on-chip
cache coherence protocol to support nega-
tive acknowledgements (Nacks) that enable
stalling. The directory also supports sticky
states to allow conflict detection on over-
flowed transactional blocks.

Table 1. Performance pathology characteristics.

Name

Conflict

detection

(CD)

Version

management

(VM)

Conflict

resolution

(CR)

Program

characteristics Indicator

FriendlyFire Eager Any Requester wins Concurrent transactions that

conflict

A transaction aborts after

causing another transaction

to abort.

StarvingWriter Eager Any Stall with

conservative

deadlock

avoidance

Transactions that modify a

widely read shared variable

Writer continues to stall after

initial set of readers commits.

SerializedCommit Lazy Lazy Any Threads frequently use short,

concurrent transactions

Transactions wait to enter their

commit phase.

FutileStall Eager Any Requester stalls Transactions that read and

then later modify highly

contended data

Transaction stalls attempting to

read (write) a memory

location modified (or read) by

a transaction that ultimately

aborts.

StarvingElder Lazy Lazy Committer wins Conflicting accesses by a

long transaction and a

sequence of short

transactions

A transaction is aborted by

multiple committing trans-

actions from any single

thread.

RestartConvoy Lazy Lazy Committer wins Repeated instances of a

transaction that updates

a contended memory

location

A set of transactions is aborted by

a committing transaction. A

transaction from this set again

is aborted by another

transaction from the same set.

DuelingUpgrades Eager Eager Requester stalls Concurrent transactions that

first read a common set

of blocks, and then update

one or more of them

A transaction aborts while

attempting to upgrade a

block from its read set to its

write set.
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Workloads
To understand HTM systems’ dynamic

behavior, we selected a subset of multithreaded
TM workloads from the Splash5 benchmark
suite and two concurrent data structures.

We selected the Barnes, Cholesky, Mp3d,
Radiosity and Raytrace programs because they
show significant critical-section based syn-
chronization. The BTree microbenchmark
represents a common class of concurrent data
structures found in many applications. The
LFUCache microbenchmark, based on
Scherer et al.’s workload,3 uses a hash table
and a priority queue heap to simulate cache
replacement in an HTTP Web proxy using
the least frequently used (LFU) algorithm.

Although these workloads do not repre-
sent the entire spectrum of transactional
behavior, they do possess interesting behav-
iors that let us analyze the differences
between proposed HTM designs.

Simulation methodology
We simulated the systems described here

using the Simics6 full-system simulation
infrastructure in conjunction with custom-
ized memory models built with the Wis-
consin GEMS toolset.7 We added hardware
support for transactional memory in the
memory models. We implemented the
software components using hand-coded
assembly routines and C functions. We
pseudorandomly perturbed each simulation
to produce error bars of 95-percent confi-
dence on performance results.

Results
We ran a performance analysis of the base

HTM systems using the workloads de-
scribed previously. Here, we focus on
identifying the pathological behaviors and
their impact on the systems.

Base HTM results
Figure 2 shows the performance of each

of the three base HTM systems, normalized
to the EE system. As Figure A suggested,
the relative performance of our base systems
varies widely between workloads, and none
always performs best.

To shed some light on the causes of
inefficient transaction execution, we investi-
gated how often the pathologies we identified
actually occur. We measured a pathology’s
frequency by generating a trace file for each
execution and postprocessing it to find which
cycles match the specific indicator.

Table 2 presents the percent of total
cycles executed for each workload and
system configuration identified as part of
each pathology, and highlights in bold those
configurations spending at least 20 percent
of their cycles in transaction overheads. As
expected, the results demonstrate that these
pathologies occur most frequently on
benchmarks for which a particular system
is inefficient.

For the EL system, all but one of the
benchmarks exhibit significant incidence of
FriendlyFire. For Cholesky, FriendlyFire
accounts for the livelock, with readers

Figure 2. Performance comparison for base HTM systems.

........................................................................
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spinning on an empty task queue continu-
ally aborting the queue writers.

For the lazy conflict-detection/lazy ver-
sion-management (LL) system, Mp3d and
Raytrace are the least efficient benchmarks;
each devotes a significant number of cycles
to stalling and transactions that abort. We
can attribute many of these wasted cycles to
SerializedCommit, StarvingElder, and Re-
startConvoy.

Identifying pathologies for eager conflict-
detection/eager version-management (EE)
systems proved more problematic. Without
(as yet) being able to obtain reliable results
for DuelingUpgrades, the largest pathology
accounts for only 6 percent of the execution
time (StarvingWriter for LFUCache). How-
ever, manual inspection shows that almost
all aborts in Mp3d, Raytrace, and LFU-
Cache result from four transactions that
read-modify-and-write various counters—
exactly the kind of program behavior that
can lead to DuelingUpgrades.

Enhanced HTM systems
The pathologies exemplify cases in which

our base systems favor aborting and stalled
transactions over those performing useful
computation or discriminate against certain
transactions. This observation encouraged
us to develop four HTM variants that avoid
or mitigate these pathologies by enhancing
each system’s conflict-resolution policy. The
results in the right side of Table 2 indicate

how well the enhanced HTM systems
address the targeted pathologies.

Eager CD/eager VM/predictor. The EEP

system targets the DuelingUpgrades pathol-
ogy using a small write-set predictor to
selectively request exclusive permission early
and add the block to the transaction’s write
set. This predictor eliminates the coherence
upgrades that result when transactions read,
modify, and write the same block. Without
this optimization, two transactions that
concurrently read-modify-and-write the
same block force one to abort.

Eager CD/eager VM/hybrid. EEHP extends
EEP in an attempt to reduce StarvingWriter
by letting an older writer abort several
younger readers. In this case, the readers
abort themselves and let the older writer
proceed with its transactional execution. For
all other conflicts, we stall the requester and
rely on conservative deadlock avoidance to
ensure forward progress.

Figure 3 shows that for the EEP system,
write-set prediction dramatically improves
performance for Mp3d, Raytrace, and LFU-
Cache, three benchmarks that exhibit the
DuelingUpgrades pathology. EEHP further
improves performance for BTree by elimi-
nating the StarvingWriter pathology.

Eager CD/lazy VM/time stamp. ELT targets
FriendlyFire, the major pathology affecting
EL. ELT behaves like EL, but instead of

Table 2. Pathology frequency, by percentage of total execution time.

Benchmark

Base HTM systems

EE EL LL

Starving

Writer

Futile

Stall

Friendly

Fire

Serialized

Commit

Starving

Elder

Restart

Convoy

Barnes 0.2 0.3 67 2.1 1.0 1.9

Cholesky 0.2 ,0.1 n/a 9.6 2.4 0.5

Mp3d 2.5 0.9 67 21 36 30

Radiosity 0.2 0.2 12 0.4 ,0.1 0.4

Raytrace 4.6 1.0 73 27 45 5.2

BTree 1.2 ,0.1 61 4.5 ,0.1 0.2

LFUCache 5.8 1.0 67 0.2 ,0.1 ,0.1................................................................................................................................................................................................................
Note: Bold text indicates that total overhead exceeds 20 percent of execution time. EE is eager conflict detection/eager version
management; EL is eager conflict detection/lazy version management; and LL is lazy conflict detection/lazy version management.
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always aborting in favor of the requester, it
resolves transaction conflicts according to
the transaction’s logical age. Processors
executing logically younger (that is, lower-
priority) transactions abort their transaction
when conflicting memory requests arrive
from logically older transactions. This
change ensures that at least one transaction
makes useful progress on every cycle.

ELT largely eliminates FriendlyFire and
dramatically outperforms EL for all bench-
marks except Radiosity, which doesn’t
suffer from any pathology. Table 2 shows
that using time stamps reduces the inci-

dence of FriendlyFire for Mp3d by half and
essentially eliminates it from all other
workloads. Figure 3 shows that ELT per-
forms within 10 percent of the best system
on all workloads except Mp3d.

Lazy CD/lazy VM/back off. LLB addresses
RestartConvoy. Like LL, LLB is based on the
committer-wins policy. However, restarting
transactions use randomized linear back off
to delay an aborted transaction’s restart. By
staggering the restart of each transaction in
the group of transactions aborted by a given
commit, LLB mitigates convoy formation.

Table 2, continued.

Enhanced HTM systems

EEP EEHP ELT LLB

Starving

Writer

Futile

Stall

Starving

Writer

Futile

Stall

Friendly

Fire

Serialized

Commit

Starving

Elder

Restart

Convoy

0.21 0.6 0.3 0.2 1.0 1.7 1.0 1.5

,0.1 ,0.1 0.1 ,0.1 0.2 8.7 3.1 0.5

1.0 0.3 0.8 0.2 33 9.0 28 25

0.2 0.3 0.2 0.1 0.1 0.3 ,0.1 0.3

0.6 0.1 0.3 ,0.1 0.2 0.3 0.1 1.0

1.4 ,0.1 0.3 ,0.1 0.1 4.5 ,0.1 0.2

0.5 ,0.1 1.2 ,0.1 0.3 0.1 ,0.1 0.1

Figure 3. Performance comparison for enhanced HTM systems.
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LLB reduces SerializedCommit, Starving-
Elder, and RestartConvoy. For LL systems,
Raytrace demonstrates the clearest results:
LLB reduces SerializedCommit from 27 to
0.3 percent and RestartConvoy from 5.2 to
1.0 percent by varying when transactions
commit. LLB also reduces StarvingElder’s
incidence from 45 to 0.1 percent by giving
long transactions time to complete while the
short transactions restart. Figure 3 shows that
the performance also improves significantly
compared to the LL system. Mp3d shows a
similar, if less dramatic improvement.

Our results highlight the importance of
conflict-resolution policies in allowing

or eliminating pathological behavior in
HTM designs. Future work should explore
richer workloads and other design points to
both refine the current performance pathol-
ogies and identify new ones. MICRO
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