
94

Multithreaded, throughput-orient-
ed commercial applications, such as databas-
es and Web servers, represent a dominant class
of Internet service workloads. Computer
architects increasingly optimize current and
future server architectures (such as multi-
threaded processors and chip multiprocessors)
for these important workloads. Architects use
multithreaded benchmarks to evaluate alter-
native designs, by measuring current systems
and simulating future ones. Execution-driven
evaluation of such benchmarks requires full-
system simulation, because these benchmarks
spend a significant portion of their time in the
operating system.1

Performance variability presents a major
challenge for architectural simulation studies
using multithreaded workloads.2 Variability
refers to the differences between multiple esti-
mates of a workload’s performance on a given
system configuration. If not addressed, vari-
ability can cause computer architects to draw
incorrect conclusions from their simulation
experiments. Figure 1 shows that simulation
variability causes a system with an 84-
nanosecond (ns) dynamic RAM (DRAM)
access latency to outperform a system with a
faster, 81-ns DRAM access latency. Taken at

face value, ignoring variability in this case
leads to the incorrect conclusion that a slow-
er memory performs better!

Architectural simulations incur two types of
variability. Time variability occurs when a
workload exhibits different characteristics dur-
ing different phases of a single simulation run.
This leads to errors when the simulated pro-
gram phase does not represent the workload’s
average behavior. Space variability occurs when
small timing variations cause runs starting
from the same initial state to follow different
execution paths from the space of all possible
paths. This leads to errors when timing differ-
ences in two configurations result in the sim-
ulated workload taking widely divergent paths
with different performance characteristics.

Although most architectural simulation
studies ignore space variability’s effects, our
results demonstrate that space variability has
serious implications for architectural simula-
tion studies using multithreaded workloads.2

The standard solution—running long
enough—does not easily apply to simulation
because of its enormous slowdown. To address
this problem, we propose a simulation
methodology combining multiple simulations
with standard statistical techniques, such as

Alaa R. Alameldeen
David A. Wood

University of Wisconsin-

Madison

THE INHERENT VARIABILITY OF MULTITHREADED COMMERCIAL WORKLOADS

CAN LEAD TO INCORRECT RESULTS IN ARCHITECTURAL SIMULATION STUDIES.

RANDOM PERTURBATIONS AND STATISTICAL METHODS HELP COMPUTER

ARCHITECTS DRAW VALID CONCLUSIONS.

ADDRESSING
WORKLOAD VARIABILITY IN

ARCHITECTURAL SIMULATIONS

Published by the IEEE Computer Society 0272-1732/03/$17.00 2003 IEEE

confidence intervals and hypothesis testing.
This methodology greatly decreases the prob-
ability of drawing incorrect conclusions, and
permits reasonable simulation times given suf-
ficient simulation hosts.

What causes variability?
Time variability is a well-known phenom-

enon that earlier work frequently describes as
phase behavior.3 We prefer the more general
term—time variability—because the through-
put-oriented commercial workloads we study
have a more homogeneous long-term behav-
ior. Space variability is also well-known in the
measurement community. Space variability
can arise in any parallel or multithreaded
workload where small timing variations can
result in different execution paths, perhaps
yielding different performance characteristics.

Small-scale variations arise in real systems
due to factors such as interrupt timing and bus
contention with direct memory access (DMA).
Variations arise in simulation due to changes
in system parameters (such as cache size, asso-
ciativity, or miss latency). Small-scale variabil-
ity can have a much larger effect on simulation
results for several reasons, including:

• The operating system might make dif-
ferent scheduling decisions (for example,
a scheduling quantum might end before
an I/O event in one run, but not in
another).2

• Threads might acquire locks in a differ-
ent order, resulting in a different execu-
tion order.

• A transaction might complete during the
measurement interval in one run, but not
another.

Measurement experiments generally
address time and space variability by averag-
ing multiple observations or running long
enough to minimize variability’s effect. In pre-
vious experiments on a real system, our online
transaction processing (OLTP) benchmark’s
performance varied by up to a factor of three,
for measurement intervals of one second.2, 4

Variability’s effect on results largely vanishes
for longer measurement intervals (60 seconds,
for example). Unfortunately, running this
long is impractical for detailed architectural
simulations. Modeling a 16-processor system

with out-of-order processors on a uniproces-
sor host, our simulation system slows down
by approximately 24,000 times. This means
that simulating 60 seconds of target execution
time requires more than 16 days!

Does variability matter for simulation?
Computer architects often use simulation

to evaluate a design enhancement’s perfor-
mance relative to a base design. In this case,
they care less about absolute performance than
about a workload’s relative performance on
two (or more) different system configurations.

We conducted a simple experiment to illus-
trate that space variability can have enough
effect on simulation results to cause incorrect
conclusions. Figure 1 plots cycles per transac-
tion as the DRAM access latency of a simu-
lated multiprocessor increases from 80 to 90
ns, with all other system parameters fixed. All
runs start from the same simulation check-
point and complete 500 OLTP transactions.
Intuitively, we expect that cycles per transac-
tion should increase slightly with the increase
in DRAM latency. However, small differences
in memory system timing result in different
execution paths, with very different execution
times. For example, the system with 84-ns
DRAM ran 7 percent faster than the one with
81-ns DRAM. Digging deeper, we found that
after approximately 560,000 cycles, the oper-
ating system made different scheduling deci-
sions in the two runs, resulting in very
different execution paths. Although no com-
puter architect is likely to conclude that slow-
er memory leads to faster systems, clearly

95NOVEMBER–DECEMBER 2003

80 81 82 83 84 85

DRAM access latency (ns)

86 87 88 89 90
4.0

4.2

4.4

4.6

4.8

5.0

C
yc

le
s

pe
r

tr
an

sa
ct

io
n

(m
ill

io
ns

)

Figure 1. Performance of 500-transaction online transaction
processing (OLTP) runs with different DRAM latencies.

space variability could lead to incorrect con-
clusions in other, less intuitive studies.

Injecting variability into simulations
Workloads exhibit space variability on real

systems due to small timing variations. Our
simulator, however, is deterministic: It pro-
duces the same execution path every time for
each combination of workload and system
configuration. To evaluate space variability,
we must inject small timing variations to cre-
ate a space of possible executions starting from
the same initial conditions.

To do this, we artificially introduce small per-
turbations (disturbances) in memory system
timing. On each Level 2 cache miss, we add a
uniformly distributed pseudo-random integer
between 0 and 4 ns. For multiple simulations,
each run uses a unique random seed, leading
to a different sequence of miss latencies, but
the same average miss latency. These small per-
turbations lead to different execution paths and
different runtime results. This models, though
at a smaller scale, the variations in memory
access time due to DRAM refreshes or I/O.

This artificial method of introducing tim-
ing perturbations produces a space of runs for
our simulation experiments. We use the mean
of these runs as our performance metric.

The wrong conclusion ratio
Most architectural simulation studies eval-

uate workloads’ performance on two (or

more) system configurations using a single
simulation run for each combination of work-
load and system configuration. For workloads
with significant space variability, using only a
single run incurs nontrivial risk of drawing a
wrong conclusion (as in Figure 1).

To illustrate this risk, we present experi-
mental results for multiple simulation runs
and compute the wrong conclusion ratio
(WCR), which is the percentage of compari-
son experiment pairs that reach an incorrect
conclusion. For example, when conducting
an experiment to compare the performance
of systems A and B, we use N runs of work-
load W on each system. The correct conclu-
sion is the relationship between the averages
of the N runs on A and the N runs on B (for
example, A outperforms B). The WCR is the
percentage of the N2 pairs of runs that lead to
the opposite conclusion (in this case, that B
outperforms A).

The experiment compares the performance
of three systems whose processors have three
different reorder buffer (ROB) sizes. We sim-
ulated twenty, 50-transaction runs for our
OLTP workload using timing-first simulation
for systems that have reorder buffers of 16, 32,
and 64 entries, respectively.5 Figure 2a shows
the average (with error bars representing +/-
one standard deviation), maximum, and min-
imum number of cycles per transaction for
the three systems. The averages confirm the
expected conclusion that runtime decreases

96

MICRO TOP PICKS

IEEE MICRO

16 32
Reorder buffer size (entries)

64
2.5

3.0

3.5

4.0

4.5

5 10 15 202.6

2.8

3.0

3.2

3.4

3.6
C

yc
le

s
pe

r
tr

an
sa

ct
io

n
(m

ill
io

ns
)

C
yc

le
s

pe
r

tr
an

sa
ct

io
n

(m
ill

io
ns

)

(a) Sample size (number of runs)(b)

Maximum
Average
Minimum

32
64

Figure 2. Performance variability of OLTP (cycles per transaction): Variability for different reorder buffer sizes and 20 simula-
tion runs (a); 95 percent confidence intervals for different sample sizes and two reorder buffer sizes (b).

when the ROB size increases. However, the
result ranges overlap (for example, the mini-
mum of the 16-entry system is smaller than
the maximum of the 64-entry system), leav-
ing the possibility of an incorrect conclusion.

To estimate the risk of a wrong conclusion,
we computed the WCR values for each pair of
experiments: WCR (16, 32) = 18 percent,
WCR (16, 64) = 7.5 percent, and WCR (32,
64) = 26 percent. This means, for example, that
26 percent of the possible experiment pairs lead
to the wrong conclusion that a 32-entry ROB
system outperforms a 64-entry system. This
demonstrates that ignoring variability can lead
to incorrect conclusions, even for simple
microarchitectural simulation experiments.

Accounting for space variability
Classical statistics provides many techniques

for coping with variability. We can use several
of these methods to account for simulation
variability while limiting simulation time.

Most statistical methods call for running mul-
tiple trials and estimating the true performance
using the arithmetic mean of the sample. The
larger the sample size, the more accurate the per-
formance estimate. Thus, to account for space
variability, we need to simulate enough runs to
reduce the probability of drawing wrong con-
clusions to an acceptable level. Fortunately,
because we can run independent simulations in
parallel on different machines, the elapsed wall-
clock time remains essentially constant, given
sufficient host machines.

We apply two standard statistical tech-
niques—confidence intervals and hypothesis
testing—to estimate the probability of draw-
ing wrong conclusions. The wrong conclusion
probability estimates the probability of draw-
ing wrong conclusions about the relationship
between two configurations. Confidence
intervals place a conservative upper limit on
the wrong conclusion probability. Hypothesis
testing, which we discussed in our first paper
on this topic, provides a tighter, more accu-
rate estimate of the wrong conclusion proba-
bility, allowing us to achieve the same
confidence level using a smaller sample.2

Confidence intervals
A confidence interval (CI) is the range of val-

ues that we expect to include a population para-
meter (such as the mean).6 The confidence

probability is the probability that the true pop-
ulation parameter will fall inside the confidence
interval. You can use confidence intervals to
estimate an upper limit on the wrong conclu-
sion probability when comparing two alterna-
tives. If the two alternatives’ confidence
intervals do not overlap, the probability of
reaching a wrong conclusion will be at most
(1−p), where p is the confidence probability.2

Figure 2b shows the 95-percent confidence
intervals for the ROB design experiment with
different sample sizes. As expected, the confi-
dence intervals get tighter as the sample size
increases. Confidence intervals for samples of
20 runs do not overlap, which implies that the
probability of reaching a wrong conclusion is
less than 5 percent (compared to the 26 per-
cent WCR for single experiments). For the
smaller sample sizes, the results are not statis-
tically significant (at the 95-percent confi-
dence level), because the confidence intervals
overlap. If we reduce the confidence proba-
bility to 90 percent, a sample size of 15 runs
becomes statistically significant, but at most a
10-percent chance remains of reaching a
wrong conclusion.

Although more conservative than hypoth-
esis testing, confidence intervals are more con-
venient to use in architectural simulation
studies. As Figure 2b illustrates, adding error
bars to ubiquitous line and bar graphs clearly
indicates the results’ significance, while requir-
ing little additional effort.

Time and space variability are important
phenomena that architectural simulation

studies using multithreaded workloads must
address. The standard practice of ignoring
variability can lead to incorrect conclusions
in a significant percentage of microarchitec-
tural and system design simulation experi-
ments. Our simple methodology compensates
for variability by combining pseudo-random
perturbations, multiple simulations, and stan-
dard statistical techniques. This methodology
helps computer architects determine when
they can safely draw conclusions from simu-
lation experiments. MICRO

Acknowledgments
We thank the Wisconsin Multifacet project,

Mark Hill, Virtutech AB, the Wisconsin Con-
dor group, and reviewers of our first paper on

97NOVEMBER–DECEMBER 2003

this topic for their contributions and support.
This work is supported in part by the National
Science Foundation with grants CCR-
0324878, EIA-0205286, and EIA-9971256, a
Wisconsin Romnes Fellowship (Wood) and
donations from IBM, Intel, and Sun Microsys-
tems. Prof. Wood has a significant financial
interest in Sun Microsystems, Inc.

References
1. L.A. Barroso, K. Gharachorloo, and E.

Bugnion. “Memory System Characterization
of Commercial Workloads,” Proc. 25th Int’l
Symp. on Computer Architecture (ISCA 98),
pp. 3–14.

2. A.R. Alameldeen and D.A. Wood, “Variability
in Architectural Simulations of Multi-
threaded Workloads,” Proc. 9th Int’l Symp.
on High-Performance Computer
Architecture (HPCA 03), pp. 7–18.

3. T. Sherwood, et al., “Automatically
Characterizing Large Scale Program
Behavior,” Proc. 10th Int’l Conf. on
Architectural Support for Programming
Languages and Operating Systems
(ASPLOS-X), 2002, pp. 45–57.

4. A.R. Alameldeen et al., “Simulating a $2M
Commercial Server on a $2K PC,”
Computer, vol. 36, no. 2, Feb. 2003, pp. 50-
57.

5. C.J. Mauer, M.D. Hill, and D.A. Wood, “Full
System Timing-First Simulation,” Proc. 2002
ACM Sigmetrics Conf. on Measurement and
Modeling of Computer Systems, ACM
Press, 2002, pp. 108-116.

6. H. Frank and S. G. Althoen, Statistics: Con-
cepts and Applications, Cambridge Univ.
Press, first edition, 1994, pp. 274-452.

Alaa R. Alameldeen is a PhD candidate in the
computer sciences department at the Univer-
sity of Wisconsin-Madison. His research
interests include chip multiprocessor memo-
ry system design and performance evaluation
of multithreaded workloads. Alameldeen has
master’s degrees in computer science from
Alexandria University, Egypt and from the
University of Wisconsin-Madison. He is a stu-
dent member of IEEE and ACM.

David A. Wood is a professor and Romnes
Fellow in the computer sciences department
and the electrical and computer engineering

department at the University of Wisconsin-
Madison. His research interests include tech-
niques for improving the availability,
designability, programmability, and perfor-
mance of commercial multiprocessor servers.
Wood has a PhD in computer sciences from
the University of California, Berkeley. He is a
Fellow of the IEEE, and a member of the
IEEE Computer Society and the ACM.

Direct questions and comments about this
article to Alaa R. Alameldeen, 1210 W. Day-
ton St., Madison, WI 53706; alaa@cs.wisc.
edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

98

MICRO TOP PICKS

IEEE MICRO

you@computer.org
FREE!

All IEEE Computer Society
members can obtain a free,

portable email
alias@computer.org. Select your
own user name and initiate your
account. The address you choose
is yours for as long as you are a
member. If you change jobs or
Internet service providers, just

update your information with us,
and the society automatically

forwards all your mail.

Sign up today at
http://computer.org

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

