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The performance of database and
Web servers is important because the services
they provide are increasingly becoming part
of our daily lives. Many of these servers are
shared-memory multiprocessors, because
most commercial workloads have abundant
thread-level parallelism. Multiprocessors com-
monly use private per-processor caches that
buffer blocks of the shared memory to
improve both effective memory latency and
bandwidth.

Cache coherence protocols
A cache coherence protocol manages the

read and write permissions of data in the
caches to ensure all processors observe a con-
sistent view of shared memory. As described in
the “Cache Coherence Review” sidebar, most
protocols enforce a coherence invariant that
permits each memory block to have either
multiple read-only copies or a single writable
copy, but never both at the same time. Cur-
rent coherence protocols enforce this invariant
indirectly via a subtle combination of local

actions and request ordering restrictions.
Unfortunately, emerging workload and tech-
nology trends reduce the attractiveness of
these existing solutions.

We propose the Token Coherence frame-
work, which directly enforces the coherence
invariant by counting tokens (requiring all of a
block’s tokens to write and at least one token
to read). This token-counting approach enables
more obviously correct protocols that do not
rely on request ordering and can operate with
alternative policies that seek to improve the per-
formance of future multiprocessors.

Workload trends favor snooping protocols
Commercial workloads represent an impor-

tant market for shared-memory multiproces-
sors. These workloads frequently share data,
and thus they favor cache coherence protocols
that minimize the latency of transferring data
directly between caches (that is, by minimiz-
ing the latency of cache-to-cache misses).1

Snooping protocols achieve low-latency
cache-to-cache-misses by broadcasting coher-
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ence requests on a shared bus. All caches
“snoop” the bus to maintain the coherence
invariant and to allow other caches to direct-
ly respond to requests, speeding up cache-to-
cache misses. The processors resolve racing
requests (multiple concurrent requests for the
same block) using the total order of requests
naturally provided by the bus. Fair bus arbi-
tration prevents starvation.

To overcome the increasingly difficult chal-
lenge of scaling the bandwidth of shared-wire
buses, some snooping designs (such as the Sun
E100002) broadcast requests on a “virtual bus”
created with an indirect switched intercon-
nect, such as the one in Figure 1a. These inter-
connects use high-speed point-to-point links
to provide higher bandwidth than buses, but
the use of dedicated switch chips often
increases system cost and latency.

Technology trends favor directory protocols
The increasing number of transistors per

chip predicted by Moore’s law encourages
increasingly integrated designs, making glue
logic (dedicated switch chips) less desirable.
Many current and future systems will inte-
grate processor(s), cache(s), coherence logic,
switch logic, and memory controller(s) on a
single die (such as the Alpha 213643 and
AMD Opteron4). Directly connecting these
highly integrated nodes leads to fast and low-
cost glueless interconnects, such as the one in
Figure 1b. Unfortunately, glueless intercon-
nects do not naturally provide the virtual-bus
properties required by snooping protocols. To
exploit these glueless interconnects, recent
highly integrated designs3,4 have used coher-
ence protocols—such as directory protocols—
that do not rely on interconnect ordering.
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Cache Coherence Review
Cache coherence protocols keep caches transparent to software, even for write-back caches that defer updat-

ing memory until a block is replaced.1

Many coherence protocols tag cache blocks using the MOSI (modified, owned, shared, invalid) states;2 each
state conveys rights and responsibilities. A cache with a block in state modified (M) allows processor reads
and writes and must provide data when another cache requests the block. Owned (O) allows processor reads
and must provide data when requested. Shared (S) also allows processor reads, but does not provide data to
other requesters. Invalid (I) has no rights or responsibilities.

Coherence protocols coordinate cached copies by restricting the MOSI states of a given block across all
caches. Common write-invalidate coherence protocols ensure the coherence invariant of a single writer or mul-
tiple readers. Single writer means that if one cache is in state M, the rest are in I. Multiple readers allow at most
one cache in O, zero or more in S, and the rest in I.

Consider, for example, a request to get a block in M when the requester is currently in I, and three other
caches hold the block in O, S, and S. Most protocols honor this request with the cache in O providing data and
the O, S, and S caches invalidating (they all go into state I). 

Coherence protocols face two key challenges. First, they must maintain the coherence invariant (often by
establishing an order of requests to resolve requests racing for the same block). Second, they must ensure free-
dom from starvation (that is, all memory references must eventually complete).

Cache coherence protocols enforce ordering restrictions on reads and writes to a single block (the coher-
ence invariant). Processors use coherent caches as part of implementing a multiprocessor’s memory consis-
tency model, which specifies ordering restrictions to reads and writes among many blocks.1 Because Token
Coherence enforces the coherence invariant, it does not affect the implementation of standard memory con-
sistency models.
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Directory protocols employ a directory that
tracks where each block is cached. Requests
travel via an unordered interconnect to the
directory (usually at a block’s home memory
module). The directory responds and/or for-
wards the request to other caches, which in turn
respond with data or acknowledgments. To
resolve races without relying on interconnect
ordering, the directory acts as an ordering
point, blocking or queuing problematic
requests as necessary. Fair queuing at the direc-
tory prevents starvation. A principal disadvan-
tage of directory protocols is that
cache-to-cache misses incur the delay of a direc-

tory access and an extra interconnect traversal.

UnorderedB: Fast but incorrect
To reconcile these opposing workload and

technology trends, the unordered-using-broad-
cast (UnorderedB) coherence protocol broad-
casts coherence requests (like snooping
protocols), but uses a fast, unordered inter-
connect (like directory protocols). UnorderedB
can be faster than either directory protocols (by
avoiding directory indirections on cache-to-
cache misses) or snooping protocols (by avoid-
ing slow, ordered interconnects). We show,
however, that UnorderedB is incorrect: It fails
to enforce the coherence invariant or prevent
starvation. Fortunately, Token Coherence will
allow us to restore correctness to UnorderedB,
while retaining its performance potential.

UnorderedB acts like a standard MOSI
(modified, owned, shared, invalid) snooping
protocol, but without any request ordering.
A cache can request a block in state S (ReqS)
or state M (ReqM). Each cache and memory
checks the state of the requested block. If the
block is in state I, a cache or memory ignores
all requests. If the block is in state S, it ignores
ReqS requests, but transitions to state I on
ReqM requests. If the block is in state O, it
responds with data and either stays in O on
ReqS requests or transitions to I on ReqM
requests. If the block is in state M, it responds
as in state O.

Unfortunately, UnorderedB is not always cor-
rect in the presence of protocol races. Consider
the example illustrated in Figure 2a, in which
processor P0 initially has a block in state M,
processor P1 seeks the same block in S (ReqS),
and processor P2 seeks it in M (ReqM). P1 and
P2 both broadcast their requests at time ❶,
which the interconnect promptly delivers to
each other at time ❷ but belatedly delivers to
P0 at times ❸ and ❺ (because of contention on
the unordered interconnect). Processors P1 and
P2 handle each other’s request at time ❷ but take
no action because each lacks a valid copy. P0 sat-
isfies P1’s request at time ❹, by responding with
data and transitioning to state O. Finally, P2’s
delayed request arrives at P0 at time ❺, and P2

satisfies the request at time ❻, by sending data
and transitioning to state I. After receiving their
responses, P2 believes that it has the single,
writable copy of the block, and P1 believes it
holds a valid read-only copy. This resulting sit-
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Figure 1. Multiprocessor interconnect options: two-level
broadcast tree (a) and 4 × 4 bidirectional torus (b). The
boxes marked “P” represent highly integrated nodes that
include a processor, caches, memory controller, and coher-
ence controllers. The indirect broadcast tree uses dedicat-
ed switches, while the torus is a directly connected
interconnect. For 16-processor systems, the torus has
lower latency (two versus four chip crossings on average)
and does not require any glue chips. However, unlike the
broadcast tree, the torus does not provide the total order
necessary for conventional snooping.



uation is unsafe: It violates the coherence invari-
ant and can result in erroneous program behav-
ior. Starvation can also result, if repeated races
prevent a processor from ever making forward
progress (for example, a request might miss the
owner, and thus never receive a data response).

This simplified example illustrates the fun-
damental difficulty with traditional coherence
protocols. Even though each processor takes a
locally correct action, collectively the proces-
sors violate the coherence invariant. Current
coherence protocols avoid this particular race
by ordering requests, either in the intercon-
nect or at a directory. (In the example, if all
processors handle ReqS before ReqM, then P1

will invalidate its shared copy, thereby main-
taining the invariant.) However, ordering
requests introduces significant overhead.

Enforcing correctness with Token Coherence
Instead of relying on request ordering, Token

Coherence uses two mechanisms to enforce
correctness. These mechanisms—token count-
ing and persistent requests—form the correct-
ness substrate, illustrated in Figure 3.

Enforcing safety via token counting
The correctness substrate uses token count-

ing to explicitly enforce the coherence invari-
ant. During system initialization, the system

assigns each block T tokens, distinguishes one
as the owner token, and stores them at the
block’s home memory. Processor caches and
coherence messages can also hold tokens. T is
at least as large as the number of processors.

Tokens and data move throughout the sys-
tem obeying four rules:

• Rule 1. At all times, each block has exact-
ly T tokens in the system, one of which
is the owner token.
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• Rule 2. A processor can write a block only
if it holds all T tokens for that block.

• Rule 3. A processor can read a block only
if it holds at least one token for that block
and has valid data.

• Rule 4. If a coherence message contains
the owner token, it must contain data.

Rules 1 through 3 ensure safety by directly
enforcing the coherence invariant of a single
writer or multiple readers. A processor can write
a block if it has all T tokens, because no other
processor can have a token for reading. A proces-
sor with one or more tokens can safely read the
block, because holding a token prevents anoth-
er processor from holding all the tokens and
thus from writing the block. These rules enable
designers to reason about safety without con-
cern for subtle interactions among protocol
states, multiple concurrent requests, explicit
acknowledgments, write-back messages, inter-
connect ordering, or system hierarchy.

Rule 4 requires that a valid copy of the data
must always travel with the owner token to
ensure that

• the current data for a block is never lost
and

• a processor that has collected all the
tokens will have received at least one data
response (when it received the owner
token).

However, Rule 4 allows for non-owner tokens
to travel without data (to provide a bandwidth-
efficient means of collecting non-owner tokens
from many processors). Because this rule allows
processors and memory to receive tokens with-
out valid data, caches and memory use separate
valid bits for data and tokens.

Because Rule 1 requires that tokens be inde-
structible, caches return tokens to memory
when evicting blocks. Rule 4 requires that evic-
tions of the owner token must include data
(much like the eviction of an M or O block in
a traditional protocol). Caches also send evict-
ed non-owner tokens to memory (rather than
performing a silent eviction). Because this mes-
sage is small (that is, it contains no data), it
adds only a small traffic overhead.

The system holds tokens in processor caches
(for example, part of tag state), memory (for
example, efficiently encoded in error-correct-

ing code bits), and coherence messages.
Because the system counts tokens, but does
not track which processors hold them, tokens
can be stored in 2 + log2T bits (the valid bit,
owner-token bit, and non-owner token
count). For example, encoding 64 tokens
requires one byte, a 1.6 percent overhead for
64-byte blocks.

Avoiding starvation via persistent requests
Although token counting ensures that races

do not violate the coherence invariant, it does
not ensure that a request is eventually satisfied.
Thus the correctness substrate provides per-
sistent requests to prevent starvation. When a
processor detects possible starvation (such as
via a time-out), it initiates a persistent request.
The substrate then activates at most one per-
sistent request per block, using a fair-
arbitration mechanism. Each system node
remembers all activated persistent requests (for
example, in a table at each node) and forwards
all tokens for the block—those tokens cur-
rently present and received in the future—to
the request initiator. Finally, when the initia-
tor has sufficient tokens, it performs a memo-
ry operation (a load or store instruction) and
deactivates its persistent request.

We know of two approaches to imple-
menting persistent requests. First, Martin,
Hill, and Wood (and our performance results
later) use an arbiter at each home memory
module.5 Processors send persistent requests
to the appropriate arbiter for a block. The
arbiter selects a request to activate and informs
all processors, which save the request in a small
table at each node. A similar sequence occurs
on deactivation. Second, Martin has devel-
oped an alternative persistent request imple-
mentation that uses a distributed arbitration
policy to create a priority ordering.6 This
implementation improves worst-case behav-
ior by allowing faster handoff of highly con-
tended blocks (such as a hot lock).

TokenB: Fast and correct
Token Coherence protocols rely on the cor-

rectness substrate to ensure safety and free-
dom from starvation in all cases. This
guarantee permits aggressive performance
policies that optimize for the common case
without worrying about rare corner cases.
Token-using-Broadcast (TokenB) is one
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example of a performance policy. TokenB
behaves much like UnorderedB, allowing it
to be fast in the common no-race case. How-
ever, it relies on the correctness substrate to
ensure safety and prevent starvation when
races do occur.

Specifically, TokenB usually operates just
like UnorderedB. Caches broadcast coherence
requests, which we call transient requests to
differentiate them from persistent requests.
When a persistent request is active in the sys-
tem, it has priority over transient requests.
Otherwise, caches and memory respond to
transient requests in the same way as
UnorderedB, identifying the MOSI states with
token counts. All T tokens implies M, 1 to 
T−1 tokens (including the owner token) implies
O, 1 to T−1 tokens (excluding the owner token)
implies S, and no tokens implies I.

If a transient request fails to garner suffi-
cient tokens within a time-out interval of
twice the average miss latency (for example,
because of racing requests), the cache con-
troller reissues the request up to three times.
If these requests continue to fail, the request-
ing processor eventually invokes a persistent
request, which always succeeds.

Returning to the example race in Figure 2b,
the block has three tokens initially held by P0.
P1 receives one token in the response at time
❹, allowing it to read the block. Because of
the race, P2 only receives two tokens in the
response at time ❻. Unlike UnorderedB, this
does not violate the coherence invariant,
because TokenB requires that a processor have
all three tokens before writing the block. P2

waits for additional tokens and, after a speci-
fied time-out interval, reissues its request at
time ❼. P1 responds with the missing token
at time ❽, allowing P2 to finally complete its
request. Because only one race occurs in this
example, P2 need not issue a persistent request.

Evaluation methods
We quantitatively evaluate TokenB using

methods highlighted here, but explained in
detail elsewhere.5 We use three multiprocessor
commercial workloads as benchmarks:7 a sta-
tic Web serving workload (Apache), an online
transaction processing workload (OLTP), and
a Java middleware workload (SPECjbb).

Our target system is a 16-processor Sparc
multiprocessor with highly integrated nodes.

Each node includes a pipelined and dynami-
cally scheduled processor, split L1 caches (128
Kbytes each), unified L2 cache (4 Mbytes),
coherence protocol controllers, and a memo-
ry controller for part of the globally shared
memory. All components maintain coherence
on 64-byte blocks.

We compare TokenB against two analogous
coherence protocols; all three implement the
same MOSI base states, types of requests, and
migratory sharing optimization. Snooping is a
snooping protocol that requires an ordered
interconnect, but allows many concurrent
requests with flexible timing. Directory is a
standard full-map directory protocol, inspired
by the protocols in the Origin 20008 and
Alpha 21364.3 It uses an unordered intercon-
nect but must queue requests at the directo-
ry, in some cases, to prevent races.

We evaluate systems with two interconnec-
tion networks. Tree is a four-ary tree (Figure
1a) that uses two levels of switch chips to
deliver requests in a total order. Torus is a glue-
less two-dimensional, bidirectional torus (Fig-
ure 1b) that delivers requests as quickly as
possible, without regard to order. We present
results that assume links have unlimited band-
width; Martin, Hill, and Wood5 includes lim-
ited-bandwidth results.

We use the Virtutech Simics full-system,
functional-execution-driven simulator aug-
mented to simulate memory hierarchies and
out-of-order processors.7 We pseudorandom-
ly perturb simulations to calculate 95 percent
confidence intervals, as described in this issue
by Alameldeen and Wood.9

TokenB evaluation
We present evidence that Token Coherence

can improve performance via four questions.
Figure 4 presents the normalized runtime
(shorter is better) of TokenB on the tree and
torus interconnects, Snooping on the tree
interconnect, and Directory on the torus
interconnect.

Is the number of reissued and persistent requests
small?

Yes; on average for our workloads, less than
3 percent of TokenB’s cache misses are reis-
sued, with only 0.2 percent causing persistent
requests, as Table 1 shows. Thus, TokenB han-
dles the common case like UnorderedB, while

113NOVEMBER–DECEMBER 2003



rarely invoking the correctness substrate’s star-
vation prevention mechanism.

Does TokenB outperform Snooping?
Yes; for the ordered tree interconnect, both

protocols perform similarly (Figure 4) with sim-
ilar traffic (not shown), but TokenB becomes 15
to 28 percent faster by using the lower-latency
unordered torus, which Snooping cannot use.

Does TokenB outperform Directory?
Yes; by removing the directory access laten-

cy and extra interconnect traversal from the
critical path of cache-to-cache misses, TokenB
is faster than Directory by 17 to 54 percent
using the torus interconnect (Figure 4). The

lower portion of the bar shows Directory’s
runtime with an unimplementable 0-cycle
directory access latency. TokenB is still faster
by 6 to 18 percent because it avoids the extra
interconnect traversal.

How does TokenB’s traffic compare to Directory’s?
For this specific 16-processor system, Direc-

tory uses 21 to 25 percent less traffic than
TokenB (not shown). The extra traffic of
TokenB over Directory is not as large as you
might expect, because

• both protocols send a similar number of
messages that contain 64-byte data
blocks (81 percent of Directory’s traffic
on average),

• 8-byte request messages are significantly
smaller than data messages, and

• our torus interconnect supports band-
width-efficient broadcast tree routing.

As the number of processors in the system
increases, however, TokenB’s traffic grows rel-
ative to Directory. Experiments using a sim-
ple microbenchmark indicate that, for a
64-processor system, TokenB uses twice the
interconnect bandwidth of Directory, mak-
ing TokenB less attractive for large or band-
width-starved systems.

Token Coherence as a coherence framework
TokenB is only one specific example of a

Token Coherence performance policy. For
example, alternative performance policies can
conserve bandwidth by

• using a soft-state directory that is fast and
usually correct or

• replacing TokenB’s broadcasts with pre-
dictive multicasts using destination-set
prediction.6
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connect.

Table 1. Overhead due to reissued requests.

                            Percentages of misses that                                        
Are not Are reissued Are reissued more Become 

Workload reissued once than once persistent requests
Apache 95.75 3.25 0.71 0.29
OLTP 97.57 1.79 0.43 0.21
SPECjbb 97.60 2.03 0.30 0.07
Average 96.97 2.36 0.48 0.19



Performance policies for hierarchical sys-
tems, such as collections of chip multiproces-
sors, might employ mostly correct
transient-request filters to reduce on- and off-
chip request traffic. Finally, a performance
policy could use predictors that learn from
recent access patterns to predictively push data
and tokens between processors.

Token Coherence makes these enhance-
ments feasible, both individually and in arbi-
trary combinations. It does so because the
performance policy must focus only on com-
mon-case performance, without worrying
about infrequent race conditions. In all cases,
the correctness substrate enforces safety using
token counting rules and avoids starvation
with persistent requests. To demonstrate this
separation, we implemented a performance
policy that continually sends transient
requests for random blocks to a random set of
processors. This performance policy does
nothing to actually satisfy cache misses; it
simply waits for the correctness substrate to
invoke a persistent request. Although this pol-
icy performs poorly, the system still functions
correctly.

Token Coherence enables a new family of
coherence protocols that are both faster

and perhaps simpler than snooping and direc-
tory protocols. A token coherence protocol is
simpler to verify, because only a subset of the
protocol—the correctness substrate—needs
to be correct. Token coherence protocols can
be faster, because decoupling performance and
correctness eliminates common-case ordering
overheads and encourages aggressive perfor-
mance optimizations. We plan to further
develop Token Coherence, exploring new per-
formance policies, correctness substrate imple-
mentations, and verification issues. MICRO
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