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ABSTRACT 

Recent research in deterministic record-replay seeks to ease 

debugging, security, and fault tolerance on otherwise 

nondeterministic multicore systems. The important challenge of 

handling shared memory races (that can occur on any memory 

reference) can be made more efficient with hardware support. 

Recent proposals record how long threads run in isolation on top 

of snooping coherence (IMRR), implicit transactions (DeLorean), 

or directory coherence (Rerun). As core counts scale, Rerun's 

directory-based parallel record gets more attractive, but its nearly 

sequential replay becomes unacceptably slow. 

This paper proposes Karma for both scalable recording and 

replay. Karma builds an episodic memory race recorder using a 

conventional directory cache coherence protocol and records the 

order of the episodes as a directed acyclic graph. Karma also 

enables extension of episodes even after some conflicts. During 

replay, Karma uses wakeup messages to trigger a partially ordered 

parallel episode replay. Results with several commercial 

workloads on a 16-core system show that Karma can achieve 

replay speed (a) within 19%-28% of native execution speed 

without record-replay and (b) four times faster than even an 

idealized Rerun replay. Additional results explore tradeoffs 

between log size and replay speed.   

Categories and Subject Descriptors 

C.1 [Processor Architectures]: General  

General Terms 

Performance, Design 

Keywords 

Deterministic record-replay, multi-core processors. 

1. INTRODUCTION 
Today's shared-memory multiprocessors are not deterministic. 

The lack of repeatability makes it more difficult to do debugging 

(because bugs do not faithfully reappear on re-execution) [44], 

security analysis (attacks cannot be exactly replayed) [10], and 

fault tolerance (where a secondary set of threads attempts to 

mimic a primary set to detect faults) [24]. Moreover, dealing with 

multiprocessor nondeterminism -- heretofore limited to a few 

experts -- is now a concern of many programmers, as multicore 

chips become the norm in systems ranging from servers to clients 

to phones and the number of cores scales from a few to several to 

sometimes many.  

To this end, researchers have explored software and hardware 

approaches for a two-phase deterministic record-replay system 

[10][17][22][27][30][34][41][42]. In the first phase, these systems 

record selective execution events into a log to enable the second 

phase to deterministically replay the recorded execution.  

A great challenge for record-replay is handling shared memory 

races that can potentially occur on any memory reference, while 

other events, such as context switches and I/O can easily be 

handled by software [10][22][28]. Early hardware proposals for 

handling memory races [41][42] record when threads do interact, 

but require substantial hardware state to make log sizes smaller.  

Three recent hardware race recorders reduce this state by instead 

recording when threads don't interact: Rerun [17], DeLorean [27] 

and Intel Memory Race Recorder (IMRR) [34]. Let an episode (or 

chunk) be a series of dynamic instructions from a single thread 

that executes without conflicting with any other thread. All three 

recorders use Bloom filters [5] to track coherence events to 

determine when to end episodes.  

These recorders assume different coherence protocols that affect 

their scalability to many-core chips and complexity of 

implementation:  

 IMRR assumes broadcast snooping cache coherence and 

proposes globally synchronized chunk termination among the 

cores for better replay speed. IMRR reliance on broadcast 

and globally synchronized operation limits its scalability. 

 DeLorean relies on BulkSC/Bulk's [6][7] non-traditional 

broadcast of signatures to commit/abort implicit transactions 

and a centralized arbiter to record and replay chunk order. 

Thus DeLorean demands a completely new coherence 

protocol and support for implicit transactions to make its 

scheme for deterministic record-replay feasible. 

 Rerun operates with relatively minor changes to more 

conventional point-to-point directory protocol that allows 

scalable recording while demanding minimal hardware 

extension. 

Thus, going forward, Rerun's approach seems most promising as 

it is scalable to chips with many cores and to systems with 

multiple sockets, while requires moderate changes to conventional 

hardware. During replay, however, Rerun does not scale, because 

its replay is nearly sequential due to its use of Lamport scalar 

clocks [19]. Fast, parallel replay can expand the applicability of 

deterministic record/replay systems, which in turn, can further 

justify deploying them. Fast replay is valuable for scenarios that 

include: 

 In security analysis, fast replay can help quick analysis of an 

attack and allow urgent fix to critical security flaws. A quick 

replay, even when the attack is underway, can help to trace 

the attacker [10]. 

 In fault tolerance, where one might wish to maintain 

availability of a critical primary server in presence of faults, 

a secondary server following the primary, needs to quickly   
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Figure 1. Rerun's Recording and "idealized" replay. 

 

replay primary's execution to provide hot backup [24]. 

 For classic use of debugging, deterministic record/replay's 

utility will decline if scaling to 16, 32 or more cores, requires 

a sequential replay that is at least 16X, 32X or more slower. 

Replaying for small intervals of time may be acceptable, but 

the situation quickly worsens if replay for longer intervals 

and/or large number of cores are needed.  

We believe that the need for scalable and fast Deterministic 

record-replay assumes further importance with respect to 

supercomputing where hundreds of cores/nodes interact during 

computation. 

This paper proposes Karma for both scalable recording and 

replay, that minimally extends conventional directory coherence 

protocol. Karma's proposed novel episodic memory race recorder-

replayer records the order of episodes as a directed acyclic graph 

(DAG). Karma also extends lengths of episodes that conflict 

during recording by ensuring that they do not conflict during 

replay. During Karma's replay, special wakeup messages (like 

coherence acknowledgment messages) trigger parallel replay of 

independent episodes. We also show how to extend Karma from 

sequential consistency to Total Store Order (TSO), sufficient to 

implement the x86 memory model. 

We evaluate Karma on a 16-core system and find that: (1) Karma 

can achieve replay speed within 19-28% of native execution with 

no-record-replay and about 4 times faster than even idealized 

Rerun's replay. (2) Karma's log size is similar to Rerun's, but (3) 

can be made smaller for uses that can tolerate slower replay. 

2. Related Work and Rerun Review 

2.1 Related Work 
Classic all-software solutions to deterministic multiprocessor 

replay exist [11][22], but results show that they do not perform 

well on workloads that interact frequently. Three recent, 

promising approaches seek to reduce recording overhead, but 

consequently make replay more difficult. Park et al. [33] record 

partial information and retry replay until successful, while Altekar 

and Stoica [2] seek only to replicate a bug, not an exact replay. 

Lee et al. [23] seeks to log minimal information but uses online 

replay on spare cores to validate whether logged information is 

sufficient to guarantee output deterministic replay. 

Architecture researchers have focused on solutions that use 

hardware, at least for memory race detection. Bacon and 

Goldstein [3] recorded all snooping coherence transactions, which 

produced a serial and voluminous log. Xu et al.'s Flight Data 

Recorder (FDR) [41][42] created a distributed log of a subset of 

memory races, not implied by other races, but required substantial 

state with each core. Bugnet [31] shows how to enable record-

replay by recording input values rather than memory race order. 

Strata [30] uses global strata to reduce this state, but does not 

scale well to many cores [17]. ReEnact [35] allowed deterministic 

reproduction of a recent buggy execution with Thread Level 

Speculation (TLS) support. As previously discussed, DeLorean, 

Rerun, and IMMR largely eliminate FDR's filtering state by 

focusing on when cores operate independently. More recently, 

Timetraveller [39] improved upon Rerun to reduce its log size 

further by delaying ending of episodes in Rerun. Herein we 

propose Karma to improve Rerun's replay speed, and we expect 

that Karma's improvements will apply to Timetraveller as well. 

Importantly, Capo [28] discusses how to virtualize hardware 

deterministic replayers-including FDR, Rerun, and DeLorean-so 

that different parts of a machine can be in different modes: 

recorder, replay, or none. Fortunately, Karma, can also be 

virtualized with Capo. 

Finally, there have been several recent efforts on obtaining 

deterministic execution, wherein a multithreaded program with a 

fixed input always executes the same way [4][9][32]. Somewhat 

related is Yu et al.'s work [44] to constrain production software 

runs to the set of interleaving observed during testing. While 

promising, these approaches are not (yet) generally adopted. 

2.2 Rerun Review 
We review Rerun here to better enable Section 3 to show 

how Karma supersedes it, even as both modestly extend 

conventional directory cache coherence protocols. 

Record: Rerun dynamically breaks each core's execution into 

episodes during which a core does not interact with other cores. 

Rerun ends an episode when memory references of an episode 

conflict with a concurrent episode on another core. It can end 

episodes early, e.g., due to false conflicts, L1 cache evictions, or 

context switches. Rerun orders episodes with the timestamps 

based on a Lamport scalar clock [19]. Rerun's global log is a 

distributed collection of per-core logs. Each per-core log captures 

a core's sequence of episodes with each episode's size in dynamic 

memory references (REFS) and Lamport scalar clock based 

timestamp (TS). Figure 1(a) illustrates a Rerun recording, after 

threads at each core executed for some time initially. In Figure 

1(a), when during episode E10, core C1 tries to read memory 

block A, a coherence intervention message is sent to core C0, 

which had written the same address as part of episode E00. This 

prompts C0 to end episode E00, as it detects a conflict and 

attaches its own timestamp in the coherence reply (dotted directed 

edge in Figure 1(a)). After receiving the coherence reply, core C1 

adjusts the timestamp of episode E10 accordingly to capture the 

fact that E10 must be ordered after E00 during replay. The 

proposed Rerun implementation uses per-core read and write 

Bloom filters to detect when to end episodes and piggybacks 

Ci: Core i 

Eij: Core i’s episode j 

REFS: Dynamic memory reference count 

TS: timestamp 

(dashed arrow): actual memory conflict 

(shaded box): per episode log 



 

timestamps on coherence response messages to capture the causal 

ordering among the episodes. 

Replay: Rerun advocates software-based fully sequential replay 

of episodes in increasing order of their timestamps. In theory, 

however, scalar timestamps allow some parallelism, where 

episodes with the same timestamp can be replayed concurrently. 

We illustrate this idealized Rerun replay (non-sequential) in 

Figure 1(b). On one hand, it allows episodes E21 and E31 to be 

replayed concurrently. On the other hand, Lamport scalar clocks 

unnecessarily orders many independent episodes (e.g., E20 with 

episodes from cores C0 and C1). 

3. Insights: Replaying Episodes in Parallel 
As multi-threaded programs scale to more cores, replay must be 

parallelized otherwise it can become arbitrarily slow, limiting the 

utility of record-replay for online uses (e.g., fault tolerance, 

security analysis) and eventually debugging. To this end, this 

section introduces insights into Karma's parallel replay with both 

(a) ordering episodes with DAG and (b) extending episodes. 

While we present how Karma orders the execution in the cores, 

Karma-like FDR, Rerun, and DeLorean-can be virtualized by 

Capo [28]. 

3.1 Key Idea 1: Using Directed Acyclic Graph 

to Order Episodes During Replay 
. The first key idea behind Karma is simple: Use a directed 

acyclic graph (DAG) rather than scalar timestamps to partially 

order episodes during replay. DAGs are well known to allow 

much greater parallelism than scalar timestamps and have been 

used in an offline analysis of replay speed potentials of 

deterministic recording schemes [34]. For ease of exposition, we 

first show the value of using a DAG by pretending that Karma's 

recording breaks the execution into exact same episodes as Rerun 

did in Figure 1, and then, in Section 3.2, present a second 

innovation that allows Karma to have longer episodes than Rerun 

permits.  

To this end, Figure 2(a) illustrates how Karma can record 

memory dependencies among cores by triggering episode 

formation with DAG edges to successor episode(s). Karma's 

distributed log resembles Rerun's log with timestamps replaced by 

DAG edges (represented as PRED/SUCC sets explained below). 

Figure 2(b) illustrates the parallelism of Karma's replay 

wherein successor episodes execute after their predecessors 

without other artificial ordering constraints. Importantly, this 

enables a parallel replay that is much faster than even Rerun's 

idealized replay. For example, while Rerun ordered episode E20 

with independent episodes of cores C0 and C1 (Figure 1(b)), 

Karma's replay leaves episode E20 unordered with respect to the 

episodes of cores C0 and C1 (Figure 2(b)), facilitating more 

replay parallelism.  

While the idea of using a DAG is simple, it is less simple to 

determine how to represent DAG edges to successor episode(s). 

For fastest replay, the DAG edge representation should facilitate 

an episode waking up the successor episode(s) quickly. Moreover, 

for low recording overhead, it should be fast to create during 

recording and compact to log. Using integer episode identifiers, as 

in a software representation of DAG edges, is a poor 

representation, as we see no way for replay to avoid indirecting 

through memory to determine the successor(s). Using these 

episode identifiers would also have severe negative impact on log 

size. 

 

Figure 2. Karma's DAG-based Record and Replay with 

Rerun's Episode 

As discussed in more details in Section 4.3, to efficiently record 

the DAG edges, Karma represents DAG edges with predecessor 

(PRED) and successor (SUCC) sets that name the cores of the 

predecessor and successor episodes respectively. During 

recording, these sets are populated from coherence traffic and then 

logged. During replay, a core awaits a wakeup message from each 

predecessor before beginning an episode and sends a wakeup 

message to each successor after completing an episode. 

3.2 Key Idea 2: Extending Rerun’s Episode 
The second key idea behind Karma is subtle: Concurrent episodes 

must not conflict during replay, but may conflict during 

recording. In contrast, Rerun, DeLorean and IMRR always end 

episodes when they conflict during recording. For example in 

Figure 1(a) for Rerun, core C0 ends episode E00 when it gives 

block A to core C1 for episode E10. In Figure 2(a), we show 

Karma behaving similarly, but this is not necessary. More 

recently, Timetraveller [39] which improves upon Rerun's log size 

uses post-dating of scalar timestamps to also allow growing 

episodes even after some conflicts. 

In contrast, as shown in Figure 3(a), Karma continues recording in 

episode E00 even as it conflicts with episode E10, as long as it 

orders E00 before E10 in the log. During replay, conflicting 

episodes E00 and E10 will not be concurrent, because the log 

entries will ensure that the end of E00 precedes the beginning of 

E10. In similar fashion, core C1 can cover its execution of 41 

references with one episode E10 (Figure 3(a)), rather than two 

episodes E10 and E11 (Figure 2(a)). Beside the restriction 

discussed below, a core is not required to end a episode when 

either it (a) provides a block to another core or (b) obtains a block 

from another core. On one hand, this optimization seems too good 

to be true. Perhaps the authors of Rerun and DeLorean missed it, 

because they appear to be inspired by transactional memory 

systems [15][21] that usually abort when concurrent transactions 

conflict in an execution (as there is no distinction between 

recording and replay). Fortunately in Dependence Aware TM, 

See KEY of Figure 1 and following 

KEY: 

PRED: predecessor set 

SUCC: successor set 

(solid arrow): wakeup message 



 

 

Figure 3. Karma's Record and Replay with Extended 

Episodes 

Ramadan et al. [36] showed that conflicting concurrent 

transactions can all commit, provided that they are properly 

ordered. For example, they allow core C0's transaction T to pass a 

value to core C1's concurrent transaction U (and both commit) as 

long as T is ordered before U. Karma exploits a similar idea for 

episodes. Both are inspired by the greater freedom of conflict 

serializability over two-phase locking [12] and value forwarding 

among "episodes" in some thread-level-speculation systems (e.g., 

[13][37]). 

On the other hand, full exploitation of the optimization is not 

possible. As depicted in Figure 3(a), a problem occurs when the 

core C0 later attempts to order E00 after core C1's episode E10 

because of conflict in block E (memory reference 4 of core C0), 

but E00 was previously ordered before E10 due to block A (or 

conversely a core seeks to order an episode before another episode 

previously ordered after). Karma cannot do this without adding a 

cycle to the DAG, which is not allowed, as it would make 

ordering replay impossible. Instead, Karma always ends episode 

E00, begins episode E01 (with memory reference 4 as its first 

reference), and orders E01 after E10 of core C1. 

Karma detects the possibility of cycle formation in the recorded 

DAG using Lamport scalar clock based timestamps [19] (but 

never logs them). Karma ends an episode when it receives a 

timestamp greater than the timestamp of the current episode. This 

ensures that the order of episodes is acyclic and can be replayed 

properly. Since Karma does not log timestamps, they cannot 

serialize replay and the sole purpose of this timestamp is to 

dynamically detect possibility of cycles while recording. 

Finally, Karma enables a tradeoff between log size and replay 

parallelism, similar to one found in few other record-replay 

systems [27][42]. Growing longer episodes has two effects. First, 

larger episodes mean fewer episodes to cover an execution. This 

makes log size smaller. Second, longer episodes make replay less 

parallel and slower. This is because during replay the end of a 

predecessor episode happens before the beginning of a successor 

episode. For example, earlier we saw that Karma could cover core 

C1's execution of 41 memory references with one episode (Figure 

3(a)) rather than two (E10 and E11 in Figure 2(a)). In Figure 3(b), 

we however observe that during replay, this means that episode  

Table 1. Base system Configuration 

E01 can only start execution after the merged bigger episode E10 

completes its execution. For this reason, as we will find in Section 

6, there is value in bounding the maximum episode size to balance 

log size and replay parallelism. 

3.3 A Sketch of Karma Operation 
This section sketches Karma's basic operation for recording 

and replay, but leaves details for Section 4. 

Record Sketch: During recording, Karma grows episodes 

and passes timestamps on coherence response messages. Each 

core grows its episode until it receives a timestamp greater than its 

current timestamp (or a maximum size is reached, etc.). This 

indicates possibility of cycle in the DAG. At this point, it ends its 

episode, saves the corresponding predecessor/successor set for 

logging, and begins a new episode. When responding with a 

timestamp, a core sends its current timestamp for a block that 

matches in its read/write filter or its previous timestamp 

otherwise. For implementation reasons discussed later, a Karma 

core keeps the timestamp and predecessor/successor sets for both 

its immediately previous and current episodes. When an episode 

ends at a core, it logs the memory reference count, predecessor 

and successor set of the immediately previous episode, but never 

logs the timestamp. 

Replay Sketch: During replay, a Karma core repeats four 

steps. (1) Read the predecessor/successor (PRED/SUCC) sets and 

reference count REFS for its next episode. (2) Wait for wake-up 

messages from each core in the episode's predecessor set. (3) 

Execute instructions for REFS memory references. (4) Send a 

wakeup message to each core in the successor set. 

Online Replay? While we present the record and replay 

phases as separate, applications like fault tolerance may wish to 

"pipe" the log from recording to a concurrent replay. Karma's 

faster parallel replay makes this online replay more promising, but 

we leave detailed design issues to future work. 

4. Implementing Karma 
While the previous section presented the ideas behind 

Karma, this section presents a concrete hardware implementation 

and addresses additional issues. 

4.1 Example Base System 
We assume a base system as illustrated in Figure 4 with parameter 

values from Table 1. It is a multicore chip with private writeback 

L1 caches, shared multibanked L2 and a MESI directory protocol. 

Core 16 core, in-order, 3 GHz 

L1 Caches Split I&D, Private, 4-way set-associative, 

write-back, 64B lines, LRU, 3cycles hit  

L2 Caches Unified, Shared, Inclusive, 16M 8-way set 

associative, write-back, 16 banks, LRU 

replacement, 21 cycle hit 

Directory Full Bit vector at L2  

Memory 4GB DRAM , 300 cycle access 

Coherence MESI Directory, Silent Replacement 

Consistency 

Model 

Sequential Consistency(SC) (with 

extension to TSO in Section 4.7) Karma can extend episodes to reduce 

log sizes. 



 

 
Figure 4. Base system configuration with Karma's state per 

core 

4.2 Karma Hardware 
As Figure 4 depicts, Karma adds eight registers (148 bytes) to 

each core: 128-byte address filter (FLT) (combining Rerun's 

read/write filters), 4-byte reference count (REFS), and for both the 

previous and current episodes, there are predecessor sets (PRED0 

and PRED1), successor sets (SUCC0 and SUCC1) and 4-byte 

timestamps (TS0 and TS1). For 16 cores, all sets can be 

represented with 2-byte bit vectors, while more scalable 

representations are possible as many episodes have one or two 

predecessor or successor. 

Karma assumes L2 cache blocks include a directory that tracks 

where a block is cached in the L1s, L1 cache shared replacements 

are silent, and L1 writebacks continue to remember the previous 

owner. Section 4.6 will discuss additional issues due to L1 and L2 

caches being finite. Karma passes timestamps on coherence 

response messages. Karma also adds a single bit called 

previouslyOrdered in coherence response message, to be 

explained in next section. For supporting replay, Karma adds 

wakeup messages whose only payload is a source core identifier. 

4.3 Predecessor and Successor Sets 
This subsection discusses some subtle issues for how and why 

Karma represents DAG edges between episodes as predecessor 

and successor sets between cores. We implement each set with a 

2-byte bit vector, but larger systems can use other encodings since 

most of these sets have just one or a few elements. 

 

Figure 5. Subtle implementation issues regarding Predecessor 

and Successor Sets 

Since predecessor and successor sets can only record a single edge 

from/to each other core, we take special care to avoid recording a 

second edge between the same two cores (Figure 5). When 

sending a message that would constitute a second outgoing edge 

from an episode to the same other core, we set the 

previouslyOrdered bit in the coherence reply message to indicate 

that this message does not represent an edge, as depicted in Figure 

5(a) and (b). This edge is redundant because of the previous edge 

to this core. On receiving a message that would be the second 

incoming edge from another core, we end the receiving core's 

episode, start a new episode, and add the edge to the otherwise 

empty new predecessor set (Figure 5(c)). This works, since cores 

can always end episodes early. On receiving a request message 

from a core already ordered after this core's current episode, this 

core responds with the previouslyOrdered bit set so that this 

message is also not a DAG edge, as depicted in Figure 5(d). This 

action is correct because the missing edge is implied by 

transitivity [41]. 

Karma's approach for representing DAG edges leads to a 

convenient invariant during replay (Section 4.5): when a core 

receives a wakeup message from core req, the message pertains to 

the receiving core's next episode whose predecessor set includes 

core req. This allows the wakeup message to physically name a 

core and yet have the edge be applied to a specific episode as in 

Figure 3(b). 

4.4 Karma Recording 
As depicted in Figure 6, the key to Karma recording is what 

actions Karma takes when a core/L1 sends a data response or 

acknowledgement (left side) and receives data or an 

acknowledgement in response to a coherence request it has made 

(right side). The top of Figure 6 repeats the Karma state from 

Figure 4. 

During recording, each core sometimes sends a coherence reply 

(data and acknowledgement) in response to coherence request 

from another core req (Figure 6 (a)). The core first tests whether 

core req is already an element of SUCC1. If it is, the outgoing 

message's previouslyOrdered bit is set, so that the message does 

not create an edge in the DAG (Section 4.3) and no other actions 

are needed. 

Otherwise, the core examines whether its address filter contains 

the message address (or a false positive). If so, then the core 

associates the outgoing edge with its current episode. It sets the 

message's timestamp to TS1 and previouslyOrdered bit to false. It 

then adds core req to SUCC1. If the filter does not match, the core 

associates the message with its previous episode and takes 

corresponding actions using TS0 and SUCC0. This is correct, 

because if a block is not touched by the current episode it was 

touched no later than the previous episode at that core. 

During recording, a core executes instructions, which sometimes 

generate cache misses and coherence requests. Upon receiving a 

coherence response message (data or acknowledgement) from 

core src, a core may or may not take any actions for recording 

(Figure 6(b)). In particular, if the incoming message's 

previouslyOrdered bit is set, no action is needed, because the 

message comes from a core whose current or previous episode 

was already ordered with respect to this core's earlier or current 

episode. 

If episode ordering is required, the incoming message may cause 

the current episode to end for two reasons. First, the episode ends 

if SUCC1 is not empty and the message's timestamp is greater 

than the current episode's timestamp. This is done to prevent 

cycles in the DAG. Second, the episode ends on incoming 

message from core src that is already in the current episode's 

PRED1. 

 



 

 

Figure 6. Karma's Recording Algorithm (at each core) 

 

To end an episode, a core logs the previous episode's memory 

reference count and the predecessor/successor sets, copies the 

current episode's information to the previous one's, and then 

initializes the new current episode's values. In particular, the 

timestamp update follows Lamport scalar clock rules, the filter is 

cleared, the successor set made empty, and predecessor set made 

to contain only the message source (core src). The timestamp is 

not logged and thus has no role in replay. 

4.5 Karma Replay 
During replay, a Karma core repeats four steps, as depicted in 

Figure 7.  

(1) When a core is ready to start a new episode, it reads the 

predecessor/successor (PRED1/SUCC1) sets and reference count 

REFS1 for the next episode from its per-core log. These values 

are stored in the same special registers as used in recording. 

Replay on this core is complete when its log is empty. 

(2) The core waits for wakeup messages from each core in the 

episode's predecessor set PRED1. When the core has received a 

message for all cores originally in PRED1, it moves to the next 

step. 

(3) The core executes instructions of the episode, decrementing 

REFS1 on each dynamic memory references, and stops execution 

when the episode REFS1 is zero and the episode is complete.  

(4) The core sends a wakeup message to each core in its successor 

set SUCC1. When complete, the core goes back to step (1). 

Karma's replay algorithm counts committed memory references, 

but never micro-architectural events, such as cache misses. Thus, 

Karma replay does not require the same caches or cache state as 

was present during Karma recording 

The description above acts as if the wakeup messages arrive 

only during step (2), whereas they can actually arrive at any time. 

We implement a simple replayer that just buffers early messages. 

A more complex replayer could "pipeline" episodes by reading the 

next log entry early and gathering wakeup messages for the next 

episode while the current episode is still executing. 

More subtly, wakeup messages for future episodes can arrive 

earlier than ones needed for the next episode(s), theoretically 

filling up any fixed sized message buffer. Fortunately, since the 

only information that must be remembered about a wakeup 

message is its source core identifier, a core can remember up to 8 

wakeup messages per core (128 total) using a three-bit counter for 

each of 16 cores (6 bytes total). Moreover, these buffer counts can 

be made unbounded using known "limitless" techniques [8] that 

maintain rare overflow counts in software. 

4.6 Effect of Finite Caches 
Heretofore we assumed infinite L1 and L2 caches, but real 

systems have finite caches. Here we extend Karma to handle L1 

and L2 cache replacements (from `Shared' and `Exclusive') and 

writebacks (from `Modified') [38]. Assume that a block is evicted 

by core C0 at episode E00 and next used by core C1 in episode 

E19. In all cases, episode E00 must be ordered before episode 

E19. 

L1 Evictions: Karma handles L1 replacements and writebacks 

mostly like FDR [41]. There are three possible cases during L1 

eviction that require attention. First, a shared replacement by C0 

that is silent (i.e. coherence directory is not notified). A 

subsequent miss by C1 will send an invalidation to C0 whose 

acknowledgement message will order episode E19 after C0's 

current episode which is (long) after episode E00. Second, a 

writeback by C0 does not reset the block owner field at the L2, 

much like LogTM's sticky states [29] and FDR [41]. As in the 

first case, a subsequent miss by C1 will send an message to C0 

whose acknowledgement message will order episode E19 after 

C0's current episode which is after episode E00.  

Third, C0 could have written back the block and one or more 

other cores read it. Here Karma, extends the L2 directory by 4 bits 

(< 1% of a 64-byte cache block) to keep core identifier of the last 

writer to a block, so that reads can continue to get ordered after 

C0's current episode that is after E00. This is the same state that a 

MOESI coherence protocol needs to remember for an owner 

among sharers. 



 

 

Figure 7. Karma's replay algorithm (at each core) 

 

L2 Evictions: 

Karma seeks a different solution for L2 evictions, because (a) they 

are much less common and (b) we wish to add little or no state to 

main memory. The key idea is to compute a proxy core to order 

the eviction before any subsequent use. For example, the proxy 

core for victim block 100 with 16 cores might be 100 modulo 16 

= C4. When the L2 seeks to evict block 100 last written by core 

C0, it will first order the current episode of C0 before the current 

episode of C4. (Much) later when C1 misses to memory for block 

100, the L2 can re-compute the proxy C4 and order the current 

episode of core C4 before the current episode of core C1 which is 

E19. By transitivity, episode E00 is ordered before E19. 

Optionally, memory can use a single bit to remember whether a 

block was ever cached, as we assume in our simulations. Many 

other solutions are possible, including broadcasting on L2 misses 

in small systems or augmenting main memory to remember the 

previous writer if metabits are available. 

4.7 Extending Karma to Support TSO (x86) 
Hitherto, Karma implicitly assumed the sequential consistency 

(SC) memory consistency model [20], but now we show how to 

extend Karma to total store ordering (TSO) [14][40]. Unlike SC, 

TSO exposes (an abstraction of) write buffer for committed 

writes. Moreover, TSO provides a correct implementation of the 

x86 memory model [18] that exploits most of the flexibility that 

x86 allows. We extend Karma by adapting Xu et al.'s TSO 

solution from the dependence-based RTR[42].  

TSO presents challenges as it allows a processor to commit a write 

(store) before a subsequent read (load) (in program order) and yet 

order the write (at logical shared memory) after the read. In 

practice, this relaxation of write-read ordering is leveraged using a 

first-in-first-out write buffer to hold writes that are committed but 

yet not ordered. Xu et al. [42] showed that such write buffers can 

cause their RTR system to record a cycle of dependences and 

deadlock the replay. To break these cycles, they propose a order-

value hybrid recorder that detects a problematic read (or load) 

and reacts by recording the value read and not recording the write-

after-read dependency that made the read problematic. 

Specifically, a problematic read is a read that gets its value V 

from the cache, while one or more earlier committed writes (in 

program order) are in the write buffer and cache block containing 

V is invalidated before all earlier writes are ordered. The 

execution is replayed following the now-acyclic dependencies and 

"bypassing" values to reads from the log whenever present. We 

found that Karma's replayer can also run into a similar situation 

for the same reasons, but fortunately, Xu et al.'s solution can be 

extended to episodic record/replay of Karma. 

5. Evaluation Methods 
We evaluate Karma using the multicore hardware presented in 

Section 4, except that we study scaling by varying core count: 4, 

8, and 16 cores. When doing this, we keep the shared L2 cache 

size per core constant at 1MB, so the total L2 cache size is 4MB 

for 4 cores, 8MB for 8 cores, and 16MB for 16 cores. 

For comparison purposes, we also evaluated Rerun [17] in the 

same setup, as it is the closest cousin to Karma, using the code 

obtained from Rerun's authors. More specifically, we compare 

against an idealized Rerun replayer (non-sequential) that (a) 

replays episodes with the same timestamp in parallel (as in Figure 

1(b)) and (b) appears to wakeup episode(s) with the next 

timestamp after the last episode with the current timestamp 

completes. A practical implementation of Rerun replay would, of 

course, be slower than this idealized one. 

We use the Wisconsin GEMS [26] full system simulation 

infrastructure, which models an enterprise-level SPARC server 

running on unmodified Solaris 9 operating system. This simulator 

uses the Simics [25] full system simulator as front end for the 

functional part of the simulation and uses the Ruby memory 

timing model to simulate different hardware platforms. In this 

work we concentrate on memory race recording and replaying and 

assume support for handling DMA, I/O, and external interrupts 

much like FDR [41] and software layer support much like Capo 

[28]. To approximate this, we dilate Simics's time to make sure 

interrupts arrive between the same dynamic instructions during 

both recording and replay.  

We use the Wisconsin Commercial Workload suite [1] to drive 

evaluation. This workload suite consists of a task-parallel web 

server (Apache), a Java middleware application (Jbb), a TPC-C 

like online transaction processing (Oltp) workload on DB2, and a 

pipelined web server (Zeus). We stress-tested the Karma 

implementation with memory race ordering sensitive 

microbenchmark racey [16]. 

6. Experimental Results 
This section will ask three basic questions and provide the 

answers summarized here: 

Question #1: Does Karma speedup replay? 

Yes, Karma replay can be 1.4X-7.1X faster than idealized Rerun 

replay. This translates to a modest 19%-28% slowdown for the 

replay over the base system without any record/replay in a 16 core 

system. With fewer cores the slowdown is even less.  

Question #2: How can Karma trade off log size and replay 

speed? 

By loosening the bound on maximum episode size, Karma can 

achieve smaller log sizes (e.g., 47%) for situations when slower 

replay is tolerable (e.g., 21% slower). This presents an effective 

control knob to trade off the log size versus replay speed, 

depending upon the requirement of a particular use of 

deterministic replay. 

 



 

 

Figure 8. Comparison of Rerun's and Karma's Replay Speed (normalized to Base, 256-reference max. episodes) 

 

Question #3: How does Karma's log size compare to Rerun's? 

Karma and Rerun log sizes are comparable with a 256-memory-

reference maximum episode size. As we increase episode size, 

Karma achieves substantial log size reduction (up to 43%) over 

Rerun and still replays much faster than Rerun. 

6.1 Big Picture: Much Faster Replay While 

Retaining Fast Recording 
Figure 8 displays the most important graphs in this paper. Each 

graph provides results for a different benchmark. Each cluster of 

bars within a histogram represents a different configuration of the 

CMP. The configuration here is characterized by the number of 

cores (4, 8, and 16) and total L2 cache size (4MB, 8MB, and 

16MB). All histogram heights depict the speedup normalized to 

the native execution at corresponding CMP configuration with no 

recording or replay (Base). For example, bars clustered around x-

axis point for 16core-16MB configuration are speedup normalized 

to execution for 16core-16MB L2 cache CMP configuration 

without any record/replay (Base).  

Each cluster of bars in a histogram has three bars representing 

execution with no record/replay (Base), idealized Rerun replay 

and Karma replay. Not shown are Rerun and Karma recording, as 

they are mostly very close to Base. All results in this section 

assume a maximum episode size of 256 memory references, 

which, as we will see later, produces a log size similar to Rerun's. 

By showing performance comparison of our system for different 

configuration points for CMP, we tried to demonstrate scalability 

and applicability of our proposed system under varying CMP 

configurations. 

Question #1: Does Karma speedup replay? 

Yes, Karma replay can be 1.4-7.1X faster than idealized Rerun 

replay depending upon the number of cores and the application. 

For Apache with 4, 8, and 16 cores, for example, Karma replay is 

1.4X, 2X, and 3X faster than Rerun replay. This is not surprising, 

since even our idealized Rerun replay still does not expose enough 

parallelism due to scalar clock based ordering of episodes. Results 

for Oltp and Zeus are similar, while for Jbb, Karma replay speed 

is 7.1X of Rerun's. For the 16-core system, Karma replay is only 

19%, 28%, 22% and 25% slower than the Base execute (without 

record/replay) for Apache, Jbb, Oltp and Zeus, respectively. For 

fewer cores, this slowdown is much less. 

Recording: Karma's recording (not shown in the figure) is usually 

negligibly different from doing no recording/replay (i.e., Base), 

just like Rerun's recording. We observed for Apache, Jbb and 

Zeus, Karma recording runs nearly identically (<1% slowdown) 

with doing no recording (Base). Karma recording also works 

similarly well for OLTP with 4 and 8 cores, but adds a bit more 

overhead (~10%) to 16-core OLTP. More importantly, Karma 

recording scales well when applications scale well.  

Bandwidth: Karma sends around 2% more traffic over the 

interconnect while recording than Rerun. This is because of 

extending few coherence messages (previouslyOrdered bit, etc.) 

and sometimes because of extra messages. This modest extra 

bandwidth could affect execution time substantially if the 

interconnect was near saturation (which it should not be). One 

would note that Rerun adds around 10% bandwidth overhead on 

the interconnect over a system with no record/replay. 
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Figure 9. Tradeof between Logsize and Replay Slowdown 
By varying maximum episode size across 128 (right end of each 

application's lines), 256, 512, ... 8K, and unbounded number of memory 

references, allow one tradeoff smaller log with some replay slowdown. 

Displayed results use 16 cores. 

Sensitivity Analysis: The results above showed that Karma gains 

are robust with varying core count (4, 8 and 16) and shared L2 

cache sizes (4, 8, 16 MB). Additional sensitivity analysis (not 

shown), confirms that results qualitatively hold during variations, 

e.g., doubling L1 size, doubling L2 size, and halving memory 

latency. 

6.2 Obtaining Smaller Logs but Slower 

Replay 
Above we showed that Karma replay performance is much 

better than Rerun's (1.4X-7.1X) for what will turn out to be a 

comparable log size. Some uses of record/replay, e.g., debugging, 

may wish to reduce rate of log size growth further, so that, for 

fixed log size, one can record a longer execution. Karma 

facilitates this for deterministic record/replay uses that can tolerate 

somewhat slower replay. This might be a good tradeoff when 

recording is much more common (e.g., always on) than replay 

(e.g., to investigate a crash). 

Figure 9 illustrates Karma log size and replay speed for each 

of our four applications. The x-axis gives uncompressed log size 

growth in bytes per thousand instructions. The y-axis gives replay 

speed normalized to recording speed. For each application, each 

point on its lines, beginning from the right, provides the tradeoff 

with maximum episode sizes with memory reference counts: 128, 

256 (the value used in Section 6.1), 512, ..., 8K, and unbounded.  

Question #2: How can Karma trade off log size and 

replay speed? By loosening the bound on maximum episode size, 

Karma achieves smaller log sizes but slower replay. For example, 

increasing the maximum episode size from 256 to 2K references 

has the following effects: Apache generates 54% smaller log for 

23% slower replay, Jbb generates 71% smaller log for 87% slower 

OLTP generates 60% smaller log for 21% slower replay, and Zeus 

generates 47% smaller log for 33% slower replay. Three of four 

benchmarks pay a modest replay slowdown, while Jbb is more 

sensitive.  

Question #3: How does Karma log size compare to 

Rerun's? Karma and Rerun log sizes are comparable with a 256-

memory-reference maximum episode size. Figure 10 displays 

Karma's uncompressed log size normalized to Rerun's 

uncompressed log size on a 16 core system. The x-axis varies both 

Karma and Rerun's maximum episode sizes (in memory  

 

Figure 10. Logsize comparison between Karma and Rerun 

references) for 128, 256, ..., 8K, and unbounded. For the default 

of 256 memory references, Karma's log sizes versus Rerun's 

varies from 10% smaller for Zeus to 17% larger for OLTP. As 

episodes grow larger, Karma's log size decreases faster than 

Rerun's. For maximum episode sizes of 1K references and greater, 

Karma's log is always smaller than Rerun's. With a maximum 

episode size of 8K references), Karma log size is smaller than 

Rerun's by 33%, 43%, 17% and 35% for Apache, Jbb, Oltp and 

Zeus, respectively. 

If small logs are more important than faster replay, then it is 

reasonable to set the maximum episode size to 2K references. To 

this end we found out that with maximum episode size 2K 

references, Karma retains substantial replay speedups with respect 

to Rerun (e.g. 1.3X-4.8X) but they are smaller than with 256-

reference episodes. Moreover, Figure 10 showed that Karma's log 

size is 8-35% smaller than Rerun's log size, when the maximum 

episode size is limited to 2K memory references in both systems. 

7. Conclusions 
This paper proposes Karma for both scalable recording and 

replay. Karma builds episode-based memory race 

recorder/replayer using a directory coherence protocol, without 

requiring any global communication. During recording, Karma 

records the order of episodes with a directed acyclic graph and 

extends episodes even after some conflicts. During replay, Karma 

uses wakeup messages to trigger parallel replay of independent 

episodes. Results with several commercial workloads on a 16-core 

multicore system show that Karma can achieve replay speed 

within 19%-28% of execution speed without record-replay and 

four times better than idealized Rerun replay. 
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