
 *Work done while at UW-Madison.

Karma: Scalable Deterministic Record-Replay
Arkaprava Basu

Department of Computer Sciences
University of Wisconsin-Madison

basu@cs.wisc.edu

Jayaram Bobba*

Intel Corporation

jayaram.bobba@intel.com

Mark D. Hill
Department of Computer Sciences
University of Wisconsin-Madison

markhill@cs.wisc.edu

ABSTRACT

Recent research in deterministic record-replay seeks to ease

debugging, security, and fault tolerance on otherwise

nondeterministic multicore systems. The important challenge of

handling shared memory races (that can occur on any memory

reference) can be made more efficient with hardware support.

Recent proposals record how long threads run in isolation on top

of snooping coherence (IMRR), implicit transactions (DeLorean),

or directory coherence (Rerun). As core counts scale, Rerun's

directory-based parallel record gets more attractive, but its nearly

sequential replay becomes unacceptably slow.

This paper proposes Karma for both scalable recording and

replay. Karma builds an episodic memory race recorder using a

conventional directory cache coherence protocol and records the

order of the episodes as a directed acyclic graph. Karma also

enables extension of episodes even after some conflicts. During

replay, Karma uses wakeup messages to trigger a partially ordered

parallel episode replay. Results with several commercial

workloads on a 16-core system show that Karma can achieve

replay speed (a) within 19%-28% of native execution speed

without record-replay and (b) four times faster than even an

idealized Rerun replay. Additional results explore tradeoffs

between log size and replay speed.

Categories and Subject Descriptors

C.1 [Processor Architectures]: General

General Terms

Performance, Design

Keywords

Deterministic record-replay, multi-core processors.

1. INTRODUCTION
Today's shared-memory multiprocessors are not deterministic.

The lack of repeatability makes it more difficult to do debugging

(because bugs do not faithfully reappear on re-execution) [44],

security analysis (attacks cannot be exactly replayed) [10], and

fault tolerance (where a secondary set of threads attempts to

mimic a primary set to detect faults) [24]. Moreover, dealing with

multiprocessor nondeterminism -- heretofore limited to a few

experts -- is now a concern of many programmers, as multicore

chips become the norm in systems ranging from servers to clients

to phones and the number of cores scales from a few to several to

sometimes many.

To this end, researchers have explored software and hardware

approaches for a two-phase deterministic record-replay system

[10][17][22][27][30][34][41][42]. In the first phase, these systems

record selective execution events into a log to enable the second

phase to deterministically replay the recorded execution.

A great challenge for record-replay is handling shared memory

races that can potentially occur on any memory reference, while

other events, such as context switches and I/O can easily be

handled by software [10][22][28]. Early hardware proposals for

handling memory races [41][42] record when threads do interact,

but require substantial hardware state to make log sizes smaller.

Three recent hardware race recorders reduce this state by instead

recording when threads don't interact: Rerun [17], DeLorean [27]

and Intel Memory Race Recorder (IMRR) [34]. Let an episode (or

chunk) be a series of dynamic instructions from a single thread

that executes without conflicting with any other thread. All three

recorders use Bloom filters [5] to track coherence events to

determine when to end episodes.

These recorders assume different coherence protocols that affect

their scalability to many-core chips and complexity of

implementation:

 IMRR assumes broadcast snooping cache coherence and

proposes globally synchronized chunk termination among the

cores for better replay speed. IMRR reliance on broadcast

and globally synchronized operation limits its scalability.

 DeLorean relies on BulkSC/Bulk's [6][7] non-traditional

broadcast of signatures to commit/abort implicit transactions

and a centralized arbiter to record and replay chunk order.

Thus DeLorean demands a completely new coherence

protocol and support for implicit transactions to make its

scheme for deterministic record-replay feasible.

 Rerun operates with relatively minor changes to more

conventional point-to-point directory protocol that allows

scalable recording while demanding minimal hardware

extension.

Thus, going forward, Rerun's approach seems most promising as

it is scalable to chips with many cores and to systems with

multiple sockets, while requires moderate changes to conventional

hardware. During replay, however, Rerun does not scale, because

its replay is nearly sequential due to its use of Lamport scalar

clocks [19]. Fast, parallel replay can expand the applicability of

deterministic record/replay systems, which in turn, can further

justify deploying them. Fast replay is valuable for scenarios that

include:

 In security analysis, fast replay can help quick analysis of an

attack and allow urgent fix to critical security flaws. A quick

replay, even when the attack is underway, can help to trace

the attacker [10].

 In fault tolerance, where one might wish to maintain

availability of a critical primary server in presence of faults,

a secondary server following the primary, needs to quickly

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

ICS’11, May 31–June 4, 2011, Tuscon, Arizona, USA.

Copyright 2011 ACM 978-1-4503-0102-2/11/05...$10.00.

Figure 1. Rerun's Recording and "idealized" replay.

replay primary's execution to provide hot backup [24].

 For classic use of debugging, deterministic record/replay's

utility will decline if scaling to 16, 32 or more cores, requires

a sequential replay that is at least 16X, 32X or more slower.

Replaying for small intervals of time may be acceptable, but

the situation quickly worsens if replay for longer intervals

and/or large number of cores are needed.

We believe that the need for scalable and fast Deterministic

record-replay assumes further importance with respect to

supercomputing where hundreds of cores/nodes interact during

computation.

This paper proposes Karma for both scalable recording and

replay, that minimally extends conventional directory coherence

protocol. Karma's proposed novel episodic memory race recorder-

replayer records the order of episodes as a directed acyclic graph

(DAG). Karma also extends lengths of episodes that conflict

during recording by ensuring that they do not conflict during

replay. During Karma's replay, special wakeup messages (like

coherence acknowledgment messages) trigger parallel replay of

independent episodes. We also show how to extend Karma from

sequential consistency to Total Store Order (TSO), sufficient to

implement the x86 memory model.

We evaluate Karma on a 16-core system and find that: (1) Karma

can achieve replay speed within 19-28% of native execution with

no-record-replay and about 4 times faster than even idealized

Rerun's replay. (2) Karma's log size is similar to Rerun's, but (3)

can be made smaller for uses that can tolerate slower replay.

2. Related Work and Rerun Review

2.1 Related Work
Classic all-software solutions to deterministic multiprocessor

replay exist [11][22], but results show that they do not perform

well on workloads that interact frequently. Three recent,

promising approaches seek to reduce recording overhead, but

consequently make replay more difficult. Park et al. [33] record

partial information and retry replay until successful, while Altekar

and Stoica [2] seek only to replicate a bug, not an exact replay.

Lee et al. [23] seeks to log minimal information but uses online

replay on spare cores to validate whether logged information is

sufficient to guarantee output deterministic replay.

Architecture researchers have focused on solutions that use

hardware, at least for memory race detection. Bacon and

Goldstein [3] recorded all snooping coherence transactions, which

produced a serial and voluminous log. Xu et al.'s Flight Data

Recorder (FDR) [41][42] created a distributed log of a subset of

memory races, not implied by other races, but required substantial

state with each core. Bugnet [31] shows how to enable record-

replay by recording input values rather than memory race order.

Strata [30] uses global strata to reduce this state, but does not

scale well to many cores [17]. ReEnact [35] allowed deterministic

reproduction of a recent buggy execution with Thread Level

Speculation (TLS) support. As previously discussed, DeLorean,

Rerun, and IMMR largely eliminate FDR's filtering state by

focusing on when cores operate independently. More recently,

Timetraveller [39] improved upon Rerun to reduce its log size

further by delaying ending of episodes in Rerun. Herein we

propose Karma to improve Rerun's replay speed, and we expect

that Karma's improvements will apply to Timetraveller as well.

Importantly, Capo [28] discusses how to virtualize hardware

deterministic replayers-including FDR, Rerun, and DeLorean-so

that different parts of a machine can be in different modes:

recorder, replay, or none. Fortunately, Karma, can also be

virtualized with Capo.

Finally, there have been several recent efforts on obtaining

deterministic execution, wherein a multithreaded program with a

fixed input always executes the same way [4][9][32]. Somewhat

related is Yu et al.'s work [44] to constrain production software

runs to the set of interleaving observed during testing. While

promising, these approaches are not (yet) generally adopted.

2.2 Rerun Review
We review Rerun here to better enable Section 3 to show

how Karma supersedes it, even as both modestly extend

conventional directory cache coherence protocols.

Record: Rerun dynamically breaks each core's execution into

episodes during which a core does not interact with other cores.

Rerun ends an episode when memory references of an episode

conflict with a concurrent episode on another core. It can end

episodes early, e.g., due to false conflicts, L1 cache evictions, or

context switches. Rerun orders episodes with the timestamps

based on a Lamport scalar clock [19]. Rerun's global log is a

distributed collection of per-core logs. Each per-core log captures

a core's sequence of episodes with each episode's size in dynamic

memory references (REFS) and Lamport scalar clock based

timestamp (TS). Figure 1(a) illustrates a Rerun recording, after

threads at each core executed for some time initially. In Figure

1(a), when during episode E10, core C1 tries to read memory

block A, a coherence intervention message is sent to core C0,

which had written the same address as part of episode E00. This

prompts C0 to end episode E00, as it detects a conflict and

attaches its own timestamp in the coherence reply (dotted directed

edge in Figure 1(a)). After receiving the coherence reply, core C1

adjusts the timestamp of episode E10 accordingly to capture the

fact that E10 must be ordered after E00 during replay. The

proposed Rerun implementation uses per-core read and write

Bloom filters to detect when to end episodes and piggybacks

Ci: Core i

Eij: Core i’s episode j

REFS: Dynamic memory reference count

TS: timestamp

(dashed arrow): actual memory conflict

(shaded box): per episode log

timestamps on coherence response messages to capture the causal

ordering among the episodes.

Replay: Rerun advocates software-based fully sequential replay

of episodes in increasing order of their timestamps. In theory,

however, scalar timestamps allow some parallelism, where

episodes with the same timestamp can be replayed concurrently.

We illustrate this idealized Rerun replay (non-sequential) in

Figure 1(b). On one hand, it allows episodes E21 and E31 to be

replayed concurrently. On the other hand, Lamport scalar clocks

unnecessarily orders many independent episodes (e.g., E20 with

episodes from cores C0 and C1).

3. Insights: Replaying Episodes in Parallel
As multi-threaded programs scale to more cores, replay must be

parallelized otherwise it can become arbitrarily slow, limiting the

utility of record-replay for online uses (e.g., fault tolerance,

security analysis) and eventually debugging. To this end, this

section introduces insights into Karma's parallel replay with both

(a) ordering episodes with DAG and (b) extending episodes.

While we present how Karma orders the execution in the cores,

Karma-like FDR, Rerun, and DeLorean-can be virtualized by

Capo [28].

3.1 Key Idea 1: Using Directed Acyclic Graph

to Order Episodes During Replay
. The first key idea behind Karma is simple: Use a directed

acyclic graph (DAG) rather than scalar timestamps to partially

order episodes during replay. DAGs are well known to allow

much greater parallelism than scalar timestamps and have been

used in an offline analysis of replay speed potentials of

deterministic recording schemes [34]. For ease of exposition, we

first show the value of using a DAG by pretending that Karma's

recording breaks the execution into exact same episodes as Rerun

did in Figure 1, and then, in Section 3.2, present a second

innovation that allows Karma to have longer episodes than Rerun

permits.

To this end, Figure 2(a) illustrates how Karma can record

memory dependencies among cores by triggering episode

formation with DAG edges to successor episode(s). Karma's

distributed log resembles Rerun's log with timestamps replaced by

DAG edges (represented as PRED/SUCC sets explained below).

Figure 2(b) illustrates the parallelism of Karma's replay

wherein successor episodes execute after their predecessors

without other artificial ordering constraints. Importantly, this

enables a parallel replay that is much faster than even Rerun's

idealized replay. For example, while Rerun ordered episode E20

with independent episodes of cores C0 and C1 (Figure 1(b)),

Karma's replay leaves episode E20 unordered with respect to the

episodes of cores C0 and C1 (Figure 2(b)), facilitating more

replay parallelism.

While the idea of using a DAG is simple, it is less simple to

determine how to represent DAG edges to successor episode(s).

For fastest replay, the DAG edge representation should facilitate

an episode waking up the successor episode(s) quickly. Moreover,

for low recording overhead, it should be fast to create during

recording and compact to log. Using integer episode identifiers, as

in a software representation of DAG edges, is a poor

representation, as we see no way for replay to avoid indirecting

through memory to determine the successor(s). Using these

episode identifiers would also have severe negative impact on log

size.

Figure 2. Karma's DAG-based Record and Replay with

Rerun's Episode

As discussed in more details in Section 4.3, to efficiently record

the DAG edges, Karma represents DAG edges with predecessor

(PRED) and successor (SUCC) sets that name the cores of the

predecessor and successor episodes respectively. During

recording, these sets are populated from coherence traffic and then

logged. During replay, a core awaits a wakeup message from each

predecessor before beginning an episode and sends a wakeup

message to each successor after completing an episode.

3.2 Key Idea 2: Extending Rerun’s Episode
The second key idea behind Karma is subtle: Concurrent episodes

must not conflict during replay, but may conflict during

recording. In contrast, Rerun, DeLorean and IMRR always end

episodes when they conflict during recording. For example in

Figure 1(a) for Rerun, core C0 ends episode E00 when it gives

block A to core C1 for episode E10. In Figure 2(a), we show

Karma behaving similarly, but this is not necessary. More

recently, Timetraveller [39] which improves upon Rerun's log size

uses post-dating of scalar timestamps to also allow growing

episodes even after some conflicts.

In contrast, as shown in Figure 3(a), Karma continues recording in

episode E00 even as it conflicts with episode E10, as long as it

orders E00 before E10 in the log. During replay, conflicting

episodes E00 and E10 will not be concurrent, because the log

entries will ensure that the end of E00 precedes the beginning of

E10. In similar fashion, core C1 can cover its execution of 41

references with one episode E10 (Figure 3(a)), rather than two

episodes E10 and E11 (Figure 2(a)). Beside the restriction

discussed below, a core is not required to end a episode when

either it (a) provides a block to another core or (b) obtains a block

from another core. On one hand, this optimization seems too good

to be true. Perhaps the authors of Rerun and DeLorean missed it,

because they appear to be inspired by transactional memory

systems [15][21] that usually abort when concurrent transactions

conflict in an execution (as there is no distinction between

recording and replay). Fortunately in Dependence Aware TM,

See KEY of Figure 1 and following

KEY:

PRED: predecessor set

SUCC: successor set

(solid arrow): wakeup message

Figure 3. Karma's Record and Replay with Extended

Episodes

Ramadan et al. [36] showed that conflicting concurrent

transactions can all commit, provided that they are properly

ordered. For example, they allow core C0's transaction T to pass a

value to core C1's concurrent transaction U (and both commit) as

long as T is ordered before U. Karma exploits a similar idea for

episodes. Both are inspired by the greater freedom of conflict

serializability over two-phase locking [12] and value forwarding

among "episodes" in some thread-level-speculation systems (e.g.,

[13][37]).

On the other hand, full exploitation of the optimization is not

possible. As depicted in Figure 3(a), a problem occurs when the

core C0 later attempts to order E00 after core C1's episode E10

because of conflict in block E (memory reference 4 of core C0),

but E00 was previously ordered before E10 due to block A (or

conversely a core seeks to order an episode before another episode

previously ordered after). Karma cannot do this without adding a

cycle to the DAG, which is not allowed, as it would make

ordering replay impossible. Instead, Karma always ends episode

E00, begins episode E01 (with memory reference 4 as its first

reference), and orders E01 after E10 of core C1.

Karma detects the possibility of cycle formation in the recorded

DAG using Lamport scalar clock based timestamps [19] (but

never logs them). Karma ends an episode when it receives a

timestamp greater than the timestamp of the current episode. This

ensures that the order of episodes is acyclic and can be replayed

properly. Since Karma does not log timestamps, they cannot

serialize replay and the sole purpose of this timestamp is to

dynamically detect possibility of cycles while recording.

Finally, Karma enables a tradeoff between log size and replay

parallelism, similar to one found in few other record-replay

systems [27][42]. Growing longer episodes has two effects. First,

larger episodes mean fewer episodes to cover an execution. This

makes log size smaller. Second, longer episodes make replay less

parallel and slower. This is because during replay the end of a

predecessor episode happens before the beginning of a successor

episode. For example, earlier we saw that Karma could cover core

C1's execution of 41 memory references with one episode (Figure

3(a)) rather than two (E10 and E11 in Figure 2(a)). In Figure 3(b),

we however observe that during replay, this means that episode

Table 1. Base system Configuration

E01 can only start execution after the merged bigger episode E10

completes its execution. For this reason, as we will find in Section

6, there is value in bounding the maximum episode size to balance

log size and replay parallelism.

3.3 A Sketch of Karma Operation
This section sketches Karma's basic operation for recording

and replay, but leaves details for Section 4.

Record Sketch: During recording, Karma grows episodes

and passes timestamps on coherence response messages. Each

core grows its episode until it receives a timestamp greater than its

current timestamp (or a maximum size is reached, etc.). This

indicates possibility of cycle in the DAG. At this point, it ends its

episode, saves the corresponding predecessor/successor set for

logging, and begins a new episode. When responding with a

timestamp, a core sends its current timestamp for a block that

matches in its read/write filter or its previous timestamp

otherwise. For implementation reasons discussed later, a Karma

core keeps the timestamp and predecessor/successor sets for both

its immediately previous and current episodes. When an episode

ends at a core, it logs the memory reference count, predecessor

and successor set of the immediately previous episode, but never

logs the timestamp.

Replay Sketch: During replay, a Karma core repeats four

steps. (1) Read the predecessor/successor (PRED/SUCC) sets and

reference count REFS for its next episode. (2) Wait for wake-up

messages from each core in the episode's predecessor set. (3)

Execute instructions for REFS memory references. (4) Send a

wakeup message to each core in the successor set.

Online Replay? While we present the record and replay

phases as separate, applications like fault tolerance may wish to

"pipe" the log from recording to a concurrent replay. Karma's

faster parallel replay makes this online replay more promising, but

we leave detailed design issues to future work.

4. Implementing Karma
While the previous section presented the ideas behind

Karma, this section presents a concrete hardware implementation

and addresses additional issues.

4.1 Example Base System
We assume a base system as illustrated in Figure 4 with parameter

values from Table 1. It is a multicore chip with private writeback

L1 caches, shared multibanked L2 and a MESI directory protocol.

Core 16 core, in-order, 3 GHz

L1 Caches Split I&D, Private, 4-way set-associative,

write-back, 64B lines, LRU, 3cycles hit

L2 Caches Unified, Shared, Inclusive, 16M 8-way set

associative, write-back, 16 banks, LRU

replacement, 21 cycle hit

Directory Full Bit vector at L2

Memory 4GB DRAM , 300 cycle access

Coherence MESI Directory, Silent Replacement

Consistency

Model

Sequential Consistency(SC) (with

extension to TSO in Section 4.7) Karma can extend episodes to reduce

log sizes.

Figure 4. Base system configuration with Karma's state per

core

4.2 Karma Hardware
As Figure 4 depicts, Karma adds eight registers (148 bytes) to

each core: 128-byte address filter (FLT) (combining Rerun's

read/write filters), 4-byte reference count (REFS), and for both the

previous and current episodes, there are predecessor sets (PRED0

and PRED1), successor sets (SUCC0 and SUCC1) and 4-byte

timestamps (TS0 and TS1). For 16 cores, all sets can be

represented with 2-byte bit vectors, while more scalable

representations are possible as many episodes have one or two

predecessor or successor.

Karma assumes L2 cache blocks include a directory that tracks

where a block is cached in the L1s, L1 cache shared replacements

are silent, and L1 writebacks continue to remember the previous

owner. Section 4.6 will discuss additional issues due to L1 and L2

caches being finite. Karma passes timestamps on coherence

response messages. Karma also adds a single bit called

previouslyOrdered in coherence response message, to be

explained in next section. For supporting replay, Karma adds

wakeup messages whose only payload is a source core identifier.

4.3 Predecessor and Successor Sets
This subsection discusses some subtle issues for how and why

Karma represents DAG edges between episodes as predecessor

and successor sets between cores. We implement each set with a

2-byte bit vector, but larger systems can use other encodings since

most of these sets have just one or a few elements.

Figure 5. Subtle implementation issues regarding Predecessor

and Successor Sets

Since predecessor and successor sets can only record a single edge

from/to each other core, we take special care to avoid recording a

second edge between the same two cores (Figure 5). When

sending a message that would constitute a second outgoing edge

from an episode to the same other core, we set the

previouslyOrdered bit in the coherence reply message to indicate

that this message does not represent an edge, as depicted in Figure

5(a) and (b). This edge is redundant because of the previous edge

to this core. On receiving a message that would be the second

incoming edge from another core, we end the receiving core's

episode, start a new episode, and add the edge to the otherwise

empty new predecessor set (Figure 5(c)). This works, since cores

can always end episodes early. On receiving a request message

from a core already ordered after this core's current episode, this

core responds with the previouslyOrdered bit set so that this

message is also not a DAG edge, as depicted in Figure 5(d). This

action is correct because the missing edge is implied by

transitivity [41].

Karma's approach for representing DAG edges leads to a

convenient invariant during replay (Section 4.5): when a core

receives a wakeup message from core req, the message pertains to

the receiving core's next episode whose predecessor set includes

core req. This allows the wakeup message to physically name a

core and yet have the edge be applied to a specific episode as in

Figure 3(b).

4.4 Karma Recording
As depicted in Figure 6, the key to Karma recording is what

actions Karma takes when a core/L1 sends a data response or

acknowledgement (left side) and receives data or an

acknowledgement in response to a coherence request it has made

(right side). The top of Figure 6 repeats the Karma state from

Figure 4.

During recording, each core sometimes sends a coherence reply

(data and acknowledgement) in response to coherence request

from another core req (Figure 6 (a)). The core first tests whether

core req is already an element of SUCC1. If it is, the outgoing

message's previouslyOrdered bit is set, so that the message does

not create an edge in the DAG (Section 4.3) and no other actions

are needed.

Otherwise, the core examines whether its address filter contains

the message address (or a false positive). If so, then the core

associates the outgoing edge with its current episode. It sets the

message's timestamp to TS1 and previouslyOrdered bit to false. It

then adds core req to SUCC1. If the filter does not match, the core

associates the message with its previous episode and takes

corresponding actions using TS0 and SUCC0. This is correct,

because if a block is not touched by the current episode it was

touched no later than the previous episode at that core.

During recording, a core executes instructions, which sometimes

generate cache misses and coherence requests. Upon receiving a

coherence response message (data or acknowledgement) from

core src, a core may or may not take any actions for recording

(Figure 6(b)). In particular, if the incoming message's

previouslyOrdered bit is set, no action is needed, because the

message comes from a core whose current or previous episode

was already ordered with respect to this core's earlier or current

episode.

If episode ordering is required, the incoming message may cause

the current episode to end for two reasons. First, the episode ends

if SUCC1 is not empty and the message's timestamp is greater

than the current episode's timestamp. This is done to prevent

cycles in the DAG. Second, the episode ends on incoming

message from core src that is already in the current episode's

PRED1.

Figure 6. Karma's Recording Algorithm (at each core)

To end an episode, a core logs the previous episode's memory

reference count and the predecessor/successor sets, copies the

current episode's information to the previous one's, and then

initializes the new current episode's values. In particular, the

timestamp update follows Lamport scalar clock rules, the filter is

cleared, the successor set made empty, and predecessor set made

to contain only the message source (core src). The timestamp is

not logged and thus has no role in replay.

4.5 Karma Replay
During replay, a Karma core repeats four steps, as depicted in

Figure 7.

(1) When a core is ready to start a new episode, it reads the

predecessor/successor (PRED1/SUCC1) sets and reference count

REFS1 for the next episode from its per-core log. These values

are stored in the same special registers as used in recording.

Replay on this core is complete when its log is empty.

(2) The core waits for wakeup messages from each core in the

episode's predecessor set PRED1. When the core has received a

message for all cores originally in PRED1, it moves to the next

step.

(3) The core executes instructions of the episode, decrementing

REFS1 on each dynamic memory references, and stops execution

when the episode REFS1 is zero and the episode is complete.

(4) The core sends a wakeup message to each core in its successor

set SUCC1. When complete, the core goes back to step (1).

Karma's replay algorithm counts committed memory references,

but never micro-architectural events, such as cache misses. Thus,

Karma replay does not require the same caches or cache state as

was present during Karma recording

The description above acts as if the wakeup messages arrive

only during step (2), whereas they can actually arrive at any time.

We implement a simple replayer that just buffers early messages.

A more complex replayer could "pipeline" episodes by reading the

next log entry early and gathering wakeup messages for the next

episode while the current episode is still executing.

More subtly, wakeup messages for future episodes can arrive

earlier than ones needed for the next episode(s), theoretically

filling up any fixed sized message buffer. Fortunately, since the

only information that must be remembered about a wakeup

message is its source core identifier, a core can remember up to 8

wakeup messages per core (128 total) using a three-bit counter for

each of 16 cores (6 bytes total). Moreover, these buffer counts can

be made unbounded using known "limitless" techniques [8] that

maintain rare overflow counts in software.

4.6 Effect of Finite Caches
Heretofore we assumed infinite L1 and L2 caches, but real

systems have finite caches. Here we extend Karma to handle L1

and L2 cache replacements (from `Shared' and `Exclusive') and

writebacks (from `Modified') [38]. Assume that a block is evicted

by core C0 at episode E00 and next used by core C1 in episode

E19. In all cases, episode E00 must be ordered before episode

E19.

L1 Evictions: Karma handles L1 replacements and writebacks

mostly like FDR [41]. There are three possible cases during L1

eviction that require attention. First, a shared replacement by C0

that is silent (i.e. coherence directory is not notified). A

subsequent miss by C1 will send an invalidation to C0 whose

acknowledgement message will order episode E19 after C0's

current episode which is (long) after episode E00. Second, a

writeback by C0 does not reset the block owner field at the L2,

much like LogTM's sticky states [29] and FDR [41]. As in the

first case, a subsequent miss by C1 will send an message to C0

whose acknowledgement message will order episode E19 after

C0's current episode which is after episode E00.

Third, C0 could have written back the block and one or more

other cores read it. Here Karma, extends the L2 directory by 4 bits

(< 1% of a 64-byte cache block) to keep core identifier of the last

writer to a block, so that reads can continue to get ordered after

C0's current episode that is after E00. This is the same state that a

MOESI coherence protocol needs to remember for an owner

among sharers.

Figure 7. Karma's replay algorithm (at each core)

L2 Evictions:

Karma seeks a different solution for L2 evictions, because (a) they

are much less common and (b) we wish to add little or no state to

main memory. The key idea is to compute a proxy core to order

the eviction before any subsequent use. For example, the proxy

core for victim block 100 with 16 cores might be 100 modulo 16

= C4. When the L2 seeks to evict block 100 last written by core

C0, it will first order the current episode of C0 before the current

episode of C4. (Much) later when C1 misses to memory for block

100, the L2 can re-compute the proxy C4 and order the current

episode of core C4 before the current episode of core C1 which is

E19. By transitivity, episode E00 is ordered before E19.

Optionally, memory can use a single bit to remember whether a

block was ever cached, as we assume in our simulations. Many

other solutions are possible, including broadcasting on L2 misses

in small systems or augmenting main memory to remember the

previous writer if metabits are available.

4.7 Extending Karma to Support TSO (x86)
Hitherto, Karma implicitly assumed the sequential consistency

(SC) memory consistency model [20], but now we show how to

extend Karma to total store ordering (TSO) [14][40]. Unlike SC,

TSO exposes (an abstraction of) write buffer for committed

writes. Moreover, TSO provides a correct implementation of the

x86 memory model [18] that exploits most of the flexibility that

x86 allows. We extend Karma by adapting Xu et al.'s TSO

solution from the dependence-based RTR[42].

TSO presents challenges as it allows a processor to commit a write

(store) before a subsequent read (load) (in program order) and yet

order the write (at logical shared memory) after the read. In

practice, this relaxation of write-read ordering is leveraged using a

first-in-first-out write buffer to hold writes that are committed but

yet not ordered. Xu et al. [42] showed that such write buffers can

cause their RTR system to record a cycle of dependences and

deadlock the replay. To break these cycles, they propose a order-

value hybrid recorder that detects a problematic read (or load)

and reacts by recording the value read and not recording the write-

after-read dependency that made the read problematic.

Specifically, a problematic read is a read that gets its value V

from the cache, while one or more earlier committed writes (in

program order) are in the write buffer and cache block containing

V is invalidated before all earlier writes are ordered. The

execution is replayed following the now-acyclic dependencies and

"bypassing" values to reads from the log whenever present. We

found that Karma's replayer can also run into a similar situation

for the same reasons, but fortunately, Xu et al.'s solution can be

extended to episodic record/replay of Karma.

5. Evaluation Methods
We evaluate Karma using the multicore hardware presented in

Section 4, except that we study scaling by varying core count: 4,

8, and 16 cores. When doing this, we keep the shared L2 cache

size per core constant at 1MB, so the total L2 cache size is 4MB

for 4 cores, 8MB for 8 cores, and 16MB for 16 cores.

For comparison purposes, we also evaluated Rerun [17] in the

same setup, as it is the closest cousin to Karma, using the code

obtained from Rerun's authors. More specifically, we compare

against an idealized Rerun replayer (non-sequential) that (a)

replays episodes with the same timestamp in parallel (as in Figure

1(b)) and (b) appears to wakeup episode(s) with the next

timestamp after the last episode with the current timestamp

completes. A practical implementation of Rerun replay would, of

course, be slower than this idealized one.

We use the Wisconsin GEMS [26] full system simulation

infrastructure, which models an enterprise-level SPARC server

running on unmodified Solaris 9 operating system. This simulator

uses the Simics [25] full system simulator as front end for the

functional part of the simulation and uses the Ruby memory

timing model to simulate different hardware platforms. In this

work we concentrate on memory race recording and replaying and

assume support for handling DMA, I/O, and external interrupts

much like FDR [41] and software layer support much like Capo

[28]. To approximate this, we dilate Simics's time to make sure

interrupts arrive between the same dynamic instructions during

both recording and replay.

We use the Wisconsin Commercial Workload suite [1] to drive

evaluation. This workload suite consists of a task-parallel web

server (Apache), a Java middleware application (Jbb), a TPC-C

like online transaction processing (Oltp) workload on DB2, and a

pipelined web server (Zeus). We stress-tested the Karma

implementation with memory race ordering sensitive

microbenchmark racey [16].

6. Experimental Results
This section will ask three basic questions and provide the

answers summarized here:

Question #1: Does Karma speedup replay?

Yes, Karma replay can be 1.4X-7.1X faster than idealized Rerun

replay. This translates to a modest 19%-28% slowdown for the

replay over the base system without any record/replay in a 16 core

system. With fewer cores the slowdown is even less.

Question #2: How can Karma trade off log size and replay

speed?

By loosening the bound on maximum episode size, Karma can

achieve smaller log sizes (e.g., 47%) for situations when slower

replay is tolerable (e.g., 21% slower). This presents an effective

control knob to trade off the log size versus replay speed,

depending upon the requirement of a particular use of

deterministic replay.

Figure 8. Comparison of Rerun's and Karma's Replay Speed (normalized to Base, 256-reference max. episodes)

Question #3: How does Karma's log size compare to Rerun's?

Karma and Rerun log sizes are comparable with a 256-memory-

reference maximum episode size. As we increase episode size,

Karma achieves substantial log size reduction (up to 43%) over

Rerun and still replays much faster than Rerun.

6.1 Big Picture: Much Faster Replay While

Retaining Fast Recording
Figure 8 displays the most important graphs in this paper. Each

graph provides results for a different benchmark. Each cluster of

bars within a histogram represents a different configuration of the

CMP. The configuration here is characterized by the number of

cores (4, 8, and 16) and total L2 cache size (4MB, 8MB, and

16MB). All histogram heights depict the speedup normalized to

the native execution at corresponding CMP configuration with no

recording or replay (Base). For example, bars clustered around x-

axis point for 16core-16MB configuration are speedup normalized

to execution for 16core-16MB L2 cache CMP configuration

without any record/replay (Base).

Each cluster of bars in a histogram has three bars representing

execution with no record/replay (Base), idealized Rerun replay

and Karma replay. Not shown are Rerun and Karma recording, as

they are mostly very close to Base. All results in this section

assume a maximum episode size of 256 memory references,

which, as we will see later, produces a log size similar to Rerun's.

By showing performance comparison of our system for different

configuration points for CMP, we tried to demonstrate scalability

and applicability of our proposed system under varying CMP

configurations.

Question #1: Does Karma speedup replay?

Yes, Karma replay can be 1.4-7.1X faster than idealized Rerun

replay depending upon the number of cores and the application.

For Apache with 4, 8, and 16 cores, for example, Karma replay is

1.4X, 2X, and 3X faster than Rerun replay. This is not surprising,

since even our idealized Rerun replay still does not expose enough

parallelism due to scalar clock based ordering of episodes. Results

for Oltp and Zeus are similar, while for Jbb, Karma replay speed

is 7.1X of Rerun's. For the 16-core system, Karma replay is only

19%, 28%, 22% and 25% slower than the Base execute (without

record/replay) for Apache, Jbb, Oltp and Zeus, respectively. For

fewer cores, this slowdown is much less.

Recording: Karma's recording (not shown in the figure) is usually

negligibly different from doing no recording/replay (i.e., Base),

just like Rerun's recording. We observed for Apache, Jbb and

Zeus, Karma recording runs nearly identically (<1% slowdown)

with doing no recording (Base). Karma recording also works

similarly well for OLTP with 4 and 8 cores, but adds a bit more

overhead (~10%) to 16-core OLTP. More importantly, Karma

recording scales well when applications scale well.

Bandwidth: Karma sends around 2% more traffic over the

interconnect while recording than Rerun. This is because of

extending few coherence messages (previouslyOrdered bit, etc.)

and sometimes because of extra messages. This modest extra

bandwidth could affect execution time substantially if the

interconnect was near saturation (which it should not be). One

would note that Rerun adds around 10% bandwidth overhead on

the interconnect over a system with no record/replay.

0

0.2

0.4

0.6

0.8

1

1.2

4core-4MB 8core-8MB 16core-16MB

Sp
ee

du
p

no
rm

al
iz

ed
 to

 "
Ba

se
"

of
 c

or
re

sp
on

di
ng

co

nf
ig

ur
at

io
n

Number of cores-L2 cache size

Apache
Base

Rerun Replay

Karma Replay

0

0.2

0.4

0.6

0.8

1

1.2

4core-4MB 8core-8MB 16core-16MB

Sp
ee

du
p

no
rm

al
iz

ed
 to

 "
Ba

se
"

of
 c

or
re

sp
on

di
ng

co

nf
ig

ur
at

io
n

Number of cores-L2 cache size

Oltp
Base

Rerun Replay

Karma Replay

0

0.2

0.4

0.6

0.8

1

1.2

4core-4MB 8core-8MB 16core-16MB

Sp
ee

du
p

no
rm

al
iz

ed
 to

 "
Ba

se
"

of
 c

or
re

sp
on

di
ng

co

nf
ig

ur
at

io
n

Number of cores-L2 cache size

Jbb Base

Rerun Replay

Karma Replay

0

0.2

0.4

0.6

0.8

1

1.2

4core-4MB 8core-8MB 16core-16MB

Sp
ee

du
p

no
rm

al
iz

ed
 to

 "
Ba

se
"

of
 c

or
re

sp
on

di
ng

co

nf
ig

ur
at

io
n

Number of cores-L2 cache size

Zeus Base

Rerun Replay

Karma Replay

Figure 9. Tradeof between Logsize and Replay Slowdown
By varying maximum episode size across 128 (right end of each

application's lines), 256, 512, ... 8K, and unbounded number of memory

references, allow one tradeoff smaller log with some replay slowdown.

Displayed results use 16 cores.

Sensitivity Analysis: The results above showed that Karma gains

are robust with varying core count (4, 8 and 16) and shared L2

cache sizes (4, 8, 16 MB). Additional sensitivity analysis (not

shown), confirms that results qualitatively hold during variations,

e.g., doubling L1 size, doubling L2 size, and halving memory

latency.

6.2 Obtaining Smaller Logs but Slower

Replay
Above we showed that Karma replay performance is much

better than Rerun's (1.4X-7.1X) for what will turn out to be a

comparable log size. Some uses of record/replay, e.g., debugging,

may wish to reduce rate of log size growth further, so that, for

fixed log size, one can record a longer execution. Karma

facilitates this for deterministic record/replay uses that can tolerate

somewhat slower replay. This might be a good tradeoff when

recording is much more common (e.g., always on) than replay

(e.g., to investigate a crash).

Figure 9 illustrates Karma log size and replay speed for each

of our four applications. The x-axis gives uncompressed log size

growth in bytes per thousand instructions. The y-axis gives replay

speed normalized to recording speed. For each application, each

point on its lines, beginning from the right, provides the tradeoff

with maximum episode sizes with memory reference counts: 128,

256 (the value used in Section 6.1), 512, ..., 8K, and unbounded.

Question #2: How can Karma trade off log size and

replay speed? By loosening the bound on maximum episode size,

Karma achieves smaller log sizes but slower replay. For example,

increasing the maximum episode size from 256 to 2K references

has the following effects: Apache generates 54% smaller log for

23% slower replay, Jbb generates 71% smaller log for 87% slower

OLTP generates 60% smaller log for 21% slower replay, and Zeus

generates 47% smaller log for 33% slower replay. Three of four

benchmarks pay a modest replay slowdown, while Jbb is more

sensitive.

Question #3: How does Karma log size compare to

Rerun's? Karma and Rerun log sizes are comparable with a 256-

memory-reference maximum episode size. Figure 10 displays

Karma's uncompressed log size normalized to Rerun's

uncompressed log size on a 16 core system. The x-axis varies both

Karma and Rerun's maximum episode sizes (in memory

Figure 10. Logsize comparison between Karma and Rerun

references) for 128, 256, ..., 8K, and unbounded. For the default

of 256 memory references, Karma's log sizes versus Rerun's

varies from 10% smaller for Zeus to 17% larger for OLTP. As

episodes grow larger, Karma's log size decreases faster than

Rerun's. For maximum episode sizes of 1K references and greater,

Karma's log is always smaller than Rerun's. With a maximum

episode size of 8K references), Karma log size is smaller than

Rerun's by 33%, 43%, 17% and 35% for Apache, Jbb, Oltp and

Zeus, respectively.

If small logs are more important than faster replay, then it is

reasonable to set the maximum episode size to 2K references. To

this end we found out that with maximum episode size 2K

references, Karma retains substantial replay speedups with respect

to Rerun (e.g. 1.3X-4.8X) but they are smaller than with 256-

reference episodes. Moreover, Figure 10 showed that Karma's log

size is 8-35% smaller than Rerun's log size, when the maximum

episode size is limited to 2K memory references in both systems.

7. Conclusions
This paper proposes Karma for both scalable recording and

replay. Karma builds episode-based memory race

recorder/replayer using a directory coherence protocol, without

requiring any global communication. During recording, Karma

records the order of episodes with a directed acyclic graph and

extends episodes even after some conflicts. During replay, Karma

uses wakeup messages to trigger parallel replay of independent

episodes. Results with several commercial workloads on a 16-core

multicore system show that Karma can achieve replay speed

within 19%-28% of execution speed without record-replay and

four times better than idealized Rerun replay.

8. ACKNOWLEDGEMENTS
We thank Derek Hower for providing the code for Rerun. We

thank Brad Beckmann, Dan Gibson, Heidi Arbisi-Kelm, Rathijit

Sen, Mike Swift, Haris Volos, Min Xu, the Wisconsin Multifacet

group, the anonymous reviwers and the Wisconsin Computer

Architecture Affiliates for their comments and/or proofreading.

Finally we thank the Wisconsin Condor project, the UW CSL for

their assistance.

This work is supported in part by the National Sicence Foundation

(CNS-0551401, CNS-0720565 and CNS-0916725), Sandia/DOE

(#MSN123960/DOE890426), and University of Wisconsin

(Kellett award to Hill). The views expressed herein are not

necessarily those of the NSF, Sandia or DOE. Bobba was PhD

student at University of Wisconsin-Madison when this work was

performed. Hill has a significant financial interest in AMD.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 1 2 3 4 5 6 7 8 9

K
a

rm
a

 R
e

p
la

y
 S

lo
w

d
o

w
n

(
w

.r
.t

 r
e

c
o

rd
in

g
)

Logsize (Bytes/Kilo Instr)

Apache

Zeus

Oltp

Jbb

Max. Episode
size 128

128
256

512

1024

2048

4096
8192

Unbounded

0

0.2

0.4

0.6

0.8

1

1.2

1.4

128 256 512 1024 2048 4096 8192 Unbounded

K
a

rm
a

 l
o

g
 s

iz
e

 n
o

rm
a

li
z
e

d
 t

o
 R

e
ru

n
's

 l
o

g
 s

iz
e

Maximum allowable Episode size

Apache

Zeus

Oltp

Jbb

9. References
[1] A. R. Alameldeen, C. J. Mauer, M. Xu, P. J. Harper, M. M. K.

Martin, D. J. Sorin, M. D. Hill, and D. A. Wood. Evaluating

Non-deterministic Multi-threaded Commercial Workloads. In

5th Workshop on Computer Architecture Evaluation Using

Commercial Workloads, 2002.
[2] G. Altekar and I. Stoica. ODR: output-deterministic replay for

multicore debugging. In ACM Symposium on Operating

systems principles (SOSP'09), 2009.
[3] D. F. Bacon and S. C. Goldstein. Hardware-Assisted Replay of

Multiprocessor Programs. Proceedings of the ACM/ONR

Workshop on Parallel and Distributed Debugging, published in
ACM SIGPLAN Notices, 1991.

[4] T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D.

Grossman. CoreDet: a compiler and runtime system for
deterministic multithreaded execution. In Proc. of the 15th Intl.

Conf. on Architectural Support for Programming Languages

and Operating Systems, March 2010.
[5] B. H. Bloom. Space/Time Trade-offs in Hash Coding with

Allowable Errors. Communications of the ACM, 13(7):, July

1970.
[6] L. Ceze, J. Tuck, C. Cascaval, and J. Torrellas. Bulk

Disambiguation of Speculative Threads in Multiprocessors. In

Proc. of the 33nd Annual Intl. Symposium. on Computer
Architecture, June 2006.

[7] L. Ceze, J. Tuck, P. Montesinos, and J. Torrellas. BulkSC:
Bulk Enforcement of Sequential Consistency. In Proc. of the

34th Annual Intl. Symp. on Computer Architecture, June 2007.

[8] D. Chaiken, J. Kubiatowicz, and A. Agarwal. LimitLESS
directories: A scalable cache coherence scheme. In ASPLOS-

IV: Proceedings of the fourth international conference on

Architectural support for programming languages and
operating systems,, NY, USA, 1991.

[9] J. Devietti, B. Lucia, L. Ceze, and M. Oskin. DMP:

Deterministic Shared Memory Multiprocessing. In Proc. of the
14th Inl. Conf. on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), March 2009.

[10] G. W. Dunlap, S.T. King, S. Cinar, M. Basrai, and P. M. Chen.
ReVirt: Enabling Intrusion Analysis through Virtual-Machine

Logging and Replay. In Proc. of the 2002 Symposium. on

Operating Systems Design and Implementation, 2002.
[11] G. W. Dunlap, D. Lucchetti, P. M. Chen, and M. Fetterman.

Execution Replay of Multiprocessor Virtual Machines. In Intl

Conf. on Virtual Execution Environments (VEE), 2008.
[12] J. Gray and A. Reuter. Transaction Processing: Concepts and

Techniques. Morgan Kaufmann, 1993.

[13] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen, and K.
Olukotun. The Stanford Hydra CMP. IEEE Micro, 20(2),

March-April 2000.

[14] S. Hangal, D. Vahia, C. Manoit J.-Yeu, J. Lu, and S.
Narayanan. TSOtool: A Program for Verifying Memory

Systems Using the Memory Consistency Model. In Proc. of the

31st Annual Intnl. Symp. on Computer Architecture, 2004.
[15] M. Herlihy and J. Eliot B. Moss. Transactional Memory:

Architectural Support for Lock-Free Data Structures. Technical

Report 92/07, Digital Cambridge Research Lab, 1992.
[16] M. D. Hill and M. Xu. Racey: A Stress Test for Deterministic

Execution. http://www.cs.wisc.edu/ markhill/racey.html.

[17] D. R. Hower and M. D. Hill. Rerun: Exploiting Episodes for

Lightweight Race Recording. In Proc. of the 35th Annual Intnl.

Symp. on Computer Architecture, 2008.

[18] Intel, editor. Intel 64 and IA-32 Architectures Software
Developer's Manual, volume 3A: System Programming Guide

Part 1. Intel Corporation.

[19] L. Lamport. Time, Clocks and the Ordering of Events in a
Distributed System. Communications of the ACM, 21(7): July

1978.

[20] L. Lamport. How to Make a Multiprocess Computer that
Correctly Executes Multiprocess Programs. IEEE Transactions

on Computers, 1979.

[21] J. R. Larus and R. Rajwar. Transactional Memory. Morgan &

Claypool Publishers, 2007.
[22] T. J. Leblanc and J. M. Mellor-Crummey. Debugging Parallel

Programs with Instant Replay. IEEE Transactions on

Computers, C-36(4):, April 1987.
[23] D. Lee, B. Wester, K. Veeraraghavan, S. Narayanasamy, and P.

Chen. Respec: efficient online multiprocessor replay via

speculation and external determinism. In Proc. of ASPLOS,
2010.

[24] D. Lucchetti, S. K. Reinhardt, and P. M. Chen. ExtraVirt:

Detecting and recovering from transient processor faults. In
Symp. on Operating System Principles work-in-progress

session, 2005.

[25] P. S. Magnusson et al. Simics: A Full System Simulation
Platform. IEEE Computer, 35(2):,2002.

[26] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty,

M. Xu, A. R. Alameldeen, K. E. Moore, M. D. Hill, and D. A.
Wood. Multifacet's General Execution-driven Multiprocessor

Simulator (GEMS) Toolset. CAN, 2005.

[27] P. Montesinos, L. Ceze, and J. Torrellas. DeLorean: Recording
and Deterministically Replaying Shared-Memory

Multiprocessor Execution Efficiently. In Proc. of ISCA, 2008.

[28] P. Montesinos, M. Hicks, S. T. King, and J. Torrellas. Capo: A
Software-Hardware Interface for Practical Determinisitic

Multiprocessor Replay. In Proc.of ASPLOS 2009.

[29] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.
Wood. LogTM: Log-Based Transactional Memory. In Proc. of

HPCA, 2006.
[30] S. Narayanasamy, C. Pereira, and B. Calder. Recording Shared

Memory Dependencies Using Strata. In Proc. of ASPLOS,

2006.
[31] S. Narayanasamy, G. Pokam, and B. Calder. BugNet:

Continuously Recording Program Execution for Deterministic

Replay Debugging. In Proc. ISCA 2005.
[32] M. Olszewski, J. Ansel, and S. Amarasinghe. Kendo: Efficient

Deterministic Multithreading in Software. In Proc. of

ASPLOS, 2009.
[33] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee,

and S. Lu. PRES: probabilistic replay with execution sketching

on multiprocessors. In Proc. of SOSP 2009.
[34] G. Pokam, C. Pereira, K. Danne, R. Kassa, and A.R. Adl-

Tabatabai. Architecting a chunk-based memory race recorder

in modern CMPs. In Proc. of MICRO, 2009.
[35] M. Prvulovic and J. Torrellas. ReEnact: Using Thread-Level

Speculation Mechanisms to Debug Data Races in

Multithreaded Codes. In Proc. of ISCA, 2003.
[36] H. E. Ramadan, C. J. Rossbach, and E. Witchel. Dependence-

Aware Transactional Memory for Increased Concurrency. In

Proc. of MICRO, 2008.
[37] G.S. Sohi, S. Breach, and T.N. Vijaykumar. Multiscalar

Processors. In Proc. of ISCA, 1995.

[38] P. Sweazey and A. Jay Smith. A Class of Compatible Cache
Consistency Protocols and their Support by the IEEE

Futurebus. In Proc. of ISCA 1986.

[39] G. Voskuilen, F. Ahmad, and T. N. Vijaykumar. Timetraveler:
exploiting acyclic races for optimizing memory race recording.

In 37th Annual Intnl. Symp. on Computer Architecture, 2010.

[40] D. L. Weaver and T. Germond, editors. SPARC Architecture
Manual (Version 9). PTR Prentice Hall, 1994.

[41] M. Xu, R. Bodik, and M. D. Hill. A "Flight Data Recorder" for

Enabling Full-system Multiprocessor Deterministic Replay. In
the 30th Annual Intnl. Symp. on Computer Architecture, 2003.

[42] M. Xu, R. Bodik, and M. D. Hill. A Regulated Transitive

Reduction (RTR) for Longer Memory Race Recording. In
Proc. of ASPLOS, 2006.

[43] Min Xu, V. Malyugin, J. Sheldon, G. Venkitachalam, and B.

Weissman. ReTrace: Collecting Execution Trace with Virtual
Machine Deterministic Replay. In the 3rd Annual Workshop

on Modeling, Benchmarking and Simulation, 2007.

[44] J. Yu and S. Narayansamy. A Case for an interleaving
constrained shared-memory multi-processor. In Pro. Of ISCA

2009.

