
This work is supported in part by the National Science Foundation with
grants MIP-9225097, MIPS-9625558, CCR 9257241, and CDA-9623632,
a Wisconsin Romnes Fellowship, and donations from Sun Microsystems
and Intel Corporation.

Using Lamport Clocks to Reason About Relaxed Memory Models

Anne E. Condon, Mark D. Hill, Manoj Plakal, Daniel J. Sorin
Computer Sciences Department

University of Wisconsin - Madison
{condon,markhill,plakal,sorin}@cs.wisc.edu

Abstract
Cache coherence protocols of current shared-memory mul-
tiprocessors are difficult to verify. Our previous work pro-
posed an extension of Lamport’s logical clocks for showing
that multiprocessors can implement sequential consistency
(SC) with an SGI Origin 2000-like directory protocol and a
Sun Gigaplane-like split-transaction bus protocol. Many
commercial multiprocessors, however, implement more
relaxed models, such as SPARC Total Store Order (TSO), a
variant of processor consistency, and Compaq (DEC)
Alpha, a variant of weak consistency.

This paper applies Lamport clocks to both a TSO and an
Alpha implementation. Both implementations are based on
the same Sun Gigaplane-like split-transaction bus protocol
we previously used, but the TSO implementation places a
first-in-first-out write buffer between a processor and its
cache, while the Alpha implementation uses a coalescing
write buffer. Both write buffers satisfy read requests for
pending writes (i.e., do bypassing) without requiring the
write to be immediately written to cache. Analysis shows
how to apply Lamport clocks to verify TSO and Alpha
specifications at the architectural level.

Keywords: memory consistency models, cache coherence
protocols, protocol verification

1 Introduction

Shared-memory multiprocessor systems are increasingly
employed both as servers (for computation, databases,
files, and the web) and as clients. To improve performance,
multiprocessor system designers use a variety of complex
and interacting optimizations. These optimizations include
cache coherence via snooping or directory protocols, out-
of-order processors, and coalescing write buffers. These
optimizations add considerable complexity at the architec-
tural level and even more complexity at the implementation
level. Directory protocols, for example, require the system
to transition from many shared copies of a block to one
exclusive one. Unfortunately, this transition must be imple-
mented with many non-atomic lower-level transitions that
expose additional race conditions, buffering requirements,
and forward-progress concerns. Due to this complexity,

industrial product groups spend more time verifying their
system than actually designing and optimizing it.

To verify a system, engineers should unambiguously
define what “correct” means. For a shared-memory sys-
tem, “correct” is defined by a memory consistency model.
A memory consistency modeldefines for programmers the
allowable behavior of hardware. A commonly-assumed
memory consistency model requires a shared-memory
multiprocessor to appear to software as a multipro-
grammed uniprocessor. This model was formalized by
Lamport assequential consistency(SC) [12]. Assume that
each processor executes instructions and memory opera-
tions in a dynamic execution order calledprogram order.
An execution is SC if there exists a total order of memory
operations (reads and writes) in which (a) the program
orders of all processors are respected and (b) a read returns
the value of the last write (to the same address) in this
order. A system is SC if it only permits SC executions.

Our previous work [18,24] proved that abstractions of a
SGI Origin 2000-like [5,13] directory protocol and a Sun
Gigaplane-like [22] split-transaction bus protocol both
implement SC. Instead of asking for the off-line existence
of a total memory order, wepretendto augment the hard-
ware with logicalLamport clocksto construct the needed
order dynamically as it executes memory operations (satis-
fying requirement (a)). We then prove that every load (read
instruction) returns the value of the last store (write
instruction) in this constructed order. Thus (b) is satisfied.
As with any formal method, our Lamport clocks approach
cannot replace conventional testing and validation. Never-
theless, it is our premise that Lamport clocks can be valu-
able when reasoning about the correctness of a
specification of memory ordering semantics at the archi-
tectural level, thereby aiding in the protocol design process
and reducing time spent on validation later.

While work on SC is valuable, many commercial proces-
sors implement more relaxed memory consistency models
in an effort to improve performance. An example is the
insertion of FIFO or coalescing write buffers between the
processor and the cache. Processor consistent models,
such as SPARC Total Store Order (TSO) [25], relax the SC
requirement (a): now, in the total ordering of memory
operations, a store (ST) can appear after a load (LD) that
follows it in program order. More relaxed models, such as
Compaq (DEC) Alpha [23], allow a processor great free-

dom to re-order memory operations between “memory bar-
riers.”

This paper shows that Lamport clocks can be used to verify
shared-memory implementations that support the TSO and
Alpha relaxed memory models. Towards this end, the paper
makes two primary contributions:

1. We provide clean new memory model definitions, namely
Wisconsin TSO and Wisconsin Alpha, that aid in reasoning
about correctness of protocols.We show that protocols sat-
isfying the Wisconsin TSO and Wisconsin Alpha memory
models also satisfy TSO [25] and Alpha [23], respectively.
We consider the Wisconsin memory models to be more
intuitive than the original definitions for the following rea-
sons. Unlike the TSO definition, LDs always get the values
of STs that occur earlier in the total order. Unlike the Alpha
definition, we use a total order.

2. We extend our Lamport timestamping scheme to proto-
cols for both the TSO and Alpha memory models.The key
is determining at what point in the protocol an event is
timestamped, and it is in this determination that the proofs
of this paper differ from our previous work on SC. For
example, in the Alpha protocol, a LD that gets its value
from a previous ST that is still in the write buffer should be
timestampedafter the ST. But since the ST has not yet been
written to the cache, the ST is not yet timestamped when
the LD is issued. Our timestamping scheme handles this
simply by waiting to timestamp the LD until the ST has
actually been written to the cache.

While the details of the timestamping scheme are necessar-
ily different from previous work, a strength of our approach
is that, with the timestamping scheme in hand, the proofs
of correctness of the protocols are almost identical to the
proofs in our previous work on SC. Our protocols for TSO
and Alpha are based on the same Gigaplane-like split-
transaction bus protocol that we considered in previous
work [24]. A similar result could easily be proved for a
directory-based implementation, as in Plakal et al. [18].

In the rest of the paper, we assume ablock to be a fixed-
size, contiguous, aligned section of memory (usually equal
to the cache line size). Also, LDs and STs operate on
words, where we assume that a word is contained in a block
and is aligned at a word boundary. Our scheme could be
extended to handle LDs and STs on sub-units of a word
(half-words or bytes) which need not be aligned. However,
this makes the specification of the memory models very
tedious without any gain in insight or clarity.

The rest of this paper is organized as follows. Section 2
summarizes our previous work that used Lamport clocks to
reason about the correctness of shared memory systems,
and discusses related work by others. We present our
results for TSO and Alpha in Sections 3 and 4, respectively.
Section 5 summarizes our contributions and discusses
future work.

2 Related Work1

2.1 Our Previous Work

Our previous work [18,24] proved that implementations
using a SGI Origin 2000-like [5,13] directory protocol and
a Sun Gigaplane-like [22] split-transaction bus protocol
both implement SC. Both implementations use three-state
invalidation-based coherence protocols.

Our reasoning method associates logical timestamps with
loads, stores, and coherence events. We call our method
Lamport Clocks, because our timestamping modestly
extends the logical timestamps Lamport developed for dis-
tributed systems [11]. Lamport associated a counter with
each host. The counter is incremented on local events and
its value is used to timestamp outgoing messages. On mes-
sage receipt, a host sets its counter to one greater than the
maximum of its former time and the timestamp of the
incoming message. Timestamp ties are broken with host
ID. In this manner, Lamport creates a total order using
these logical timestamps where causality flows with
increasing logical time.

Our timestamping scheme extends Lamport’s 2-tuple
timestamps to three-tuples: <global . local . node-id>,
whereglobal takes precedence overlocal, and local takes
precedence overnode-id (e.g., 3.10.11 < 4.2.1). Coherence
messages, or transactions, carry global timestamps. In
addition, global timestamps order LD and ST operations
relative to transactions. Local timestamps are assigned to
LD and ST operations in order to preserve program order in
Lamport time among operations that have the same global
timestamp. They enable an unbounded number of LD/ST
operations between transactions. Node-ID, the third com-
ponent of a Lamport timestamp, is used as an arbitrary tie-
breaker between two operations with the same global and
local timestamps, thus ensuring that all LD and ST opera-
tions are totally ordered.

Our prior proofs of SC use two timestamping claims that
show that LDs and STs are ordered relative to transactions
“as intended by the designer.” One of these claims is that
for every LD and ST on a given block, proper access is
ensured by the most recent transaction on that block in
Lamport time. (In contrast, in real time, a processor may
perform a LD on a blockafter it has answered a request to
relinquish the block.) Roughly, the other claim is that, in
logical time, transactions are handled by processors in the
order in which they are received. (In contrast, in real time, a
processor may receive transaction-related messages “out of
order”.)

Sequential consistency is established using the concept of
coherence epochs. An epoch is an interval of logical time
during which a node has read-only or read-write access to a
block of data. The life of a block in logical time consists of

1. This section borrows from material in previous work [18,24].

a sequence of such epochs. Our proof shows that, in Lam-
port time, operations lie within appropriate epochs. That is,
each LD lies within either a read-only or a read-write
epoch, and each ST lies within a read-write epoch. In addi-
tion, the “correct” value of a block is passed from one node
to another between epochs. The proofs of these results
build in a modular fashion upon the timestamping claims,
thereby localizing arguments based on specification details.
The differences between the proofs for the bus and direc-
tory protocols differ only in the details of the timestamping
claims.

2.2 Other Related Work

Our Lamport clock method complements related work on
proving protocols correct. First, Lamport clocks are more
precise and formal than ad hoc reasoning or simulation.

Second, we find Lamport clocks easier to use and more
applicable to larger systems, but less rigorous than
approaches that use state-space search of finite-state
machines or theorem-proving techniques. These are rigor-
ous methods that can capture subtle errors, but they are
often limited to small systems because of the state space
explosion for large, complicated systems. For example, the
SGI Origin 2000 coherence protocol is verified for a 4-
cluster system with one cache block [7], the memory sub-
system of the Sun S3.mp cache-coherent multiprocessor
system is verified for one cache block [19], and the SPARC
Relaxed Memory Order (RMO) memory consistency
model is verified for small test programs [16]. Park and
Dill [17] propose using transaction aggregation to scale
beyond finite-state methods. Our approach can precisely
verify the operation of a protocol in a system consisting of
any number of nodes and memory blocks.

Another formal approach devised by Shen and Arvind uses
term rewriting to specify and prove the correctness of
coherence protocols [21]. Their technique involves show-
ing that a system with caches and a system without caches
can simulate each other. This approach lends itself to
highly succinct formal proofs. We find Lamport clocks eas-
ier to grasp, while not lacking expressive power. Term
rewriting relies on an ordering of rewrite rules (each of
which corresponds to an event) and, as such, may benefit
from the Lamport clock technique which can order events.

Third, we find Lamport clocks easier to use and of similar
formal power to many of the other methods used to define
and verify relaxed memory models [1, 2, 3, 6, 8, 9, 20]. Of
particular note are the approaches of Collier [3] and Ghara-
chorloo et al. [8] that model a write asp sub-operations to
each ofp processors. We find their approaches more gen-
eral but harder to use than our approach that splits TSO
stores (writes) into two components and leaves Alpha
stores atomic.

Finally, Lamport Clocks have also been used in other
research, including a paper by Neiger and Toueg [15]. They
describe a class of problems for which, if a clock-based

algorithm is proven correct assuming real-time synchro-
nized clocks, then it must also be correct even if run with
logical clocks. One difference between this work and ours
is that the protocols we consider are not clock-based.
Rather, we attach (logical) clocks to clock-free protocols,
in order to prove correctness of the protocols

3 Total Store Order (TSO)

SPARC Total Store Order (TSO) [25] is a variant ofproces-
sor consistency[9,10] that has been implemented on Sun
multiprocessors for many years. TSO relaxes SC in that
LDs can be ordered ahead of STs which precede them in
program order (so long as there are no intervening memory
barriers and the two operations are to different locations).
We study TSO because it is formally and publicly defined,
but we expect that our results can be mapped to the Intel
Architecture-32 (IA-32) memory model (Section 7.2 of
[4]), the other dominant processor consistency model.

We now define TSO, Wisconsin TSO, a TSO implementa-
tion, a Lamport timestamping scheme for that implementa-
tion, and its corresponding proof.

3.1 Defining TSO

TSO applies to a system with multiple processors issuing a
variety of instructions. For our purposes, we are concerned
with word loads (LDs), word stores (STs) and memory bar-
riers (MBs) issued to regular memory (i.e., excluding I/O
space). We consider only memory barriers at least as strong
as type “MB #StoreLoad,” i.e., barriers which guarantee
that all prior STs are completed before any future LD,
while weaker memory barriers are regarded as no-ops (e.g.,
“MB #LoadLoad”). Appendix D of the SPARC Architec-
ture Manual Version 9 [25] defines TSO by defining
Relaxed Memory Order (RMO) and then adding con-
straints to form TSO. We give the combined result.

Let <p denoteprogram order. Program order totally orders
all LDs, STs, and MBs at the same processor and it is thus
a partial order over all processors.

Let <m be a total ordering of all LD and ST operations.

Then <m is said to be intotal store order(TSO) if the fol-
lowing constraints hold. The first two constraints are called
“memory order constraints.” Let X and Y be a pair of LD
or ST operations.

1) If X <p Y and either X is a LD or Y is a ST, then X <m
Y.

2) If X <p MB <p Y then X <m Y.

The final constraint restricts possible values of LDs:

3) Let X be a LD of wordw. Then the value of X is the
value of the greatest ST, say Y, to wordw in memory
order, taken over all STs to wordw that either occur
before X in memory order or occur before X in program
order (but possibly after X in memory order).

Intuitively, constraints 1 and 2 say that memory order may
only violate processor order to delay a ST after a subse-
quent LD when there is no intervening MB. In all other
cases, memory order respects program order (i.e., LD <p
LD´, LD <p ST, and ST <p ST´ are preserved by memory
order). Constraint 3 says that a LD should return the last
value written to the same word in memory unless there is a
pending ST to the same word (earlier in program order)
that has not yet occurred in memory order. In this case, the
value from the pending ST should be returned. So if one
looks at the memory order, itappearsas if the LD gets its
value from a ST that “happens in the future.”

An execution of an implementation satisfies TSO if there
exists an ordering of the LDs and STs in the execution that
satisfies TSO. An implementation satisfies TSO if all exe-
cutions of that implementation satisfy TSO.

3.2 Wisconsin TSO

We now define some properties of an ordering which
makes verification easier. TSO’s condition 3 allows a load
to get a value from a “future” store. Wisconsin TSO elimi-
nates this oddity by splitting each store into a STprivateand
a STpublic, both of which have the same value. Each LD
gets its value from the past but may return the value of a
STprivate for which the corresponding STpublic has not yet
occurred. The goal in this case is to model write buffer
bypassing where stores enter the write buffer on a STprivate
and exit with a STpublic.

Let <w denote an ordering of LDs, STprivates and STpublics.
We say that <w is in Wisconsin total store order(Wisconsin
TSO) if the following conditions hold.

1’) The ordering (<w) of LDs and STprivates is consistent
with program order. That is, if X and Y are either a LD
or a STprivate, then X <p Y if and only if X <w Y.

2’) For each ST, STprivate <w STpublic.

3’) If X and Y are STs and X <p Y then Xpublic <w Ypublic.

4’) If an MB occurs between ST and LD in program order
then STpublic <w LD.

5’) Let X be a LD of wordw at processor pi. Then the value
of X is the value of the most recent ST tow in <w that is
either:
a) the most recent STprivate to wordw at pi, if for some
ST <p X to word w, the corresponding STpublic is after

X in <w , or

b) the most recent STpublic to wordw, otherwise.

An execution of an implementation satisfies Wisconsin
TSO if there exists an ordering of the LDs, STprivates and
STpublic s in the execution that satisfies Wisconsin TSO. An
implementation satisfies Wisconsin TSO if all executions
of that implementation satisfy Wisconsin TSO.

Gil Neiger [14] has developed an alternative TSO defini-
tion as a total order of LDs and STs in which a LD always
get the value of the most recent ST. This is done by moving
each LD that returns a value from a STprivateto be after the
corresponding STpublic.

Claim 1: An implementation that satisfies Wisconsin TSO
also satisfies TSO.

A proof of this claim can be found in Appendix A.1

3.3 TSO Implementation With FIFO Write
Buffers

A common TSO implementation approach separates each
processor from its cache with a FIFO write buffer. Caches
are kept coherent with a write-invalidate coherence proto-
col sufficient for implementing SC. A MB can be imple-
mented by having a processor flush its write buffer before
proceeding past a MB, without the caches or coherence
protocol ever seeing MBs. We use this approach here in a
manner similar to the Sun Ultra Enterprise 6000 with
UltraSPARC II processors.

We begin with a brief summary of the SC implementation
that Sorin et al. [24] describe for a Gigaplane-like split-
transaction bus (the overall approach would be similar for
the directory-based implementation described by Plakal et
al. [18]). Memory blocks may be cached asInvalid, Shared,
or Exclusive. The A-state(address state) records how the
block is cached and is used for responding to subsequent
bus transactions. The protocol seeks to maintain the
expected invariants (e.g., a block isExclusivein at most
one cache) and provides the usual coherence transactions:
Get-Shared (GETS), Get-Exclusive (GETX), Upgrade
(UPG, for upgrading the block from Shared to Exclusive),
and Writeback (WB). As with the Gigaplane, coherence
transactions immediately change the A-state, regardless of
when the data arrives. If a processor issues a GETX trans-
action and then sees a GETS transaction for the same block
by another processor, the processor’s A-state for the block
will go from Invalid to Exclusive to Shared, regardless of
when it obtains the data. In an SC implementation, the pro-
cessor checks the A-state of a block before executing LDs
and STs on that block. On a miss, the processor ensures the

1. The converse of this claim can also be proved, but it is not nec-
essary for our proof of correctness, and we omit it here due to
space constraints.

appropriate A-state for that block by sending a coherence
transaction on the bus.

To convert this SC implementation into a TSO implementa-
tion, we insert a FIFO write buffer between a processor and
its cache (as shown in Figure 1), and we add a MB instruc-
tion. The rest of the implementation (external to the proces-
sor and write-buffer) obeys the coherence protocol outlined
above. The processor issues LDs, STs, and MBs in pro-
gram order. Below, we specify exactly what happens when
the processor issues one of these instructions. The proces-
sor completes issuing an instruction before proceeding to
issue the next one in program order.

Stores: A ST issues into a FIFO write buffer (considered
internal to the processor) in an event denoted as a STprivate.
Entries in the write buffer are the size of processor words.
Eventually, these entries are flushed from the write-buffer
to the cache in the same order that they entered the write
buffer, and this activity is independent of the issuing of STs
by the processor. The event whereby an entry is flushed
from the write buffer to the cache, once the processor has
establishedthat the corresponding block’s A-state is Exclu-
sive, is called a STpublic. By establish, we mean that the
processor checks the A-state of the block and if it is not
Exclusive, then the coherence protocol is invoked to
change the A-state to Exclusive. Note that the Exclusive A-
state is a prerequisite for a STpublic but not for a STprivate.

Loads: To issue a LD, the processor first checks in its write
buffer for a ST to the same word. We refer to this action as
a CHECK(LD). If the LD hits in the write buffer, then the
LD gets the value of the most recent such STprivate in pro-
gram order. Note that a LD cannot overtake a ST to the
write buffer, because the protocol does not start to issue a
LD until issuing of all previous STs (in program order) has
been completed. If the LD misses in the write buffer, then it
is treated just like a LD in the SC protocol and has to go to
the cache. That is, the processor establishes that the A-state
of the block in the cache is Shared or Exclusive; if neces-
sary, it invokes the coherence protocol (the details of which
are as described by Sorin et al. [24]). In this case, the issu-

ing of the LD completes when the processor establishes
that the A-state of the block is Shared or Exclusive. We
assume that LDs do not overlap with STpublics to the same
address, in the sense that the interval during which a LD is
issued cannot overlap with the STpublic flushing interval,
starting when the processor establishes that the A-state is
Exclusive and continuing until the flush is completed.

MBs: Upon issuing a MB, our implementation simply
flushes all entries in the write buffer to the cache before
issuing any more operations. A more aggressive implemen-
tation could perhaps mark all the entries in some way and
then ensure that subsequent coherence transactions are
allowed to happen only when all marked entries have been
flushed from the write-buffer.

3.4 Timestamping for TSO Implementation

We now present a scheme that assigns logical timestamps
to the events of interest that occur during any execution of a
program on our implementation of TSO. We define anM-
operation(or simply an M-op) to be a LD or STprivate. M-
ops are ordered by program order at a single processor. Our
scheme assigns timestamps to M-ops, STpublics and coher-
ence protocol transactions (GETX, GETS, UPG, WB).

We define a notion ofbinding for M-ops and STpublics
which is useful for presenting the timestamping scheme.
Intuitively, the binding time of an operation is the point in
real time when that operation has been “committed” by the
processor. STprivates are bound when the corresponding
entries enter the write buffer. STpublics are bound at the
time that the Exclusive A-state of the target block is estab-
lished by the processor. LDs that hit in the write buffer are
bound at the time that the corresponding CHECK(LD)
occurs. LDs that miss in the write buffer are bound at the
time that the A-state for the corresponding block is estab-
lished by the processor. Both STpublics and LDs that miss in
the write buffer are said to bebound tothe coherence trans-
action that obtained the block in the appropriate A-state.

Our timestamps are 3-tuples: <global-time.local-time.pro-
cessor ID>. We give rules below for assigning global and
local times to the various events that we timestamp. The
processor ID acts as a tie-breaker. Conceptually, each pro-
cessor has a global and a local clock which get updated in
real time for transactions as well as M-ops and STpublics,
respectively.

Transactions are totally ordered by the bus in real time and
we define the global time of a transaction to be its rank in
this ordering, with the first transaction being assigned a
global time of 1. At the moment that the A-state of a pro-
cessor changes due to a transaction, the global clock of that
processor is incremented to equal the global time of that
transaction, while the local clock (and the local component
of the transaction’s timestamp) are set to 0.

Each M-op and STpublic is assigned a timestamp at the time
that it is bound. If an M-op and STpublic happen to be
bound at the same moment in real time, we assume that

WRITE
BUFFER

PROC

CACHE

FIFO
WRITE
BUFFER

PROC

CACHE

FIFO
WRITE
BUFFER

PROC

CACHE

FIFO

Coherence Protocol
Bus / Network

Memory

stores stores stores
loads loadsloads

FIGURE 1. Our TSO Implementation

they are assigned timestamps in some arbitrary (but deter-
ministic) ordering (e.g., M-ops are always timestamped
first). Note that a LD that misses in the write buffer and a
STpublic can never be bound at the same time because of the
real-time ordering properties of the protocol. The local
clock is incremented by 1 to equal the local component of
the timestamp assigned. The global timestamp is the value
of the global clock at the moment that the M-op or STpublic
is bound.

3.5 Proof of Correctness of TSO Implementation

We show that for any execution of our implementation, the
timestamps of STprivates, STpublics, and LDs produce a
Lamport ordering <w that satisfies properties 1´ to 5´ of the
Wisconsin TSO definition. That properties 1´ to 4´ are sat-
isfied follows from the real-time ordering properties of the
protocol, the timestamping scheme, and the order in which
events are bound. Property 5´ is proved as follows. We con-
sider two possible situations for LD X:

1) Suppose that for some ST <p X, both to the same word,
X <w STpublic. Let Zprivate be the most recent STprivate to
word w at pi (prior to X in <w). It must be that Zpublic
occurs after X in <w, by property 3´ of Section 3.2. We
need to show that X’s value equals that of Zprivate. Since
instructions are issued in program order and issue intervals
are non-overlapping, Zprivateis in pi’s write buffer before pi
performs CHECK(X). We claim that Zprivate is still present
in the write buffer when pi performs CHECK(X); otherwise,
at the moment the check is done, Zpublic would already be
bound, causing X to be bound (to a transaction) in real time
AFTER Zpublic is bound. Since timestamps are consistent
with binding order, this would contradict the fact that X <w
Zpublic. Hence, X must get the value of Zprivate.

2) Suppose that for all ST <p X, both to the same word,
STpublic <w X. It cannot be the case that X takes the value
of any STprivate; if X were to take the value of a STprivate,
say Zprivate, then X would be bound BEFORE Zpublic, since
the interval in which X is issued does not overlap with the
interval in which Zpublic occurs. This contradicts our
assumption in the previous sentence because binding order
is consistent with <w. Hence X gets the value of some
STpublic and is bound to some transaction. Let Zpublic be the
most recent STpublic before X in <w (not necessarily at pro-
cessor pi). We need to show that X gets the value Zpublic.
The proof of this is identical to the proofs of the main theo-
rems in our SC research [18,24], except that STs need to be
replaced by STpublics and the definitions of binding and
timestamping there need to be replaced by the definitions
of binding and timestamping in Section 3.4.

Hence all executions of the implementation satisfy Wiscon-
sin TSO and so the implementation satisfies Wisconsin
TSO. By Claim 1, the implementation also satisfies TSO.

4 Alpha

The Compaq (DEC) Alpha memory model [23] is a weakly
consistent model that relaxes the ordering requirements at a
given processor between any accesses to different memory
locations unless ordering is explicitly stated with the use of
a Memory Barrier (MB). We first define the Alpha memory
model, introduce a collection of constraints on orderings
which we refer to as Wisconsin Alpha, and prove the rela-
tionship between Alpha and Wisconsin Alpha. We then
describe an Alpha implementation, present a timestamping
scheme for the implementation, and prove that the ordering
produced by the timestamping scheme satisfies Wisconsin
Alpha, thus showing that the implementation correctly
implements the Alpha memory model.

4.1 Defining Alpha

As with TSO, we are concerned mainly with a system con-
taining multiple processors issuing word LDs, word STs
and MBs (ordered by program order at a single processor)
to regular memory (not I/O space). The Alpha memory
model is formally defined through the use of two orders
that must be observed with respect to memory accesses.
The first order, programissue order, is a partial order on the
memory operations (LDs, STs) issued by a given processor.
Issue order relaxes program order in that there is no order
between accesses to different locations without intervening
MBs. Issue order enforces order between accesses to the
same location, order between any access and an MB, and
order between MBs. The second order, access order, is a
total order of operations on a single memory location
(regardless of the processors that issued them).

A third order, the “before” order, is defined to be the transi-
tive closure over all of the issue orders and access orders.
An execution of an implementation obeys the Alpha mem-
ory model if:

• for every memory location, there exists an access order
for which there are no two memory operations A and B
(not necessarily to the same address) such that A is
before B, and B is also before A.

• a load returns the value of the most recent store to the
same location in access order.

An implementation satisfies Alpha if all executions of that
implementation satisfy Alpha.

4.2 Wisconsin Alpha

Although the Alpha memory model seems to have little in
common with the stricter sequential consistency, we will
show that the differences between the two models can be
constrained to behavior internal to the processor (i.e.,
everything not including the cache and the rest of the mem-
ory subsystem). An execution of an implementation satis-
fies the Wisconsin Alpha memory model if there exists a
total ordering of all loads, stores, and MBs, such that:

• all of the issue orders are respected.

• a load returns the value of the most recent store to the
same location in this total order.

An implementation satisfies Wisconsin Alpha if all execu-
tions of that implementation satisfy Wisconsin Alpha.

Claim 2: An implementation that satisfies Wisconsin
Alpha also satisfies Alpha.

A proof of this claim can be found in Appendix B.1

4.3 An Alpha Implementation Using Coalescing
Write Buffers

Each processor in an Alpha implementation internally
observes issue order. It can reorder loads and stores to dif-
ferent memory locations as long as there is no intervening
MB. The multiprocessor implementation includes some
number of these processors connected together either by a
shared bus or a network. The cache coherence protocol
used in either case is the same as the shared bus protocol
[24] or the directory protocol [18] that we described in pre-
vious work. Our implementation is loosely modeled after a
multiprocessor using the Compaq (DEC) Alpha 21264
microprocessor.

Each processor issues LDs and STs in program order.
Stores are issued to a coalescing write buffer which is con-
sidered to be internal to the processor. Entries in the write
buffer are the size of cache lines. Stores to the same cache
line are coalesced in the same entry and if two stores write
to the same word, the corresponding entry will hold the
value written by the store that was issued later. Entries are
eventually flushed from the write buffer to the cache,
although not necessarily in the order in which they were
issued to the write buffer. Exclusive permission is not

required to issue a store to the write buffer, but it is required
to flush the store from the write buffer to the cache.

A LD that hits in the write buffer returns the value that is
found there, and this action does not require that line to be
flushed from the buffer to the cache. The Alpha model, like
most weak memory models, is tailored to include non-
blocking caches. This optimization allows the processor to
overlap read latency with other useful work, so LDs that
miss in the write buffer are issued to a load queue which we
consider to be internal to the processor. These LDs are han-
dled by our existing SC coherence protocol with the fol-
lowing difference: a reply from the memory system
satisfies all LDs to that location that are in the load queue at
the moment that the processor establishes that the A-state
is Shared or Exclusive. If the data was already in the cache
in the appropriate A-state, then the LD can be satisfied
immediately. We assume that there is no overlap between
the issuing of LDs and the flushing of STs to the same
address once Exclusive permission is obtained.

This implementation uses a simple mechanism for handling
MBs, which is to stall the processor until the load queue
and the write buffer are empty. Figure 2 illustrates our
Alpha implementation, where everything outside of the
dotted boxes is exactly the same as in our earlier sequen-
tially consistent implementation.

4.4 Timestamping for Alpha Implementation

The timestamping scheme for the Alpha implementation is
quite similar to that used for the TSO implementation.
Coherence transactions affect the processors’ global clocks
in the same fashion. Each LD and ST is timestamped at the
moment that it is bound, and it is in this determination of
when a LD or ST is bound where Alpha differs from TSO.
A ST is considered to be bound when the Exclusive A-state
of the target block is established by the processor. Since an
entire cache line is written at once, all of the stores in a
buffer entry (including coalesced stores to the same word)
are bound at the same time, but they are timestamped so as
to preserve issue order. A LD that hits in the write buffer is
bound exactly when that ST was bound, but it is times-
tamped after that ST to preserve issue order. If the LD
misses in the write buffer, it is bound when the block
becomes present in the appropriate A-state. At the moment
that each LD or ST is bound, the local clock is incremented
by 1 and the local component of the timestamp is set to the
updated value. The global timestamp is the value of the
global clock at the moment that the event is timestamped.

4.5 Proof of Correctness of Alpha Implementation

We show that each execution of the Alpha implementation
satisfies Wisconsin Alpha. In previous work [18,24], we
proved that an split-transaction bus protocol and a directory
protocol obeyed sequential consistency. Parts of these
proofs rely on the processors binding memory accesses in
program order. To prove that our target Alpha implementa-

1. The converse of this claim can also be proved, but it is not nec-
essary for our proof of correctness, and we omit it here due to
space constraints.

Load
Queue

Load
Queue

Load
Queue

Coalescing
Write
Buffer

Coalescing
Write
Buffer

Coalescing
Write
Buffer

Coherence Protocol

Bus / Network

Memory

storesloads stores

PROC PROC PROC

CACHE CACHE CACHE

loads loads
stores

FIGURE 2. Our Alpha Implementation

tion obeys the Wisconsin Alpha memory model, we can
use either proof (depending on whether our interconnect is
a bus or a network) as long as we consider that binding
order is now a partial order rather than a total order. Specif-
ically, we need to modify the proofs of claims made about
the binding of memory operations to coherence transac-
tions so that references to the earliest memory operation are
replaced with references toany of the earliest memory
operations, since there could be more than one that is
bound at the same time. Hence all executions of the imple-
mentation satisfy Wisconsin Alpha and so the implementa-
tion satisfies Wisconsin Alpha. By Claim 2, the
implementation also satisfies Alpha.

5 Conclusions and Future Work

High performance shared-memory multiprocessors often
incorporate relaxed memory consistency models. These
implementations may use many hardware optimizations,
such as write buffers and out-of-order issue, and it is diffi-
cult to verify that a complex implementation satisfies a
given relaxed consistency model. We have extended our
Lamport clock verification technique to handle two relaxed
consistency models: processor consistency and weak con-
sistency. Reasoning with Lamport clocks, we have shown
that two sample implementations satisfy a processor con-
sistent model (Total Store Order) and a weakly consistent
model (Alpha), respectively.

Future work with Lamport clocks will extend the method to
reason about consistent I/O and the detection of deadlock
and livelock. We are interested in automating the verifica-
tion process.

6 Acknowledgments

This work has benefited from feedback from many people,
including Robert Cypher, James Goodman, Erik Hagersten,
Daniel Lenoski, Paul Loewenstein, Gil Neiger, and David
Wood.

7 References

[1] Sarita V. Adve and Mark D. Hill. Weak Ordering—A
New Definition. In Proceedings of the 17th Annual
International Symposium on Computer Architecture,
pages 2–14, Seattle, Washington, May 28–31, 1990.

[2] Hagit Attiya and Roy Friedman. A Correctness Condition
for High-performance Multiprocessors. InProceedings of
the 24th Annual ACM Symposium on the Theory of
Computing, pages 679–690, May 1992.

[3] William W. Collier. Reasoning About Parallel
Architectures. Prentice-Hall, Inc., 1992.

[4] Intel Corporation. Pentium Pro Family Developer’s
Manual, Version 3: Operating System Writer’s Manual.
January 1996.

[5] David Culler, Jaswinder Pal Singh, and Anoop Gupta.
Draft of Parallel Computer Architecture: A Hardware/
Software Approach, chapter 8: Directory-based Cache
Coherence. Morgan Kaufmann, 1997.

[6] Michel Dubois, Christoph Scheurich, and Faye Briggs.

Memory Access Buffering in Multiprocessors. In
Proceedings of the 13th Annual International Symposium
on Computer Architecture, pages 434–442, June 1986.

[7] Asgeir Th. Eiriksson and Ken L. McMillan. Using Formal
Verification/Analysis Methods on the Critical Path in
Systems Design: A Case Study. InProceedings of the
Computer Aided Verification Conference, Liege, Belgium,
1995. Appears as LNCS 939, Springer Verlag.

[8] Kourosh Gharachorloo, Sarita V. Adve, Anoop Gupta,
John L. Hennessy, and Mark D. Hill. Specifying System
Requirements for Memory Consistency Models.
Technical Report CS-TR-1199, University of Wisconsin –
Madison, December 1993.

[9] Kourosh Gharachorloo, Daniel Lenoski, James Laudon,
Phillip Gibbons, Anoop Gupta, and John Hennessy.
Memory Consistency and Event Ordering in Scalable
Shared-memory Multiprocessors. InProceedings of the
17th Annual International Symposium on Computer
Architecture, pages 15–26, May 1990.

[10] J. Goodman. Cache Consistency and Sequential
Consistency. Technical Report 61, IEEE Scalable
Coherent Interface Working Group, 1989.

[11] Leslie Lamport. Time, Clocks and the Ordering of Events
in a Distributed System.Communications of the ACM,
21(7):558–565, July 1978.

[12] Leslie Lamport. How to Make a Multiprocessor Computer
that Correctly Executes Multiprocess Programs.IEEE
Transactions on Computers, C-28(9):241–248, September
1979.

[13] James P. Laudon and Daniel Lenoski. The SGI Origin: A
ccNUMA Highly Scalable Server. InProceedings of the
24th International Symposium on Computer Architecture,
Denver, CO, June 1997.

[14] Gil Neiger. Private communication, October 1998.
[15] Gil Neiger and Sam Toueg. Simulating Synchronized

Clocks and Common Knowledge in Distributed Systems.
Journal of the Association for Computing Machinery,
40(2):334–367, April 1993.

[16] Seungjoon Park and David L. Dill. An Executable
Specification, Analyzer and Verifier for RMO (Relaxed
Memory Order). InProceedings of the 7th Annual ACM
Symposium on Parallel Algorithms and Architectures,
pages 34–41, Santa Barbara, California, July 17–19, 1995.

[17] Seungjoon Park and David L. Dill. Verification of FLASH
Cache Coherence Protocol by Aggregation of Distributed
Transactions. InProceedings of the 8th Annual ACM
Symposium on Parallel Algorithms and Architectures,
pages 288–296, Padua, Italy, June 24–26, 1996.

[18] Manoj Plakal, Daniel J. Sorin, Anne E. Condon, and
Mark D. Hill. Lamport Clocks: Verifying a Directory
Cache-Coherence Protocol. InProceedings of the 10th
Annual ACM Symposium on Parallel Architectures and
Algorithms, Puerto Vallarta, Mexico, June 28–July 2 1998.

[19] Fong Pong, Michael Browne, Andreas Nowatzyk, and
Michel Dubois. Design Verification of the S3.mp Cache-
Coherent Shared-Memory System.IEEE Transactions on
Computers, 47(1):135–140, January 1998.

[20] Dennis Shasha and Marc Snir. Efficient and Correct
Execution of Parallel Programs that Share Memory.ACM
Transactions on Programming Languages and Systems,
10(2):282–312, April 1988.

[21] Xiaowei Shen and Arvind. Specification of Memory
Models and Design of Provably Correct Cache Coherence
Protocols. Group Memo 398, Massachusetts Institute of
Technology, June 1997.

[22] A. Singhal, D. Broniarczyk, F. Cerauskis, J. Price,
L. Yuan, C. Cheng, D. Doblar, S. Fosth, N. Agarwal,
K. Harvey, E. Hagersten, and B. Liencres. Gigaplane: A
High Performance Bus for Large SMPs.Hot Interconnects
IV, pages 41–52, 1996.

[23] Richard L. Sites, editor.Alpha Architecture Reference

Manual. Digital Press, 1992.
[24] Daniel J. Sorin, Manoj Plakal, Mark D. Hill, and Anne E.

Condon. Lamport Clocks: Reasoning About Shared-
Memory Correctness. Technical Report CS-TR-1367,
University of Wisconsin-Madison, March 1998.

[25] David L. Weaver and Tom Germond, editors.The SPARC
Architecture Manual, Version 9. Prentice Hall, 1994.
SPARC International, Inc.

Appendix A: Proof of relationship between
Wisconsin TSO and TSO

Claim 1: An implementation that satisfies Wisconsin TSO
also satisfies TSO.

Proof: Suppose that an implementation satisfies Wisconsin
TSO, i.e., for every execution on that implementation, there
exists a total ordering <w of the LDs, STprivates, and STpub-
lics satisfying Wisconsin TSO. We claim that the imple-
mentation satisfies TSO. To show this, we show that each
execution that satisfies Wisconsin TSO also satisfies TSO.
This is done by defining a new ordering <m of just LDs and
STs by removing all STprivates and using the order of
STpublic to define the order of each ST. We claim that the
resulting ordering <m satisfies TSO. To see this, consider
the requirements of TSO:

1. If X <p Y and X is a LD or Y is a ST, then X <m Y.

• First, suppose that X is a LD. There are two possibilities
for Y: (a) Y is a LD. This follows from 1´. (b) Y is a ST.
This follows from 1´ and 2´, since by 1´, X <w Yprivate
and by 2´, Yprivate <w Ypublic.

• The other possibility is that X and Y are STs. In this
case, Xpublic <w Ypublic by property 2’ and hence X <m
Y.

2. If an MB occurs between X and Y in program order, then
X <m Y.

Again, we have separate cases depending what X and Y
are:

• X is a LD. Then X <p Y and so by our argument in 1, X
<m Y.

• X is a ST and Y is a ST. Follows from 3´.

• X is a ST and Y is a LD. Follows from 4´.

3. Let X be a LD of word, and Y be the ST to wordw in
memory order (<m) satisfying the constraints of property 3.
Let W be the ST (either a STpublic or a STprivate) to wordw
in Wisconsin order (<w) satisfying the constraints of prop-
erty 5’. We need to show that Y = W.

• Suppose that W is a STpublic, call it Wpublic. Then, from
the constraints in 5´ on W, no ST before X in program
order has its STpublic after X in Wisconsin order. There-
fore, Wpublic is the greatest STpublic in Wisconsin order
(and hence W is the greatest ST in memory order),
taken over all STpublics Zpublic to word w for which
either (i) Zpublic occurs before X in Wisconsin order
(i.e. Z occurs before X in memory order) or (ii) Z

occurs before X in program order (since there are no
STs Z in category (ii) that are not already in category
(i)). Hence Y = W.

• Suppose that W is a STprivate, call it Wprivate. Since
Wprivate satisfies the constraints of 5´, Wprivate must be
the most recent STprivateat processor p before X in Wis-
consin order (and so W must be the most recent ST
before X in program order by 1´), and Wpublic must
occur after X in Wisconsin order. Since the timestamps
of STpublics agree with the order of the corresponding
STs in program order (by 3´), Wpublic is the greatest
STpublic in Wisconsin order, taken over all STpublics
Zpublic to word w for which either (i) Zpublic occurs
before X in Wisconsin order or (ii) Z occurs before X in
program order. Therefore, Y = W.

Appendix B: Proof of relationship between
Wisconsin Alpha and Alpha

Claim2: An implementation that satisfies Wisconsin Alpha
model also satisfies Alpha.

Proof: Suppose that an implementation satisfies Wisconsin
Alpha i.e., for each execution of that implementation, there
exists a total ordering of LDs, STs and MBs that satisfies
the constraints of Wisconsin Alpha. We show that the
implementation also satisfies Alpha by showing that each
such execution also satisfies the constraints of Alpha.
Given an ordering <w of LDs, STs and MBs in an execution
that satisfies Wisconsin Alpha, let us define the access
order for wordw to be the ordering of LDs and STs on that
word in <w, and the issue order at a processor to be the
ordering of LDs, STs and MBs issued at that processor in
<w. The “before” ordering is the transitive closure of issue
order and access order. We now show that the two con-
straints of Alpha are met by these definitions of access
order and “before”:

• Let A and B be any 2 memory operations in the execu-
tion. Without loss of generality, suppose that operation
A is before operation B. Since the before order is the
transitive closure of the access and issue orders, and
since <w respects both access and issue orders, then A
<w B. Hence, it cannot be that B is also before A,
because otherwise B <w A, which is impossible since
Wisconsin Alpha order is a total order.

• A LD returns the value of the most recent store to the
same location in the <w ordering which, from our defi-
nition of access order above, is also the most recent
store to the same location in access order.

