
Appears in the proceedings of the

13th Annual International Symposium on High Performance Computer Architecture (HPCA-13)

Phoenix, AZ February 10-14, 2007
LogTM-SE: Decoupling Hardware Transactional Memory from Caches

Luke Yen, Jayaram Bobba, Michael R. Marty, Kevin E. Moore,
Haris Volos, Mark D. Hill, Michael M. Swift, David A. Wood

Department of Computer Sciences, University of Wisconsin–Madison
{lyen, bobba, mikem, kmoore, hvolos, markhill, swift, david}@cs.wisc.edu

http://www.cs.wisc.edu/multifacet
Abstract

This paper proposes a hardware transactional memory

(HTM) system called LogTM Signature Edition (LogTM-SE).

LogTM-SE uses signatures to summarize a transaction’s read-

and write-sets and detects conflicts on coherence requests

(eager conflict detection). Transactions update memory “in

place” after saving the old value in a per-thread memory log

(eager version management). Finally, a transaction commits

locally by clearing its signature, resetting the log pointer, etc.,

while aborts must undo the log.

LogTM-SE achieves two key benefits. First, signatures and

logs can be implemented without changes to highly-optimized

cache arrays because LogTM-SE never moves cached data,

changes a block’s cache state, or flash clears bits in the cache.

Second, transactions are more easily virtualized because sig-

natures and logs are software accessible, allowing the operating

system and runtime to save and restore this state. In particu-

lar, LogTM-SE allows cache victimization, unbounded nesting

(both open and closed), thread context switching and migra-

tion, and paging.

1 Introduction

Transactional memory (TM) [15] is a promising program-

ming approach for effectively using the threads offered by

future chips with multiple (often multi-threaded) cores. A

TM system lets a programmer invoke a transaction and rely

on the system to make its execution appear atomic and iso-

lated. A successful transaction commits, while an unsuccess-

ful one that conflicts with a concurrent transaction aborts.

While some TM systems operate completely in software

(STMs) [12, 14, 27], this paper concentrates on those imple-

mented with hardware support (HTMs).

Hardware accelerates transactional memory with two key

capabilities. First, hardware provides conflict detection

among transactions by recording the read-set (addresses

read) and write-set (addresses written) of a transaction. A

conflict occurs when an address appears in the write-set of

two transactions or the write-set of one and the read-set of

another. Second, hardware provides version management by

storing both the new and old values of memory written by a

transaction. Most HTMs achieve their good performance in

part by making demands on critical L1 cache structures.

These demands include read/write (R/W) bits for read- and

write-set tracking [3, 11, 19, 25], flash clear operations at

commits/aborts [3, 11, 19, 25], and write buffers for specula-

tive data [7, 11]. In addition, some depend on broadcast

coherence protocols, precluding implementation on direc-

tory-based systems [7].

We see three reasons future HTMs may wish to decouple

version management and conflict detection from the L1

cache tags and arrays. First, these are critical structures in

the design of high performance processors that are better left

untouched by an emerging idea like transactional memory.

Second, the desire to support both T-way multi-threaded

processors and L-level nested transactions leads to T x L

copies of the state. Third, having transactional state inte-

grated with the L1 cache makes it more difficult to save and

restore, a necessary step to virtualize transactional mem-

ory—i.e, support cache victimization, unbounded nesting,

thread suspension/migration, and paging [3, 25].

Fortunately, two HTMs provide complementary partial

solutions to decoupling HTM demands from L1 caches.

LogTM [19] decouples version management from L1

cache tags and arrays. With LogTM, a transactional thread

saves the old value of a block in a per-thread log and writes

the new value in place (eager version management).

LogTM’s version management uses cacheable virtual mem-

ory that is not tied to a processor or cache. It never forces

writebacks to cache speculative data, because it does not

exploit cache incoherence, e.g., where the L1 holds new

transactional values and the L2 holds the old versions [11, 3,

7]. Instead, caches are free to replace or writeback blocks at

any time. No data moves on commit, because new versions

are in place, but on abort a handler walks the log to restore

old versions. LogTM, however, fails to decouple conflict

detection, because it maintains R/W bits in the L1 cache.

Bulk [7] decouples conflict detection by recording read-

and write-sets in a hashed signature separate from L1 cache

tags and arrays. A simple 1K-bit signature might logically

OR the decoded 10 least-significant bits of block addresses.

On transaction commit, Bulk broadcasts the write signature

and all other active transactions compare it against their

own read and write signatures. A non-null intersection indi-

cates a conflict, triggering an abort. Due to aliasing, non-null

signature intersection may occur even when no actual con-

flict exists (a false positive) but no conflicts are missed (no

false negatives). Moreover, Bulk’s signatures make it easier to

support multi-threading and/or nested transactions since

replicating signatures doesn’t impact critical L1 structures.

Bulk’s version management, however, is still tied to the L1

cache: the cache must (i) writeback committed, but modified

blocks before making speculative updates, (ii) save specula-

tively modified blocks in a special buffer on cache overflow,

and (iii) only allow a single thread of a multi-threaded pro-

cessor to have speculative blocks in any one L1 cache set. In

addition, it depends on broadcast coherence for strong ato-

micity [5] and requires global synchronization for ordering

commit operations.

LogTM-SE. In this paper, we propose LogTM Signature Edi-

tion (LogTM-SE), which decouples both conflict detection

and version management from L1 tags and arrays. LogTM-

SE combines Bulk’s signatures and LogTM’s log, but adapts

both to reap synergistic benefits. With LogTM-SE, transac-

tional threads record conflicts with signatures and detect

conflicts on coherence requests. Transactional threads

update memory in place after saving the old value in a per-

thread memory log. Like LogTM, LogTM-SE does not

depend on broadcast coherence protocols. Finally, a transac-

tion commits locally by clearing its signature and resetting

its log pointer—there are no commit tokens, data write-

backs, or broadcast—while aborts locally undo the log.

Transactions in LogTM-SE are virtualizable, meaning

that they may be arbitrarily long and can survive OS activi-

ties such as context switching and paging, because the struc-

tures that hold their state are software accessible. Both old

and new versions of memory can be victimized transpar-

ently because the cache holds no inaccessible transactional

state. Similarly, the ability to save and restore signatures

allows unbounded nesting. LogTM-SE achieves this using

an additional summary signature per thread context to sum-

marize descheduled threads. Finally, LogTM-SE supports

paging by updating signatures using the new physical

address after relocating a page.

Using Simics [17] and GEMS [18] to evaluate a simulated

transactional CMP, we show that LogTM-SE performs com-

parably with the less-virtualizable, original LogTM. Further-

more, for our workloads even very small (e.g., 64 bit)

signatures perform comparably or better than locking.

In our view, LogTM-SE contributes an HTM design that

(1) leaves L1 cache state, tag, and data arrays unchanged (no

in-cache R/W bits or transactional write buffers), (2) has no

dependence on a broadcast coherence protocol, (3) effec-

tively supports systems with multi-threaded cores (replicat-

ing small signatures) on one or more chips (with local

commit), and (4) supports virtualization extensions for vic-

timization, nesting, paging, and context switching because

signatures are easily copied. In Section 8 we detail how

LogTM-SE differs from existing HTMs.

2 LogTM-SE Architecture

This section describes the LogTM-SE architecture, while

Section 5 develops a specific example LogTM-SE system.

Tracking Read- and Write-Sets with Signatures. LogTM-

SE tracks read- (R) and write- (W) sets with conservative sig-

natures inspired by Bulk, as well as others who conserva-

tively encode sets [4, 21, 24, 26]. A signature implements

several operations. Let O be a read or a write and A be a

block-aligned physical address. INSERT(O, A) adds A to the

signature’s O-set. Every load instruction invokes

INSERT(read,A) and every store invokes INSERT(write, A).

CONFLICT(read, A) returns whether A may be in a signa-

ture’s write set (thereby conflicting with a read to A). CON-

FLICT(write, A) returns whether A may be in a signature’s

read- or write-sets. Both tests may return false positives

(report a conflict when none existed), but may not have false

negatives (fail to report a conflict). Finally, CLEAR(O) clears

a signature’s O-set. Section 5 discusses specific signature

implementations.

Eager Conflict Detection. LogTM-SE performs eager con-

flict detection like LogTM, except that LogTM-SE uses sig-

natures (not read/write bits in the L1 caches) and handles

multi-threaded cores. Consider conflict detection with sin-

gle-threaded cores first. A load (store) that misses to block A

generates a GETS(A) (GETM(A)) coherence request. A core

that receives a GETS (GETM) request checks its write (read

and write) signatures using a CONFLICT(read, A) (CON-

FLICT(write, A)) operation. A core that detects a possible

conflict responds with a NACK. The requesting core, seeing

the NACK, then resolves the conflict. LogTM-SE adopts

LogTM’s conflict resolution mechanism: the core stalls,

retries its coherence operation, and aborts on a possible

deadlock cycle. More sophisticated future versions could

trap to a contention manager.

LogTM-SE forbids a core’s L1 cache from caching a block

(no M, O, E, or S coherence states) that is in the write-set of a

transaction on another core. Nor may it exclusively cache a

block (no M or E) that is in the read-set of a transaction on

another core. (Note that a core may, however, cache data that

is in the read- or write-set signature of another core due to

aliasing.) This provides isolation by ensuring that data writ-

ten by one transaction cannot be read or written by others

before commit. With the above invariants, loads that hit in

the core’s L1 cache (states M, O, E, or S) and stores that hit

(M or E) need no signature tests. Significantly, LogTM-SE

does not enforce the converse of these invariants—a block in

a transaction’s read- or write-set need not be locally cached.

Section 3.1 discusses how LogTM-SE cores check the signa-

ture for blocks evicted from its L1, which allows victimiza-

tion of transactional data.

Signatures have the potential to cause interference

between memory references in different processes. If thread

ta in process A running on core C1 accesses a memory block

residing on core C2, which is running tb from process B, a

signature on C2 may signal a false conflict. While not affect-

ing correctness, this interference could allow one process to

prevent all other processes from making progress. LogTM-

SE prevents this problem by adding an address space identi-

fier to all coherence requests. Requests are only NACKed if

the signature signals a potential conflict and the address

space identifiers match, preventing false conflicts between

processes.

Multi-threaded cores require additional mechanisms to

detect conflicts among threads on the same core. Each

thread context maintains its own read and write signatures.

Loads or stores to blocks in M (and stores to E) must query

the signatures of other threads on the same core. This check

should not impact performance because conflicts need only

be detected before the memory instruction commits.

Eager

L1 I/D

LogTM-SE-

Tag State Data

Shared L2

specific state

Figure 1. LogTM-SE Hardware Overview.

Tag State Data L1 Sharers

Core 0
1

2
...1

 Log Base
 Log Pointer

 TM Nest

 PC

Registers
User Register

Checkpoint

 Begin PC
 Handler PC

 R/W Sig.
 Summary Sig.

Thread Context 0

Log Filter

 Version Management. LogTM-SE adopts LogTM’s

per-thread log, but adds a new mechanism to suppress

redundant logging. Like a Pthread’s stack, the log is allocated

in thread-private memory. Before a memory block is first

written in a transaction, its virtual address and previous con-

tents must be written to the log. It is correct, but wasteful, to

write the same block to the log more than once within a

transaction. LogTM reuses the W bit in the L1 cache, which

records whether a block has been written by the active trans-

action, to suppress redundant logging. However, this optimi-

zation does not extend to LogTM-SE because signatures

permit false positives. If the hardware fails to log a block due

to a false positive in the write-set signature, it would be

impossible to correctly undo the effects of a transaction.

Instead, LogTM-SE uses an array of recently logged

blocks for each thread context as a simple but effective log

filter. When a thread stores to a block not found in its log fil-

ter, LogTM-SE logs the block and adds its address to the log

filter. Stores to addresses in the log filter are not logged.

Much like a TLB, the array can be fully associative, set asso-

ciative, or direct mapped and use any replacement algo-

rithm. As with write buffers in multi-threaded cores, the

filters are logically per-thread, but can be implemented in a

tagged shared structure. Because the filter contains virtual

addresses and is a performance optimization not required

for correctness, it is always safe to clear the log filter (e.g., on

context switch).

Local Commit & Abort. LogTM-SE’s transactional commit

is a fast, local operation that also avoids LogTM’s flash-clear

of L1 cache read/write bits. To commit, a thread must only

clear its local signatures to release isolation on its read- and

write-sets and reset its log pointer. Since eager version man-

agement updates data in place, no data movement is neces-

sary. Thus, commit, which should be much more common

than abort, is a fast, thread-local operation requiring no

communication or synchronization with other threads or

cores. Like LogTM, LogTM-SE permits multiple non-con-

flicting transactions to commit in the same cycle.

LogTM-SE implements abort, the uncommon case, using

a software handler. A thread aborts a transaction by trapping

to an abort handler, which first walks the log in LIFO order

to restore transactionally modified blocks. Once memory is

restored to pre-transaction values, the handler releases isola-

tion by clearing the thread’s signature. Although abort takes

time proportional to the number of blocks written by a

transaction, it does not require any global resources.

Summary. The circled items in Figure 1 illustrate what

LogTM-SE adds to each thread context to support TM. Like

LogTM, LogTM-SE adds a register checkpoint and registers

to store the log address, nesting depth, and abort handler

address. LogTM-SE also adds two signatures, a log filter, and

a summary signature (described in Section 4.1), but makes

no changes to the critical L1 and L2 caches and has no struc-

tures that explicitly limit transaction size.

3 Virtualizing LogTM-SE

Application programmers reason about threads and vir-

tual memory, while hardware implements multi-threaded

cores, caches, and physical memory. Operating systems

(OSs) provide programmers with a higher-level abstraction

by virtualizing physical resource constraints, such as mem-

ory size and processor speed, using mechanisms such as

paging and context switching. To present application pro-

grammers a suitable abstraction of transactional memory,

the OS must virtualize the HTM’s physical resource limits,

using hardware and low-level software mechanisms that are

fast in common cases, correct in all cases, and, if possible,

simple [3, 25].

This section discusses how LogTM-SE efficiently exe-

cutes transactions unbounded in size and nesting depth

using limited hardware. The following section discusses

context switching and paging. LogTM-SE has two key

advantages with regard to virtualization. First, LogTM-SE’s

version management is naturally unbounded, since logs are

mapped into per-thread virtual memory. Second, LogTM-

SE’s signatures and logs are software accessible, allowing

software to save and restore signatures to/from the log.

3.1 Cache Victimization
Caches may need to evict transactional blocks when a

transaction’s data size exceeds cache capacity or associativity.

Multi-threaded cores make this more likely and unpredict-

able, due to interference between threads sharing the same

L1 cache. Furthermore, after eviction, an HTM must con-

tinue to efficiently handle both version management and

conflict detection. This is important, since cache victimiza-

tion is likely to be more common than other virtualization

events (e.g., thread switching and paging).
Notably, cache victimization has no effect on LogTM-SE’s

version management. Like LogTM, both new values (in

place) and old values (in the log) may be victimized without

resorting to special buffers, etc.

LogTM-SE’s mechanism for conflict detection depends

upon the underlying cache coherence protocol. Like all

HTMs with eager conflict detection, LogTM-SE relies on the

coherence protocol to direct requests to all caches that might

represent a conflict. With broadcast coherence, cache vic-

timization has no effect on conflict detection, because

LogTM-SE can check all signatures on every broadcast.

With a naive directory protocol, cache victimization

could lead LogTM-SE to miss some signature checks and

hence miss some conflicts. LogTM-SE avoids this case by

extending the directory protocol to use LogTM’s sticky states

[19]. As in many MOESI protocols, LogTM-SE’s caches

silently replace blocks in states E and S and write back blocks

in states M and O. When evicting a cache block (e.g., core C1

replaces block B), however, LogTM-SE does not change the

directory state, so that the directory continues to forward

conflicting requests to the evicting core (e.g., a conflicting

operation by C2 is still forwarded to C1, which checks its

signature). Thus, LogTM-SE allows transactions to overflow

the cache without a loss in performance.

3.2 Transactional Nesting
To facilitate software composition, HTMs must allow

transactional nesting: invoking a transaction within a trans-

action [22]. This is trivially done by flattening: only commit-

ting transactional state when the outer-most transaction

commits. Unfortunately with flat nesting, a conflict with the

inner-most transaction forces a complete abort all its ances-

tors as well. An improvement is closed nesting with partial

aborts that, for the above case, would allow an abort of just

the inner-most transaction. To increase concurrency, some

also argue for open nesting [30] which allows an inner trans-

action to commit its changes and release isolation before the

outer transactions commit. In addition, some proposed lan-

guage extensions for transactional memory, such as retry

and orelse, depend on arbitrarily deep nesting [13]. Ideally,

HTMs should provide unbounded nesting to fully support

these language features. Otherwise, some composed soft-

ware may fail when transactions nest too deeply.

LogTM-SE supports unbounded transactional nesting

with no additional hardware by virtualizing the state of the

parent’s transaction while a child transaction is executing.

Following Nested LogTM [20], LogTM-SE segments a

thread’s log into a stack of frames, each consisting of a fixed-

sized header (e.g., register checkpoint) and a variable-sized

body of undo records. LogTM-SE augments the header with

a fixed-sized signature-save area.

A nested transaction begins by saving the current thread

state: LogTM-SE copies the signature to the current transac-

tion’s log frame header and allocates a new header with a

register checkpoint. To ensure the child correctly logs all

blocks, it clears the log filter. Loads and stores within the

child transaction behave normally, adding to the signature

and log as necessary. On commit of a closed transaction,

LogTM-SE merges the inner transaction with its parent by

discarding the inner transaction’s header and restoring the

parent’s log frame. An open commit behaves similarly,

except that it first restores the signature from the parent’s

header into the (hardware) signature to release isolation on

blocks only accessed by the committing open transaction.

On an abort, LogTM-SE’s software handler first unrolls

the child transaction’s log frame and restores the parent’s sig-

nature. If this resolves the conflict, the partial abort is done

and a retry can begin. If a conflict remains with the parent’s

signature, the handler repeats this process until the conflict

disappears or it aborts the outer-most transaction.

LogTM-SE supports unbounded transactional nesting

with a per-thread hardware signature, saved to the log on

nested begins. To reduce overhead, each thread context

could provide one or more extra signatures to avoid syn-

chronously saving and restoring signatures. On a nested

begin, for example, hardware can copy the current signature

S to Sbackup. Inner commit of a closed transaction discards

Sbackup, while inner commit of an open transaction and all

inner aborts restore Sbackup to S. Like register windows, the

benefit depends on program behavior.

4 OS Resource Management

While OS resource management events, such as context

switches and paging, may be infrequent relative to the dura-

tion of a transaction, they must still be handled correctly.

This section discusses how LogTM-SE allows threads exe-

cuting in transactions to be suspended and rescheduled on

other thread contexts and how pages accessed within a

transaction can be relocated in memory.

4.1 Thread Suspension/Migration
Operating systems (OSs) increase processing efficiency

and responsiveness by suspending threads and rescheduling

them on any thread context in the system. To support thread

context switch and migration, the OS must remove all of a

thread’s state from its thread context, store it in memory, and

load it back, possibly on a different thread context on the

same or a different core. For HTMs that rely on the cache for

either version management or conflict detection, moving

thread state is difficult because the transactional state of a

thread is not visible to the operating system. One simple

approach is to abort transactions when a context switch

occurs. This is difficult for eager version management

HTMs, though, because aborting is not instantaneous. In

addition, some long-running transactions may never com-

plete if they are forced to abort when preempted. A better

approach allows thread preemption, but ensures that trans-

actional state is saved and restored with the thread’s other

state.

In LogTM-SE, all of a thread’s transactional state—its

version management and conflict detection state—is accessi-

ble to the OS. Both old and new versions of transactional

data reside in virtual memory and require no special OS

support. The log filter is purely an optimization and can be

cleared when a thread is descheduled.

A thread’s conflict detection state can be saved by copying

the read/write signatures to the log’s current header. How-

ever, the hardware must continue to track conflicts with the

suspended thread’s signatures to prevent other threads from

accessing uncommitted data. For example, another thread in

the same process may begin a transaction on the same

thread context and try to access a block in its local cache.

The system must check this access to ensure that the block is

not in the write-set of a descheduled transaction. The chal-

lenge is to ensure that all active threads check the signatures

of descheduled threads in their process on every memory

reference.

LogTM-SE achieves this goal using an additional sum-

mary signature, which represents the union of the suspended

transactions’ read- and write-sets. The OS maintains the fol-

lowing invariant for each active/summary signature pair: If

thread t of process P is scheduled to use an active signature, the

corresponding summary signature holds the union of the saved

signatures from all descheduled threads from its process P. On

every memory reference, including hits in the local cache

(both transactional and non-transactional), LogTM-SE

checks the summary signature to ensure that the request

does not conflict with a descheduled transaction. Multi-

threaded cores, where each thread on a core may belong to a

separate process, require a summary signature per thread

context.

The OS maintains, in software, a summary signature for

the entire process. When descheduling a thread, the OS

merges the thread’s saved signatures into its process sum-

mary signature. It then interrupts all other thread contexts

running threads from the process and installs the new sum-

mary signature. In contrast to the normal signature, the

summary signature is checked on memory references but

not on coherence requests (because it is present on all thread

contexts running in the same process). Any memory request

that conflicts with a saved signature immediately traps to a

conflict handler, since stalling is not sufficient to resolve a

conflict with a descheduled thread.

When the OS reschedules a thread, it copies the thread’s

saved signatures from its log into the hardware read/write

signatures. However, the summary signature is not recom-

puted until the thread commits its transaction, to ensure that

blocks in sticky states remain isolated after thread migration.

The thread executes with a summary signature that does not

include its own signatures, to prevent conflicts with its own

read- and write-sets. On transaction commit, LogTM-SE

traps to the OS, which pushes an updated summary signa-

ture to active threads.1

Thus, with a single additional signature per thread and

small changes to the operating system, LogTM-SE supports

both context switching and thread migration. The cost of

context switching within a transaction is relatively high, and

for that reason we expect operating systems to support pre-

emption control mechanisms [29] that defer context

switches occurring within a transaction if possible. In addi-

tion, aborting short transactions may be preferable to incur-

ring the overhead of propagating new summary signatures.

4.2 Virtual Memory Paging
HTMs must support paging of transactional data for sev-

eral reasons. First, an OS may page out data in the read- and

write-sets of active transactions and page it back in at a dif-

ferent physical address. If transactions are short, swapping of

transactional data to disk is unlikely, because the memory

was touched recently. However, paging may be required

because one or more transactions’ read- or write-sets exceed

the physical memory size (but we hope this case is uncom-

mon). Second, OS techniques, such as copy-on-write, may

also cause a page that was read to subsequently be relocated

1. To efficiently compute summary signatures, the OS could main-
tain a counting signature data structure to track the number of suspended
threads setting each summary signature bit, similar to VTM’s XF data
structure [25].

when it is written. HTMs should therefore work correctly in

the presence of paging and should not cause an automatic

abort (to handle large transactions).

LogTM-SE’s version management operates on virtual

addresses and is not tied to cores or caches. Thus, both new

(in place) and old (in log) versions can be transparently

paged. Moreover, eager version management allows a trans-

action to commit without restoring paged-out pages, since

the new version is already in place. In contrast, lazy version

management, in which memory is updated on commit,

would require restoring paged-out pages at commit time,

removing any benefit of paging them out in the first place.

LogTM-SE’s signatures do not lose any information when

a page is removed from memory, so transactional data

remains isolated. However, because signatures operate on

physical addresses, false conflicts may arise if the page is

remapped to a different virtual address within the same

address space. As with other false positives, this is acceptable

if it is infrequent (as it should be).

More important are false negatives, indicating loss of iso-

lation, that can arise when all of the following hold: (a) a

page was transactional, (b) was paged out, (c) was paged

back in at a different physical address (d) while the original

transaction was still active. Since paging transactional data

should be very rare, we propose a correct solution and leave

optimization to future work.

When

2−way
Core 2

2−way
Core 3

2−way
Core 4

2−way
Core 5

2−way
Core 6

2−way
Core 7

2−way
Core 8

2−way
Core 9

2−way
Core 10

2−way
Core 11

2−way
Core 12

2−way
Core 13

2−way
Core 14

2−way
Core 15

2−way
Core 0

2−way
Core 1

L2 bank

L2 bank

L2 bank

L2 bank

L2 bank

L2 bank

L2 bank

L2 bank

mem controller

L2 bank

L2 bank

L2 bank

L2 bank

L2 bank

L2 bank

L2 bank

L1I

L1I

L1I

L1I

L1I

L1I

mem controller

L2 bank

mem controller

L1I

L1I

L1I

L1I

mem controller

L1I

L1I

L1I

L1I

L1I

L1I

L1D

L1D

L1D

L1D

L1D

L1D

L1D

L1D L1D

L1D

L1D

L1D

L1D

L1D

L1D

L1D

Figure 2. Baseline CMP for LogTM-SE

 bringing a page back into a process at a different

physical address, LogTM-SE notifies all threads to update

their signatures with the new physical address for the page.

For active threads, this requires interrupting each thread

and, for those executing a transaction, walking the signature

and testing whether it contains any blocks from the old

address of the page. If so, the same blocks are inserted in the

signature using their new physical address. The OS queues a

signal for descheduled transactions to update their summary

signatures (as well as signatures in the log from nesting)

before they resume execution. Thus, the updated signatures

contains both the old and new physical addresses for read-

and write-set elements on the page.

This simple mechanism requires no additional hardware

support and will incur little overhead if paging within a

transaction is rare. If paging proves more frequent (i.e. if

large transactions become the norm), additional mecha-

nisms can detect whether a page has been touched during a

transaction to avoid unnecessary signature updates.

5 A LogTM-SE

Table 1: System Model Parameters

System Model Settings

Processor Cores 5 GHz, out-of-order, 2-way SMT

L1 Cache 32 KB 4-way split, 64-byte blocks,

1 cycle uncontended latency

L2 Cache 8 MB 8-way unified, 64-byte blocks,

34-cycle uncontended latency

Memory 4 GB 500-cycle latency

L2-Directory Full-bit vector sharer list; 6-cycle latency

Interconnec-

tion Network

grid, 64-byte links, 3-cycle link latency

 Implementation

This section presents a specific LogTM-SE implementa-

tion for a CMP with non-broadcast coherence, which will be

important for future larger-scale CMPs.

Base CMP. Figure 2 illustrates the baseline 16-core LogTM-

SE system and Table 1 summarizes the system parameters.

Each of the 16 cores executes instructions out-of-order and

supports 2-way multi-threading, providing 32 thread con-

texts on chip. The cores are 4-way-issue superscalar, use a

15-stage pipeline, 64-entry issue window, 128 entry reorder

buffer, YAGS branch predictor, and have abundant fully-

pipelined functional units (2 integer ALU, 2 integer divide, 2

branch, 4 FP ALU, 2 FP multipliers, and 2 FP divide/square

root). Each core has 32 KB private L1 I & D caches, with the

latter using writeback. All cores share an 8 MB L2 cache con-

sisting of sixteen banks interleaved by block address. A

packet-switched interconnect connects the cores and cache

banks in a 4x3 grid topology using 64-byte links and adap-

tive routing. On-chip memory controllers connect to stan-

dard DRAM banks.

A MESI directory protocol provides cache coherence

with less bandwidth demand than a broadcast protocol. The

protocol enforces inclusion and each L2 tag contains a bit-

vector of the L1 sharers and a pointer to the exclusive copy, if

it exists. To eliminate a potential race, an E replacement

from an L1 cache sends a control message to update the

exclusive pointer, but S replacements are completely silent.

An alternative implementation of the on-chip directory

could use shadow tags instead of an inclusive L2 cache.

Coherence Protocol Changes. LogTM-SE modifies the

baseline MESI coherence protocol to support CON-

FLICT(O, A) operations. GETS(A) requests from other

cores invoke CONFLICT(read,A) and GETM(A) requests

invoke CONFLICT(write, A).

If an L1 cache replaces transactional data, the L2 cache

does not update the exclusive pointer or sharer’s list (like the

sticky-S and sticky-M states in LogTM [19]). This ensures

that subsequent requests will still be forwarded to the evict-

ing L1 cache, allowing it to perform the signature check

needed to preserve correctness.

If the L2 cache replaces transactional data, it loses the

corresponding directory information since the external

DRAM does not maintain a directory. As a result of the

inclusion property, subsequent references to the same data

result in an L2 miss. To preserve correctness, the L2 conser-

vatively broadcasts the coherence request to the L1s, allow-

ing them to check their signatures. To avoid multiple

broadcasts for the same block, the L2 rebuilds the directory

state by recording the L1s’ responses. If an L1 NACKs the

request due to a conflict, the L2 directory goes to a new state

that requires L1 signature checks for all subsequent requests.

A block leaves this state when the request finally succeeds.

Signature Design. The signature compactly represents the

read- and write-sets of a transaction. A perfect filter, which

precisely records the addresses read and written, can be

implemented as bit vector with a bit for each block in the

address space. However, this is unnecessary and inefficient,

as false conflicts represent a performance, rather than a cor-

rectness, issue. The key goals for a practical signature mech-

anism are (1) size, (2) accuracy, and (3) simplicity. We focus

on signatures that can be computed from simple binary

operations, such as shifting, ORing, and decoding.

Figure 3 shows three signature implementations, where

an actual signature needs two copies of the illustrated hard-

ware for read- and write-sets, respectively. Part (a) illustrates

inserting a block address A into a simple bit-select (BS) sig-

nature implementation of size N = 2n bits. The insert merely

decodes the n least-significant bits of A’s block address and

logically ORs the result with the current signature. While

not illustrated, a CONFLICT(O, A) operation simply tests

the appropriate bit, while a CLEAR(O) zeros the signature.

Part (b) illustrates double-bit-select (DBS) that decodes two

fields, setting both on an INSERT(O,A) and signaling a con-

flict only when both are set. DBS is similar to Bulk’s default

signature mechanism, which permutes the address and then

decodes two 10 bit fields. Finally, part (c) illustrates coarse-

bit-select (CBS) that tracks conflicts at a coarser granularity

than blocks (e.g., pages). CBS targets large transactions

whose read- or write-sets at the block granularity would fill a

small signature.

The next section shows that these simple signatures per-

form well for current transactional workloads. More creative

signatures may prove necessary if larger transactions and

deep nesting become the norm.

6 Evaluation

Figure 3. Three example signature implementations

���
���
���
���

���
���
���
���

���
���
���
���

2n bits

n

Address

Signature

block
offset

Address

block
offset

n n1 0

Signature 2 2n n1 0bits bits

dn

Signature

Address

block
offset

2
n

(c) coarse−bit−select (CBS)

bits

(a) bit−select (BS) (b) double−bit−select (DBS)

This section evaluates the LogTM-SE implementation

described in Section 5. Results show that signature-based

transactional memory generally performs comparably to

lock-based synchronization, small, simple signature imple-

mentations suffice, and cache victimization occurs rarely for

most workloads.

6.1 Methodology
We evaluate LogTM-SE using full-system execution-

driven simulation based on the Wisconsin GEMS toolset [18,

31] in conjunction with Virtutech Simics [17]. The GEMS

toolset includes detailed timing models for the processor

pipeline and memory system. Simics provides functional

correctness for the SPARC ISA and unmodified Solaris 9.

Each simulation was pseudo-randomly perturbed to pro-

duce 95% confidence intervals [2].

6.2 Workloads
In order to observe a range of program behavior, we con-

verted a variety of multi-threaded workloads to use transac-

tions. These include a database storage library [28] and four

SPLASH benchmarks [32]. In each case, we converted the

original lock-based multi-threaded program to use transac-

tions in place of lock-protected critical sections. Transaction

begin and commit were implemented via Simics “magic”

instructions, which are special no-ops passed directly to the

memory model.

BerkeleyDB. BerkeleyDB is an open-source database stor-

age manager library that is commonly used for server appli-

cations (such as OpenLDAP), database systems (MySQL)

and many other applications. We based our workload on the

open-source version distributed by Sleepycat software [28].

We converted the mutex-based critical sections in Berke-

leyDB to transactions. The resulting transactions contain

non-transactional pieces of code such as system calls, I/O

operations, and memory allocation, which are handled using

non-transactional escape actions [20]. A simple multi-

threaded driver program initializes a database with 1000

words and then creates a group of worker threads that ran-

domly read from the database. This driver stresses the Ber-

keleyDB lock subsystem due to repeated requests for locks

on database objects.

Cholesky, Radiosity, Raytrace and Mp3d. These scientific

programs are taken from the SPLASH benchmark suite [32].

We replace the critical sections with transactions while

retaining barriers and other synchronization mechanisms.

Raytrace was modified to eliminate false sharing between

transactions [19].

Table 2: Benchmarks and Inputs

Benchmark Input Unit of Work
Units

Measured
Transactions

R
ea

d
 A

vg

R
ea

d
 M

ax

W
ri

te
 A

vg

W
ri

te
 M

ax

BerkeleyDB 1000 words 1 database read 128 1,120 8.1 30 6.8 28

Cholesky tk14.O Factorization 1 261 4.0 4 2.0 2

Radiosity batch 1 task 512 11,172 2.0 25 1.5 45

Raytrace small image (teapot) parallel phase 1 47,781 5.8 550 2.0 3

Mp3d 128 molecules 1 step 512 17,733 2.2 18 1.7 10

To reduce simulation times, we do not measure the entire

parallel segment of the program. Instead we take representa-

tive execution samples and measure throughput in terms of

well-defined units of work [1].1 For example, in the Berke-

leyDB workload, each database read comprises a unit of

work. Table 2 lists our workloads, their input parameters,

and their units of work.

6.3 Results
Performance with Perfect Signatures. We begin by show-

ing that LogTM-SE with idealized signatures generally per-

forms at least comparably to lock-based programs. For each

benchmark, Figure 4 presents the execution time speedups

for different TM variants relative to the left-most bar which

represents the lock-based programs (Lock). The second bar,

P, displays the performance of LogTM-SE using perfect sig-

natures—idealized signatures that record exact read- and

write-sets, regardless of their size.

Result 1: LogTM-SE with unimplementable perfect signa-

tures performs comparable to locks or better. BerkeleyDB

and Raytrace perform 20-50% better using transactions,

while the differences for Cholesky, Mp3d, and Radiosity are

not statistically significant (note the 95% confidence inter-

vals denoted by the error bars).

Implication 1: LogTM-SE’s eager version management

and local commit allows programmers to use the easier TM

programming model without sacrificing performance, pro-

vided that realistic signature implementations do not

degrade performance.

Performance with Realistic Signatures. To evaluate realis-

tic signature implementations, Figure 4 presents the speed-

ups for LogTM-SE with 2 Kb signatures using bit-select

(BS), coarse-bit-select (CBS), and double-bit-select (DBS).

BS decodes the least-significant 11 bits of the block address.

CBS decodes the least-significant 11 bits of a 1 KB macro-

block (sixteen 64-byte blocks). DBS separately decodes the

10 least-significant bits of a block address and the next 10

address bits, setting and checking two signature bits.

Result 2: LogTM-SE with the CBS and DBS signatures

performs comparably to LogTM-SE with perfect signatures,

while the simplest scheme, BS, degrades performance mod-

estly for Radiosity and Raytrace.

Implication 2: If these results generalize to future TM

workloads, LogTM-SE can use simple signatures to approxi-

mate perfect signatures and perform well.

Signature Sizing. Smaller signatures reduce implementation

cost, but increase the probability of false positives. Given the

well-known birthday paradox, one might expect small signa-

tures to perform poorly. The last bar in Figure 4 presents the

speedup for a 64 bit BS signature (BS_64).

Result 3: The 64 bit BS signature performs comparably to

perfect signatures for 3 of the 5 benchmarks, but performs

up to 20% slower for Radiosity and Raytrace. Small signa-

tures suffice because most transactions have small read and

write sets (Table 2) and spend most of their time executing

non-transactional code (not shown).
1. We use the term “unit of work” in place of “transaction” (used by

Alameldeen et al.) to avoid confusion with TM transactions.

Implication 3: These results suggest that small signatures

may allow initial HTM implementations to use modest

resources until the nature and importance of TM applica-

tions becomes clear.

Importance

0.0

0.5

1.0

1.5

S
p
e
e
d
u
p

Lock P BS CBS DBS BS_64
BerkeleyDB

Lock P BS CBS DBS BS_64
Cholesky

Lock P BS CBS DBS BS_64
Mp3d

Lock P BS CBS DBS BS_64
Radiosity

Lock P BS CBS DBS BS_64
Raytrace

Figure 4. Speedup normalized to locks

 of Victimization. We also studied how often

these benchmarks victimize transactional data from L1 or L2

caches. Only Raytrace had more than 20 transactions that

evicted transactional data from its caches.

Result 4: Raytrace victimized transactional L1 or L2

blocks 481 times in 48K transactions, while other bench-

marks victimized transactional blocks less than 20 times.

Implication 4: If these results generalize to future TM

workloads, HTM should handle victimization, but do so

with minimal complexity and resources.

In More Detail. To gain further insight, Table 3 presents

additional information on Raytrace and BerkeleyDB. For

both benchmarks, Table 3 presents the number of transac-

tion commits, transaction stalls (i.e., the number of times

transactions have a request NACKed), and transaction

aborts for both perfect and practical signatures. It also pre-

sents the fraction of conflicts that arise from false positives.

For 2 Kb signatures, for example, false positives account for

0-60% of all conflicts. This increases to 40-82% of all con-

flicts as the signature size shrinks to 64 bits. While false pos-

itives increase stalls for both benchmarks, the impact on

aborts differs. For BerkeleyDB with all signature schemes

and Raytrace with CBS and DBS, the number of aborts is

comparable for 2 Kb and perfect signatures. Raytrace with

2 Kb BS signatures incurs roughly 21% more aborts. Fur-

thermore, while reducing the signature size to 64 bits has lit-

tle discernible effect on BerkeleyDB’s abort frequency, it

increases the number of aborts for Raytrace by 18% for CBS

and DBS, but decreases them by a third for BS. This illus-

trates a complex interaction: false positives may lead to false

cycles (and thus aborts) or to serializing transactions (and

thus no aborts). To see why, consider a single bit signature,

which effectively acts as a global lock, eliminating the need

to ever abort a transaction.

The large number of stalls relative to aborts indicates that

given time, many conflicts will resolve themselves. Thus

stalling a transaction may be preferable to aborting it and

discarding otherwise useful work. While the stall to abort

ratio is highest for small signatures, even with a perfect sig-

nature there are more stalls than aborts. BerkeleyDB has

many more stalls than transactions, which occurs because a

transaction may retry a coherence operation multiple times

before the conflict clears and it makes progress.

The false positive rate roughly correlates to the size of

transactional read- and write-sets. Table 2 shows the average

and maximum number of cache lines in each workload’s

read- and write-sets using perfect signatures. Since read-sets

average 2 to 8 blocks and write-sets 1 to 7 blocks, few signa-

ture bits are set on average. However, the read- and write-set

distribution can be highly skewed, resulting in some transac-

tions that set many signature bits and create many false con-

flicts. Raytrace’s 550-block maximum read-set size

represents the worst case, which helps explain why Ray-

trace’s performance falls off with the 64 bit BS signature.

7 Alternative LogTM-SE Implementations

The LogTM-SE approach should work well with other

shared-memory systems, including a single CMP with

snooping coherence and a multiple-CMP system.

A Snooping CMP. Consider a single CMP as described in

Section 5—per-core writeback L1 caches, multi-banked

shared L2 cache, standard off-chip DRAM—but change the

MESI coherence protocol to use broadcast snooping. As is

common, assume that L1 and L2 banks determine whether a

coherence request has an L1 owner (one or more L1 sharers)

via a logically-ORed owner (shared) signal.

Adding LogTM-SE to this snooping system requires the

same additions to the core as in Section 5, but different

coherence changes. With snooping, LogTM-SE requires a

third logically-ORed signal, called nack, that cores use to

NACK coherence requests when their signatures detect a

conflict. Because snooping protocols broadcast all coherence

requests, they eliminate the need for sticky states or other

special mechanisms to reach all necessary signatures.

Because directories provide a first-level filter, broadcast

snooping systems may need larger signatures to achieve

comparable false positive rates.

Table 3: Impact of Signature Size on Conflict Detection
B

en
ch

m
ar

k

Perfect P

 Size

(Bits)

BitSelect BS CoarseBitSelect CBS DoubleBitSelect DBS
#

 T
ra

n
sa

ct
io

n
s

#
 A

b
o

rt
s

St

al
ls

F
al

se
 P

o
si

ti
ve

 %

#
 A

b
o

rt

St

al
ls

F
al

se
 P

o
si

ti
ve

 %

#
 A

b
o

rt
s

St

al
ls

F
al

se
 P

o
si

ti
ve

 %

#
 A

b
o

rt

St

al
ls

R
ay

tr
ac

e

47,781 20,436 66,833 64 49 21,668 614,857 42 24,333 124,248 40 23,948 158,754

128 48 24,288 426,510 40 24,748 117,519 41 24,489 165,350

256 46 24,508 222,964 41 24,263 118,501 38 17,218 207,219

512 43 24,395 120,609 29 20,398 68,859 4.1 20,492 70,166

1024 32 24,515 104,215 16 20,704 68,699 0.5 20,333 68,984

2048 36 24,692 116,479 2.7 20,516 68,306 0.0 20,353 66,497

B
er

k
el

ey
D

B

1,120 737 27,470 64 72 667 43,954 82 742 43,566 60 634 33,891

128 68 745 45,655 78 777 39,651 62 661 35,693

256 71 701 43,660 82 701 37,006 65 707 34,058

512 63 610 35,594 80 787 42,641 11 747 28,706

1024 66 724 33,748 79 763 38,443 18 742 28,946

2048 60 688 30,979 51 688 28,228 19 718 27,851

Multiple CMPs. Consider a system with four CMPs

(attached to standard DRAM) interconnected with a reliable

point-to-point network. Assume that intra-chip coherence is

maintained with the L2 directory of Section 5. Assume that

inter-chip coherence is maintained with full-map directory

protocol requiring a few state bits and 4 sharer bits per mem-

ory block. Directory state can be stored in memory bits freed

by calculating SECDED ECC on 256 bits rather than the

standard 64 bits [23]. For speed, directory state can be

cached in a structure beside the home CMP’s L2 cache.

LogTM-SE extends this multiple CMP system by adding

the on-chip changes of Section 5 and altering the inter-chip

directory coherence protocol to support NACKs on transac-

tion conflicts and sticky states to handle victimization. An

L2 cache that wishes to victimize a transactionally-modified

block, for example, does a writeback to the directory at

memory, so the directory can store the block and enter

“sticky M”. While these changes are conceptually straightfor-

ward, a full paper may be required to address the details.

8 Related Work

HTMs. LogTM-SE builds on the large body of research on

HTM systems [3, 7, 8, 9, 11, 15, 19, 25]. LogTM-SE derives

most directly from LogTM [19] and Bulk [7].

LogTM-SE improves upon LogTM by removing flash-

cleared R and W bits from L1 caches and by improving vir-

tualization. The R and W bits in LogTM do not scale easily

with multi-threaded cores (requiring T copies for T hard-

ware thread contexts) or nesting levels (requiring L copies

for L levels of nesting support). In addition, LogTM’s R and

W bits pose a challenge for virtualizing transaction support

as R and W bits can not be easily saved or restored. As a

result, LogTM-SE supports thread suspension and migration

while LogTM does not.

LogTM-SE differs from Bulk by making commit a local

operation, supporting non-broadcast coherence protocols

and allowing arbitrary signatures. Bulk’s commit operation

broadcasts the write signature of the committing transaction

to all cores and possibly restores victimized transactional

data to their original locations in memory. LogTM-SE’s

commit, by contrast, simply clears the committing transac-

tion’s signatures and resets its log pointer. In order to main-

tain strong atomicity, all Bulk cores must check their read

signatures to see if it might contain the address of any non-

transactional stores executed by any other core in the system

even if that core is not currently caching the block. LogTM-

SE, on the other hand, leverages LogTM’s sticky states to

ensure that coherence requests are sent to all necessary sig-

natures without relying on broadcast. Finally, because

LogTM-SE’s version management is independent of caching,

it eliminates Bulk’s requirement that each signature precisely

identify (no false negatives or positives) the cache sets of all

addresses it represents (e.g., using 1K bits for a cache with

1K sets).

Virtualization. LogTM-SE, similar to UTM [3], VTM [25],

UnrestrictedTM [6], PTM [8] and XTM [9], supports the

virtualization of transactions. Compared to other systems,

LogTM-SE adds less hardware, uses its virtualization mecha-

nism less frequently, and requires less work to process cache

misses and transaction commits after virtualization events.

Table 4: Comparison of HTM Virtualization Techniques

Before Virtualization After Virtualization

Legend
$M

is
s

C
o

m
m

it

A
b

o
rt

$
E

vi
ct

io
n

$M
is

s

C
o

m
m

it

A
b

o
rt

t

$
E

vi
ct

io
n

P
ag

in
g

T
h

re
ad

 S
w

it
ch

UTM [3] - - - H H H HC H H H

Shaded = virtualization event

- = handled in simple hardware

H = complex hardware

S = handled in software

A = abort transaction

C = copy values

W = walk cache

V = validate read set

B = block other transactions

VTM [25] - - - S S SC S S S SWV

UnrestrictedTM[6] - - - A B B B B AS AS

XTM [9] - - - ASC - SCV S SC SC AS

XTM-g [9] - - - SC - SCV S SC SC AS

PTM-Copy [8] - - - SC S S SC SC S S

PTM-Select [8] - - - S H S S S S S

LogTM-SE - - SC - - S SC - S S

UTM virtualizes transactions using state (including a

pointer) added to each memory block and an additional

level of address translation. VTM supports virtualization

with a combination of software and firmware, which stores

transactional data and read- and write-sets in software tables

when transactional data are evicted from the cache or when

a transactional thread is suspended. UnrestrictedTM virtu-

alizes transactions by allowing only one unrestricted trans-

action at a time to execute after cache victimization (but

allowing the execution of multiple restricted transactions).

XTM and PTM leverage paging and address translation

mechanisms to virtualize transactions. Both provide soft-

ware solutions and propose hardware mechanisms to accel-

erate common operations (XTM-g and PTM-Select).

Table 4 presents a rough comparison of the different sys-

tems’ efficiencies by displaying the actions they take on vari-

ous system and cache events. As indicated by the “Before

Virtualization” columns (left), all of the previous systems

handle the common case of non-virtualized small transac-

tions using simple hardware mechanisms. All these systems

have a conceptual virtualization mode, which they switch to

after evicting transactional data from the cache, or a paging

operation or context switch during a transaction. As indi-

cated by the “After virtualization” columns, all these systems

either restrict concurrency or require complex hardware or

slow software for at least one common case operation. Unre-

strictedTM blocks all other transactions until the virtualized

transaction commits. VTM and PTM-Copy require slow

software-based conflict detection on cache misses. UTM and

PTM-Select perform similarly complex operations in hard-

ware on cache misses. XTM and XTM-g require expensive

page-based validation of transactions’ read-sets at commit.

Like these systems, LogTM-SE requires little hardware

overhead to support virtualization—one summary signature

per thread context. In LogTM-SE, however, virtualization

does not force the use of software for conflict detection, nor

restrict the concurrency of transactions. LogTM-SE requires

the least effort and expense to handle cache misses and com-

mits—the most frequent events—after virtualization. Most

importantly, in LogTM-SE, cache victimization of transac-

tional data does not require virtualization.

Hybrid transactional memory systems [10, 16] provide

virtualization by integrating an HTM with an STM. Small

transactions, in the absence of virtualization events, execute

as hardware transactions, while transactions that require vir-

tualization execute as software transactions. HyTM [10]

requires the least amount of hardware support of any of the

virtualization schemes (it can run purely in software). How-

ever, hybrid schemes add overhead to hardware transactions

in order to detect conflicts with concurrent software transac-

tions. Initial results with HyTM indicate that a virtualized

HTM will perform better in the presence of cache victimiza-

tion [10].

9 Conclusions

This paper proposes a hardware transactional memory

(HTM) system called LogTM Signature Edition (LogTM-SE)

that combines features of prior HTM systems—especially

LogTM, Nested LogTM, and Bulk. LogTM-SE stores princi-

pal transactional state in two structure types—signature and

log—to achieve two key benefits. First, signatures and logs

can be implemented without changes to highly-optimized

cache arrays. Leaving critical cache arrays untouched may

facilitate HTM adoption by reducing risk. Second, signatures

and logs are software accessible to allow OS and runtime

software to manipulate them for virtualization. With little

extra hardware, LogTM-SE handles cache victimization,

unbounded nesting (both open and closed), thread context

switching and migration, and paging.

10 Acknowledgements

This work is supported in part by the National Science

Foundation (NSF), with grants CCF-0085949, CCR-

0105721, EIA/CNS-0205286, CCR-0324878, as well as dona-

tions from Intel and Sun Microsystems. Hill and Wood have

significant financial interest in Sun Microsystems. The views

expressed herein are not necessarily those of the NSF, Intel,

or Sun Microsystems.

We thank Virtutech, the Wisconsin Condor group, and

the Wisconsin Computer Systems Lab for their help and

support. We thank Dan Gibson and Simha Sethumadhavan

for paper comments.

11 References

[1] Alaa R. Alameldeen, Milo M. K. Martin, Carl J. Mauer, Kevin E.
Moore, Min Xu, Daniel J. Sorin, Mark D. Hill, and David A. Wood. Simu-
lating a $2M Commercial Server on a $2K PC. IEEE Computer, 36(2):50–57,
Feb. 2003.
[2] Alaa R. Alameldeen and David A. Wood. Variability in Architectural
Simulations of Multi-threaded Workloads. In Proc. of the Ninth IEEE Symp.
on High-Performance Computer Architecture, pages 7–18, Feb. 2003.
[3] C. Scott Ananian, Krste Asanovic, Bradley C. Kuszmaul, Charles E.
Leiserson, and Sean Lie. Unbounded Transactional Memory. In Proc. of the
Eleventh IEEE Symp. on High-Performance Computer Architecture, Feb.
2005.
[4] Burton H. Bloom. Space/Time Trade-offs in Hash Coding with Allow-
able Errors. Communications of the ACM, 13(7):422–426, July 1970.
[5] Colin Blundell, E Christopher Lewis, and Milo M.K. Martin. Decon-
structing Transactional Semantics: The Subtleties of Atomicity. In Work-
shop on Duplicating, Deconstructing, and Debunking (WDDD), June 2005.
[6] Colin Blundell, E Christopher Lewis, and Milo M.K. Martin. Unre-
stricted Transactional Memory: Supporting I/O and System Calls within
Transactions. Technical Report TR-CIS-06-09, University of Pennsylvania,
June 2006.
[7] Luis Ceze, James Tuck, Calin Cascaval, and Josep Torrellas. Bulk Dis-
ambiguation of Speculative Threads in Multiprocessors. In Proc. of the 33nd
Annual International Symp. on Computer Architecture, June 2006.
[8] Weihaw Chuang, Satish Narayanasmy, Ganesh Venkatesh, Jack
Sampson, Michael Van Biesbrouck, Gilles Pokam, Osvaldo Colavin, and
Brad Calder. Unbounded Page-Based Transactional Memory. In Proc. of the
Twelfth International Conference on Architectural Support for Programming
Languages and Operating Systems, Oct. 2006.
[9] JaeWoong Chung, Chi Cao Minh, Austen McDonald, Hassan Chafi,
Brian D. Carlstrom, Travis Skare, Christos Kozyrakis, and Kunle Olukotun.
Tradeoffs in Transactional Memory Virtualization. In Proc. of the Twelfth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, Oct. 2006.
[10] Peter Damron, Alexandra Fedorova, Yossi Lev, Victor Luchango,
Mark Moir, and Daniel Nussbaum. Hybrid Transactional Memory. In Proc.
of the Twelfth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Oct. 2006.
[11] Lance Hammond, Vicky Wong, Mike Chen, Brian D. Carlstrom,
John D. Davis, Ben Hertzberg, Manohar K. Prabhu, Honggo Wijaya, Chris-
tos Kozyrakis, and Kunle Olukotun. Transactional Memory Coherence and
Consistency. In Proc. of the 31st Annual International Symp. on Computer
Architecture, June 2004.
[12] Tim Harris and Keir Fraser. Language support for lightweight transac-
tions. In Proc. of the 18th SIGPLAN Conference on Object-Oriented Program-
ming, Systems, Languages and Application (OOPSLA), Oct. 2003.
[13] Tim Harris, Simon Marlow, Simon Peyton Jones, and Maurice Herli-
hy. Composable Memory Transactions. In Proc. of the 17th ACM SIGPLAN
Symp. on Principles and Practice of Parallel Programming (PPOPP), June
1991.

[14] Maurice Herlihy, Victor Luchangco, Mark Moir, and William
Scherer III. Software Transactional Memory for Dynamic-Sized Data Struc-
tures. In Twenty-Second ACM Symp. on Principles of Distributed Computing,
Boston, Massachusetts, July 2003.
[15] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Archi-
tectural Support for Lock-Free Data Structures. In Proc. of the 20th Annual
International Symp. on Computer Architecture, pages 289–300, May 1993.
[16] Sanjeev Kumar, Michael Chu, Christopher J. Hughes, Partha Kundu,
and Anthony Nguyen. Hybrid Transactional Memory. In Proc. of the Elev-
enth ACM SIGPLAN Symp. on Principles and Practice of Parallel Program-
ming (PPoPP), pages 209–220, Mar. 2006.
[17] Peter S. Magnusson et al. Simics: A Full System Simulation Platform.
IEEE Computer, 35(2):50–58, Feb. 2002.
[18] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann,
Michael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D.
Hill, and David A. Wood. Multifacet’s General Execution-driven Multipro-
cessor Simulator (GEMS) Toolset. Computer Architecture News, pages 92–
99, Sept. 2005.
[19] Kevin E. Moore, Jayaram Bobba, Michelle J. Moravan, Mark D. Hill,
and David A. Wood. LogTM: Log-Based Transactional Memory. In Proc. of
the Twelfth IEEE Symp. on High-Performance Computer Architecture, pages
258–269, Feb. 2006.
[20] Michelle J. Moravan, Jayaram Bobba, Kevin E. Moore, Luke Yen,
Mark D. Hill, Ben Liblit, Michael M. Swift, and David A. Wood. Supporting
Nested Transactional Memory in LogTM. In Proc. of the Twelfth Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, pages 359–370, Oct. 2006.
[21] Andreas Moshovos, Gokhan Memik, Babak Falsafi, and Alok
Choudhary. JETTY: Filtering Snoops for Reduced Power Consumption in
SMP Servers. In Proc. of the Seventh IEEE Symp. on High-Performance Com-
puter Architecture, Jan. 2001.
[22] J. Elliot B. Moss. Nested transactions: an approach to reliable distribut-
ed computing. PhD thesis, Massachusetts Institute of Technology, 1981.
[23] Andreas Nowatzyk, Gunes Aybay, Michael Browne, Edmund Kelly,
and Michael Parkin. The S3.mp Scalable Shared Memory Multiprocessor. In
Proc. of the International Conference on Parallel Processing, volume I, pages
1–10, Aug. 1995.
[24] Jih-Kwon Peir, Shih-Chang Lai, Shih-Lien Lu, Jared Stark, and Konrad
Lai. Bloom Filtering Cache Misses for Accurate Data Speculation and
Prefetching. In Proc. of the 2002 International Conference on Supercomput-
ing, pages 189–198, June 2002.
[25] Ravi Rajwar, Maurice Herlihy, and Konrad Lai. Virtualizing Transac-
tional Memory. In Proc. of the 32nd Annual International Symp. on Comput-
er Architecture, June 2005.
[26] Simha Sethumadhavan, Rajagopalan Desikan, Doug Burger,
Charles R. Moore, and Stephen W. Keckler. Scalable Hardware Memory
Disambiguation for High ILP Processors. In Proc. of the 36th Annual IEEE/
ACM International Symp. on Microarchitecture, Dec. 2003.
[27] Nir Shavit and Dan Touitou. Software Transactional Memory. In
Fourteenth ACM Symp. on Principles of Distributed Computing, Ottawa, On-
tario, Canada, pages 204–213, Aug. 1995.
[28] Sleepycat Software. Sleepycat Software: Berkeley DB Database. http://
www.sleepycat.com.
[29] Andrew Tucker, Bart Smaalders, Dave Singleton, and Nicolai Kosche.
Method and apparatus for execution and preemption control of computer
process entities, 1999. U.S. Patent 5,937,187.
[30] Gerhard Weikum and Hans-Jorg Schek. Concepts and Applications of
Multilevel Transactions and Open Nested Transactions. Morgan Kaufmann,
1992.
[31] Wisconsin Multifacet GEMS Simulator. http://www.cs.wisc.edu/
gems/.
[32] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal
Singh, and Anoop Gupta. The SPLASH-2 Programs: Characterization and
Methodological Considerations. In Proc. of the 22nd Annual International
Symp. on Computer Architecture, pages 24–37, June 1995.

	LogTM-SE: Decoupling Hardware Transactional Memory from Caches
	1 Introduction
	LogTM-SE

	2 LogTM-SE Architecture
	Tracking Read- and Write-Sets with Signatures
	Eager Conflict Detection
	Eager Version Management
	Figure 1. LogTM-SE Hardware Overview.

	Local Commit & Abort
	Summary

	3 Virtualizing LogTM-SE
	3.1 Cache Victimization
	3.2 Transactional Nesting

	4 OS Resource Management
	4.1 Thread Suspension/Migration
	4.2 Virtual Memory Paging
	Figure 2. Baseline CMP for LogTM-SE

	5 A LogTM-SE Implementation
	Table 1: System Model Parameters
	Base CMP
	Coherence Protocol Changes
	Signature Design

	6 Evaluation
	Figure 3. Three example signature implementations
	6.1 Methodology
	6.2 Workloads
	BerkeleyDB
	Cholesky, Radiosity, Raytrace and Mp3d
	Table 2: Benchmarks and Inputs

	6.3 Results
	Performance with Perfect Signatures
	Performance with Realistic Signatures
	Signature Sizing
	Importance of Victimization
	Figure 4. Speedup normalized to locks

	In More Detail

	7 Alternative LogTM-SE Implementations
	A Snooping CMP
	Table 3: Impact of Signature Size on Conflict Detection

	Multiple CMPs

	8 Related Work
	HTMs
	Virtualization
	Table 4: Comparison of HTM Virtualization Techniques

	9 Conclusions
	10 Acknowledgements
	11 References

