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Abstract

This paper proposes a hardware transactional memory 

(HTM) system called LogTM Signature Edition (LogTM-SE).

LogTM-SE uses signatures to summarize a transaction’s read- 

and write-sets and detects conflicts on coherence requests 

(eager conflict detection). Transactions update memory “in 

place” after saving the old value in a per-thread memory log

(eager version management). Finally, a transaction commits 

locally by clearing its signature, resetting the log pointer, etc., 

while aborts must undo the log.

LogTM-SE achieves two key benefits. First, signatures and 

logs can be implemented without changes to highly-optimized 

cache arrays because LogTM-SE never moves cached data, 

changes a block’s cache state, or flash clears bits in the cache. 

Second, transactions are more easily virtualized because sig-

natures and logs are software accessible, allowing the operating 

system and runtime to save and restore this state. In particu-

lar, LogTM-SE allows cache victimization, unbounded nesting 

(both open and closed), thread context switching and migra-

tion, and paging.

1  Introduction

Transactional memory (TM) [15] is a promising program-

ming approach for effectively using the threads offered by 

future chips with multiple (often multi-threaded) cores. A 

TM system lets a programmer invoke a transaction and rely 

on the system to make its execution appear atomic and iso-

lated. A successful transaction commits, while an unsuccess-

ful one that conflicts with a concurrent transaction aborts. 

While some TM systems operate completely in software 

(STMs) [12, 14, 27], this paper concentrates on those imple-

mented with hardware support (HTMs).

Hardware accelerates transactional memory with two key 

capabilities. First, hardware provides conflict detection

among transactions by recording the read-set (addresses 

read) and write-set (addresses written) of a transaction. A 

conflict occurs when an address appears in the write-set of 

two transactions or the write-set of one and the read-set of 

another. Second, hardware provides version management by 

storing both the new and old values of memory written by a 

transaction. Most HTMs achieve their good performance in 

part by making demands on critical L1 cache structures. 

These demands include read/write (R/W) bits for read- and 

write-set tracking [3, 11, 19, 25], flash clear operations at 

commits/aborts [3, 11, 19, 25], and write buffers for specula-

tive data [7, 11]. In addition, some depend on broadcast 

coherence protocols, precluding implementation on direc-

tory-based systems [7].

We see three reasons future HTMs may wish to decouple 

version management and conflict detection from the L1 

cache tags and arrays. First, these are critical structures in 

the design of high performance processors that are better left 

untouched by an emerging idea like transactional memory. 

Second, the desire to support both T-way multi-threaded 

processors and L-level nested transactions leads to T x L 

copies of the state. Third, having transactional state inte-

grated with the L1 cache makes it more difficult to save and 

restore, a necessary step to virtualize transactional mem-

ory—i.e, support cache victimization, unbounded nesting, 

thread suspension/migration, and paging [3, 25].

Fortunately, two HTMs provide complementary partial 

solutions to decoupling HTM demands from L1 caches.

LogTM [19] decouples version management from L1 

cache tags and arrays. With LogTM, a transactional thread 

saves the old value of a block in a per-thread log and writes 

the new value in place (eager version management). 

LogTM’s version management uses cacheable virtual mem-

ory that is not tied to a processor or cache. It never forces 

writebacks to cache speculative data, because it does not 

exploit cache incoherence, e.g., where the L1 holds new 

transactional values and the L2 holds the old versions [11, 3, 

7]. Instead, caches are free to replace or writeback blocks at 

any time. No data moves on commit, because new versions 

are in place, but on abort a handler walks the log to restore 

old versions. LogTM, however, fails to decouple conflict 

detection, because it maintains R/W bits in the L1 cache.

Bulk [7] decouples conflict detection by recording read- 

and write-sets in a hashed signature separate from L1 cache 

tags and arrays. A simple 1K-bit signature might logically 

OR the decoded 10 least-significant bits of block addresses. 

On transaction commit, Bulk broadcasts the write signature 

and all other active transactions compare it against their 

own read and write signatures. A non-null intersection indi-



cates a conflict, triggering an abort. Due to aliasing, non-null 

signature intersection may occur even when no actual con-

flict exists (a false positive) but no conflicts are missed (no 

false negatives). Moreover, Bulk’s signatures make it easier to 

support multi-threading and/or nested transactions since 

replicating signatures doesn’t impact critical L1 structures. 

Bulk’s version management, however, is still tied to the L1 

cache: the cache must (i) writeback committed, but modified 

blocks before making speculative updates, (ii) save specula-

tively modified blocks in a special buffer on cache overflow, 

and (iii) only allow a single thread of a multi-threaded pro-

cessor to have speculative blocks in any one L1 cache set. In 

addition, it depends on broadcast coherence for strong ato-

micity [5] and requires global synchronization for ordering 

commit operations.

LogTM-SE. In this paper, we propose LogTM Signature Edi-

tion (LogTM-SE), which decouples both conflict detection 

and version management from L1 tags and arrays. LogTM-

SE combines Bulk’s signatures and LogTM’s log, but adapts 

both to reap synergistic benefits. With LogTM-SE, transac-

tional threads record conflicts with signatures and detect 

conflicts on coherence requests. Transactional threads 

update memory in place after saving the old value in a per-

thread memory log. Like LogTM, LogTM-SE does not 

depend on broadcast coherence protocols. Finally, a transac-

tion commits locally by clearing its signature and resetting 

its log pointer—there are no commit tokens, data write-

backs, or broadcast—while aborts locally undo the log. 

Transactions in LogTM-SE are virtualizable, meaning 

that they may be arbitrarily long and can survive OS activi-

ties such as context switching and paging, because the struc-

tures that hold their state are software accessible. Both old 

and new versions of memory can be victimized transpar-

ently because the cache holds no inaccessible transactional 

state. Similarly, the ability to save and restore signatures 

allows unbounded nesting. LogTM-SE achieves this using 

an additional summary signature per thread context to sum-

marize descheduled threads. Finally, LogTM-SE supports 

paging by updating signatures using the new physical 

address after relocating a page.

Using Simics [17] and GEMS [18] to evaluate a simulated 

transactional CMP, we show that LogTM-SE performs com-

parably with the less-virtualizable, original LogTM. Further-

more, for our workloads even very small (e.g., 64 bit) 

signatures perform comparably or better than locking.

In our view, LogTM-SE contributes an HTM design that 

(1) leaves L1 cache state, tag, and data arrays unchanged (no 

in-cache R/W bits or transactional write buffers), (2) has no 

dependence on a broadcast coherence protocol, (3) effec-

tively supports systems with multi-threaded cores (replicat-

ing small signatures) on one or more chips (with local 

commit), and (4) supports virtualization extensions for vic-

timization, nesting, paging, and context switching because 

signatures are easily copied. In Section 8 we detail how 

LogTM-SE differs from existing HTMs.

2  LogTM-SE Architecture

This section describes the LogTM-SE architecture, while 

Section 5 develops a specific example LogTM-SE system. 

Tracking Read- and Write-Sets with Signatures. LogTM-

SE tracks read- (R) and write- (W) sets with conservative sig-

natures inspired by Bulk, as well as others who conserva-

tively encode sets [4, 21, 24, 26]. A signature implements 

several operations. Let O be a read or a write and A be a 

block-aligned physical address. INSERT(O, A) adds A to the 

signature’s O-set. Every load instruction invokes 

INSERT(read,A) and every store invokes INSERT(write, A). 

CONFLICT(read, A) returns whether A may be in a signa-

ture’s write set (thereby conflicting with a read to A). CON-

FLICT(write, A) returns whether A may be in a signature’s 

read- or write-sets. Both tests may return false positives 

(report a conflict when none existed), but may not have false 

negatives (fail to report a conflict). Finally, CLEAR(O) clears 

a signature’s O-set. Section 5 discusses specific signature 

implementations.

Eager Conflict Detection. LogTM-SE performs eager con-

flict detection like LogTM, except that LogTM-SE uses sig-

natures (not read/write bits in the L1 caches) and handles 

multi-threaded cores. Consider conflict detection with sin-

gle-threaded cores first. A load (store) that misses to block A 

generates a GETS(A) (GETM(A)) coherence request. A core 

that receives a GETS (GETM) request checks its write (read 

and write) signatures using a CONFLICT(read, A) (CON-

FLICT(write, A)) operation. A core that detects a possible 

conflict responds with a NACK. The requesting core, seeing 

the NACK, then resolves the conflict. LogTM-SE adopts 

LogTM’s conflict resolution mechanism: the core stalls, 

retries its coherence operation, and aborts on a possible 

deadlock cycle. More sophisticated future versions could 

trap to a contention manager.

LogTM-SE forbids a core’s L1 cache from caching a block 

(no M, O, E, or S coherence states) that is in the write-set of a 

transaction on another core. Nor may it exclusively cache a 

block (no M or E) that is in the read-set of a transaction on 

another core. (Note that a core may, however, cache data that 

is in the read- or write-set signature of another core due to 

aliasing.) This provides isolation by ensuring that data writ-

ten by one transaction cannot be read or written by others 

before commit. With the above invariants, loads that hit in 

the core’s L1 cache (states M, O, E, or S) and stores that hit 

(M or E) need no signature tests. Significantly, LogTM-SE 

does not enforce the converse of these invariants—a block in 

a transaction’s read- or write-set need not be locally cached. 

Section 3.1 discusses how LogTM-SE cores check the signa-

ture for blocks evicted from its L1, which allows victimiza-

tion of transactional data.



Signatures have the potential to cause interference 

between memory references in different processes. If thread 

ta in process A running on core C1 accesses a memory block 

residing on core C2, which is running tb from process B, a 

signature on C2 may signal a false conflict. While not affect-

ing correctness, this interference could allow one process to 

prevent all other processes from making progress. LogTM-

SE prevents this problem by adding an address space identi-

fier to all coherence requests. Requests are only NACKed if 

the signature signals a potential conflict and the address 

space identifiers match, preventing false conflicts between 

processes.

Multi-threaded cores require additional mechanisms to 

detect conflicts among threads on the same core. Each 

thread context maintains its own read and write signatures. 

Loads or stores to blocks in M (and stores to E) must query 

the signatures of other threads on the same core. This check 

should not impact performance because conflicts need only 

be detected before the memory instruction commits.

Eager
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Figure 1. LogTM-SE Hardware Overview.
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 Version Management. LogTM-SE adopts LogTM’s 

per-thread log, but adds a new mechanism to suppress 

redundant logging. Like a Pthread’s stack, the log is allocated 

in thread-private memory. Before a memory block is first 

written in a transaction, its virtual address and previous con-

tents must be written to the log. It is correct, but wasteful, to 

write the same block to the log more than once within a 

transaction. LogTM reuses the W bit in the L1 cache, which 

records whether a block has been written by the active trans-

action, to suppress redundant logging. However, this optimi-

zation does not extend to LogTM-SE because signatures 

permit false positives. If the hardware fails to log a block due 

to a false positive in the write-set signature, it would be 

impossible to correctly undo the effects of a transaction.

Instead, LogTM-SE uses an array of recently logged 

blocks for each thread context as a simple but effective log 

filter. When a thread stores to a block not found in its log fil-

ter, LogTM-SE logs the block and adds its address to the log 

filter. Stores to addresses in the log filter are not logged. 

Much like a TLB, the array can be fully associative, set asso-

ciative, or direct mapped and use any replacement algo-

rithm. As with write buffers in multi-threaded cores, the 

filters are logically per-thread, but can be implemented in a 

tagged shared structure. Because the filter contains virtual 

addresses and is a performance optimization not required 

for correctness, it is always safe to clear the log filter (e.g., on 

context switch). 

Local Commit & Abort. LogTM-SE’s transactional commit 

is a fast, local operation that also avoids LogTM’s flash-clear 

of L1 cache read/write bits. To commit, a thread must only 

clear its local signatures to release isolation on its read- and 

write-sets and reset its log pointer. Since eager version man-

agement updates data in place, no data movement is neces-

sary. Thus, commit, which should be much more common 

than abort, is a fast, thread-local operation requiring no 

communication or synchronization with other threads or 

cores. Like LogTM, LogTM-SE permits multiple non-con-

flicting transactions to commit in the same cycle.

LogTM-SE implements abort, the uncommon case, using 

a software handler. A thread aborts a transaction by trapping 

to an abort handler, which first walks the log in LIFO order 

to restore transactionally modified blocks. Once memory is 

restored to pre-transaction values, the handler releases isola-

tion by clearing the thread’s signature. Although abort takes 

time proportional to the number of blocks written by a 

transaction, it does not require any global resources. 

Summary. The circled items in Figure 1 illustrate what 

LogTM-SE adds to each thread context to support TM. Like 

LogTM, LogTM-SE adds a register checkpoint and registers 

to store the log address, nesting depth, and abort handler 

address. LogTM-SE also adds two signatures, a log filter, and 

a summary signature (described in Section 4.1), but makes 

no changes to the critical L1 and L2 caches and has no struc-

tures that explicitly limit transaction size.

3  Virtualizing LogTM-SE

Application programmers reason about threads and vir-

tual memory, while hardware implements multi-threaded 

cores, caches, and physical memory. Operating systems 

(OSs) provide programmers with a higher-level abstraction 

by virtualizing physical resource constraints, such as mem-

ory size and processor speed, using mechanisms such as 

paging and context switching. To present application pro-

grammers a suitable abstraction of transactional memory, 



the OS must virtualize the HTM’s physical resource limits, 

using hardware and low-level software mechanisms that are 

fast in common cases, correct in all cases, and, if possible, 

simple [3, 25].

This section discusses how LogTM-SE efficiently exe-

cutes transactions unbounded in size and nesting depth 

using limited hardware. The following section discusses 

context switching and paging. LogTM-SE has two key 

advantages with regard to virtualization. First, LogTM-SE’s 

version management is naturally unbounded, since logs are 

mapped into per-thread virtual memory. Second, LogTM-

SE’s signatures and logs are software accessible, allowing 

software to save and restore signatures to/from the log. 

3.1  Cache Victimization
Caches may need to evict transactional blocks when a 

transaction’s data size exceeds cache capacity or associativity. 

Multi-threaded cores make this more likely and unpredict-

able, due to interference between threads sharing the same 

L1 cache. Furthermore, after eviction, an HTM must con-

tinue to efficiently handle both version management and 

conflict detection. This is important, since cache victimiza-

tion is likely to be more common than other virtualization 

events (e.g., thread switching and paging).
Notably, cache victimization has no effect on LogTM-SE’s 

version management. Like LogTM, both new values (in 

place) and old values (in the log) may be victimized without 

resorting to special buffers, etc.

LogTM-SE’s mechanism for conflict detection depends 

upon the underlying cache coherence protocol. Like all 

HTMs with eager conflict detection, LogTM-SE relies on the 

coherence protocol to direct requests to all caches that might 

represent a conflict. With broadcast coherence, cache vic-

timization has no effect on conflict detection, because 

LogTM-SE can check all signatures on every broadcast.

With a naive directory protocol, cache victimization 

could lead LogTM-SE to miss some signature checks and 

hence miss some conflicts. LogTM-SE avoids this case by 

extending the directory protocol to use LogTM’s sticky states 

[19]. As in many MOESI protocols, LogTM-SE’s caches 

silently replace blocks in states E and S and write back blocks 

in states M and O. When evicting a cache block (e.g., core C1 

replaces block B), however, LogTM-SE does not change the 

directory state, so that the directory continues to forward 

conflicting requests to the evicting core (e.g., a conflicting 

operation by C2 is still forwarded to C1, which checks its 

signature). Thus, LogTM-SE allows transactions to overflow 

the cache without a loss in performance.

3.2  Transactional Nesting
To facilitate software composition, HTMs must allow 

transactional nesting: invoking a transaction within a trans-

action [22]. This is trivially done by flattening: only commit-

ting transactional state when the outer-most transaction 

commits. Unfortunately with flat nesting, a conflict with the 

inner-most transaction forces a complete abort all its ances-

tors as well. An improvement is closed nesting with partial 

aborts that, for the above case, would allow an abort of just 

the inner-most transaction. To increase concurrency, some 

also argue for open nesting [30] which allows an inner trans-

action to commit its changes and release isolation before the 

outer transactions commit. In addition, some proposed lan-

guage extensions for transactional memory, such as retry

and orelse, depend on arbitrarily deep nesting [13]. Ideally, 

HTMs should provide unbounded nesting to fully support 

these language features. Otherwise, some composed soft-

ware may fail when transactions nest too deeply.

LogTM-SE supports unbounded transactional nesting 

with no additional hardware by virtualizing the state of the 

parent’s transaction while a child transaction is executing. 

Following Nested LogTM [20], LogTM-SE segments a 

thread’s log into a stack of frames, each consisting of a fixed-

sized header (e.g., register checkpoint) and a variable-sized 

body of undo records. LogTM-SE augments the header with 

a fixed-sized signature-save area.

A nested transaction begins by saving the current thread 

state: LogTM-SE copies the signature to the current transac-

tion’s log frame header and allocates a new header with a 

register checkpoint. To ensure the child correctly logs all 

blocks, it clears the log filter. Loads and stores within the 

child transaction behave normally, adding to the signature 

and log as necessary. On commit of a closed transaction, 

LogTM-SE merges the inner transaction with its parent by 

discarding the inner transaction’s header and restoring the 

parent’s log frame. An open commit behaves similarly, 

except that it first restores the signature from the parent’s 

header into the (hardware) signature to release isolation on 

blocks only accessed by the committing open transaction.

On an abort, LogTM-SE’s software handler first unrolls 

the child transaction’s log frame and restores the parent’s sig-

nature. If this resolves the conflict, the partial abort is done 

and a retry can begin. If a conflict remains with the parent’s 

signature, the handler repeats this process until the conflict 

disappears or it aborts the outer-most transaction. 

LogTM-SE supports unbounded transactional nesting 

with a per-thread hardware signature, saved to the log on 

nested begins. To reduce overhead, each thread context 

could provide one or more extra signatures to avoid syn-

chronously saving and restoring signatures. On a nested 

begin, for example, hardware can copy the current signature 

S to Sbackup. Inner commit of a closed transaction discards 

Sbackup, while inner commit of an open transaction and all 

inner aborts restore Sbackup to S. Like register windows, the 

benefit depends on program behavior.



4  OS Resource Management

While OS resource management events, such as context 

switches and paging, may be infrequent relative to the dura-

tion of a transaction, they must still be handled correctly. 

This section discusses how LogTM-SE allows threads exe-

cuting in transactions to be suspended and rescheduled on 

other thread contexts and how pages accessed within a 

transaction can be relocated in memory.

4.1  Thread Suspension/Migration
Operating systems (OSs) increase processing efficiency 

and responsiveness by suspending threads and rescheduling 

them on any thread context in the system. To support thread 

context switch and migration, the OS must remove all of a 

thread’s state from its thread context, store it in memory, and 

load it back, possibly on a different thread context on the 

same or a different core. For HTMs that rely on the cache for 

either version management or conflict detection, moving 

thread state is difficult because the transactional state of a 

thread is not visible to the operating system. One simple 

approach is to abort transactions when a context switch 

occurs. This is difficult for eager version management 

HTMs, though, because aborting is not instantaneous. In 

addition, some long-running transactions may never com-

plete if they are forced to abort when preempted. A better 

approach allows thread preemption, but ensures that trans-

actional state is saved and restored with the thread’s other 

state.

In LogTM-SE, all of a thread’s transactional state—its 

version management and conflict detection state—is accessi-

ble to the OS. Both old and new versions of transactional 

data reside in virtual memory and require no special OS 

support. The log filter is purely an optimization and can be 

cleared when a thread is descheduled. 

A thread’s conflict detection state can be saved by copying 

the read/write signatures to the log’s current header. How-

ever, the hardware must continue to track conflicts with the 

suspended thread’s signatures to prevent other threads from 

accessing uncommitted data. For example, another thread in 

the same process may begin a transaction on the same 

thread context and try to access a block in its local cache. 

The system must check this access to ensure that the block is 

not in the write-set of a descheduled transaction. The chal-

lenge is to ensure that all active threads check the signatures 

of descheduled threads in their process on every memory 

reference.

LogTM-SE achieves this goal using an additional sum-

mary signature, which represents the union of the suspended 

transactions’ read- and write-sets. The OS maintains the fol-

lowing invariant for each active/summary signature pair: If 

thread t of process P is scheduled to use an active signature, the 

corresponding summary signature holds the union of the saved 

signatures from all descheduled threads from its process P. On 

every memory reference, including hits in the local cache 

(both transactional and non-transactional), LogTM-SE 

checks the summary signature to ensure that the request 

does not conflict with a descheduled transaction. Multi-

threaded cores, where each thread on a core may belong to a 

separate process, require a summary signature per thread 

context.

The OS maintains, in software, a summary signature for 

the entire process. When descheduling a thread, the OS 

merges the thread’s saved signatures into its process sum-

mary signature. It then interrupts all other thread contexts 

running threads from the process and installs the new sum-

mary signature. In contrast to the normal signature, the 

summary signature is checked on memory references but 

not on coherence requests (because it is present on all thread 

contexts running in the same process). Any memory request 

that conflicts with a saved signature immediately traps to a 

conflict handler, since stalling is not sufficient to resolve a 

conflict with a descheduled thread.

When the OS reschedules a thread, it copies the thread’s 

saved signatures from its log into the hardware read/write 

signatures. However, the summary signature is not recom-

puted until the thread commits its transaction, to ensure that 

blocks in sticky states remain isolated after thread migration. 

The thread executes with a summary signature that does not 

include its own signatures, to prevent conflicts with its own 

read- and write-sets. On transaction commit, LogTM-SE 

traps to the OS, which pushes an updated summary signa-

ture to active threads.1

Thus, with a single additional signature per thread and 

small changes to the operating system, LogTM-SE supports 

both context switching and thread migration. The cost of 

context switching within a transaction is relatively high, and 

for that reason we expect operating systems to support pre-

emption control mechanisms [29] that defer context 

switches occurring within a transaction if possible. In addi-

tion, aborting short transactions may be preferable to incur-

ring the overhead of propagating new summary signatures.

4.2  Virtual Memory Paging
HTMs must support paging of transactional data for sev-

eral reasons. First, an OS may page out data in the read- and 

write-sets of active transactions and page it back in at a dif-

ferent physical address. If transactions are short, swapping of 

transactional data to disk is unlikely, because the memory 

was touched recently. However, paging may be required 

because one or more transactions’ read- or write-sets exceed 

the physical memory size (but we hope this case is uncom-

mon). Second, OS techniques, such as copy-on-write, may 

also cause a page that was read to subsequently be relocated 

1. To efficiently compute summary signatures, the OS could main-
tain a counting signature data structure to track the number of suspended 
threads setting each summary signature bit, similar to VTM’s XF data 
structure [25].



when it is written. HTMs should therefore work correctly in 

the presence of paging and should not cause an automatic 

abort (to handle large transactions). 

LogTM-SE’s version management operates on virtual 

addresses and is not tied to cores or caches. Thus, both new 

(in place) and old (in log) versions can be transparently 

paged. Moreover, eager version management allows a trans-

action to commit without restoring paged-out pages, since 

the new version is already in place. In contrast, lazy version 

management, in which memory is updated on commit, 

would require restoring paged-out pages at commit time, 

removing any benefit of paging them out in the first place.

LogTM-SE’s signatures do not lose any information when 

a page is removed from memory, so transactional data 

remains isolated. However, because signatures operate on 

physical addresses, false conflicts may arise if the page is 

remapped to a different virtual address within the same 

address space. As with other false positives, this is acceptable 

if it is infrequent (as it should be). 

More important are false negatives, indicating loss of iso-

lation, that can arise when all of the following hold: (a) a 

page was transactional, (b) was paged out, (c) was paged 

back in at a different physical address (d) while the original 

transaction was still active. Since paging transactional data 

should be very rare, we propose a correct solution and leave 

optimization to future work. 
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Figure 2. Baseline CMP for LogTM-SE

 bringing a page back into a process at a different 

physical address, LogTM-SE notifies all threads to update 

their signatures with the new physical address for the page. 

For active threads, this requires interrupting each thread 

and, for those executing a transaction, walking the signature 

and testing whether it contains any blocks from the old 

address of the page. If so, the same blocks are inserted in the 

signature using their new physical address. The OS queues a 

signal for descheduled transactions to update their summary 

signatures (as well as signatures in the log from nesting) 

before they resume execution. Thus, the updated signatures 

contains both the old and new physical addresses for read- 

and write-set elements on the page.

This simple mechanism requires no additional hardware 

support and will incur little overhead if paging within a 

transaction is rare. If paging proves more frequent (i.e. if 

large transactions become the norm), additional mecha-

nisms can detect whether a page has been touched during a 

transaction to avoid unnecessary signature updates.

5  A LogTM-SE

Table 1: System Model Parameters

System Model Settings

Processor Cores 5 GHz, out-of-order, 2-way SMT

L1 Cache 32 KB 4-way split, 64-byte blocks,  

1 cycle uncontended latency

L2 Cache 8 MB 8-way unified, 64-byte blocks,  

34-cycle uncontended latency

Memory 4 GB 500-cycle latency

L2-Directory Full-bit vector sharer list; 6-cycle latency

Interconnec-

tion Network

grid, 64-byte links, 3-cycle link latency

 Implementation

This section presents a specific LogTM-SE implementa-

tion for a CMP with non-broadcast coherence, which will be 

important for future larger-scale CMPs.

Base CMP. Figure 2 illustrates the baseline 16-core LogTM-

SE system and Table 1 summarizes the system parameters. 

Each of the 16 cores executes instructions out-of-order and 

supports 2-way multi-threading, providing 32 thread con-

texts on chip. The cores are 4-way-issue superscalar, use a 

15-stage pipeline, 64-entry issue window, 128 entry reorder 

buffer, YAGS branch predictor, and have abundant fully-

pipelined functional units (2 integer ALU, 2 integer divide, 2 

branch, 4 FP ALU, 2 FP multipliers, and 2 FP divide/square 

root). Each core has 32 KB private L1 I & D caches, with the 

latter using writeback. All cores share an 8 MB L2 cache con-

sisting of sixteen banks interleaved by block address. A 

packet-switched interconnect connects the cores and cache 

banks in a 4x3 grid topology using 64-byte links and adap-

tive routing. On-chip memory controllers connect to stan-

dard DRAM banks.

A MESI directory protocol provides cache coherence 

with less bandwidth demand than a broadcast protocol. The 

protocol enforces inclusion and each L2 tag contains a bit-

vector of the L1 sharers and a pointer to the exclusive copy, if 

it exists. To eliminate a potential race, an E replacement 

from an L1 cache sends a control message to update the 

exclusive pointer, but S replacements are completely silent. 

An alternative implementation of the on-chip directory 

could use shadow tags instead of an inclusive L2 cache.



Coherence Protocol Changes. LogTM-SE modifies the 

baseline MESI coherence protocol to support CON-

FLICT(O, A) operations. GETS(A) requests from other 

cores invoke CONFLICT(read,A) and GETM(A) requests 

invoke CONFLICT(write, A).

If an L1 cache replaces transactional data, the L2 cache 

does not update the exclusive pointer or sharer’s list (like the 

sticky-S and sticky-M states in LogTM [19]). This ensures 

that subsequent requests will still be forwarded to the evict-

ing L1 cache, allowing it to perform the signature check 

needed to preserve correctness.

If the L2 cache replaces transactional data, it loses the 

corresponding directory information since the external 

DRAM does not maintain a directory. As a result of the 

inclusion property, subsequent references to the same data 

result in an L2 miss. To preserve correctness, the L2 conser-

vatively broadcasts the coherence request to the L1s, allow-

ing them to check their signatures. To avoid multiple 

broadcasts for the same block, the L2 rebuilds the directory 

state by recording the L1s’ responses. If an L1 NACKs the 

request due to a conflict, the L2 directory goes to a new state 

that requires L1 signature checks for all subsequent requests. 

A block leaves this state when the request finally succeeds. 

Signature Design. The signature compactly represents the 

read- and write-sets of a transaction. A perfect filter, which 

precisely records the addresses read and written, can be 

implemented as bit vector with a bit for each block in the 

address space. However, this is unnecessary and inefficient, 

as false conflicts represent a performance, rather than a cor-

rectness, issue. The key goals for a practical signature mech-

anism are (1) size, (2) accuracy, and (3) simplicity. We focus 

on signatures that can be computed from simple binary 

operations, such as shifting, ORing, and decoding.

Figure 3 shows three signature implementations, where 

an actual signature needs two copies of the illustrated hard-

ware for read- and write-sets, respectively. Part (a) illustrates 

inserting a block address A into a simple bit-select (BS) sig-

nature implementation of size N = 2n bits. The insert merely 

decodes the n least-significant bits of A’s block address and 

logically ORs the result with the current signature. While 

not illustrated, a CONFLICT(O, A) operation simply tests 

the appropriate bit, while a CLEAR(O) zeros the signature. 

Part (b) illustrates double-bit-select (DBS) that decodes two 

fields, setting both on an INSERT(O,A) and signaling a con-

flict only when both are set. DBS is similar to Bulk’s default 

signature mechanism, which permutes the address and then 

decodes two 10 bit fields. Finally, part (c) illustrates coarse-

bit-select (CBS) that tracks conflicts at a coarser granularity 

than blocks (e.g., pages). CBS targets large transactions 

whose read- or write-sets at the block granularity would fill a 

small signature.

The next section shows that these simple signatures per-

form well for current transactional workloads. More creative 

signatures may prove necessary if larger transactions and 

deep nesting become the norm.

6  Evaluation

Figure 3. Three example signature implementations
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This section evaluates the LogTM-SE implementation 

described in Section 5. Results show that signature-based 

transactional memory generally performs comparably to 

lock-based synchronization, small, simple signature imple-

mentations suffice, and cache victimization occurs rarely for 

most workloads.

6.1  Methodology
We evaluate LogTM-SE using full-system execution-

driven simulation based on the Wisconsin GEMS toolset [18, 

31] in conjunction with Virtutech Simics [17]. The GEMS 

toolset includes detailed timing models for the processor 

pipeline and memory system. Simics provides functional 

correctness for the SPARC ISA and unmodified Solaris 9. 

Each simulation was pseudo-randomly perturbed to pro-

duce 95% confidence intervals [2].

6.2  Workloads
In order to observe a range of program behavior, we con-

verted a variety of multi-threaded workloads to use transac-

tions. These include a database storage library [28] and four 

SPLASH benchmarks [32]. In each case, we converted the 

original lock-based multi-threaded program to use transac-

tions in place of lock-protected critical sections. Transaction 

begin and commit were implemented via Simics “magic” 



instructions, which are special no-ops passed directly to the 

memory model.

BerkeleyDB. BerkeleyDB is an open-source database stor-

age manager library that is commonly used for server appli-

cations (such as OpenLDAP), database systems (MySQL) 

and many other applications. We based our workload on the 

open-source version distributed by Sleepycat software [28].

We converted the mutex-based critical sections in Berke-

leyDB to transactions. The resulting transactions contain 

non-transactional pieces of code such as system calls, I/O 

operations, and memory allocation, which are handled using 

non-transactional escape actions [20]. A simple multi-

threaded driver program initializes a database with 1000 

words and then creates a group of worker threads that ran-

domly read from the database. This driver stresses the Ber-

keleyDB lock subsystem due to repeated requests for locks 

on database objects.

Cholesky, Radiosity, Raytrace and Mp3d. These scientific 

programs are taken from the SPLASH benchmark suite [32]. 

We replace the critical sections with transactions while 

retaining barriers and other synchronization mechanisms. 

Raytrace was modified to eliminate false sharing between 

transactions [19]. 

Table 2:  Benchmarks and Inputs

Benchmark Input Unit of Work
Units 

Measured
Transactions
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BerkeleyDB 1000 words 1 database read 128 1,120 8.1 30 6.8 28

Cholesky tk14.O Factorization 1 261 4.0 4 2.0 2

Radiosity batch 1 task 512 11,172 2.0 25 1.5 45

Raytrace small image (teapot) parallel phase 1 47,781 5.8 550 2.0 3

Mp3d 128 molecules 1 step 512 17,733 2.2 18 1.7 10

To reduce simulation times, we do not measure the entire 

parallel segment of the program. Instead we take representa-

tive execution samples and measure throughput in terms of 

well-defined units of work [1].1 For example, in the Berke-

leyDB workload, each database read comprises a unit of 

work. Table 2 lists our workloads, their input parameters, 

and their units of work.

6.3  Results
Performance with Perfect Signatures. We begin by show-

ing that LogTM-SE with idealized signatures generally per-

forms at least comparably to lock-based programs. For each 

benchmark, Figure 4 presents the execution time speedups 

for different TM variants relative to the left-most bar which 

represents the lock-based programs (Lock). The second bar, 

P, displays the performance of LogTM-SE using perfect sig-

natures—idealized signatures that record exact read- and 

write-sets, regardless of their size.

Result 1: LogTM-SE with unimplementable perfect signa-

tures performs comparable to locks or better. BerkeleyDB 

and Raytrace perform 20-50% better using transactions, 

while the differences for Cholesky, Mp3d, and Radiosity are 

not statistically significant (note the 95% confidence inter-

vals denoted by the error bars).

Implication 1: LogTM-SE’s eager version management 

and local commit allows programmers to use the easier TM 

programming model without sacrificing performance, pro-

vided that realistic signature implementations do not 

degrade performance.

Performance with Realistic Signatures. To evaluate realis-

tic signature implementations, Figure 4 presents the speed-

ups for LogTM-SE with 2 Kb signatures using bit-select 

(BS), coarse-bit-select (CBS), and double-bit-select (DBS). 

BS decodes the least-significant 11 bits of the block address. 

CBS decodes the least-significant 11 bits of a 1 KB macro-

block (sixteen 64-byte blocks). DBS separately decodes the 

10 least-significant bits of a block address and the next 10 

address bits, setting and checking two signature bits.

Result 2: LogTM-SE with the CBS and DBS signatures 

performs comparably to LogTM-SE with perfect signatures, 

while the simplest scheme, BS, degrades performance mod-

estly for Radiosity and Raytrace.

Implication 2: If these results generalize to future TM 

workloads, LogTM-SE can use simple signatures to approxi-

mate perfect signatures and perform well.

Signature Sizing. Smaller signatures reduce implementation 

cost, but increase the probability of false positives. Given the 

well-known birthday paradox, one might expect small signa-

tures to perform poorly. The last bar in Figure 4 presents the 

speedup for a 64 bit BS signature (BS_64).

Result 3: The 64 bit BS signature performs comparably to 

perfect signatures for 3 of the 5 benchmarks, but performs 

up to 20% slower for Radiosity and Raytrace. Small signa-

tures suffice because most transactions have small read and 

write sets (Table 2) and spend most of their time executing 

non-transactional code (not shown).
1. We use the term “unit of work” in place of “transaction” (used by 

Alameldeen et al.) to avoid confusion with TM transactions.



Implication 3: These results suggest that small signatures 

may allow initial HTM implementations to use modest 

resources until the nature and importance of TM applica-

tions becomes clear.

Importance
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Figure 4. Speedup normalized to locks

 of Victimization. We also studied how often 

these benchmarks victimize transactional data from L1 or L2 

caches. Only Raytrace had more than 20 transactions that 

evicted transactional data from its caches. 

Result 4: Raytrace victimized transactional L1 or L2 

blocks 481 times in 48K transactions, while other bench-

marks victimized transactional blocks less than 20 times.

Implication 4: If these results generalize to future TM 

workloads, HTM should handle victimization, but do so 

with minimal complexity and resources.

In More Detail. To gain further insight, Table 3 presents 

additional information on Raytrace and BerkeleyDB. For 

both benchmarks, Table 3 presents the number of transac-

tion commits, transaction stalls (i.e., the number of times 

transactions have a request NACKed), and transaction 

aborts for both perfect and practical signatures. It also pre-

sents the fraction of conflicts that arise from false positives. 

For 2 Kb signatures, for example, false positives account for 

0-60% of all conflicts. This increases to 40-82% of all con-

flicts as the signature size shrinks to 64 bits. While false pos-

itives increase stalls for both benchmarks, the impact on 

aborts differs. For BerkeleyDB with all signature schemes 

and Raytrace with CBS and DBS, the number of aborts is 

comparable for 2 Kb and perfect signatures. Raytrace with 

2 Kb BS signatures incurs roughly 21% more aborts. Fur-

thermore, while reducing the signature size to 64 bits has lit-

tle discernible effect on BerkeleyDB’s abort frequency, it 

increases the number of aborts for Raytrace by 18% for CBS 

and DBS, but decreases them by a third for BS. This illus-

trates a complex interaction: false positives may lead to false 

cycles (and thus aborts) or to serializing transactions (and 

thus no aborts). To see why, consider a single bit signature, 

which effectively acts as a global lock, eliminating the need 

to ever abort a transaction.

The large number of stalls relative to aborts indicates that 

given time, many conflicts will resolve themselves. Thus 

stalling a transaction may be preferable to aborting it and 

discarding otherwise useful work. While the stall to abort 

ratio is highest for small signatures, even with a perfect sig-

nature there are more stalls than aborts. BerkeleyDB has 

many more stalls than transactions, which occurs because a 

transaction may retry a coherence operation multiple times 

before the conflict clears and it makes progress.

The false positive rate roughly correlates to the size of 

transactional read- and write-sets. Table 2 shows the average 

and maximum number of cache lines in each workload’s 

read- and write-sets using perfect signatures. Since read-sets 

average 2 to 8 blocks and write-sets 1 to 7 blocks, few signa-

ture bits are set on average. However, the read- and write-set 

distribution can be highly skewed, resulting in some transac-

tions that set many signature bits and create many false con-

flicts. Raytrace’s 550-block maximum read-set size 

represents the worst case, which helps explain why Ray-

trace’s performance falls off with the 64 bit BS signature.

7  Alternative LogTM-SE Implementations

The LogTM-SE approach should work well with other 

shared-memory systems, including a single CMP with 

snooping coherence and a multiple-CMP system.

A Snooping CMP. Consider a single CMP as described in 

Section 5—per-core writeback L1 caches, multi-banked 

shared L2 cache, standard off-chip DRAM—but change the 

MESI coherence protocol to use broadcast snooping. As is 

common, assume that L1 and L2 banks determine whether a 

coherence request has an L1 owner (one or more L1 sharers) 

via a logically-ORed owner (shared ) signal.

Adding LogTM-SE to this snooping system requires the 

same additions to the core as in Section 5, but different 

coherence changes. With snooping, LogTM-SE requires a 

third logically-ORed signal, called nack, that cores use to 

NACK coherence requests when their signatures detect a 

conflict. Because snooping protocols broadcast all coherence 

requests, they eliminate the need for sticky states or other 



special mechanisms to reach all necessary signatures. 

Because directories provide a first-level filter, broadcast 

snooping systems may need larger signatures to achieve 

comparable false positive rates.

Table 3:  Impact of Signature Size on Conflict Detection
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47,781 20,436 66,833 64 49 21,668 614,857 42 24,333 124,248 40 23,948 158,754

128 48 24,288 426,510 40 24,748 117,519 41 24,489 165,350

256 46 24,508 222,964 41 24,263 118,501 38 17,218 207,219

512 43 24,395 120,609 29 20,398 68,859 4.1 20,492 70,166

1024 32 24,515 104,215 16 20,704 68,699 0.5 20,333 68,984

2048 36 24,692 116,479 2.7 20,516 68,306 0.0 20,353 66,497
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1,120 737 27,470 64 72 667 43,954 82 742 43,566 60 634 33,891

128 68 745 45,655 78 777 39,651 62 661 35,693

256 71 701 43,660 82 701 37,006 65 707 34,058

512 63 610 35,594 80 787 42,641 11 747 28,706

1024 66 724 33,748 79 763 38,443 18 742 28,946

2048 60 688 30,979 51 688 28,228 19 718 27,851

Multiple CMPs. Consider a system with four CMPs 

(attached to standard DRAM) interconnected with a reliable 

point-to-point network. Assume that intra-chip coherence is 

maintained with the L2 directory of Section 5. Assume that 

inter-chip coherence is maintained with full-map directory 

protocol requiring a few state bits and 4 sharer bits per mem-

ory block. Directory state can be stored in memory bits freed 

by calculating SECDED ECC on 256 bits rather than the 

standard 64 bits [23]. For speed, directory state can be 

cached in a structure beside the home CMP’s L2 cache.

LogTM-SE extends this multiple CMP system by adding 

the on-chip changes of Section 5 and altering the inter-chip 

directory coherence protocol to support NACKs on transac-

tion conflicts and sticky states to handle victimization. An 

L2 cache that wishes to victimize a transactionally-modified 

block, for example, does a writeback to the directory at 

memory, so the directory can store the block and enter 

“sticky M”. While these changes are conceptually straightfor-

ward, a full paper may be required to address the details.

8  Related Work

HTMs. LogTM-SE builds on the large body of research on 

HTM systems [3, 7, 8, 9, 11, 15, 19, 25]. LogTM-SE derives 

most directly from LogTM [19] and Bulk [7].

LogTM-SE improves upon LogTM by removing flash-

cleared R and W bits from L1 caches and by improving vir-

tualization. The R and W bits in LogTM do not scale easily 

with multi-threaded cores (requiring T copies for T hard-

ware thread contexts) or nesting levels (requiring L copies 

for L levels of nesting support). In addition, LogTM’s R and 

W bits pose a challenge for virtualizing transaction support 

as R and W bits can not be easily saved or restored. As a 

result, LogTM-SE supports thread suspension and migration 

while LogTM does not.

LogTM-SE differs from Bulk by making commit a local 

operation, supporting non-broadcast coherence protocols 

and allowing arbitrary signatures. Bulk’s commit operation 

broadcasts the write signature of the committing transaction 

to all cores and possibly restores victimized transactional 

data to their original locations in memory. LogTM-SE’s 

commit, by contrast, simply clears the committing transac-

tion’s signatures and resets its log pointer. In order to main-

tain strong atomicity, all Bulk cores must check their read 

signatures to see if it might contain the address of any non-

transactional stores executed by any other core in the system 

even if that core is not currently caching the block. LogTM-

SE, on the other hand, leverages LogTM’s sticky states to 

ensure that coherence requests are sent to all necessary sig-

natures without relying on broadcast. Finally, because 

LogTM-SE’s version management is independent of caching, 

it eliminates Bulk’s requirement that each signature precisely 

identify (no false negatives or positives) the cache sets of all 



addresses it represents (e.g., using 1K bits for a cache with 

1K sets).

Virtualization. LogTM-SE, similar to UTM [3], VTM [25], 

UnrestrictedTM [6], PTM [8] and XTM [9], supports the 

virtualization of transactions. Compared to other systems, 

LogTM-SE adds less hardware, uses its virtualization mecha-

nism less frequently, and requires less work to process cache 

misses and transaction commits after virtualization events.

Table 4: Comparison of HTM Virtualization Techniques

Before Virtualization After Virtualization
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UTM [3] - - - H H H HC H H H

Shaded = virtualization event

- = handled in simple hardware

H = complex hardware

S = handled in software

A = abort transaction

C = copy values

W = walk cache

V = validate read set

B = block other transactions

VTM [25] - - - S S SC S S S SWV

UnrestrictedTM[6] - - - A B B B B AS AS

XTM [9] - - - ASC - SCV S SC SC AS

XTM-g [9] - - - SC - SCV S SC SC AS

PTM-Copy [8] - - - SC S S SC SC S S

PTM-Select [8] - - - S H S S S S S

LogTM-SE - - SC - - S SC - S S

UTM virtualizes transactions using state (including a 

pointer) added to each memory block and an additional 

level of address translation. VTM supports virtualization 

with a combination of software and firmware, which stores 

transactional data and read- and write-sets in software tables 

when transactional data are evicted from the cache or when 

a transactional thread is suspended. UnrestrictedTM virtu-

alizes transactions by allowing only one unrestricted trans-

action at a time to execute after cache victimization (but 

allowing the execution of multiple restricted transactions). 

XTM and PTM leverage paging and address translation 

mechanisms to virtualize transactions. Both provide soft-

ware solutions and propose hardware mechanisms to accel-

erate common operations (XTM-g and PTM-Select).

Table 4 presents a rough comparison of the different sys-

tems’ efficiencies by displaying the actions they take on vari-

ous system and cache events. As indicated by the “Before 

Virtualization” columns (left), all of the previous systems 

handle the common case of non-virtualized small transac-

tions using simple hardware mechanisms. All these systems 

have a conceptual virtualization mode, which they switch to 

after evicting transactional data from the cache, or a paging 

operation or context switch during a transaction. As indi-

cated by the “After virtualization” columns, all these systems 

either restrict concurrency or require complex hardware or 

slow software for at least one common case operation. Unre-

strictedTM blocks all other transactions until the virtualized 

transaction commits. VTM and PTM-Copy require slow 

software-based conflict detection on cache misses. UTM and 

PTM-Select perform similarly complex operations in hard-

ware on cache misses. XTM and XTM-g require expensive 

page-based validation of transactions’ read-sets at commit.

Like these systems, LogTM-SE requires little hardware 

overhead to support virtualization—one summary signature 

per thread context. In LogTM-SE, however, virtualization 

does not force the use of software for conflict detection, nor 

restrict the concurrency of transactions. LogTM-SE requires 

the least effort and expense to handle cache misses and com-

mits—the most frequent events—after virtualization. Most 

importantly, in LogTM-SE, cache victimization of transac-

tional data does not require virtualization.

Hybrid transactional memory systems [10, 16] provide 

virtualization by integrating an HTM with an STM. Small 

transactions, in the absence of virtualization events, execute 

as hardware transactions, while transactions that require vir-

tualization execute as software transactions. HyTM [10] 

requires the least amount of hardware support of any of the 

virtualization schemes (it can run purely in software). How-

ever, hybrid schemes add overhead to hardware transactions 

in order to detect conflicts with concurrent software transac-

tions. Initial results with HyTM indicate that a virtualized 

HTM will perform better in the presence of cache victimiza-

tion [10]. 

9  Conclusions

This paper proposes a hardware transactional memory 

(HTM) system called LogTM Signature Edition (LogTM-SE) 

that combines features of prior HTM systems—especially 

LogTM, Nested LogTM, and Bulk. LogTM-SE stores princi-

pal transactional state in two structure types—signature and 

log—to achieve two key benefits. First, signatures and logs 

can be implemented without changes to highly-optimized 

cache arrays. Leaving critical cache arrays untouched may 

facilitate HTM adoption by reducing risk. Second, signatures 



and logs are software accessible to allow OS and runtime 

software to manipulate them for virtualization. With little 

extra hardware, LogTM-SE handles cache victimization, 

unbounded nesting (both open and closed), thread context 

switching and migration, and paging.
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