
Interactions Between Compression and Prefetching in Chip Multiprocessors

                         Alaa R. Alameldeen*                                                   David A. Wood 
                Oregon Microarchitecture Lab                                Computer Sciences Department  
                            Intel Corporation                                         University of Wisconsin-Madison 
                 alaa.r.alameldeen@intel.com                                            david@cs.wisc.edu 

Abstract

* This work was largely done while a Ph.D. student at Wisconsin.

In chip multiprocessors (CMPs), multiple cores compete 

for shared resources such as on-chip caches and off-chip 

pin bandwidth. Stride-based hardware prefetching 

increases demand for these resources, causing contention 

that can degrade performance (up to 35% for one of our 

benchmarks). 

In this paper, we first show that cache and link (off-chip 

interconnect) compression can increase the effective cache 

capacity (thereby reducing off-chip misses) and increase 

the effective off-chip bandwidth (reducing contention). On 

an 8-processor CMP with no prefetching, compression 

improves performance by up to 18% for commercial work-

loads. Second, we propose a simple adaptive prefetching 

mechanism that uses cache compression’s extra tags to 

detect useless and harmful prefetches. Furthermore, in the 

central result of this paper, we show that compression and 

prefetching interact in a strong positive way, resulting in 

combined performance improvement of 10-51% for seven 

of our eight workloads. 

1  Introduction
Chip multiprocessors (CMPs) have emerged as a domi-

nant system design paradigm. However, a good CMP 

design must balance cores, caches and communication 

to prevent one resource from becoming the only bottle-

neck. This presents a challenge, since the 2004 ITRS 

Roadmap [22] predicts that transistor performance will 

continue to improve faster than DRAM latency and pin 

bandwidth (26%, 10%, and 11% per year, respectively). 

To offset such trends, CMP designs are likely to dedicate 

significant area to on-chip caches and use latency hiding 

techniques like hardware prefetching [12, 27, 37, 38, 48]. 

Many current CMP designs (e.g., IBM’s Power5 [39]) 

implement hardware stride-based prefetching, which 

eliminates some off-chip misses and overlaps the laten-

cies of others. 

Unfortunately, hardware prefetching significantly 

increases demand on off-chip pin bandwidth. It also 

increases a workload’s working set size, possibly increas-

ing cache pollution. CMPs exacerbate both these prob-

lems since more processors share cache and pin 

bandwidth resources. Figure 1 shows that for a unipro-

cessor, hardware stride-based prefetching achieves a 74% 

performance improvement for zeus (described in 

Section 4). But for a 16-processor CMP with the same 

cache size and pin bandwidth, stride-based prefetching 

degrades performance by 8%. For most of our bench-

marks, the benefit of stride-based prefetching decreases 

as the number of processor cores grows, eventually 

degrading performance. 

Compression can mitigate the main factors that degrade 

prefetching’s performance. Cache compression (previ-

ously proposed for uniprocessors [4, 10, 23, 32, 34, 45, 

47]) stores compressed lines in the cache, thereby 

increasing the effective cache size for a fixed area. This 

helps eliminate some cache misses, reducing both aver-

age memory latency and contention for off-chip pin 

bandwidth. Link compression [9, 13, 14, 19, 30] com-

presses data sent on the off-chip interconnect, increasing 

the effective pin bandwidth. However, compression 

introduces latency overheads to compress and decom-

press data, partially reducing its performance benefits. 

This paper examines two complementary designs to 

alleviate demand on cache size and pin bandwidth. First, 

we study a CMP system design that supports both cache 

and link compression. We show that cache compression 

improves CMP performance by increasing the effective 

cache size, thereby reducing miss rates and decreasing 

pin bandwidth demand. Link compression improves 

performance by increasing the effective pin bandwidth. 

For zeus (Figure 1), cache and link compression alone 

increase performance by 6-12% over the base system 

(without prefetching or compression). Second, we pro-

pose an adaptive prefetching mechanism that uses com-

pression’s extra cache tags and simple heuristics to 

throttle prefetching when it replaces more useful lines 

than it brings in. Figure 1 shows that adaptation changes 

prefetching from an 8% degradation to a 16% perfor-

mance improvement on 16 processors.

This paper also shows that compression and hardware 

prefetching interact positively. First, link compression 

reduces the contention for off-chip bandwidth caused by 

prefetching. Second, L1 prefetching hides part of the 

decompression penalty incurred by cache compression. 

Third, cache compression increases the effective cache 

capacity, which partially offsets prefetching’s larger 



working set size. Cache compression and prefetching also 

have a small negative interaction factor, since both tech-

niques eliminate some of the same misses. The positive inter-

actions generally outweigh the negative interactions, 

resulting in a combined performance improvement greater 

than the product of the individual improvements. Figure 1

shows that the combination of prefetching and compression 

improves the performance of zeus by 28% for a 16-processor 

CMP. This reflects a positive interaction of 24% (i.e., the 

speedup of prefetching and compression together exceeds the 

product of the speedup of prefetching alone and the speedup 

of compression alone by 24%).

Contributions. This paper makes four main contributions: 

• It presents the first quantitative evaluation of cache and 

link compression on shared CMP caches. On an 8-pro-

cessor CMP, this paper shows that cache compression 

alone increases the effective shared cache capacity by 36-

80%, reduces misses by up to 23%, and improves perfor-

mance by up to 18% for commercial benchmarks. It 

demonstrates that link compression alone reduces pin 

bandwidth demand by 34-41% for commercial bench-

marks and up to 23% for scientific benchmarks. 

• It presents

#Processors

0

20

40

60

80

Pe
rf

. I
m

pr
ov

em
en

t (
%

)
Zeus

Compr Only 
PF Only 
Adapt_PF 
Compr+Adapt_PF 

1p 2p 4p 8p 16p

Figure 1. Benefits of Compression and Prefetching

 the first quantitative evidence that stride-

based prefetching improves the performance of CMPs 

far less than it does for uniprocessors, even degrading 

performance in some cases.

• It proposes a simple adaptive prefetching scheme that 

uses cache compression’s extra address tags to detect 

useless and harmful prefetches. Compared to non-adap-

tive prefetching, the adaptive mechanism improves per-

formance by 12-34% for commercial workloads and by 

0-2% for SPEComp workloads on an 8-processor CMP.

• It shows that compression and prefetching interact in 

strongly positive ways, resulting in a combined perfor-

mance improvement of 10-51% for seven of our eight 

workloads on an 8-processor CMP.

The remainder of the paper describes a CMP system using 

hardware stride-based prefetching and cache and link com-

pression (Section 2) and our proposed adaptive prefetching 

scheme (Section 3). Full-system simulation of an 8-processor 

CMP running commercial and scientific workloads provide a 

quantitative evaluation for compression and prefetching 

(Section 4), and their interactions (Section 5). We finally dis-

cuss related work (Section 6) and conclude (Section 7). 

2  A CMP with Prefetching and Compression
Base Design. The base system design is an eight-processor 

CMP with single-threaded cores, illustrated in Figure 2. Each 

core has private L1 instruction and data caches. All cores 

share an eight-banked L2 cache interleaved using the least 

significant block address bits.

An MSI protocol maintains coherence between the L1’s and 

the shared L2. The L2 cache maintains inclusion and has full 

knowledge of on-chip L1 sharers via individual bits in its 

cache tag. L1 caches are write-back and only communicate 

with memory through the shared L2 cache. An off-chip 

memory controller is accessed via the memory interface.

Cache Compression. To increase effective cache capacity, 

and thus reduce off-chip misses, we use the decoupled vari-

able-segment cache to pack more compressed cache lines 

into each L2 set [4]. We use the Frequent Pattern Compres-

sion scheme [1] to compress cache lines. The L1 caches hold 

uncompressed lines, eliminating the decompression over-

head from the critical L1 hit path. Accessing compressed L2 

lines incurs a five cycle decompression penalty prior to inser-

tion into the L1 cache, while uncompressed L2 lines may 

bypass the decompression pipeline. Both L1 and L2 caches 

use 64-byte lines.

In our implementation, each set in the L2 cache contains data 

space for 4 uncompressed lines but has 8 address tags. Thus 

compression can at most double the capacity and can 

increase the associativity from 4-way to 8-way. Each set 

divides its data space into 64 8-byte segments. Uncompressed 

blocks use eight segments; compressed blocks use between 

one and seven segments. We extend each address tag with a 

compression tag that indicates how many segments are allo-

cated for the corresponding line. The additional state adds 

little storage overhead; roughly 7% more than a 4-way 

uncompressed cache [4]. 

We also implement an adaptive compression algorithm that 

dynamically compresses lines only when the benefit of com-

pression (i.e., reduced misses) outweighs the cost (i.e., 

increased L2 hit latency due to decompression) [4]. However, 

for the workloads used in this study, the policy always 

adapted to compress all compressible cache lines.

Link Compression. To increase effective pin bandwidth, we 

compress cache blocks prior to sending/receiving them 

to/from the off-chip memory controller. Both the on-chip 

memory interface and the off-chip memory controller must 

support variable-length compressed message formats. We use 

the same segmentation scheme and compression algorithm 

as in the L2 cache. Each data message that originally included 



a complete cache line is transferred in 1-8 sub-messages 

(flits), each containing an 8-byte segment. The message 

header contains a length field indicating the number of seg-

ments in the line. Link compression increases effective pin 

bandwidth, reducing contention for this shared resource.

Memory Interface. Memory compression has previously 

been proposed to increase the effective memory capacity and 

reduce overall system cost [42]. However, since this study 

focuses on the cache hierarchy, we use a simpler memory 

interface that does not increase the effective memory capac-

ity. Each 64-byte cache line is stored in memory using the 

form—uncompressed or compressed—that the processor 

sends across the memory interface, with a bit encoded in the 

ECC to indicate this meta information. An alternative 

scheme proposed by Ekman and Stenstrom [18] also uses the 

same frequent pattern compression algorithm to store cache 

lines in memory. Both schemes have the advantage of being 

transparent to software. Cache and link compression can also 

be used with IBM’s MXT scheme [42] with additional com-

plexity due to the differences in compression algorithms and 

granularities used in caches and memory. 

Stride-Based

Shared L2 Cache (Partly Compressed)

Figure 2. A Single-Chip CMP with compression support.

Processor 1

L1 Cache
(Uncompressed)

Decom-
pression

Compr-
ession

............

Processor p

L1 Cache
(Uncompressed)

Decom-
pression

Compr-
ession

Memory Interface

To Memory Controller

Compressed/Uncompressed Data

 Prefetching. We use L1 and L2 prefetchers 

based on the IBM Power 4 implementation [41]. Each pro-

cessor has three associated prefetchers for the L1I, L1D and 

L2 caches. Each prefetcher contains three separate filter 

tables: positive unit stride, negative unit stride, and non-unit 

stride. Once a filter table entry detects a miss stream, the 

prefetcher allocates a stream table entry and initiates a num-

ber of startup prefetches. Each prefetcher issues prefetches 

for both loads and stores because our target system uses an 

L1 write-allocate protocol supporting sequential consistency 

(unlike Power 4). We also model separate L2 prefetchers per 

processor rather than a single shared prefetcher to reduce 

stream interference [7] and we allow L1 prefetches to trigger 

L2 prefetches.

3  Adaptive Prefetching

Hardware stride-based prefetching can improve performance 

of many workloads by eliminating many cache misses or hid-

ing part of their latency. However, inaccurate or early 

prefetches may replace useful lines and/or waste pin band-

width. Srinivasan, et al.’s prefetching taxonomy identifies 

nine cases based on the outcome of a prefetched block and its 

victim [40]. Only two of the nine cases actually eliminate 

misses. The others increase traffic (e.g., a useful prefetch 

replaces a live line) or increase both misses and traffic (e.g., a 

useless prefetch replaces a live line). In this paper, we use 

cache compression’s extra tags to estimate when prefetches 

increase misses and/or traffic, and we use this information to 

throttle the basic stride-based prefetcher. 

Our adaptive prefetching scheme uses a single saturating 

counter per cache (i.e., a counter for each L1 cache and a 

counter for the shared L2 cache) that is used to increment or 

decrement the number of startup prefetches per prefetching 

stream. When prefetching helps performance, these counters 

saturate at their maximum value and the prefetchers behave 

in the normal way. Useless and harmful prefetches decrement 

the counter, which disables prefetching completely (for the 

corresponding cache) when it reaches zero. All counters 

begin at their maximum values and are incremented/decre-

mented by one. 

To detect useless prefetches, we add a single “prefetch” bit per 

cache tag. This bit is set when a prefetched line enters the 

cache and is reset on the first access to the line. A prefetch is 

considered useless if it is evicted while the prefetch bit is still 

set. To detect harmful prefetches, we use the extra tags pro-

vided for cache compression. These tags record the addresses 

of replaced blocks, allowing us to detect when a prefetch may 

have evicted a useful line. Counters are updated on cache 

accesses as follows:

Cache hit. If the accessed line’s prefetch bit is set, then a use-

ful prefetch occurred and we increment the counter.

Cache replacement. If the allocated line (demand miss or 

prefetch) replaces a line whose prefetch bit is set (i.e., has not 

been accessed), then the earlier prefetch was useless and we 

decrement the counter.

Cache miss. We examine all the invalid tags in the cache set 

in LRU stack order. If the tag matches, then the line was 

replaced by one of the currently cached lines. If the prefetch 

bits of any valid lines are set, we make the conservative 

assumption that the line was victimized by a harmful 

prefetch, and we decrement the counter. 

While additional state could more accurately distinguish the 

different cases, we show in the next sections that this simple 

mechanism greatly reduces the number of useless and harm-

ful prefetches.



4  Evaluation

In this section, we describe our evaluation methodology and 

evaluate the individual impact of compression and the base 

and adaptive stride-based prefetching schemes on the perfor-

mance of our baseline CMP.

4.1  Methodology
Base System Configuration. We evaluate the performance 

of the compression and prefetching schemes on an 8-proces-

sor CMP with a 5 GHz clock and SPARC V9 processors. We 

used the Simics full-system simulator [35], extended with 

GEMS [36] (a detailed memory system timing and out-of-

order processor simulator). Table 1 presents our basic simu-

lation parameters

Table 1. Simulation Parameters

Processor Cores Eight processors, each a single-threaded core with private L1 caches

Private L1 Caches Split I & D, each 64 KB 4-way set associative with LRU replacement, 64-byte lines, 3-cycle access time, 320 GB/sec. 
total on-chip bandwidth (from/to L1’s)

Shared L2 Cache Unified 4 MB, composed of eight 512 KB banks, 8-way set associative (uncompressed) or 4-8 way set associative 
(compressed) with LRU replacement, 64-byte lines, 15 cycle uncompressed hit latency (includes bank access 
latency), 20 cycles compressed hit latency (15 + 5 decompression cycles)

Memory  
Configuration

4 GB of DRAM, 400 cycles access time with 20 GB/sec. chip-to-memory bandwidth. Each processor can have up 
to 16 outstanding memory requests

Processor Model Each processor is an out-of-order superscalar processor with a 5 GHz clock frequency. 

Processor Pipeline 4-wide fetch and issue pipeline with 11 stages (or more): fetch (3), decode (4), schedule (1), execute (1 or more), 
retire (2)

IW/ROB 64-entry instruction window, 128-entry reorder buffer

Branch Prediction 4 KB YAGS direct branch predictor [17], a 64-entry cascaded indirect branch predictor [16], and a 64-entry return 
address stack predictor [29]

Stride-based  
Prefetching

Each processor has three associated prefetchers for the L1I, L1D and L2 caches. Each prefetcher contains three 
separate 32-entry filter tables: positive unit stride, negative unit stride, and non-unit stride. Filter table entries allo-
cate a miss stream into an 8-entry stream table when it recognizes 4 fixed-stride misses. Upon allocation, the L1I 
or L1D prefetcher launches 6 consecutive prefetches (at most for the adaptive scheme) along the stream to com-
pensate for the L1 to L2 latency, while the L2 prefetcher launches 25 (at most) consecutive prefetches to memory.

. 

Workloads. To evaluate alternative compression and 

prefetching schemes, we use four multi-threaded commercial 

workloads from the Wisconsin Commercial Workload Suite 

[2] and four benchmarks from the SPEComp2001 suite [5] 

(Table 2). The SPEComp benchmarks are compiled using C 

and Fortran compilers which implement software prefetch-

ing using the SPARC prefetch instructions. The GEMS simu-

lator implements these prefetch instructions as non-blocking 

loads, so misses caused by them are largely indistinquishable 

from those caused by load and store instructions. These 

workloads cover a wide range of compressibility properties, 

miss rates and working set sizes. For each data point, we 

present the average and the 95% confidence interval of multi-

ple simulations to account for space variability [3]

Table 2. Workload Descriptions

OLTP. Based on the TPC-C v3.0 benchmark, oltp uses IBM’s 

DB2 v7.2 EEE DBMS with a 5 GB database (25,000 scaled 

warehouses). We simulate 16 users per processor, warm up for 

100,000 transactions, and measure 100 transactions.

SPECjbb. SPECjbb2000 runs on Sun’s HotSpot 1.4.0 Server 

JVM using 1.5 threads and 1.5 warehouses per processor and 

~44 MB of data. We warm up for 200,000 transactions and 

measure 2,000 transactions.

Apache. Apache 2.0.43 serves 20,000 files (~500 MB) and 

SURGE [6] simulates 400 clients per processor, each with 25 ms 

think time. We warm up for ~2 million requests and measure 

500 requests.

Zeus. Zeus is an event-driven static web server using the same 

client and data configuration as Apache.

SPEComp. The four SPEComp2001 benchmarks use the refer-

ence input set and are fast-forwarded to the beginning of the 

main loop. We warm up caches for approximately 2 billion 

instructions and measure until the end of the loop iteration.

. 

4.2  Cache and Link Compression

To compare the relative benefits of cache and link compres-

sion, we monitor their separate and combined effects on miss 

rates, off-chip bandwidth and performance for our base 8-

processor, 4 MB L2 configuration. We evaluate compression 

in the absence of hardware prefetching in this section.

Workload Compressibility. Our eight workloads show a 

wide range of compression ratios (Table 3). We obtained 

these ratios by periodically measuring the average effective 

cache size for each simulation and comparing it to an 

uncompressed 4 MB cache. The compression ratios for the 

commercial benchmarks (on the left) were relatively high, up 

to 1.8 which translates to an effective cache size of approxi-

mately 7.2 MB. However, the SPEComp benchmarks showed 

smaller gains, with average compression ratios ranging from 



1.01 to 1.19. Lossless compression of floating-point data 

remains a hard problem even for more complex software 

schemes [44]. Most of the benefit for floating-point applica-

tions comes from compressing zeros [1]. 

Table 3. Compression Ratios for a 4MB cache for commercial and SPEComp benchmarks

Benchmark apache zeus oltp jbb art apsi fma3d mgrid

Compr. Ratio 1.74 1.80 1.36 1.48 1.15 1.01 1.19 1.02

Reduction

0.0

0.5

1.0

N
or

m
al

iz
ed

 M
is

sr
at

e

No Compression
L2 Compression

15
.2

apache1
1.3

zeus
3.3

oltp
3.5

jbb 75
.2

art
9.3

apsi 17
.5
fma3d

5.1
mgrid

Figure 3. Normalized L2 cache miss rate (Misses per 1000 
instructions shown below for no compression).

 in Cache Misses. Compression significantly 

increases the effective cache size for six of the eight bench-

marks, leading to miss rate reductions. The commercial 

benchmarks reduce their miss rates by 10% to 23% 

(Figure 3). The miss rate reductions for the SPEComp bench-

marks are substantially less, in keeping with their lower com-

pression ratios. However, the relationship between miss rate 

and effective cache size is less clear: the apsi miss rate 

improves by 5%, despite only a 1% increase in effective cache 

size; the fma3d miss rate doesn’t improve, despite a 19% 

increase in effective cache size. It is well known that a work-

load’s miss rate can differ dramatically depending upon 

whether or not a critical working set fits in the cache. Our 

earlier uniprocessor cache compression study observed this 

phenomenon as well [4].

Bandwidth Reduction

0

5

10

15

20

25

B
an

dw
id

th
 (

G
B

/s
ec

)

No Compression
L2 Compression
Link Compression
Both

apache zeus oltp jbb art apsi fma3d mgrid

Figure 4. Pin bandwidth demand (GB/sec.).

. By reducing cache misses, cache 

compression also reduces pin bandwidth demand, defined as 

the bandwidth utilization on a system with infinite available 

pin bandwidth. Link compression reduces pin bandwidth 

demand by transferring a cache block using fewer flits. 

Figure 4 presents the bandwidth demand for our bench-

marks with no compression, only cache compression, only 

link compression, and both types of compression. Without 

compression, the average bandwidth demand of the com-

mercial workloads ranges from 5.0 GB/sec. for oltp to 

8.8 GB/sec. for apache. For SPEComp benchmarks, the band-

width demands trend higher, ranging from 7.6 GB/sec. for 

art to 27.7 GB/sec. for fma3d. Although six of the eight work-

loads have average bandwidth demand less than the 

20 GB/sec. available on the baseline system, they may still 

benefit from bandwidth reduction since cache misses typi-

cally occur in bursts.

Cache compression reduces bandwidth 5% to 10% for the 

commercial workloads and 0% to 10% for the SPEComp 

benchmarks. Link compression reduces bandwidth 34-41% 

for the commercial benchmarks and up to 23% for the SPE-

Comp benchmarks. Only apsi, whose compression ratio is 

1.01, fails to achieve at least a 17% reduction. Combining 

cache and link compression performs slightly better than link 

compression alone, reducing bandwidth 35-45% for the com-

mercial benchmarks and up to 23% for SPEComp bench-

marks.

Note that the bandwidth reduction due to cache compression 

is generally smaller than the miss ratio reduction. This is 

because cache compression affects two terms in the band-

width equation:

BandwidthDemand bytes second⁄( )
bytes miss⁄( ) misses instruction⁄( )×

instructions cycle⁄( ) cycles second⁄( )××

=

(EQ 1)

Cache compression reduces the number of misses/instruction, 

which reduces bandwidth demand. Conversely, reducing 



misses usually improves instructions/cycle, which increases 

the bandwidth demand. The exact relationship between 

misses/instruction and instructions/cycle depends upon many 

factors, including the processor’s ability to tolerate cache miss 

latency. However, we observe that these two effects largely 

offset each other for SPEComp, and our results show that 

cache compression has little impact on bandwidth reduction 

for these benchmarks, except apsi. For the commercial 

benchmarks, decreasing misses/instruction exceeds the 

impact of increasing instructions/cycle (which is reduced by 

decompression penalties), leading to a net decrease in band-

width demand. Link compression reduces the bytes/miss

term and has less direct impact on the other terms except for 

systems with high contention. Therefore, link compression 

always leads to a reduction in bandwidth demand for com-

pressible benchmarks.

Performance

0

50

100
Sp

ee
du

p 
(%

)

No Compression
L2 Compression
Link Compression
Both

apache zeus oltp jbb art apsi fma3d mgrid

Figure 5. Speedup for compression alternatives.

. For the workloads where cache compression 

significantly reduces misses, it also significantly improves 

performance. Figure 5 plots the speedup of the compression 

schemes relative to no compression. Cache compression 

alone improves performance by 5-18% for the commercial 

workloads. Conversely, the less-compressible SPEComp 

benchmarks improve by 0-4%. With the base CMP configu-

ration’s relatively generous 20 GB/sec. pin bandwidth, link 

compression significantly improves performance only for 

fma3d, the benchmark with the highest bandwidth demand, 

achieving a 23% speedup. The combined impact of cache and 

link compression is slightly higher than that of cache com-

pression alone (except for fma3d). 

4.3  Prefetching

To characterize the benefit of hardware stride-based 

prefetching, we evaluate the coverage, accuracy and prefetch-

ing rate of the L1I, L1D, and L2 prefetchers. We then evaluate 

their impact on performance in the absence of compression. 

Prefetching

Table 4. Prefetching Properties for Commercial and SPEComp Benchmarks

Benchmark
L1 I Cache L1D Cache L2 Cache

Pf rate Coverage Accuracy Pf rate Coverage Accuracy Pf rate Coverage Accuracy

apache 4.9 16.4% 42.0% 6.1 8.8% 55.5% 10.5 37.7% 57.9%

zeus 7.1 14.5% 38.9% 5.5 17.7% 79.2% 8.2 44.4% 56.0%

oltp 13.5 20.9% 44.8% 2.0 6.6% 58.0 2.4 26.4% 41.5%

jbb 1.8 24.6% 49.6% 4.2 23.1% 60.3% 5.5 34.2% 32.4%

art 0.05 9.4% 24.1% 56.3 30.9% 81.3% 49.7 56.0% 85.0%

apsi 0.04 15.7% 30.7% 8.5 25.5% 96.9% 4.6 95.8% 97.6%

fma3d 0.06 7.5% 14.4% 7.3 27.5% 80.9% 8.8 44.6% 73.5%

mgrid 0.06 15.5% 26.6% 8.4 80.2% 94.2% 6.2 89.9% 81.9%

 Characteristics. We analyze the characteristics 

of the hardware prefetchers using the following metrics:

PrefetchRate = Prefetches /1000 inst. 
TotalPrefetches 1000×

TotalInstructions
-----------------------------------------------------------=

Coverage %( ) PrefetchHits

PrefetchHits DemandMisses+
------------------------------------------------------------------------------- 100%×=

(EQ 2)

(EQ 3)

Where a prefetch hit is defined as the first reference to a 

prefetched block, excluding partial hits where a block is still 

in flight. 

Accuracy(%)
PrefetchHits

TotalPrefetches
----------------------------------------- 100%×=

(EQ 4)

Table 4 shows the prefetching characteristics for an 8-proces-

sor CMP1. We note several differences between the commer-

cial and SPEComp benchmarks. Beginning with the L1 



instruction prefetcher, the commercial workloads issue many 

more prefetches (up to 13.5 per 1000 instructions for oltp) 

than the SPEComp benchmarks (at most 0.06 per 1000 

instructions). Despite the higher prefetch rate, both the cov-

erage and accuracy are generally higher for the commercial 

workloads. However, because the prefetch streams are initi-

ated only after recognizing four fixed-stride accesses, even 

the best case, jbb, only achieves 25% coverage and 50% accu-

racy. In contrast, the SPEComp benchmarks have generally 

higher prefetch rates, accuracy, and coverage for the L1 data 

and L2 prefetchers. In particular, the L2 prefetcher covers 45-

92% of the misses with 74-98% accuracy for SPEComp, but 

only covers 26-45% of the misses with 32-58% accuracy for 

the commercial workloads. This confirms the conventional 

wisdom that scientific benchmarks have more regular access 

patterns than commercial workloads. 

Performance

0

50

100

Sp
ee

du
p 

(%
)

No Pref 
Always Pref 
Adaptive

apache zeus oltp jbb art apsi fma3d mgrid

Figure 6. Prefetching speedup (%) (relative to no prefetching). 

. Hardware prefetching can improve perfor-

mance by reducing cache misses and hiding miss latencies. 

Conversely, prefetching can degrade performance by replac-

ing useful cache blocks and causing contention. Figure 6

shows the speedup due to hardware prefetching for our eight 

benchmarks. Prefetching improves performance for half of 

our benchmarks, with speedups of 21% for zeus and 19% for 

mgrid. On the other hand, prefetching degrades fma3d’s per-

formance by 3% and jbb’s performance by 25%. Fma3d is 

bandwidth limited and the useless prefetches generated by its 

L2 prefetcher simply aggravates this bottleneck. For jbb, the 

low accuracy of the L2 prefetcher (32%) causes the replace-

ment of many useful L2 cache lines. 

The adaptive prefetcher eliminates many useless and harmful 

L2 prefetches, increasing accuracy across all the benchmarks. 

Speedup over no prefetching increases significantly for com-

mercial benchmarks (jbb’s 25% slowdown becomes a 0.8% 

speedup, apache’s 0.9% slowdown becomes a 19% speedup, 

zeus’s 21% speedup becomes 42%, and oltp’s no speedup 

turns into a 12% speedup). For SPEComp applications, the 

performance improvement is limited since non-adaptive 

stride-based prefetching is generally highly accurate. Com-

pared to non-adaptive prefetching, the adaptive mechanism 

improves performance by 12-34% for commercial workloads 

and by 0-2% for SPEComp workloads. 

5  Interactions of Prefetching and Compression

In this section, we study the interactions between compres-

sion and prefetching. We use the following terminology 

derived from Fields, et al.’s interaction cost definition [21]. 

For an architectural enhancement A (e.g., L2 compression), 

we define its speedup for a certain workload, Speedup(A), as 

the workload’s runtime on a base system (without A) divided 

by the workload’s runtime on the same system with enhance-

ment A. For two architectural enhancements A and B (e.g., 

compression and prefetching), we define the combined 

speedup of the base system with both enhancements as:

Speedup A B,( )
Speedup A( ) Speedup B( ) 1 Interaction A B,( )+( )××=

(EQ 5)

When Interaction(A, B) is positive, the speedup of the two 

enhancements together exceeds the product of individual 

speedups. We call this case a positive interaction between A 

and B. When Interaction(A, B) is negative, the speedup of the 

combined system is less than that of the product of individual 

speedups. We call this case a negative interaction between A 

and B. We next describe different factors that affect the inter-

action between prefetching and compression.

5.1  Pin Bandwidth Demand

Figure 7 shows the pin bandwidth demand of prefetching 

and compression combinations, normalized to the case of no 

compression or hardware prefetching. Stride-based prefetch-

ing alone increases off-chip bandwidth demand for our 

benchmarks by 23-206% (on a system with infinite pin band-

width). Since our base system configuration has limited pin 

bandwidth, the increased demand may cause performance 

slowdowns due to queuing delays. Combining prefetching 

with cache and link compression reduces off-chip pin band-

width demand for all benchmarks, a positive interaction

between the two techniques. For example, L2 prefetching 

alone increases zeus’s bandwidth demand by 98%, but when 

combined with cache and link compression bandwidth 

demand increases by only 14%. Similarly, art’s 23% band-

1.  Uniprocessors have higher L1D and L2 coverage for commercial bench-
marks due to having less thread contention. Other uniprocessor prefetching 
properties do not differ significantly from those of Table 4.



width demand increase due to prefetching turns into a 4% 

reduction when combined with cache and link compression.

By avoiding useless prefetches, our adaptive prefetching 

scheme significantly reduces bandwidth demand for com-

mercial applications (with little effect on the mostly accurate 

prefetches of SPEComp). While the non-adaptive prefetcher 

increases commercial benchmarks’ bandwidth demand by 

70-132%, the adaptive prefetcher limits the bandwidth 

demand increase to 19-52% (not shown).

0

1

2

3

N
or

m
al

iz
ed

 B
an

dw
id

th
No Pref or Compr 
Pref
Compr
Both

8.8
apache

7.3
zeus

5.0
oltp

6.6
jbb

7.6
art

21.5
apsi

27.7
fma3d

14.4
mgrid

Figure 7. Bandwidth demand for prefetching and compression.

 

5.2  Classification of L2 Misses 

Figure 8 classifies L2 misses according to whether prefetch-

ing or compression can avoid them. There are six classes of 

accesses (from bottom up): demand misses that cannot be 

avoided, demand misses avoided only by L2 compression, 

demand misses avoided only by L2 prefetching, demand 

misses avoided by either L2 compression or prefetching, 

prefetches not avoided by L2 compression, and prefetches 

avoided by L2 compression. The 100% line represents the 

total demand misses in the absence of compression or hard-

ware prefetching. The figure presents approximate data esti-

mated by comparing cache miss profiles across simulations 

of different configurations and using set theory and the the-

ory of inclusion and exclusion to obtain cardinalities of dif-

ferent sets of accesses. 

Figure 8 shows that L2 prefetching succeeds in avoiding 

many misses in SPEComp benchmarks, while L2 compres-

sion is not as successful. For commercial benchmarks, both 

prefetching and compression avoid significant numbers of L2 

misses. We also note two sources of interaction:

Negative

0

50

100

150

%
 M

is
se

s

Extra Avoided PF Misses

Extra Unavoided PF Misses

Avoided by Both

Avoided by Pref. Only

Avoided by Compr. Only

Unavoidable Misses

ap
ac

he
ze

us olt
p jbb art ap

si

fm
a3

d
mgr

id

Figure 8. Breakdown of L2 cache misses and prefetches.

 Interaction: Misses Avoided by Both. Figure 8

illustrates the intersection between the sets of misses avoided 

by L2 compression and L2 prefetching (i.e., misses that can 

be avoided by either technique). This intersection represents 

a negative interaction factor, since they can only be elimi-

nated once in a system using both techniques. However, the 

intersection represents a small fraction of all misses (8% for 

apache, 7% for art, and 3% or less for all other benchmarks). 

We attribute this small intersection to the fact that L2 com-

pression and L2 prefetching target different sets of misses. L2 

compression targets those conflict and capacity misses elimi-

nated by going at most twice as far down the LRU stack. L2 

prefetching targets capacity misses that follow a strided pat-

tern, which may represent blocks much further down the 

LRU stack. The two sets of misses, while partially overlap-

ping, are largely orthogonal. 

Positive Interaction: Prefetching Misses Avoided by Com-
pression. Figure 8 also shows that the extra capacity pro-

vided by cache compression helps avoids many of the 

additional misses caused by prefetching in the commercial 

workloads. Prefetching, in effect, increases a workload’s 

working set size (or cache footprint) and compression helps 

by increasing the effective cache size to tolerate that increase 

in working set size. 

5.3  L2 Hit Latency 

Cache compression increases the average L2 hit latency for 

compressible benchmarks by 1.2-3.7 cycles, since hits to 

compressed lines suffer from an additional 5-cycle decom-

pression overhead. L1 prefetching mitigates some of that 

impact by prefetching compressed lines into the L1 cache, a 

positive interaction between the two techniques. However, 

the percentage of penalized hits avoided by L1 prefetching is 

small (less than 12%) for most benchmarks due to the low L1 

prefetching accuracy and coverage for commercial work-

loads, and the poor compressibility of SPEComp benchmarks 

(Table 4).



5.4  

0

50

100

150

Sp
ee

du
p 

(%
)

No Pref or Compr 
Pref
Compr
Both

apache zeus oltp jbb art apsi fma3d mgrid

Figure 9. Speedup of prefetching and compression.

Performance

Table 5. Speedups and Interactions between Prefetching and Compression

Benchmark apache zeus oltp jbb art apsi fma3d mgrid

Speedup (Pref.) -0.9% 21.3% 0.3% -24.5% 6.4% 13.6% -3.4% 18.9%

Speedup (Compr.) 20.5% 9.7% 5.6% 5.9% 3.1% 4.2% 22.6% 2.9%

Speedup (Pref., Compr.) 37.3% 50.7% 9.9% -6.5% 10.6% 15.5% 18.6% 48.7%

Speedup (Adaptive-Pref, Compr.) 39.2% 50.8% 13.1% 1.7% 10.7% 16.1% 18.5% 49.9%

Interaction(Pref., Compr.) 15.0% 13.2% 3.8% 16.9% 0.9% -2.5% 0.2% 21.5%

 

Figure 9 shows speedups for different combinations of 

prefetching and compression, relative to the base case of no 

prefetching or compression. Table 5 presents the speedups 

(shown as percentage improvement) and interaction coeffi-

cients for different combinations. Stride-based prefetching 

alone speeds up half the benchmarks, with zeus and mgrid 

improving roughly 20% each. Conversely, jbb and fma3d 

slow down 25% and 3%, respectively. Cache and link com-

pression speed up all benchmarks, with apache and fma3d 

improving by more than 20%. Combining prefetching with 

compression achieves speedups of 10-51% across all bench-

marks, except jbb. The two schemes interact positively for all 

benchmarks, except apsi (last row of Table 5). The interaction 

coefficients are as high as 22% (mgrid) and 17% (jbb) indi-

cating that the additional cache capacity and pin bandwidth 

provided by compression significantly mitigates the impact 

of useless and harmful prefetches.

Turning

0

50

100

150

Sp
ee

du
p 

(%
)

No Pref or Compr 
Pref
Adapt_PF
Pref+Compr 
Adapt_PF+Compr 

apache zeus oltp jbb

Figure 10. Speedup of prefetching and adaptive prefetching.

 to adaptive prefetching, Figure 10 compares the 

speedup of the base strided prefetcher to the adaptive policy, 

focusing on the commercial workloads where adaptation 

helps. Compared to prefetching alone, the adaptive policy 

dramatically improves performance. Zeus improves an addi-

tional 21% and apache and oltp (where the base prefetcher 

did not help) improve 20% and 12%, respectively. Most strik-

ingly, jbb improves from a 25% performance degradation to a 

1% gain.

For prefetching combined with compression, Figure 10

shows that adaptation has much less impact, with improve-

ments ranging from 0.1% to 8%. Two factors contribute to 

this. First, as shown in Figure 8, compression eliminates 

many of the strided prefetches, significantly reducing the 

potential benefit. Second, the adaptive prefetcher uses 

unused cache compression tags to detect harmful prefetches. 

When cache compression is disabled, the adaptive algorithm 

has four extra tags per set. But with compression enabled, 

this drops dramatically for the highly-compressible commer-

cial workloads (roughly one tag for apache and zeus and two 

for oltp and jbb). Increasing the number of tags would help 

address this second factor.

5.5  Sensitivity to Available Pin Bandwidth

Since prefetching increases bandwidth demand, we expect 

compression to have the strongest interaction for systems 

with limited bandwidth. Figure 11 presents the interaction 

terms as the available pin bandwidth varies from 10 to 80 

GB/sec. For commercial benchmarks, the interaction term is 

large for the 10 and 20 GB/sec. configurations, up to 29% and 

17%, respectively. The interaction drops dramatically for the 

40 and 80 GB/sec. configurations since the available band-

width significantly exceeds demand, even with prefetching 



(Figure 7). For SPEComp benchmarks, the interaction is neg-

ative for some configurations since compression is less effec-

tive for these benchmarks. However, the negative interaction 

terms are limited to 3% or less. On the other hand, some con-

figurations show significant positive interaction terms (up to 

22% for mgrid) due to the impact of link compression.

0

10

20

In
te

ra
ct

io
n 

(P
F,

 C
om

pr
)%

10 GB/sec.
20 GB/sec.
40 GB/sec.
80 GB/sec.

apache zeus oltp jbb art apsi fma3d mgrid

Figure 11. Interaction (%) between prefetching and compression for different pin bandwidth values (10 to 80 GB/sec.).

5.6  Sensitivity to Number of CMP Cores

Stride-based prefetching has proven highly effective for uni-

processors and almost all commercial microprocessors 

implement some form of prefetching. Yet in a CMP, we have 

shown that prefetching increases contention for shared 

resources (caches and pin bandwidth), resulting in perfor-

mance degradation for some workloads. Figure 1 (zeus) and 

Figure 12 (apache and jbb) illustrate how the impact of com-

pression changes as a function of the number of processors 

(all other system parameters remain as in Table 1)2. Perfor-

mance improvements (i.e., Speedup - 100%) are shown rela-

tive to a base system with the same number of processors. 

For a uniprocessor, stride-based prefetching alone improves 

performance by 61%, 73% and 2% for apache, zeus and jbb, 

respectively. However, the benefit of prefetching decreases 

steadily for more cores. For a 16-processor CMP, stride-based 

prefetching provides no improvement for apache, and 

degrades the performance of zeus and jbb by 8% and 35%, 

respectively

#Processors

0

20

40

60

Pe
rf

. I
m

pr
ov

em
en

t (
%

)

Apache

1p 2p 4p 8p 16p

#Processors

-30

-20

-10

0

10

JBB

Compr Only 
PF Only 
Adapt_PF 
Compr+Adapt_PF 

1p 2p 4p 8p 16p

Figure 12. Performance improvement (%) for Apache and Jbb. 

. Although adaptive prefetching always helps jbb, 

it degrades performance for apache and zeus on a uniproces-

sor (by about 8%). However, adaptive prefetching improves 

performance for these workloads on all CMP configurations 

with four processors or more. For 16-processor CMPs, per-

formance improves 17% for apache, 16% for zeus, and jbb’s 

degradation is reduced to 9%.

Cache and link compression alone achieve modest perfor-

mance improvements for uniprocessors (20%, 7% and 6% for 

apache, zeus and jbb, respectively), consistent with earlier 

published results [4]. The improvement increases slowly for 

more cores (23%, 12%, and 10%, respectively for 16 proces-

sors). While compression alone provides relatively modest 

gains, the strong positive interaction with (non-adaptive and) 

adaptive prefetching results in significant performance 

improvements for 16-processor CMPs. Performance 

improves 39% for apache, 28% for zeus, and 2% for jbb.

These results clearly show that for larger CMPs, strided 

prefetching oversubscribes the critical cache and pin band-

width resources. Adaptive prefetching and cache and com-

pression provide mechanisms to increase the effective 

capacity of these resources. However, the strong positive 

interactions between these techniques strongly suggest that 

system designers should consider implementing both. 

6  Related Work
This section briefly reviews the most directly related work.

Cache Compression. Cache compression increases a cache’s 

effective capacity. Lee, et al. [32] propose a compressed mem-
2.  OLTP shows similar (but smaller) performance improvements 
and degradations to other commercial benchmarks. 



ory hierarchy model that selectively compresses L2 cache and 

memory blocks if they can be reduced to half their original 

size. Adaptive cache compression was proposed for unipro-

cessors to dynamically adapt to the costs and benefits of 

compression, and to compress only for workloads and work-

load phases when compression helps [4]. Hallnor and Rein-

hardt’s Indirect-Index Cache decouples index and line 

accesses across the whole cache, allowing fully-associative 

placement and the storage of compressed lines [23]. This 

paper is the first to analyze using compression for shared 

CMP caches.

Link Compression. Address and data compaction have been 

proposed to increase the effective memory bandwidth [9, 13, 

14, 19, 30]. Farrens and Park [19] use base registers to exploit 

the redundant information in the most-significant address 

bits. Kant and Iyer [30] studied the compressibility properties 

of address and data transfers in commercial workloads, and 

reported that the high-order bits can be predicted with high 

accuracy in address transfers but with less accuracy for data 

transfers. This paper is the first to study the impact of link 

compression on CMP systems.

Impact of Pin Bandwidth. Huh, et al. [26] identified pin 

bandwidth as a potential limiting factor for CMP perfor-

mance, which they projected would force designers to 

increase the area allocated to on-chip caches at the expense 

of cores. This problem is exacerbated by hardware-directed 

prefetching schemes that target increasing the memory-level 

parallelism and reducing off-chip misses [8]. 

Hardware Prefetching. Hardware-directed prefetching has 

been proposed and explored by many researchers [12, 27, 37, 

38, 48], and is currently implemented in many existing sys-

tems [24, 25, 39, 41]. Jouppi [28] introduced stream buffers 

that trigger successive cache line prefetches on a miss. Chen 

and Baer [12] proposed variations of stride-based hardware 

prefetching to reduce the cache-to-memory latency, and 

studied its positive and negative impacts on different bench-

marks [11]. Dahlgren, et. al [15] proposed an adaptive 

sequential (unit-stride) prefetching scheme that adapts to the 

effectiveness of prefetching. Tullsen and Eggers [43] studied 

the negative side effects of software prefetching on bus utili-

zation, cache miss rates and data sharing for a multiprocessor 

system, and proposed techniques to reduce some of these 

negative effects. Lin, et. al [20] mitigate the negative effects of 

prefetching on performance by prefetching only when the 

memory bus is idle (to reduce contention), and prefetching 

to lower replacement priorities than demand misses (to 

reduce cache pollution). Ki and Knowles [31] used extra 

cache bits to increase prefetching’s accuracy. Srinivasan, et. al 

[40], classified prefetches according to whether they reduce 

or increase misses or traffic. 

Prefetching and Compression. Zhang and Gupta [46] 

exploit their compressed cache design [47] to prefetch partial 

compressed lines from the next level in the memory hierar-

chy. Lee, et al. [32, 33, 34] use a decompression buffer 

between their cache levels to buffer decompressed lines, 

which can be viewed as storing “prefetched” uncompressed 

lines to reduce decompression overhead. This paper studies 

the interactions of a stride-based hardware prefetcher with 

cache and link compression in a CMP. 

7  Conclusions

Chip multiprocessor design requires balancing demand on 

multiple critical resources, including the number of proces-

sor cores, on-chip cache size, and off-chip pin bandwidth. 

This paper shows that stride-based prefetching provides 

smaller performance improvements for CMPs than for uni-

processors, even hurting performance in some cases. We fur-

ther show that cache and link compression partially 

compensate for the increased demand by effectively increas-

ing cache size and pin bandwidth. For commercial workloads 

running on an 8-processor CMP, cache compression 

increases the effective capacity of the shared cache by up to 

80%, thus reducing off-chip misses and improving perfor-

mance by up to 18%. Link compression increases the effec-

tive off-chip communication bandwidth by up to 41%, 

reducing possible contention and further improving perfor-

mance. We also propose a simple adaptive prefetching mech-

anism that uses compression’s extra cache tags to throttle 

prefetching and improve performance of commercial work-

loads by 12-34%.

In a central result of this paper, we show that compression 

and prefetching have a strong positive interaction, improving 

performance by 10-51% for seven of our eight workloads on 

an eight-processor CMP. Compression and prefetching inter-

act positively in three ways: link compression increases effec-

tive pin bandwidth; L1 prefetching hides part of the 

decompression penalty; and cache compression increases the 

effective cache capacity, mitigating the increase in working 

set size due to prefetching. The strong positive interaction 

between compression and prefetching suggest that CMP sys-

tem designers should strongly consider implementing both.

Acknowledgements

We thank Dan Gibson, Kevin Moore, Andy Phelps, Min Xu 

and Luke Yen for their feedback. We also thank Brad Beck-

mann for his help with prefetching implementation. This 

work is supported in part by the National Science Founda-

tion with grants CCR-0324878, EIA-0205286, and EIA-

9971256, a Wisconsin Romnes Fellowship (Wood) and dona-

tions from IBM, Intel and Sun Microsystems. Prof. Wood has 

a significant financial interest in Sun Microsystems, Inc. 

References

[1] Alaa R. Alameldeen. Using Compression to Improve Chip Multipro-
cessor Performance. PhD thesis, Computer Sciences Department, Uni-
versity of Wisconsin–Madison, 2006.

[2] Alaa R. Alameldeen, Milo M. K. Martin, Carl J. Mauer, Kevin E. 
Moore, Min Xu, Daniel J. Sorin, Mark D. Hill, and David A. Wood. 
Simulating a $2M Commercial Server on a $2K PC. IEEE Computer, 
36(2):50–57, February 2003.



[3] Alaa R. Alameldeen and David A. Wood. Variability in Architectural 
Simulations of Multi-threaded Workloads. In Proc. of the Ninth IEEE 
Symposium on High-Performance Computer Architecture, pages 7–18, 
February 2003.

[4] Alaa R. Alameldeen and David A. Wood. Adaptive Cache Compres-
sion for High-Performance Processors. In Proc. of the 31st Annual In-
ternational Symposium on Computer Architecture, pages 212–223, 
June 2004.

[5] Vishal Aslot, Max Domeika, Rudolf Eigenmann, Greg Gaertner, Wes-
ley Jones, and Bodo Parady. SPEComp: A New Benchmark Suite for 
Measuring Parallel Computer Performance. In Workshop on OpenMP 
Applications and Tools, pages 1–10, July 2001.

[6] Paul Barford and Mark Crovella. Generating Representative Web 
Workloads for Network and Server Performance Evaluation. In Proc. 
of the 1998 ACM Sigmetrics Conference on Measurement and Model-
ing of Computer Systems, pages 151–160, June 1998.

[7] Bradford M. Beckmann and David A. Wood. Managing Wire Delay in 
Large Chip-Multiprocessor Caches. In Proc. of the 37th Annual 
IEEE/ACM International Symposium on Microarchitecture, Dec. 
2004.

[8] Doug Burger, James R. Goodman, and Alain Kagi. Memory bandwidth 
limitations of future microprocessors. In Proc. of the 23th Annual In-
ternational Symposium on Computer Architecture, pages 78–89, May 
1996.

[9] Ramon Canal, Antonio Gonzalez, and James E. Smith. Very Low Pow-
er Pipelines Using Significance Compression. In Proc. of the 33rd An-
nual IEEE/ACM International Symposium on Microarchitecture, pag-
es 181–190, December 2000.

[10] David Chen, Enoch Peserico, and Larry Rudolph. A Dynamically Par-
titionable Compressed Cache. In Proc. of the Singapore-MIT Alliance 
Symposium, January 2003.

[11] Tien-Fu Chen and Jean-Loup Baer. A Performance Study of Software 
and Hardware Data Prefetching Schemes. In Proc. of the 21st Annual 
International Symposium on Computer Architecture, pages 223–232, 
April 1994.

[12] Tien-Fu Chen and Jean-Loup Baer. Effective Hardware-Based Data 
Prefetching for High Performance Processors. IEEE Transactions on 
Computers, 44(5):609–623, May 1995.

[13] Daniel Citron. Exploiting Low Entropy to Reduce Wire Delay. IEEE 
TCCA Computer Architecture Letters, 3, January 2004.

[14] Daniel Citron and Larry Rudolph. Creating a Wider Bus Using Caching 
Techniques. In Proc. of the First IEEE Symposium on High-Perfor-
mance Computer Architecture, pages 90–99, February 1995.

[15] Fredrik Dahlgren, Michel Dubois, and Per Stenström. Sequential Hard-
ware Prefetching in Shared-Memory Multiprocessors. IEEE Transac-
tions on Parallel and Distributed Systems, 6(7):733–746, July 1995.

[16] Karel Driesen and Urs Holzle. Accurate Indirect Branch Prediction. In 
Proc. of the 25th Annual International Symposium on Computer Archi-
tecture, pages 167–178, June 1998.

[17] Avinoam N. Eden and Trevor Mudge. The YAGS Branch Prediction 
Scheme. In Proc. of the 25th Annual International Symposium on Com-
puter Architecture, pages 69–77, June 1998.

[18] Magnus Ekman and Per Stenstrom. A Robust Main-Memory Compres-
sion Scheme. In Proc. of the 32nd Annual International Symposium on 
Computer Architecture, pages 74–85, June 2005.

[19] Matthew Farrens and Arvin Park. Dynamic Base Register Caching: A 
Technique for Reducing Address Bus Width. In Proc. of the 18th An-
nual International Symposium on Computer Architecture, pages 128–
137, May 1991.

[20] Wi fen Lin, Steven K. Reinhardt, and Doug Burger. Reducing DRAM 
Latencies with an Integrated Memory Hierarchy Design. In Proc. of the 
Seventh IEEE Symposium on High-Performance Computer Architec-
ture, pages 301–312, January 2001.

[21] Brian A. Fields, Rastislav Bodik, Mark D. Hill, and Chris J. Newburn. 
Using Interaction Costs for Microarchitectural Bottleneck Analysis. In 
Proc. of the 36th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, pages 228–241, December 2003.

[22] International Technology Roadmap for Semiconductors. ITRS 2004 
Update. Semiconductor Industry Association, 2004. ht-
tp://www.itrs.net/Common/2004Update/2004Update.htm.

[23] Erik G. Hallnor and Steven K. Reinhardt. A Compressed Memory Hi-
erarchy using an Indirect Index Cache. Technical Report CSE-TR-488-
04, University of Michigan, 2004.

[24] G. Hinton, D. Sager, M. Upton, D. Boggs, D. Carmean, A. Kyker, and 
P. Roussel. The microarchitecture of the Pentium 4 processor. Intel 
Technology Journal, February 2001.

[25] Tim Horel and Gary Lauterbach. UltraSPARC-III: Designing Third 
Generation 64-Bit Performance. IEEE Micro, 19(3):73–85, May/June 
1999.

[26] Jaehyuk Huh, Stephen W. Keckler, and Doug Burger. Exploring the 
Design Space of Future CMPs. In Proc. of the 2001 International Con-
ference on Parallel Architectures and Compilation Techniques, pages 
199–210, 2001.

[27] Doug Joseph and Dirk Grunwald. Prefetching Using Markov Predic-
tors. In Proc. of the 24th Annual International Symposium on Comput-
er Architecture, pages 252–263, June 1997.

[28] Norman P. Jouppi. Improving Direct-Mapped Cache Performance by 
the Addition of a Small Fully-Associative Cache and Prefetch Buffers. 
In Proc. of the 17th Annual International Symposium on Computer Ar-
chitecture, pages 364–373, May 1990.

[29] Stephan Jourdan, Tse-Hao Hsing, Jared Stark, and Yale N. Patt. The 
Effects of Mispredicted-Path Execution on Branch Prediction Struc-
tures. In Proc. of the International Conference on Parallel Architec-
tures and Compilation Techniques, pages 58–67, October 1996.

[30] Krishna Kant and Ravi Iyer. Compressibility Characteristics of Ad-
dress/Data transfers in Commercial Workloads. In Proc. of the Fifth 
Workshop on Computer Architecture Evaluation Using Commercial 
Workloads, pages 59–67, February 2002.

[31] Ando Ki and Alan E. Knowles. Adaptive Data Prefetching Using 
Cache Information. In Proc. of the 1997 International Conference on 
Supercomputing, pages 204–212, July 1997.

[32] Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. Design and Eval-
uation of a Selective Compressed Memory System. In Proc. of Interna-
tional Conference on Computer Design (ICCD’99), pages 184–191, 
October 1999.

[33] Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. An On-chip Cache 
Compression Technique to Reduce Decompression Overhead and De-
sign Complexity. Journal of Systems Architecture:the EUROMICRO 
Journal, 46(15):1365–1382, December 2000.

[34] Jang-Soo Lee, Won-Kee Hong, and Shin-Dug Kim. Adaptive Methods 
to Minimize Decompression Overhead for Compressed On-chip 
Cache. International Journal of Computers and Application, 25(2), 
January 2003.

[35] Peter S. Magnusson et al. Simics: A Full System Simulation Platform. 
IEEE Computer, 35(2):50–58, February 2002.

[36] Milo M.K. Martin, Daniel J. Sorin, Bradford M. Beckmann, 
Michael R. Marty, Min Xu, Alaa R. Alameldeen, Kevin E. Moore, 
Mark D. Hill, and David A. Wood. Multifacet’s General Execution-
driven Multiprocessor Simulator (GEMS) Toolset. Computer Architec-
ture News, pages 92–99, September 2005.

[37] Alex Pajuelo, Antonio Gonz·lez, and Mateo Valero. Speculative Dy-
namic Vectorization. In Proc. of the 29th Annual International Sympo-
sium on Computer Architecture, May 2002.

[38] Amir Roth, Andreas Moshovos, and Gurindar S. Sohi. Dependence 
Based Prefetching for Linked Data Structures. In Proc. of the Eighth 
International Conference on Architectural Support for Programming 
Languages and Operating Systems, pages 115–126, Oct. 1998.

[39] B. Sinharoy, R.N. Kalla, J.M. Tendler, R.J. Eickemeyer, and J.B. 
Joyner. Power5 System Microarchitecture. IBM Journal of Research 
and Development, 49(4), 2005.

[40] Viji Srinivasan, Edward S. Davidson, and Gary S. Tyson. A Prefetch 
Taxonomy. IEEE Transactions on Computers, 53(2):126–140, Febru-
ary 2004.

[41] Joel M. Tendler, Steve Dodson, Steve Fields, Hung Le, and Balaram 
Sinharoy. POWER4 System Microarchitecture. IBM Journal of Re-
search and Development, 46(1), 2002.

[42] R.B. Tremaine, P.A. Franaszek, J.T. Robinson, C.O. Schulz, T.B. 
Smith, M.E. Wazlowski, and P.M. Bland. IBM Memory Expansion 
Technology (MXT). IBM Journal of Research and Development, 
45(2):271–285, March 2001.

[43] Dean M. Tullsen and Susan J. Eggers. Limitations of Cache Prefetch-
ing on a Bus-Based Multiprocessor. In Proc. of the 20th Annual Inter-
national Symposium on Computer Architecture, pages 278–288, May 
1993.

[44] Bryan Usevitch. JPEG2000 compliant lossless coding of floating point 
data. In Proc. of the 2005 Data Compression Conference, page 484, 
March 2005.

[45] Jun Yang, Youtao Zhang, and Rajiv Gupta. Frequent Value Compres-
sion in Data Caches. In Proc. of the 33rd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, pages 258–265, Dec. 2000.

[46] Youtao Zhang and Rajiv Gupta. Enabling Partial Cache Line Prefetch-
ing Through Data Compression. In Proc. of the 2003 International 
Conference on Parallel Processing, pages 277–285, Oct. 2003.

[47] Youtao Zhang, Jun Yang, and Rajiv Gupta. Frequent Value Locality 
and Value-centric Data Cache Design. In Proc. of the Ninth Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 150–159, November 2000.

[48] Zheng Zhang and Josep Torrellas. Speeding up Irregular Applications 
in Shared-Memory Multiprocessors: Memory Binding and Group 
Prefetching. In Proc. of the 22nd Annual International Symposium on 
Computer Architecture, pages 188–199, June 1995.


	Interactions Between Compression and Prefetching in Chip Multiprocessors
	Alaa R. Alameldeen* David A. Wood Oregon Microarchitecture Lab Computer Sciences Department Intel Corporation University of Wisconsin-Madison alaa.r.alameldeen@intel.com david@cs.wisc.edu

	In chip multiprocessors (CMPs), multiple cores compete for shared resources such as on-chip caches and off-chip pin bandwidth. S...
	In this paper, we first show that cache and link (off-chip interconnect) compression can increase the effective cache capacity (...
	1 Introduction
	Figure 1. Benefits of Compression and Prefetching

	2 A CMP with Prefetching and Compression
	Stride-Based Prefetching
	Figure 2. A Single-Chip CMP with compression support.


	3 Adaptive Prefetching
	4 Evaluation
	4.1 Methodology
	Base System Configuration
	Workloads

	4.2 Cache and Link Compression
	Figure 3. Normalized L2 cache miss rate (Misses per 1000 instructions shown below for no compression).
	Figure 4. Pin bandwidth demand (GB/sec.).
	(EQ 1)
	Figure 5. Speedup for compression alternatives.


	4.3 Prefetching
	(EQ 2)
	(EQ 3)
	(EQ 4)
	Figure 6. Prefetching speedup (%) (relative to no prefetching).



	5 Interactions of Prefetching and Compression
	(EQ 5)
	5.1 Pin Bandwidth Demand
	Figure 7. Bandwidth demand for prefetching and compression.

	5.2 Classification of L2 Misses
	Figure 8. Breakdown of L2 cache misses and prefetches.

	5.3 L2 Hit Latency
	5.4 Performance
	Figure 9. Speedup of prefetching and compression.
	Figure 10. Speedup of prefetching and adaptive prefetching.

	5.5 Sensitivity to Available Pin Bandwidth
	Figure 11. Interaction (%) between prefetching and compression for different pin bandwidth values (10 to 80 GB/sec.).

	5.6 Sensitivity to Number of CMP Cores
	Figure 12. Performance improvement (%) for Apache and Jbb.


	6 Related Work
	7 Conclusions


