
0018-9162/00/$10.00 © 2000 IEEE December 2000 67

R E S E A R C H F E A T U R E

Making Pointer-
Based Data
Structures
Cache Conscious

R
apid increases in processor speed and far
slower increases in memory speed have led to
memory access times that far exceed the cost
of simple arithmetic operations. The ubiqui-
tous hardware solution to this problem is

memory caches (see “Cache Memory” sidebar), which
exploit program locality to reduce the average latency.
Other techniques—such as prefetching, multithreading,
nonblocking caches, dynamic instruction scheduling,
and speculative execution—use complex hardware and
software to further reduce or hide the high cost of mem-
ory accesses.

Despite these mechanisms, the processor-memory gap
currently requires a hierarchy of two or more caches
between the processor and memory. The wide range of
costs of finding data in this hierarchy undercuts the fun-
damental RAM model assumption that all memory
accesses have unit cost, which is the model most pro-
grammers use to understand and design data structures
and algorithms. This divergence between theory and
practice underlies many performance problems.

Programming languages have also evolved. Early
languages such as Fortran and Algol stored data in
array structures. Later languages, such as Simula,
Pascal, C, and C++ supported pointers, which facili-
tated writing programs such as databases and operat-
ing systems that make extensive use of pointer
structures. With their dynamic nature and reliance on
heap-allocated storage, pointer structures have fewer
regular access patterns than do arrays. Not surpris-
ingly, techniques that reduce or tolerate array struc-
ture access latency are not as effective when used in

pointer-manipulating applications.1 Many of these
techniques are fundamentally limited by their focus
on the manifestation of the problem—memory
latency—rather than on its cause—poor reference
locality.

In general, changing a program’s data access pat-
tern or data organization and layout can improve ref-
erence locality. Compilers can analyze array accesses
and perform transformations that reorder these
accesses without affecting a program’s result. Com-
pilers use two array-structure properties to reorder the
accesses: uniform, random access to array elements,
and a number-theoretic basis for statically analyzing
data dependencies.

Pointer structures, however, share neither property.
For example, a key search in a tree structure must start
at the root and follow tree-node pointers to the appro-
priate leaf of the tree. Generally, it is impossible to
reorder these accesses. In addition, although there has
been much progress in improving pointer-analysis
techniques, they can rarely guarantee that reordering
pointer accesses will not affect a program’s result.

Pointer structures consist of separate, independently
allocated pieces, and they possess the powerful prop-
erty of location transparency. Because of this location
transparency, pointer structures can place elements in
a compound data structure in different memory and
cache locations without changing a program’s seman-
tics. The careful placement of structure elements pro-
vides the essential mechanism for improving the cache
locality of pointer-manipulating programs and, con-
sequently, their performance.

To narrow the widening gap between processor and memory performance,
the authors propose improving the cache locality of pointer-manipulating
programs and bolstering performance by careful placement of structure
elements.

Trishul M.
Chilimbi
Microsoft
Research

Mark D. Hill
University of
Wisconsin-
Madison

James R.
Larus
Microsoft
Research

68 Computer

DESIGNING CACHE-CONSCIOUS
DATA STRUCTURES

Figure 1 shows different approaches for improving
cache performance. The shaded units indicate data
items accessed at the same time. Figure 1a shows the
implicit prefetching achieved by packing cache blocks
with contemporaneously accessed data. Figure 1b
shows why this packing reduces compulsory and
capacity misses. Figure 1c shows why mapping con-
currently accessed structure elements (which do not
fit in a single cache block) to nonconflicting cache
blocks reduces conflict misses.

Programmers can combine these three general data
placement design principles—clustering, coloring,
and compression—to produce cache-conscious data
structures.

Clustering
Clustering packs data structure elements that the

program is likely to access at the same time in a cache
block, thus improving spatial and temporal locality
and providing implicit prefetching.

For example, an effective way to cluster a tree is to
pack subtree regions into a cache block. For a series
of random binary tree searches, the probability of
accessing either child of a node is 1/2. With k nodes
in a subtree clustered in a cache block, the expected
number of accesses to the block is the height of the
subtree, log 2 (k + 1), which is greater than 2 for k >
3. In the case of a depth-first clustering scheme,
where the k nodes in a block form a single parent-
child-grandchild chain, the expected number of

accesses to the block per tree search is bounded by 2.
This analysis assumes a random access pattern. For

specific access patterns, such as a depth-first search,
other clustering schemes may be better. In addition,
tree modifications can destroy locality. However, our
studies indicate that for trees that change infrequently,
subtree clustering is more efficient than allocation-
order clustering, which places contemporaneously
allocated tree nodes in the same cache block.

Coloring
Caches have finite associativity—only a limited

number of concurrently accessed data elements can
map to the same cache block without causing conflict
misses. Coloring places elements in memory such that
elements accessed at the same time map to noncon-
flicting cache regions. Figure 2 shows a two-color
scheme, which can extend easily to multiple colors, for
a two-way, set-associative cache. This coloring parti-
tions a cache with C cache sets (each set containing a,
where a is associativity blocks) into two regions: p sets,
and C – p sets. The coloring uniquely maps frequently
accessed structure elements to the first cache region so
that they do not conflict with each other, whereas it
maps the remaining elements to the other region.

Such a mapping avoids conflicts among heavily
accessed data structure elements and prevents infre-
quently accessed elements from replacing them. In
addition, if the gaps in the virtual address space that
implement coloring are a multiple of the virtual mem-
ory page size, this scheme does not waste any physi-
cal memory.

Cache memory is constrained to be small to ensure high-speed
access. Thus, cache capacity is much smaller than main-mem-
ory capacity. To amortize the high cost of accessing main mem-
ory, the system transfers data in cache blocks, or lines; these units
encompass multiple words, typically 16 to 128 bytes. To limit the

blocks that a cache simultaneously searches, the cache typically
constrains block placement to one, two, or four cache locations.
A cache’s associativity is the number of locations where it can
place a block. Figure A shows these design constraints.

A program’s miss rate—the fraction of the total number of ref-
erences that miss in the cache and thus must access main memory—
often characterizes its cache performance. Higher miss rates indicate
poorer cache performance. The following formula gives the aver-
age memory-access time for a machine architecture with a cache:

Access time = cache hit time + (cache miss rate × cache
miss penalty)

Because the underlying hardware determines cache hit time
and miss penalty, reducing the cache miss rate provides the pri-
mary opportunity for software writers to improve a program’s
memory system performance.

It is sometimes useful to characterize cache misses as

• compulsory misses, which occur when a data item is first
loaded in the cache,

• capacity misses, which would generate hits in a larger cache, and
• conflict misses, which result from limited cache associativ-

ity and arise from different blocks mapping to the same
position in the cache.

MemoryCache Cache
size (c)

CPU

Associativity (a)

Block
size (b)

Cache Memory

Figure A. In a memory cache, important cache parameters include
block size, which determines the transfer unit between memory and
cache; cache capacity which determines how much data the cache
holds; and cache associativity, which constrains the number of distinct
locations where the cache can place a block.

Compression
Compressing data structure elements lets more ele-

ments cluster in a cache block, increasing cache block
utilization and shrinking a structure’s memory foot-
print, thereby reducing capacity and conflict misses.
Compression typically requires additional processor
operations to decode compressed information; how-
ever, with high memory access costs, this computation
may be cheaper than additional memory references.
Structure compression methods include data encod-
ing techniques, such as key compression,2 and struc-
ture encoding techniques, such as

• Pointer elimination, which replaces pointers with
computed offsets. The implicit heap data struc-
ture, a classic example, stores a node’s children
at known offsets in an array.

• Hot and cold structure splitting, which works
because most data-structure searches examine
only a portion of individual elements until they
find a match. Structure splitting separates heav-
ily accessed (hot) portions of data structure ele-
ments from rarely accessed (cold) portions.
Although this technique increases the total size
of the data structure slightly, it can significantly
reduce the size of the hot working set.

CACHE-CONSCIOUS DATA
PLACEMENT STRATEGIES

Although cache-conscious pointer structure design
offers important performance benefits, this approach

is difficult for average programmers because it
requires

• a complete understanding of an application’s
code and data structures,

• knowledge of the underlying cache architec-
ture—something many programmers are unfa-
miliar with—and

• significant rewriting of an application’s code.

December 2000 69

Cache block size

Cache capacity

Cache associativity

Cache
conflicts

Cache block
working set

Cache block
utilization

(a)

(b)

(c)

Figure 1. Several approaches can improve cache performance. (a) Packing cache blocks with contemporaneously accessed data improves cache block
utilization. (b) Applying a similar technique across multiple cache blocks reduces the cache block working set. (c) Mapping contemporaneously
accessed data to different cache locations reduces cache conflicts.

Virtual address space

p C – p

p

C – p

p C – p p C – p p C – p

Cache

Frequently
accessed elements

Remaining
elements

Empty Empty

Figure 2. Coloring data structure elements reduces cache conflicts. The two-color
scheme shown divides a cache with C cache sets into two regions: p sets and C − p sets.
This coloring uniquely maps frequently accessed elements to a portion of the cache so
that infrequently accessed elements do not displace them. The coloring accomplishes
this by inserting gaps in the virtual address space that remain empty.

70 Computer

To address these problems, we designed several
automatic and semiautomatic strategies that produce
cache-conscious pointer structures. These strategies
make cache-conscious data structures available to
average programmers, just as compilers made high-
performance programming accessible to those who
could not use assembly language. The strategies apply
clustering, coloring, and compression to make exist-
ing pointer structures cache conscious.

Our strategies use three methods to construct cache-
conscious pointer structures:

• Changing a structure’s definition. Changing the
definition permits clustering of fields accessed
contemporaneously. Splitting structures into hot
and cold portions based on program accesses per-
mits packing more hot instances, which are
accessed together, in the same cache block. Both
techniques increase cache block utilization.

• Modifying the allocation policy for structure ele-
ments. Cache-conscious allocation attempts to
collocate contemporaneously accessed data ele-
ments in the same physical cache block at allo-
cation time. This improves cache performance by
increasing cache block utilization.

• Reorganizing the structure layout. Cache-
conscious reorganization transforms the pointer
structure layout into a linear memory layout,
sequenced according to the expected data access
pattern, and maps structure elements to reduce

Cache-conscious definition

Cache-conscious allocation

Cache-conscious reorganization

Structure splittingNo action Field reordering

Cache-conscious data structure

Topology-based reorganization (ccmorph)No action Profile-based
reorganization (GC)

No action
ccmalloc

Figure 3. Software tool writers can combine different strategies for producing cache-conscious data structures in a variety of
ways to produce a cache-conscious data structure. The different strategies are orthogonal and complement each other.

Cache
block size

Case 1: Structure size << cache block size

Case 2: Structure size ≅ cache block size

f1 No action f1S1 S1

f1 f2 f3 f4 Structure
splitting

Field reorganization

f3
Hot Cold

S2 f1 f2 f4S2́

Case 3: Structure size >> cache block size

f1 f2 f3 f4 f5 f6 f7 f8 f9S3

f3 f9 f5 f1 f6 f8 f7 f4 f2S3´

Figure 4. Cache-conscious structure definition depends on the size of structure
elements. In case 1, the structure has a single field and is much smaller than the cache
block size so no action is necessary at definition time. In case 2, where the structure
element size is comparable with the cache block size, splitting allows a clustering
scheme to pack multiple hot structure instances in the same cache block. Finally, in
case 3, where the structure size is much larger than the cache block size, field reorder-
ing may improve cache block utilization.

cache conflicts. The reorganizer obtains the
expected access pattern from program profiles.
For certain pointer structures such as trees, the
reorganizer can glean access information from
data structure topology.

Figure 3 shows how to combine various strategies
to produce cache-conscious data structures.

STRUCTURE DEFINITION
Structure splitting and field reordering, two cache-

conscious definition techniques, can improve a pro-
gram’s cache behavior. Figure 4 shows the relationship
of cache-conscious definition techniques and the size
of structure elements. The three possibilities depend
on the size of structure elements relative to the cache
block size.

Structure splitting
Many Java objects are comparable in size to a cache

block (case 2 in Figure 4).3 Because Java is a type-safe
language, we can automate class (structure) splitting.
To do so, we first identify class member fields as hot
or cold. Although we can use static analysis to classify
some member fields, profiling a program to determine
field access frequency seems to be a simpler, more gen-
eral approach. A compiler extracts cold fields from the
class and places them in a new object, to which the
original object references indirectly. Accesses to cold
fields require an extra indirection to the new class,
whereas accesses to hot fields remain unchanged.

Splitting’s overhead includes the space cost of an
additional reference from the hot portion to the cold
portion, code bloat, more objects in memory, and an
extra indirection for accesses to cold fields. Our split-
ting algorithm takes these factors into account and is
designed to reduce these costs.3 In addition, our
garbage collection scheme for cache-conscious object
collocation aggressively exploits the advantage that
smaller hot-class instances provide by packing more
hot instances in the same cache block.

For five medium-sized Java benchmarks, including
Javac (a bytecode compiler) and Javadoc (a document
generator), class splitting combined with our garbage
collection scheme for cache-conscious object colloca-
tion reduced L2 cache miss rates by 29 to 43 percent,
with class splitting accounting for 26 to 62 percent of
this reduction. Execution time improved by 18 to 28
percent; class splitting contributed 22 to 66 percent of
this improvement.3 To run these experiments, we used
a single processor of a 167-MHz Sun Ultraserver,
E5000 system, with an optimizing Java compiler that
generates native Sparc assembly code. For languages
such as C and C++, which do not permit automatic
structure splitting, the algorithm’s splitting recom-
mendations can provide programmer feedback.

Field reordering
Many legacy applications were designed

when machines lacked multiple levels of cache
and memory-access times were more uniform.
In particular, commercial C applications often
manipulate large structures. In this case, struc-
ture splitting will likely produce hot elements
larger than a cache block, which makes split-
ting ineffective. Reordering structure fields to
place those with high temporal affinity in the
same cache block can improve cache-block uti-
lization. Typically, programmers group fields in
large structures conceptually, which may not
correspond with their temporal access pattern.
Unfortunately, the logical order can cause struc-
ture references to interact poorly with a program’s
data-access pattern, resulting in unnecessary cache
misses. Compilers for many languages are constrained
to follow the programmer-supplied field order and,
therefore, cannot correct this problem.

To investigate field-reordering benefits, we imple-
mented an algorithm for recommending reordering of
structure fields in C programs. This algorithm corre-
lates static information about the source location of
structure-field accesses with dynamic information
about the temporal ordering of accesses and their exe-
cution frequency. The algorithm uses the data to con-
struct a field-affinity graph for each structure and then
processes these graphs to produce field-order recom-
mendations. Measurements obtained from a four-
processor 400-MHz Pentium II Xeon system with a
1-Mbyte L2 cache, 4 Gbytes of memory, and 200
7,200-rpm Clariion Fibre Channel disk drives indicate
that reordering fields in five active structures improves
the performance of Microsoft SQL Server 7.0, a large,
highly tuned commercial application, by 2 to 3 percent
on the Transaction Processing Council C benchmark.3

STRUCTURE ALLOCATION
Programmers typically allocate a data structure’s

elements with little concern for memory hierarchy.
Often the resulting layout may interact poorly with
the program’s data access patterns, causing unneces-
sary cache misses and reducing performance. To
address this problem, cache-conscious allocation col-
locates contemporaneously accessed data elements in
the same cache block. Because a program invokes a
heap allocator many times, a cache-conscious alloca-
tor must use techniques that incur low overhead.
Further, a heap allocator has an inherently local view
of a structure. For these reasons, our cache-conscious
heap allocator (ccmalloc) only performs local clus-
tering. Ccmalloc is safe; incorrect usage affects only
program performance, not correctness.

A memory allocator similar to malloc, ccmalloc
takes an additional parameter that points to an existing

December 2000 71

The logical order
can cause structure

references to
interact poorly with
a program’s data-
access pattern,

resulting in
unnecessary cache

misses.

72 Computer

data structure element that the program is likely to access
contemporaneously with the element to be allocated,
such as the tree node’s parent. The allocator attempts to
locate the new data item in the same cache block as the
existing item. This code from the Olden health bench-
mark illustrates this approach in Figure 5. Our experi-
ence with ccmalloc indicates that even a programmer
unfamiliar with an application can often select a suitable
parameter and obtain good results by examining the code
surrounding the allocation statement.

In a memory hierarchy, different cache block sizes
mean that the allocator can collocate data in different
ways. The ccmalloc allocator focuses on L2 cache
blocks. In the Sun UltraSparc 1 we used in this study,
L1 cache blocks are effectively only 16 bytes (L2 blocks
are 64 bytes), which severely limits the number of
objects that fit in a block. Moreover, the bookkeeping
overhead in the allocator is inversely proportional to
the size of a cache block, so larger blocks are more
likely to be successful and incur less overhead. On a
system with a larger L1 cache block, adopting a hier-
archical approach may be advantageous, with collo-
cation first attempted in the same L1 cache block. If
this fails, the allocator could attempt to make the sub-
sequent collocation in the same L2 cache block.

Cache-conscious heap allocation with ccmalloc
resulted in a speedup of 27 percent for VIS, a 160,000-
line system that uses binary decision diagrams
(directed acyclic graphs) to formally verify finite state
systems.4 We obtained these results on a 167-MHz
Sun Ultraserver E5000. Significantly few changes to
the program (that is, fewer than 300 code lines) pro-
duced these large performance improvements, indi-
cating that cache-conscious data placement can even
improve the performance of graphlike data structures
in which data elements have multiple parents.

STRUCTURE REORGANIZATION
Reorganizing a structure’s memory layout to cor-

respond with its access pattern is a complementary
approach to cache-conscious allocation. Although you
perform cache-conscious allocation just once when
you create a data element, you can use cache-con-
scious reorganization as often as required. Successful
memory layout reorganization of general graphlike

structures requires a detailed profile of a program’s
data access patterns.5,6 However, trees are an impor-
tant class of structures possessing topological proper-
ties that permit cache-conscious data reorganization
without profiling.

A transparent/semantics-preserving cache-conscious
tree reorganizer, ccmorph, applies the clustering and
coloring techniques described earlier. This reorganizer
is appropriate for a “read-mostly” data structure that
a program builds early in a computation and subse-
quently references heavily. With this approach, a pro-
gram doesn’t need to change either the construction
or the consumption code because the reorganizer can
reorganize the structure between the two phases.
Moreover, if the structure changes slowly, the reorga-
nizer can invoke ccmorph periodically.

Languages that support garbage collection offer a
more attractive alternative. Copying garbage collec-
tors, which support automatic memory management,
determine when dynamically allocated storage
becomes unreachable; the program then automatically
recycles that memory by traversing the heap and copy-
ing live data to a separate memory region.

The copying phase frees up all memory in the tra-
versed space for reuse. The copying phase of garbage
collection offers an invaluable opportunity to reorga-
nize a program’s data layout to improve cache perfor-
mance. However, such a scheme relies on the ability to
transparently relocate heap data. In addition, it
requires a differentiation between pointers and non-
pointer data. Hence, you cannot implement a garbage
collection scheme as described for low-level languages,
such as C or C++, which support arbitrary pointer-
manipulation operations and preclude transparent
data movement. Chi-Keung Luk and Todd C. Mowry
have proposed new hardware mechanisms that remove
this obstacle.7 Object-oriented languages such as Java
and Cecil and functional languages such as ML and
Lisp permit copying garbage collection. For these lan-
guages, a copying garbage collector can reorganize
data and produce a cache-conscious structure layout.

Topology-based structure reorganization
In languages such as C that support unrestricted

pointers, analytical techniques cannot precisely iden-

void addList (struct List *list,struct Patient *patient)
{

struct List *b;
while (list != NULL){

b = list;
list = list->forward;

}
list = (struct List *)

ccmalloc(sizeof(struct List),b);
list->patient = patient;
list->back = b;
list->forward = NULL;
b->forward = list;

}

Figure 5. Code from
the Olden health
benchmark.

tify all pointers to a structure element. Without this
knowledge, a system cannot move or reorder data
structures without an application’s cooperation, as it
can in a language designed for garbage collection.6

However, if a programmer guarantees the safety of the
transformation, ccmorph applies clustering and col-
oring techniques to improve structure access locality
by transparently reorganizing the tree data structure.

The ccmorph reorganizer operates on treelike struc-
tures that have homogeneous elements and do not have
external pointers to the structure’s middle (or on any
data structure that can be decomposed into compo-
nents satisfying this property). However, ccmorph
supports a liberal definition of a tree in which elements
can contain a parent or predecessor pointer. A pro-
grammer supplies ccmorph with a pointer to a data
structure’s root, a function to traverse the structure
(next_node), and cache parameters. For example, the
following code reorganizes the quadtree data structure
in the Olden perimeter benchmark, with the pro-
grammer supplying the next_node function:

main()
{
...
root = maketree(4096, ..., ...);
ccmorph(root, next_node, Num_nodes,
Max_kids,Cache_sets,Cache_blk_size,
Cache_associativity,Color_const);
...

}

Quadtree next_node(Quadtree node,
int i)

{
/* Valid values for i are −1,

1 ... Max_kids */
switch(i){
case −1:
return (node->parent);

case 1:
return (node->nw);

case 2:
return (node->ne);

case 3:
return (node->sw);

case 4:
return (node->se);

}
}

The ccmorph reorganizer copies a structure into a
contiguous block of memory (or a number of con-
tiguous blocks, in the case of large structures). As
Figure 6 shows, in the process, it partitions a tree-like
structure into subtrees laid out linearly. The reorga-

nizer colors this structure to map the first p elements
traversed to a unique portion of the cache, determined
by the Color_const parameter, that will not conflict
with other structure elements. In addition, ccmorph
determines the values of p and the size of subtrees from
the cache parameters and the structure element size.
The ccmorph reorganizer ensures that the gaps in the
virtual address space that implement coloring corre-
spond with multiples of the virtual-memory page size.
Ccmorphwas used to optimize the performance of

Radiance, a 60,000-line program for modeling the
distribution of visible radiation in an illuminated
space. Radiance’s primary data structure is an octree
that represents the scene it is modeling. Cache-
conscious clustering and coloring of the octree pro-
duced a speedup of 42 percent, including the over-
head of restructuring the octree, on a 167-MHz Sun
Ultraserver E5000 system.4

Profile-based structure reorganization
A cache-conscious data layout places objects with

high temporal affinity near one another so they can
reside in the same cache block. In this approach, a
program’s accesses are profiled. The profile-based
reorganizer (garbage collector) uses the profiling data
it gathers during an execution to optimize that exe-
cution rather than a subsequent one. We rely on a
property of object-oriented programs—most objects
are small—to perform low-overhead real-time data
profiling.3,6 The garbage collector uses this profile to
construct an object affinity graph in which weighted

December 2000 73

1

2

p elements

3 4 5

Memory Empty Cache

1
2
3

4
5

Figure 6. Cache-conscious tree reorganization applies subtree clustering to the entire
tree. The reorganizer allocates the top levels—frequently accessed elements—of the
tree map to map to a portion of the cache where lower level tree nodes—infrequently
accessed elements—cannot displace them.

74 Computer

edges encode the temporal affinity between objects or
nodes. A new garbage collection copying algorithm
makes a depth-first traversal of the affinity graph to
produce cache-conscious data layouts while copying
objects. The technique is automatic and requires no
programmer intervention.

Experimental results for several object-oriented pro-
grams show that this cache-conscious data placement
technique reduces cache miss rates by 16 to 42 per-
cent and improves program performance by 10 to 37
percent, including real-time data-profiling overhead.3,6

Further, we used one processor of a 167-MHz Sun
Ultraserver E5000 system to compare our cache-con-
scious copying scheme with the Wilson-Lam-Moher
algorithm.8 This earlier algorithm attempted to
improve a program’s virtual memory (page) locality
by changing the traversal algorithm. The results
showed that our cache-conscious object-layout tech-
nique reduces cache miss rates by 14 to 41 percent and
improves program performance by 8 to 31 percent
compared with the Wilson-Lam-Moher technique.
This finding indicates that page-level improvements
are not necessarily effective at the cache level.6

C onsidering past trends and future technology, it
seems clear that the processor-memory perfor-
mance gap will continue to increase and software

will continue to grow larger and more complex.
Although cache-conscious algorithms and data struc-
tures are the first and perhaps best place to attack this
performance problem, the complexity of software design
and an increasing tendency to build large software sys-
tems by assembling smaller components does not favor
a focused, integrated approach. We propose another,
more incremental approach of cache-conscious data lay-
out, which uses techniques such as clustering, coloring,
and compression to enhance data locality by placing
structure elements more carefully in the cache. ✸

Acknowledgments
This research was conducted as partial fulfillment of

Trishul M. Chilimbi’s doctoral thesis, “Cache-
Conscious Data Structures—Design and Implemen-
tation,” at the University of Wisconsin-Madison. This
study was supported in part by the National Science
Foundation (MIPS-9625558, CCR-9357779, EIA-
9971256, and CDA-9623632), Microsoft Corpor-
ation, and Sun Microsystems. We thank Craig
Chambers and Dave Grove for the Vortex compiler
infrastructure; members of the Wisconsin Wind tun-
nel Project; Bob Davidson and members of Microsoft
Research’s Advanced Development Tools Group; and
the Semantics-Based Tools Group at Microsoft
Research. Thomas Ball, Ras Bodik, Milo Martin, and
Dan Sorin provided constructive comments.

References
1. S.E. Perl and R.L. Sites, “Studies of Windows NT Per-

formance Using Dynamic Execution Traces,” Proc. 2nd
Usenix Symp. Operating Systems Design and Imple-
mentation, ACM Press, New York, 1996, pp. 169-183.

2. D. Comer, “The Ubiquitous B-Tree,” ACM Computing
Surveys, June 1979, pp. 121-137.

3. T.M. Chilimbi, B. Davidson, and J.R. Larus, “Cache-
Conscious Structure Definition,” Proc. SIGPLAN 99,
Conf. Programming Language Design and Implementa-
tion, ACM Press, New York, 1999, pp. 13-26.

4. T.M. Chilimbi, M.D. Hill, and J.R. Larus, “Cache-
Conscious Structure Layout,” Proc. SIGPLAN 99, Conf.
Programming Language Design and Implementation,
ACM Press, New York, 1999, pp. 1-12.

5. B. Calder et al., “Cache-Conscious Data Placement,”
Proc. 8th Int’l Conf. Architectural Support for Pro-
gramming Languages and Operating Systems, ACM
Press, New York, 1998, pp. 139-149.

6. T.M. Chilimbi and J.R. Larus, “Using Generational
Garbage Collection to Implement Cache-Conscious Data
Placement,” Proc. Int’l Symp. Memory Management,
ACM Press, New York, 1998, pp. 37-48.

7. C.-K. Luk and T.C. Mowry, “Memory Forwarding:
Enabling Aggressive Layout Optimizations by Guaran-
teeing the Safety of Data Relocation,” Proc. 26th Ann.
Int’l Symp. Computer Architecture, ACM Press, New
York, 1999, pp. 88-99.

8. P.R. Wilson, M.S. Lam, and T.G. Moher, “Effective
‘Static-Graph’ Reorganization to Improve Locality in
Garbage-Collected Systems,” SIGPLAN Notices, June
1991, pp. 177-191.

Trishul M. Chilimbi is a researcher at Microsoft. His
research interests include programming languages,
compilers, computer architectures, and parallel and
distributed systems. He received a PhD in computer
science from the University of Wisconsin-Madison.
Contact him at trishulc@microsoft.com.

Mark D. Hill is a professor in the Computer Sciences
Department and the Electrical and Computer Engi-
neering Department at the University of Wisconsin-
Madison. His research interests include multiprocessor
and uniprocessor memory systems. He received a PhD
in computer science from the University of Califor-
nia, Berkeley. Contact him at markhill@cs.wisc.edu.

James R. Larus is a senior researcher at Microsoft. His
research interests include programming languages,
compilers, parallel computation, and software tools.
He received a PhD in computer science from the Uni-
versity of California, Berkeley. Contact him at
larus@microsoft.com.

