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ABSTRACT 
The overheads of memory management units (MMUs) have 
gained importance in today’s systems. Detailed simulators 
may be too slow to gain insights into micro-architectural 
techniques that improve MMU efficiency. To address this 
issue, we propose a novel tool, BadgerTrap, which allows 
online instrumentation of TLB misses. It allows first-order 
analysis of new hardware techniques to improve MMU 
efficiency. The tool helps to create and analyze x86-64 TLB 
miss trace. We describe example studies to show various 
ways this tool can be applied to gain new research insights. 

1. INTRODUCTION 
Memory management units (MMUs) are a critical 
component of modern computers. They provide 
programmers with virtual memory abstraction, which helps 
improve performance, security, and programmer 
productivity. The overhead of TLB misses has recently 
gained importance because TLB sizes are not scaling with 
the growth of physical memory. Figure 1 shows the amount 
of physical memory that can be bought with $10,000 in the 
last 20 years. In contrast, the number of TLB entries per 
core has barely grown (see Table 1). This discrepancy has 
renewed interest in MMU research [1,3,4]. To quote from a 
recent ACM Turing Award Lecture: 

“Virtual memory was invented in a time of scarcity. 
Is it still a good idea?” 

- Charles Thacker, 2010 ACM Turing Award Lecture 

 
Figure 1: Memory capacity per system in $10,000 [2] 

Table 1: TLB sizes in Intel processors over the years 

Year 1999 2001 2008 2012 

Processor Pent. III Pent. 4 Nehalem IvyBridge 

L1 DTLB 
entries 

72 64 96 100 

L1 ITLB 
entries 

32 64 64 64 

L2 TLB 
entries 

NA NA 512 512 

MMU research is often performed with cycle-level 
simulators like gem5 [5]. While these simulators provide the 
flexibility of modeling any architectural innovation, they 
suffer from three drawbacks. First, TLB misses are rare 
events (a few per thousand instructions), which require long 
simulations to accurately measure their performance. 
Especially for big-memory workloads, a full-system 
simulation would take weeks, if not months, of simulation 
time to provide any insightful information. Second, the 
memory requirement for running big-memory applications 
in a cycle-level simulator is much higher, requiring long 
startup times to initialize memory. Also, a single simulation 
point in gem5 takes at least twice as much physical memory 
as the workload [1]. Third, OS-level issues like timer-
interrupts are usually approximately modeled, which makes 
simulators not good for studying systems–level issues like 
TLB misses. Therefore, it is challenging to use such detailed 
simulators to gain insight into micro-architectural 
techniques for improving MMU efficiency. 

We address this issue with the BadgerTrap tool, which 
allows online instrumentation of TLB misses. It enables a 
higher-level analysis of a large number of TLB misses to get 
a better understanding of a proposed architecture. 
Specifically, BadgerTrap enables analysis of hardware or 
software functions that affect x86-64 TLB misses, such as 
new page table layouts or address translation mechanisms. 
These are especially important to study in big-memory 
workloads, where TLB misses are more frequent [1]. 

BadgerTrap intercepts each hardware-assisted page walk on 
an x86-64 TLB miss and converts it into a page fault 

0

0

0

1

10

100

1,000

10,000

1980 1990 2000 2010

M
em

or
y 

si
ze

Years

Memory capacity for $10,000

M
B

G
B

TB

1

10

100

1

10

100

1
10

http://research.cs.wisc.edu/multifacet/BadgerTrap


handled specially inside the kernel with a new software-
assisted TLB miss handler. The handler can be extended for 
online analysis while running applications. Workloads being 
analyzed by BadgerTrap slow down by about 2x to 40x 
based on their rate of TLB misses. However, BadgerTrap 
runs orders of magnitude faster than binary instrumentation 
tools like Pin [8]. The main contributions of the tool are: 

• a novel tool to intercept both data and instruction 
TLB misses, converting hardware-assisted page walks 
to software-assisted page walks, 

• use of software-assisted page walks to instrument and 
analyze x86-64 TLB misses on real hardware, which 
is orders of magnitude faster than full-system cycle-
level simulators. 

The rest of the paper is organized as follows: Section 2 
describes the mechanism to intercept TLB misses for 
instrumentation. Section 3 gives some example use cases of 
the tool. This tool can be used to analyze TLB misses and 
generate real-system memory trace. Section 4 describes 
some of the limitations of the tool and ways to extend the 
tool to support more exotic features available in Linux.  

2. DESIGN 
This section describes the mechanism to convert a 
hardware-assisted page walk on an x86-64 TLB miss into a 
software-assisted page walk using an instrumented Linux 
kernel. The design has four main components: 

1. Intercepting TLB misses by marking PTEs as 
invalid/poisoned 

2. Software-assisted TLB miss handler to handle TLB 
misses being intercepted 

3. Attaching BadgerTrap to processes whose TLB 
misses are to be instrumented 

4. Instrumenting TLB misses to perform interesting 
studies on different programs. 

Intercepting TLB misses: To intercept the hardware page 
walker, we poison the PTEs at the leaves of the page table to 
force the system to trap rather than load a PTE. In x86-64 
systems, on a TLB miss, a hardware page-table walker 
walks the four-level page table to load a new TLB entry for 
virtual address that needs translation.  

BadgerTrap poisons a PTE by setting a reserved bit (one of 
bits 48-51) in a PTE (see Figure 2). The poisoned PTEs can 
be at L4, L3 and L2 levels of the page table to support all 
page sizes (4KB, 2MB and 1GB, respectively). This causes 
the hardware page walker to raise a page fault exception 
with RSVD bit set in the page fault exception flags [6]. 
Using a reserved bit rather than the valid bit allows the 
page-fault handler to quickly determine from the RSVD flag 
whether the fault is real or caused by instrumentation, 
without accessing memory. We instrument the Linux kernel 
to handle this exceptional page fault with a special TLB 
miss handler. Note that these faults occur whether the page 
is referenced from user mode or kernel mode, allowing 
BadgerTrap to track kernel-induced TLB misses on user 
memory. 
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Figure 2: Format of a 64-bit Page Table Entry [6] 
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Software-assisted TLB miss handler: To make forward 
progress, BadgerTrap handles these exceptional TLB 
misses by inserting a translation into the TLB. Figure 3 (a) 
shows the steps (marked 1-4) involved in handling this 
exceptional TLB miss. While handling the TLB miss in 
kernel mode, we un-poison the PTE for which the 
exception was raised (clear the reserved bit). We introduce 
the correct PTE into the TLB by referencing the page, and 
then poison the PTE again. This approach works since the 
x86-64 architecture allows the page tables and TLBs to be 
incoherent. Thus, the TLB can cache translations until the 
OS explicitly invalidates the translation. Figure 3 (b) shows 
how incoherence can exist between PTE and TLB entry 
with each step in the TLB miss handler.  

The main trick involved in the TLB miss handler is 
explicitly loading both user data and instruction TLB 
entries for a process while in kernel-mode. To load a DTLB 
entry from kernel mode, BadgerTrap reads from the virtual 
address causing the fault. This causes the page table walker 
to load the (now valid) PTE into the DTLB. 

To load an ITLB entry is more involved. To introduce an 
ITLB entry while in kernel mode, an instruction needs to be 
executed on the page containing the faulting address. The 
kernel cannot start executing user code, because it would 
not regain control. Instead, we use a technique similar to 
Rosenblum’s context sensitive mappings [9]. We 
dynamically overwrite the first 13 bytes of the faulting user 
code page by saving the original instructions and adding a 
jump instruction to regain control. After executing this 
code, we replace the original instructions in the user code 
page before restarting execution in user-mode. 

Every core has its own MMU unit to support multithreaded 
and multi-programmed workloads. Our tool works 
naturally with multiprogrammed workloads. But it works 
with multithreaded programs only for DTLB misses. This 
limitation on ITLB misses comes from the usage of the 
above technique which exposes our code patch to other 
threads in user-mode. We are not aware of an effective 
mechanism for each core to have exclusive access to a code 
page while it dynamically writes to it. 

Enabling BadgerTrap: BadgerTrap can be attached to a 
running process by providing its process ID to the newly 
created system call. It can also be attached to a new process 
at startup by passing the program’s filename to the tool. 
Every time a binary with that name is launched, 
BadgerTrap automatically attaches to it. We provide a user-
mode utility that works as a wrapper for these details and 
provide an easy to use interface for the user. 

At process startup or when attached dynamically, 
BadgerTrap walks the page tables and marks each leaf PTE 
as poisoned. In addition, as a program makes progress, 
whenever a physical page is allocated to the process by 
having a page fault, we intercept these page faults and 
poison the newly created PTEs. This helps in keeping all 

leaf PTEs in the dynamically changing page table poisoned 
while the process is running. 

Instrumenting TLB misses: From the function in which 
we handle these exceptional TLB misses, we can 
instrument the misses to perform various studies. We have 
access to various process-level structures and registers like 
the task structure, program counter, faulting virtual address 
and the physical page address, when we are in the software-
assisted page fault handler. We discuss examples of 
different studies using this mechanism in the next section. 

3. USING BADGERTRAP 
In this section, we discuss a few ways to use the tool to 
perform interesting architectural studies. We will cover two 
studies in general which have been published using the 
same mechanism. 

3.1 Study 1: Direct Segments 
Direct segments use a form of segmentation along with 
paging to largely eliminate virtual memory overhead for 
big-memory workloads on native hardware [1]. A direct 
segment maps a portion of a process’s linear address space 
with a segment rather than paging. Thus, a large chunk of a 
contiguous virtual address space can be mapped to 
contiguous physical addresses with only three registers per 
hardware context: BASE, LIMIT and OFFSET. For 
compatibility, the rest of the linear address space is mapped 
using conventional paging. On a memory reference, the 
processor consults the segment registers and L1 TLB in 
parallel, with at most one match. 
Basu et al. [1] used an earlier version of the tool that later 
evolved into BadgerTrap. The TLB misses were 
instrumented and analyzed to split into two categories: the 
TLB misses that would be eliminated using the new 
hardware and the TLB misses that would be serviced by 
conventional paging. Each TLB miss was put in the 
respective bin based on the virtual address of the TLB miss. 
The authors developed a linear model to estimate the 
reduction in TLB miss handling cost using performance 
counters and the above information. The authors used this 
simple model to estimate performance improvement using 
such a hardware technique.  

3.2 Study 2: Coalesced and Shared MMU 
A coalesced MMU uses the spatial contiguity available in 
PTEs to coalesce them into a single entry, thereby 
increasing the reach of the MMU cache. In addition, a 
shared MMU which is shared between cores allows 
multiple cores to share MMU cache entries [4], thereby 
improving capacity of the MMU cache. Bhattacharjee 
recently proposed a hardware-software co-design with 
these two optimizations to reduce MMU overheads [4]. 
To evaluate such an MMU optimization, the author created 
real-system memory trace tool using an independently 
developed mechanism similar to BadgerTrap. The tool 
dumps system memory trace on allocation of a new DTLB 
entry. This trace has a list of distinct page references to the 



DTLB. The trace basically can be thought of as a trace 
generated by a one-entry DTLB having DTLB misses. To 
create a DTLB miss trace for a one-entry DTLB, DTLBs 
are flushed between every DTLB miss detected. They used 
such a memory trace in order to get an estimate of 
improvement in hit-rate of their new MMU design. 

3.3 Performance 
Since we are converting a TLB miss to a software-assisted 
TLB miss handler, BadgerTrap does slow down the 
application being analyzed. BadgerTrap, in general, slow 
down workloads by around 2x to 40x based on the rate on 
TLB misses. Binary instrumentation tools like Pin [8], 
which instrument all instructions, usually slows down 
applications by a magnitude higher than BadgerTrap. 

3.4 Discussion 
BadgerTrap, with its limited-support for ITLB, can be used 
to dump real-system memory trace similar to the tools like 
Pin [8]. BadgerTrap helps to induce a DTLB miss for every 
memory access by flushing both TLBs while servicing any 
TLB miss. This support improves upon the memory-system 
trace used by Bhattacharjee for his analysis (Section 3.2) by 
having a DTLB miss trace for a zero-entry DTLB instead 
of a one-entry DTLB using ITLB support in BadgerTrap. 
BadgerTrap can also be applied to analyze TLB misses in a 
virtual machine by attaching BadgerTrap to a process 
running inside of a guest OS. It works with Linux running 
on both VMware- and KVM-based virtual machines. 
In the current form as released, BadgerTrap prints only the 
count of DTLB misses, but the TLB miss handler can be 
instrumented to dump real-memory system trace or 
instrument to perform other interesting studies. The user of 
the tool will have to instrument the Linux kernel to perform 
such studies. But since the tool has streamlined the function 
for instrumentation, we expect the instrumentation step will 
be fairly easy to write.  
Some benefits of using BadgerTrap are: 
1. The tool can help capture traces with real-systems

effects along with physical addresses which other tools
like Pin [8] do not.

2. The trace generation is faster than tools like Pin [8]
since we only instrument memory references and not
all instructions.

3. The tool helps capture more detailed information in the
presence of additional levels of abstractions (e.g.
virtual machines).

4. LIMITATIONS AND FUTURE WORK
This software has only been tested with Linux Kernel 
v3.12.13. This tool may need to be tweaked to port it to 
older or newer kernels. The steps provided above are 
generic but are only tested on an Ubuntu- and Fedora-based 
operating systems. We suggest that users gain some 
experience with Kernel Development before using this tool. 
The mechanism may not work for a 32-bit system since 
their page-table entries do not have reserved bits. This 

mechanism has been tested on various Intel x86-64 
processors. As per our knowledge, AMD processors may 
support reserved faults and thus the tool may work on 
AMD processors. The reserved bits in the PTEs may be 
different from that of Intel processors. 
BadgerTrap can also be attached to multithreaded programs 
with the exception of ITLB (see Section 2). Even with 
multithreaded programs, the slowdown is not much larger 
than single-threaded programs since we use the distributed 
locking already inbuilt into the page table structure.  
This tool currently does not support NUMA memory, 
Kernel Samepage Merging (KSM) [7] and Kernel TLB 
misses in Linux and many more exotic features available in 
the Linux kernel. But the tool can be easily be used to 
support these different memory management optimizations. 
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