
BadgerTrap: A Tool to Instrument x86-64 TLB Misses
1Jayneel Gandhi 2Arkaprava Basu 1Mark D. Hill 1Michael M. Swift

1Department of Computer Sciences
University of Wisconsin-Madison

Madison, WI, USA

{jayneel,markhill,swift}@cs.wisc.edu

2AMD Research
Advanced Micro Devices, Inc.

Austin, TX, USA

arkaprava.basu@amd.com
http://research.cs.wisc.edu/multifacet/BadgerTrap

ABSTRACT
The overheads of memory management units (MMUs) have
gained importance in today’s systems. Detailed simulators
may be too slow to gain insights into micro-architectural
techniques that improve MMU efficiency. To address this
issue, we propose a novel tool, BadgerTrap, which allows
online instrumentation of TLB misses. It allows first-order
analysis of new hardware techniques to improve MMU
efficiency. The tool helps to create and analyze x86-64 TLB
miss trace. We describe example studies to show various
ways this tool can be applied to gain new research insights.

1. INTRODUCTION
Memory management units (MMUs) are a critical
component of modern computers. They provide
programmers with virtual memory abstraction, which helps
improve performance, security, and programmer
productivity. The overhead of TLB misses has recently
gained importance because TLB sizes are not scaling with
the growth of physical memory. Figure 1 shows the amount
of physical memory that can be bought with $10,000 in the
last 20 years. In contrast, the number of TLB entries per
core has barely grown (see Table 1). This discrepancy has
renewed interest in MMU research [1,3,4]. To quote from a
recent ACM Turing Award Lecture:

“Virtual memory was invented in a time of scarcity.
Is it still a good idea?”

- Charles Thacker, 2010 ACM Turing Award Lecture

Figure 1: Memory capacity per system in $10,000 [2]

Table 1: TLB sizes in Intel processors over the years

Year 1999 2001 2008 2012

Processor Pent. III Pent. 4 Nehalem IvyBridge

L1 DTLB
entries

72 64 96 100

L1 ITLB
entries

32 64 64 64

L2 TLB
entries

NA NA 512 512

MMU research is often performed with cycle-level
simulators like gem5 [5]. While these simulators provide the
flexibility of modeling any architectural innovation, they
suffer from three drawbacks. First, TLB misses are rare
events (a few per thousand instructions), which require long
simulations to accurately measure their performance.
Especially for big-memory workloads, a full-system
simulation would take weeks, if not months, of simulation
time to provide any insightful information. Second, the
memory requirement for running big-memory applications
in a cycle-level simulator is much higher, requiring long
startup times to initialize memory. Also, a single simulation
point in gem5 takes at least twice as much physical memory
as the workload [1]. Third, OS-level issues like timer-
interrupts are usually approximately modeled, which makes
simulators not good for studying systems–level issues like
TLB misses. Therefore, it is challenging to use such detailed
simulators to gain insight into micro-architectural
techniques for improving MMU efficiency.

We address this issue with the BadgerTrap tool, which
allows online instrumentation of TLB misses. It enables a
higher-level analysis of a large number of TLB misses to get
a better understanding of a proposed architecture.
Specifically, BadgerTrap enables analysis of hardware or
software functions that affect x86-64 TLB misses, such as
new page table layouts or address translation mechanisms.
These are especially important to study in big-memory
workloads, where TLB misses are more frequent [1].

BadgerTrap intercepts each hardware-assisted page walk on
an x86-64 TLB miss and converts it into a page fault

0

0

0

1

10

100

1,000

10,000

1980 1990 2000 2010

M
em

or
y

si
ze

Years

Memory capacity for $10,000

M
B

G
B

TB

1

10

100

1

10

100

1
10

http://research.cs.wisc.edu/multifacet/BadgerTrap

handled specially inside the kernel with a new software-
assisted TLB miss handler. The handler can be extended for
online analysis while running applications. Workloads being
analyzed by BadgerTrap slow down by about 2x to 40x
based on their rate of TLB misses. However, BadgerTrap
runs orders of magnitude faster than binary instrumentation
tools like Pin [8]. The main contributions of the tool are:

• a novel tool to intercept both data and instruction
TLB misses, converting hardware-assisted page walks
to software-assisted page walks,

• use of software-assisted page walks to instrument and
analyze x86-64 TLB misses on real hardware, which
is orders of magnitude faster than full-system cycle-
level simulators.

The rest of the paper is organized as follows: Section 2
describes the mechanism to intercept TLB misses for
instrumentation. Section 3 gives some example use cases of
the tool. This tool can be used to analyze TLB misses and
generate real-system memory trace. Section 4 describes
some of the limitations of the tool and ways to extend the
tool to support more exotic features available in Linux.

2. DESIGN
This section describes the mechanism to convert a
hardware-assisted page walk on an x86-64 TLB miss into a
software-assisted page walk using an instrumented Linux
kernel. The design has four main components:

1. Intercepting TLB misses by marking PTEs as
invalid/poisoned

2. Software-assisted TLB miss handler to handle TLB
misses being intercepted

3. Attaching BadgerTrap to processes whose TLB
misses are to be instrumented

4. Instrumenting TLB misses to perform interesting
studies on different programs.

Intercepting TLB misses: To intercept the hardware page
walker, we poison the PTEs at the leaves of the page table to
force the system to trap rather than load a PTE. In x86-64
systems, on a TLB miss, a hardware page-table walker
walks the four-level page table to load a new TLB entry for
virtual address that needs translation.

BadgerTrap poisons a PTE by setting a reserved bit (one of
bits 48-51) in a PTE (see Figure 2). The poisoned PTEs can
be at L4, L3 and L2 levels of the page table to support all
page sizes (4KB, 2MB and 1GB, respectively). This causes
the hardware page walker to raise a page fault exception
with RSVD bit set in the page fault exception flags [6].
Using a reserved bit rather than the valid bit allows the
page-fault handler to quickly determine from the RSVD flag
whether the fault is real or caused by instrumentation,
without accessing memory. We instrument the Linux kernel
to handle this exceptional page fault with a special TLB
miss handler. Note that these faults occur whether the page
is referenced from user mode or kernel mode, allowing
BadgerTrap to track kernel-induced TLB misses on user
memory.

PTE

0
4
7

Page Frame Number
+ Protection Bits

5
2

Rsvd.IgnoredN
X

6
2

4
8

6
3

5
1

Figure 2: Format of a 64-bit Page Table Entry [6]

Virtual Address

TLB
Lookup

TLB Hit?

Physical Address

Y Hardware Page
Table Walker

Insert TLB
entry Poisoned?

Without
BadgerTrap

With
BadgerTrap

N

Trap Handler:
Instrumented

Page Fault
N Y

Clean Page
Table Entry

Insert TLB
Entry

Poison Page
Table Entry

Trap To
Kernel

Return from Trap
Retry will hit in TLB

1

2

3

4

PTE:
VPN(PFN+PB)

Poisoned

TLB:

Entry missing

PTE:
VPN(PFN+PB)

Clean

TLB:

Entry missing

PTE:
VPN(PFN+PB)

Clean

TLB:
VPN(PFN+PB)

Clean

PTE:
VPN(PFN+PB)

Poisoned

TLB:
VPN(PFN+PB)

Clean

(b) State of Page Table Entry and
TLB for the four steps of trap on a

instrumented TLB miss(a) Flowchart for Address Translation
Figure 3: Flowchart for each translation with and without BadgerTrap along with state of PTE and TLB during an instrumented

TLB miss

Software-assisted TLB miss handler: To make forward
progress, BadgerTrap handles these exceptional TLB
misses by inserting a translation into the TLB. Figure 3 (a)
shows the steps (marked 1-4) involved in handling this
exceptional TLB miss. While handling the TLB miss in
kernel mode, we un-poison the PTE for which the
exception was raised (clear the reserved bit). We introduce
the correct PTE into the TLB by referencing the page, and
then poison the PTE again. This approach works since the
x86-64 architecture allows the page tables and TLBs to be
incoherent. Thus, the TLB can cache translations until the
OS explicitly invalidates the translation. Figure 3 (b) shows
how incoherence can exist between PTE and TLB entry
with each step in the TLB miss handler.

The main trick involved in the TLB miss handler is
explicitly loading both user data and instruction TLB
entries for a process while in kernel-mode. To load a DTLB
entry from kernel mode, BadgerTrap reads from the virtual
address causing the fault. This causes the page table walker
to load the (now valid) PTE into the DTLB.

To load an ITLB entry is more involved. To introduce an
ITLB entry while in kernel mode, an instruction needs to be
executed on the page containing the faulting address. The
kernel cannot start executing user code, because it would
not regain control. Instead, we use a technique similar to
Rosenblum’s context sensitive mappings [9]. We
dynamically overwrite the first 13 bytes of the faulting user
code page by saving the original instructions and adding a
jump instruction to regain control. After executing this
code, we replace the original instructions in the user code
page before restarting execution in user-mode.

Every core has its own MMU unit to support multithreaded
and multi-programmed workloads. Our tool works
naturally with multiprogrammed workloads. But it works
with multithreaded programs only for DTLB misses. This
limitation on ITLB misses comes from the usage of the
above technique which exposes our code patch to other
threads in user-mode. We are not aware of an effective
mechanism for each core to have exclusive access to a code
page while it dynamically writes to it.

Enabling BadgerTrap: BadgerTrap can be attached to a
running process by providing its process ID to the newly
created system call. It can also be attached to a new process
at startup by passing the program’s filename to the tool.
Every time a binary with that name is launched,
BadgerTrap automatically attaches to it. We provide a user-
mode utility that works as a wrapper for these details and
provide an easy to use interface for the user.

At process startup or when attached dynamically,
BadgerTrap walks the page tables and marks each leaf PTE
as poisoned. In addition, as a program makes progress,
whenever a physical page is allocated to the process by
having a page fault, we intercept these page faults and
poison the newly created PTEs. This helps in keeping all

leaf PTEs in the dynamically changing page table poisoned
while the process is running.

Instrumenting TLB misses: From the function in which
we handle these exceptional TLB misses, we can
instrument the misses to perform various studies. We have
access to various process-level structures and registers like
the task structure, program counter, faulting virtual address
and the physical page address, when we are in the software-
assisted page fault handler. We discuss examples of
different studies using this mechanism in the next section.

3. USING BADGERTRAP
In this section, we discuss a few ways to use the tool to
perform interesting architectural studies. We will cover two
studies in general which have been published using the
same mechanism.

3.1 Study 1: Direct Segments
Direct segments use a form of segmentation along with
paging to largely eliminate virtual memory overhead for
big-memory workloads on native hardware [1]. A direct
segment maps a portion of a process’s linear address space
with a segment rather than paging. Thus, a large chunk of a
contiguous virtual address space can be mapped to
contiguous physical addresses with only three registers per
hardware context: BASE, LIMIT and OFFSET. For
compatibility, the rest of the linear address space is mapped
using conventional paging. On a memory reference, the
processor consults the segment registers and L1 TLB in
parallel, with at most one match.
Basu et al. [1] used an earlier version of the tool that later
evolved into BadgerTrap. The TLB misses were
instrumented and analyzed to split into two categories: the
TLB misses that would be eliminated using the new
hardware and the TLB misses that would be serviced by
conventional paging. Each TLB miss was put in the
respective bin based on the virtual address of the TLB miss.
The authors developed a linear model to estimate the
reduction in TLB miss handling cost using performance
counters and the above information. The authors used this
simple model to estimate performance improvement using
such a hardware technique.

3.2 Study 2: Coalesced and Shared MMU
A coalesced MMU uses the spatial contiguity available in
PTEs to coalesce them into a single entry, thereby
increasing the reach of the MMU cache. In addition, a
shared MMU which is shared between cores allows
multiple cores to share MMU cache entries [4], thereby
improving capacity of the MMU cache. Bhattacharjee
recently proposed a hardware-software co-design with
these two optimizations to reduce MMU overheads [4].
To evaluate such an MMU optimization, the author created
real-system memory trace tool using an independently
developed mechanism similar to BadgerTrap. The tool
dumps system memory trace on allocation of a new DTLB
entry. This trace has a list of distinct page references to the

DTLB. The trace basically can be thought of as a trace
generated by a one-entry DTLB having DTLB misses. To
create a DTLB miss trace for a one-entry DTLB, DTLBs
are flushed between every DTLB miss detected. They used
such a memory trace in order to get an estimate of
improvement in hit-rate of their new MMU design.

3.3 Performance
Since we are converting a TLB miss to a software-assisted
TLB miss handler, BadgerTrap does slow down the
application being analyzed. BadgerTrap, in general, slow
down workloads by around 2x to 40x based on the rate on
TLB misses. Binary instrumentation tools like Pin [8],
which instrument all instructions, usually slows down
applications by a magnitude higher than BadgerTrap.

3.4 Discussion
BadgerTrap, with its limited-support for ITLB, can be used
to dump real-system memory trace similar to the tools like
Pin [8]. BadgerTrap helps to induce a DTLB miss for every
memory access by flushing both TLBs while servicing any
TLB miss. This support improves upon the memory-system
trace used by Bhattacharjee for his analysis (Section 3.2) by
having a DTLB miss trace for a zero-entry DTLB instead
of a one-entry DTLB using ITLB support in BadgerTrap.
BadgerTrap can also be applied to analyze TLB misses in a
virtual machine by attaching BadgerTrap to a process
running inside of a guest OS. It works with Linux running
on both VMware- and KVM-based virtual machines.
In the current form as released, BadgerTrap prints only the
count of DTLB misses, but the TLB miss handler can be
instrumented to dump real-memory system trace or
instrument to perform other interesting studies. The user of
the tool will have to instrument the Linux kernel to perform
such studies. But since the tool has streamlined the function
for instrumentation, we expect the instrumentation step will
be fairly easy to write.
Some benefits of using BadgerTrap are:
1. The tool can help capture traces with real-systems

effects along with physical addresses which other tools
like Pin [8] do not.

2. The trace generation is faster than tools like Pin [8]
since we only instrument memory references and not
all instructions.

3. The tool helps capture more detailed information in the
presence of additional levels of abstractions (e.g.
virtual machines).

4. LIMITATIONS AND FUTURE WORK
This software has only been tested with Linux Kernel
v3.12.13. This tool may need to be tweaked to port it to
older or newer kernels. The steps provided above are
generic but are only tested on an Ubuntu- and Fedora-based
operating systems. We suggest that users gain some
experience with Kernel Development before using this tool.
The mechanism may not work for a 32-bit system since
their page-table entries do not have reserved bits. This

mechanism has been tested on various Intel x86-64
processors. As per our knowledge, AMD processors may
support reserved faults and thus the tool may work on
AMD processors. The reserved bits in the PTEs may be
different from that of Intel processors.
BadgerTrap can also be attached to multithreaded programs
with the exception of ITLB (see Section 2). Even with
multithreaded programs, the slowdown is not much larger
than single-threaded programs since we use the distributed
locking already inbuilt into the page table structure.
This tool currently does not support NUMA memory,
Kernel Samepage Merging (KSM) [7] and Kernel TLB
misses in Linux and many more exotic features available in
the Linux kernel. But the tool can be easily be used to
support these different memory management optimizations.

ACKNOWLEDGEMENTS
We thank Abhishek Bhattacharjee for his insightful
comments and feedback on the paper. We thank Chris
Feilbach, Sujith Surendran, Vasilis Karakostas and
Somayeh Sardashti for their feedback on the tool. This
work is supported in part by the National Science
Foundation (CNS-0720565,CNS-0834473, CNS-0916725,
CNS-1117280, CCF-1218323, and CNS-1302260), Google,
and the University of Wisconsin (Kellett award and Named
professorship to Hill). Arkaprava Basu’s contribution to the
tool occurred while at University of Wisconsin-Madison.

REFERENCES
1. Arkaprava Basu, Jayneel Gandhi, Jichuan Chang, Mark D. Hill, and

Michael M. Swift. 2013. Efficient virtual memory for big memory
servers. In Proceedings of the 40th Annual International Symposium
on Computer Architecture (ISCA '13). ACM, New York, NY, USA,
237-248.

2. Arkaprava Basu. Revisiting Virtual Memory. Ph.D. Thesis. University
of Wisconsin-Madison, 2013.

3. Abhishek Bhattacharjee, Daniel Lustig, and Margaret Martonosi.
2011. Shared last-level TLBs for chip multiprocessors. In Proceedings
of the 2011 IEEE 17th International Symposium on High Performance
Computer Architecture (HPCA '11). IEEE Computer Society,
Washington, DC, USA, 62-63.

4. Abhishek Bhattacharjee. 2013. Large-reach memory management unit
caches. In Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO-46). ACM, New York,
NY, USA, 383-394.

5. Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K.
Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower,
Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell,
Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood.
2011. The gem5 simulator. SIGARCH Comput. Archit. News 39, 2
(August 2011), 1-7.

6. Intel® 64 and IA-32 Architectures Software Developer’s Manual
Combined Volumes: 1, 2A, 2B, 2C, 3A, 3B, and 3C. .

7. KSM - KVM. http://www.linux-kvm.org/page/KSM.
8. Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur

Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and
Kim Hazelwood. 2005. Pin: building customized program analysis
tools with dynamic instrumentation. In Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation (PLDI '05). ACM, New York, NY, USA, 190-200.

9. Nathan E. Rosenblum, Gregory Cooksey, and Barton P. Miller. 2008.
Virtual machine-provided context sensitive page mappings. In
Proceedings of the fourth ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments (VEE '08). ACM, New
York, NY, USA, 81-90.

	1. INTRODUCTION
	2. DESIGN
	3. USING BADGERTRAP
	3.1 Study 1: Direct Segments
	3.2 Study 2: Coalesced and Shared MMU
	3.3 Performance
	3.4 Discussion

	4. LIMITATIONS AND FUTURE WORK
	ACKNOWLEDGEMENTS
	REFERENCES

