
1

gem5-gpu: A Heterogeneous CPU-GPU
Simulator

Jason Power, Joel Hestness, Marc S. Orr, Mark D. Hill, David A. Wood
University of Wisconsin–Madison

E-mail: {powerjg,hestness,morr,markhill,david}@cs.wisc.edu

Abstract—gem5-gpu is a new simulator that models tightly integrated CPU-GPU systems. It builds on gem5, a modular full-
system CPU simulator, and GPGPU-Sim, a detailed GPGPU simulator. gem5-gpu routes most memory accesses through Ruby,
which is a highly configurable memory system in gem5. By doing this, it is able to simulate many system configurations, ranging
from a system with coherent caches and a single virtual address space across the CPU and GPU to a system that maintains
separate GPU and CPU physical address spaces. gem5-gpu can run most unmodified CUDA 3.2 source code. Applications can
launch non-blocking kernels, allowing the CPU and GPU to execute simultaneously. We present gem5-gpu’s software architecture
and a brief performance validation. We also discuss possible extensions to the simulator. gem5-gpu is open source and available
at gem5-gpu.cs.wisc.edu.

Index Terms—Modeling techniques, Simulators, Heterogeneous (hybrid) systems, General-purpose graphics processors

F

1 INTRODUCTION
Computer architecture is transitioning from the multi-
core era into the heterogeneous era [9]. Many systems
are shipping with integrated CPUs and graphics pro-
cessing units (GPUs) [9], [5], [8]. Increasing levels of
integration pose new research questions.

Historically, computer architects have used cycle-
level simulators to explore and evaluate new pro-
cessor designs. We leverage two mature simulators,
gem5 [3] and GPGPU-Sim [2]. gem5 is a multicore
full-system simulator with multiple CPU, ISA, and
memory system models. Object oriented design, flex-
ible configuration support, and its maturity make
gem5 a popular tool for investigating general purpose
CPUs and multicore platforms. GPGPU-Sim is a de-
tailed general-purpose GPU (GPGPU) simulator [2].
GPGPU-Sim models GPGPU compute units (CUs)—
called streaming multiprocessors by NVIDIA—and
the GPU memory system.

To explore the heterogeneous system design space,
we introduce the gem5-gpu simulator which combines
the CU model from GPGPU-Sim and the CPU and
memory system models from gem5. gem5-gpu builds
on ideas used in related CPU-GPU simulators but
makes different design choices. It captures interac-
tions with execution-driven simulation rather than
well-partitioned trace-driven simulation, e.g., Mac-
Sim [1]. It uses a more-detailed—therefore slower—
GPU component than MV5 [6] and does not rely on
the deprecated m5 simulator. It supports more flexi-
ble memory hierarchy and coherence protocols than

• Manuscript submitted: 15-Nov-2013. Manuscript accepted: 12-Dec-
2013. Final manuscript received: 18-Dec-2013

Multi2Sim [10] or FusionSim [11] at a possible increase
in simulation time. gem5-gpu is the only simulator
with all of the following advantages:

• Detailed cache coherence model,
• Full-system simulation,
• Checkpointing,
• Tightly integrated with the latest gem5 simulator,

and
• Increased extensibility of GPGPU programming

model and entire system architecture.
By integrating GPGPU-Sim’s CU model into gem5,

gem5-gpu can capture interactions between a CPU
and a GPU in a heterogeneous processor. In partic-
ular, GPGPU-Sim CU memory accesses flow through
gem5’s Ruby memory system, which enables a wide
array of heterogeneous cache hierarchies and co-
herence protocols. gem5-gpu also provides a tunable
DMA engine to model data transfers in configurations
with separate CPU and GPU physical address spaces.
Through these features gem5-gpu can simulate both
existing and future heterogeneous processors.

gem5-gpu is open source and available at gem5-gpu.
cs.wisc.edu.

This paper first presents GPGPU and infrastructure
background (Sections 2 and 3), the design of gem5-gpu
(Section 4), a brief validation (Section 5), and future
directions (Section 6).

2 HETEROGENEOUS COMPUTING

General-purpose GPU (GPGPU) computing is the
practice of offloading computation to run on pro-
grammable GPUs. Applications commonly targeted to
GPGPU computing include data-parallel image pro-
cessing, scientific, and numerical algorithms, though



2

there is a trend toward more irregularly parallel work-
loads, such as graph analysis.

Work units offloaded to the GPU are called kernels.
Kernels can be structured to execute thousands of
threads on the GPU in a single-instruction, multiple-
thread (SIMT) fashion. In systems with separate CPU
and GPU address spaces, such as discrete GPUs, data
is explicitly copied between the GPU address space
and the CPU address space.

Writing an application to take advantage of a GPU
requires user-level calls to a GPGPU application pro-
gramming interface (runtime), and this runtime inter-
faces with a kernel-level driver that controls the GPU
device. Currently, the most popular GPGPU runtimes
are CUDA and OpenCL.

There is a trend towards simplifying the pro-
gramming model for GPGPU computing. The het-
erogeneous system architecture (HSA) foundation, a
consortium of companies and universities, has an-
nounced future support for heterogeneous uniform
memory access (hUMA) [9]. hUMA provides the pro-
grammer with a shared virtual address space between
the CPU and GPU. Additionally, implementations of
hUMA provide the CPU and GPU with a coherent
view of the virtual address space. NVIDIA supports
a similar construct with unified virtual addressing
(UVA) [7]. A major goal in the development of gem5-
gpu is to support these future programming models
and architectural directions in a flexible and extensible
way.

3 THE GIANT’S SHOULDERS

3.1 gem5

The gem5 simulation infrastructure (gem5.org) is a
community-focused, modular, system modeling tool,
developed by numerous universities and industry re-
search labs [3]. gem5 includes multiple CPU, memory
system, and ISA models. It provides two execution
modes, (1) system call emulation, which can run user-
level binaries using emulated system calls, and (2)
full-system, which models all necessary devices to
boot and run unmodified operating systems. Finally,
gem5 also supports checkpointing the state of the
system, which allows simulations to jump to the
region of interest.

Two specific features of gem5 make it particularly
well-suited for developing a heterogeneous CPU-GPU
simulator. First, gem5 provides several mechanisms
for modular integration of new architectural compo-
nents. When new components need to communicate
through the memory system, they can leverage gem5’s
flexible port interface for sending and receiving mes-
sages. Additionally, the gem5 EXTRAS interface can
be used to specify external code that is compiled into
the gem5 binary. This interface makes it simple to
add and remove complex components from gem5’s
infrastructure.

Second, gem5 includes the detailed cache and mem-
ory simulator, Ruby. Ruby is a flexible infrastructure
built on the domain specific language, SLICC, which
is used to specify cache coherence protocols. Using
Ruby, a developer can expressively define cache hi-
erarchies and coherence protocols, including those
expected in emerging heterogeneous processors.

Currently, gem5 includes no model for GPUs.

3.2 GPGPU-Sim

GPGPU-Sim is a detailed GPGPU simulator (gpgpu-
sim.org) backed by a strong publication record [2]. It
models the compute architecture of modern NVIDIA
graphics cards. GPGPU-Sim executes applications
compiled to PTX (NVIDIA’s intermediate instruc-
tion set) or disassembled native GPU machine code.
GPGPU-Sim models the functional and timing por-
tions of the compute pipeline including the thread
scheduling logic, highly-banked register file, special
function units, and memory system. GPGPU-Sim in-
cludes models for all types of GPU memory as well
as caches and DRAM.

GPGPU applications can access a multitude of
memory types. Global memory is the main data store
where most data resides, similar to the heap in CPU
applications. It is accessed with virtual addresses and
is cached on chip. Other GPU-specific memory types
include constant, used to handle GPU read-only data;
scratchpad, a software-managed, explicitly addressed
and low-latency in-core cache; local, mostly used for
spilling registers; parameter, used to store compute
kernel parameters; instruction, used to store the ker-
nel’s instructions; and texture, a graphics-specific, ex-
plicitly addressed cache.

GPGPU-Sim consumes mostly unmodified GPGPU
source code that is linked to GPGPU-Sim’s custom
GPGPU runtime library. The modified runtime library
intercepts all GPGPU-specific function calls and emu-
lates their effects. When a compute kernel is launched,
the GPGPU-Sim runtime library initializes the simula-
tor and executes the kernel in timing simulation. The
main simulation loop continues executing until the
kernel has completed before returning control from
the runtime library call. GPGPU-Sim is a functional-
first simulator; it first functionally executes all instruc-
tions, then feeds them into the timing simulator.

GPGPU-Sim has some limitations when modeling
heterogeneous systems:

• No host CPU timing model
• No timing model for host-device copies
• Rigid cache model
• No way to model host-device interactions

Because of these limitations, researchers interested in
exploring a hybrid CPU-GPU chip as a heterogeneous
compute platform cannot rely on GPGPU-Sim alone.



3

g
e

m
5

G
P

G
P

U
-S

im

CPU 

Core

CPU 

Core

L1 L1

L2 L2

CU

CPU 

Core

CPU 

Core

L1 L1

L2 L2

CU

CU

CU

CU

CU

CU

CU

L1

L1

L1

L1

L1

L1

L1

L1

L2

Off-chip Memory

GPGPU-Simgem5

Fetch/Decode

Register File

S
c

ra
tc

h
p

a
d

 

M
e

m
o

ry

Coalescer

To L1 

Cache

CU 

(Compute

Unit)

GPU

gem5-gpu

Execution 

Lanes

Fig. 1. Overview of gem5-gpu architecture with an
example configuration.

4 gem5-gpu ARCHITECTURE

Figure 1 shows one example architecture gem5-gpu can
simulate: a four core CPU and an eight CU GPU inte-
grated on the same chip. The number of CPUs, CUs,
and topology connecting them is fully configurable.
Two on-chip topologies that gem5-gpu provides out of
the box are a shared and a split memory hierarchy
(i.e., integrated and discrete GPUs, respectively).

Many CUs make up the GPU, each of which has
fetch/decode logic, a large register file, and many
(usually 32 or 64) execution lanes. When accessing
global memory, each lane sends its address to the
coalescer, which merges memory accesses to the same
cache block. The GPU may also contain a cache hi-
erarchy that stores data from recent global memory
accesses.

4.1 gem5←→ GPGPU-Sim Interface

One of our goals is to have a clean interface be-
tween gem5 and GPGPU-Sim. Although there are
many possible options, we chose the memory inter-
face, as shown in Figure 1. We add a single pseudo-
instruction to gem5 to facilitate calls into the simulator
for DMA engine and GPU functionality. Then, gem5-
gpu routes general-purpose memory instructions—
accesses to the global address space—from GPGPU-
Sim to Ruby through gem5’s port interface.

4.2 Memory System Modeling

gem5-gpu uses Ruby to model both the function and
timing of most CU memory accesses. The load-store
pipeline is modeled in gem5, including the coalesc-
ing, virtual address translation, and cache arbitration
logic. By using the port interface in gem5, gem5-gpu
has the flexibility to vary the number of execution
lanes, number of CUs, cache hierarchy, etc. and incor-
porate other GPU models in the future.

Currently, GPGPU-Sim issues only general-purpose
memory instructions to gem5, including accesses to

global and constant memory. We leverage GPGPU-
Sim to model memory operations to scratchpad and
parameter memory. Texture and local memory are not
currently supported although they require straight-
forward simulator augmentation.

gem5-gpu supports a shared virtual address space
between the CPU and GPU (i.e. the GPU using the
CPU page table for virtual to physical translations).
Alternatively, through a configuration option, gem5-
gpu models separate GPU and CPU physical address
spaces.

4.3 Detailed Cache Coherence Models
gem5-gpu leverages gem5’s cache coherence modeling
language, SLICC. When configuring gem5-gpu, any
cache coherence protocol can be used, including the
multitude that are currently distributed with gem5.
However, these included protocols assume a homo-
geneous cache topology.

To augment these for heterogeneous computing,
gem5-gpu adds a family of heterogeneous cache co-
herence protocols: MOESI hsc (heterogeneous system
coherence with MOESI states). MOESI hsc uses a
MOESI protocol for all of the CPU caches included
in the system. For the GPU caches, we add an L2
cache controller that provides coherence between the
GPU and CPU L2 caches. MOESI hsc models the GPU
L1 cache similar to current GPU cache architectures:
write-through and only valid and invalid states. Ad-
ditionally, the GPU L1 cache may contain stale data
that is flushed at synchronization points and kernel
boundaries.

gem5-gpu also includes a split version of MOESI hsc
that models architectures with separate CPU and GPU
physical address spaces. When this model is used,
communication between the CPU and GPU requires
explicit memory copies through the DMA engine.

In addition to providing detailed cache coherence
models, gem5-gpu can use any of the network topolo-
gies provided by gem5 (e.g., mesh, torus, cross-
bar). gem5-gpu’s default configuration uses the clus-
ter topology to divide the CPU and GPU into two
clusters. Accesses from each cluster goes through a
common interconnect to the directory and memory
controllers.

4.4 Application Programming Interface
To avoid the complexity of implementing or inter-
facing existing GPGPU drivers and runtimes, gem5-
gpu provides a slim runtime and driver emulation.
Similar to GPGPU-Sim, gem5-gpu runs unmodified
GPGPU applications by linking against the gem5-gpu
GPGPU runtime library. When a user application calls
a GPGPU runtime function, gem5 pseudo-instructions
execute to make up-calls into the simulator. This
organization is flexible and extensible, making it con-
venient to add and test new features and integrate
new GPU models.



4

0 

0.5 

1 

1.5 

2 

2.5 

GTX 580 Kernels GPGPU-Sim Kernels gem5-gpu Kernels 

GTX 580 CPU+Copy gem5-gpu CPU+Copy 

Fig. 2. Run times normalized to NVIDIA GTX 580.

5 PERFORMANCE VALIDATION

We performed gem5-gpu validation with a focus
on global memory performance using memory mi-
crobenchmarks and a subset of the Rodinia bench-
marks [4]. For these tests, we configure both GPGPU-
Sim v3.0.2 and gem5-gpu to model the NVIDIA GTX
580 discrete GPU system parameters as closely as pos-
sible. For memory access microbenchmarks, including
coalescing, cache, off-chip latency and bandwidth, we
find that gem5-gpu performance closely matches the
GTX 580 discrete GPU in all cases.

Figure 2 presents a region of interest (ROI) run
time comparison for Rodinia benchmarks running in
GPGPU-Sim and gem5-gpu normalized to the GTX
580. In addition to GPU kernel run time, the plot
includes CPU execution and memory copy time be-
tween the CPU and the GPU (GPGPU-Sim does not
provide a timing model for these). In most cases,
gem5-gpu ROI run time is within 22% of the GTX 580.

In all cases, gem5-gpu kernel run time is highly cor-
related to stand-alone GPGPU-Sim. The small differ-
ences are attributed to different memory system mod-
els. The primary performance differences between
these and the GTX 580 are due to GPGPU-Sim’s CU
model fidelity. In particular, benchmarks such as cell,
lud, and pathfinder show increased kernel run time
due to elevated latencies in the GPGPU-Sim CU for
register handling and the use of the PTX intermedi-
ate representation instead of object code. These CU
modeling issues have been addressed in more recent
versions of GPGPU-Sim, and we plan to pull these
changes into gem5-gpu in the future.

6 FUTURE WORK

Since the changes required to gem5 are minimal, we
will work to more closely integrate with gem5 to ease
the use of gem5-gpu. Additionally, as both GPGPU-
Sim and gem5 evolve, gem5-gpu will take advantage of
new features and bug fixes by leveraging these open
source projects.

Although we have found gem5-gpu to be a helpful
tool that is used both inside and outside our research
group, there are some limitations we plan to address.
First, gem5-gpu is currently limited to the x86 ISA. We

plan to extend gem5-gpu to support the ARM ISA in
the future. gem5-gpu currently only supports CUDA,
NVIDIA’s GPGPU runtime. OpenCL is closely related
to CUDA and minimal modifications to gem5-gpu are
required to enable support for OpenCL. Finally, we
plan to support other GPU models beyond GPGPU-
Sim in the future. The interface between gem5-gpu and
GPGPU-Sim is extensible enabling other GPU models
to be easily added.

7 CONCLUSIONS
In this paper we presented an overview of gem5-
gpu, a unique heterogeneous simulator that combines
a state-of-the-art full-system CPU simulator and a
GPGPU simulator, gem5 and GPGPU-Sim, respec-
tively. gem5-gpu provides architects a flexible system
to experiment with both current and future heteroge-
neous architectures.

gem5-gpu is open source and available at gem5-gpu.
cs.wisc.edu. More information can also be found by
joining the gem5-gpu mailing list: gem5-gpu-dev@
googlegroups.com. We look forward to working with
the architecture community to improve gem5-gpu and
incorporate additional features and ideas.

8 ACKNOWLEDGMENTS
We thank both the gem5 and GPGPU-Sim communi-
ties. This work is supported in part with NSF grants
CNS-1117280, CCF-1218323, and CNS-1302260. The
views expressed herein are not necessarily those of
the NSF. Professors Hill and Wood have significant
financial interests in AMD.

REFERENCES
[1] “Macsim,” https://code.google.com/p/macsim/.
[2] A. Bakhoda, G. Yuan, W. Fung, H. Wong, and T. M. Aamodt,

“Analyzing CUDA workloads using a detailed GPU simula-
tor,” in ISPASS, 2009.

[3] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,
A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,
R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, 2011.

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-
H. Lee, and K. Skadron, “Rodinia: A Benchmark Suite for
Heterogeneous Computing,” in IISWC, 2009, pp. 44–54.

[5] “OpenCL Programmability on 4th Generation Intel Core Pro-
cessors,” http://software.intel.com/sites/billboard/article/
opencl-programmability-4th-generation-intel-core-processors,
June 2013.

[6] J. Meng and K. Skadron, “A reconfigurable simulator for large-
scale heterogeneous multicore architectures,” in ISPASS 2011,
2011.

[7] NVIDIA, “NVIDIA CUDA C Programming Guide Ver. 4.0,”
2011.

[8] “NVIDIA Brings Kepler, Worlds Most Advanced Graphics
Architecture, to Mobile Devices,” http://blogs.nvidia.com/
blog/2013/07/24/kepler-to-mobile/, July 2013.

[9] P. Rogers, “Heterogeneous System Architecture Overview,” in
Hot Chips 25, 2013.

[10] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim:
A simulation framework for CPU-GPU computing,” in PACT
’12, 2012.

[11] V. Zakharenko, T. Aamodt, and A. Moshovos, “Characterizing
the performance benefits of fused CPU/GPU systems using
fusionsim,” in DATE ’13, 2013.


