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Abstract transient effects. To construct these workloads, we first

Full-system simulation is increasingly used to evaluate!un® them on an existing hardware platform, and then
the performance of commercial workloads on futureWe l0ad theexact disk imagesmito our full-system simu-

multiprocessor designs. However, challenges such aldtion environment. These generic workload develop-

simulation slowdown, sizing constraints, and workloadMent concerns are addressed in Section 2, and the
tuning impede the development of commercial workSpecifics of each workload is described in Section 3. We

loads for timing simulators. We describe how we Qescripe the target system and simqlation infrastructure
address these challenges in our development of fou}" Sect{on 4, and present the properties of our workloads
commercial workload benchmarks. in Section 5.

introduces non-deterministic workload TN€ results in Sections 6 and 7 show that non-determin-

ism exists in tuned multi-threaded commercial work-

behavior as another potential challenge in timing simu-I d 4 th lect his behavi It i
lation. Non-determinism refers to the sensitivity of the'0ads, an that neglecting this behavior can result in

system’s timing to small changes in its parameters. Thiénc”orr_ect co;cblusmns. Th'st PTOb'fT IS :_ilmlozt_ univer-
problem is nearly universally ignored because most sim>a!ly 1gnoréd because most simulators (including ours)

ulators (including ours) are deterministic: they produce are deFermmk:stlc: they prl?lduge ﬂ:je same result every
the same timing result every time, for given a workloadMe given the same workload and system parameters.

and system parameters. However, we find that Smalpnfortunatel_y » small changes in ;y_stem parameters can
changes in the memory latency can cause large Changeesxpose the inherent non-determinism of the workload.

in run-time (nearly 10%). We propose a methodologyFor example, consider reducing the L2 cache miss

that uses pseudo-random perturbations and standar(!iatency of abasesystem by one cycle to produce an

statistical techniques to compensate for these non_deteﬁnhancecby?tem. Imu'?_\'/ ely, this Enhance”mer:]nt should
ministic effects. Finally, we provide evidence that com-'mprove performance. However, this small change may

mercial workloads have different characteristics over "eSult in completely different execution paths (e.g., due

time, further supporting a sampled simulation method-f[o Io_ck races or external event timing), possibly result_-
ology. ing in worse performance. We demonstrate that this

problem does indeed occur, then describe a methodol-
1 Introduction ogy that uses pseudo-random perturbations and standard
statistical measurement techniques to address this issue.

This paper

Commercial workload performance is an important met-
ric for shared-memory multiprocessor computer sys-> \\orkload Development

e i Sulton = 11210 1520 secton acesses the methodology we used
: p . . develop our commercial workload benchmarks. First,
future multiprocessor designs [11, 17]. However using

commercial workloads in simulation environments we desgrlbe how we shqrten simulation time using
requires addressing issues such as their long run timecheckpomts and atransactlo_n—based measurement meth-
large memory and disk requirements, and the complexﬁdo.logy' Second, we c.iescrlbe.the. two-step process of
ity involved in tuning them ' settln_g up and vallldatmg appI.|cat_|ons.0n an e>_<|st|ng
' machine, then porting the applications into our simula-
Our workload development methodology (similar to tion environment. Third, we describe our method for
prior work [5]) entails reducing simulation times, vali- scaling down the workloads for tractable simulation.
dating speed-ups, and scaling down the applications (as ] ) ) ]
necessary). To reduce simulation time, we use simula2-1 Reducing Simulation Run Times
tion checkpointdo store a snapshot of the memory and Running end-to-end simulations of commercial work-
disks after a long warm-up period. We useansaction-  loads would result in prohibitive run-times, due to the
based methodology that increases the accuracy ofslowdown present in system-level multiprocessor simu-
shorter simulation runs by reducing the start and endation. For example, the TPC-C specification requires



that the benchmark runs for at least two hours on a realeasonable speed-ups and scale-ups on multiprocessor
multiprocessor system [21]. Using a uniprocessor tosystems and to avoid load imbalance.

simulate TPC-C on a 16-processor system would take

more than 133 days, assuming a 1600x slowdown (100¥Ve used a number of techniques to evaluate the applica-
per-processor). To limit simulation time, we use ourtions’ speed-ups and scale-ups, including hardware
simulator’'s checkpoint facility to capture the architec- counters and operating system utilities. During this pro-
tural state of the simulated system at the end of a warmcess, we used a Sun E6000 machine with sixteen 248-
up period (WhICh can take days to Comp|ete)‘ All t|m|ng MHz UltraSparCII processors, each with a 1 MB unified

runs then start from the exact same checkpoint. L2 cache. UltraSparc processors have hardware perfor-
mance counters that can be used to measure architec-

The commercial workloads presented in this paper areural events on a per-processor basis. We measured
throughput-oriented To measure throughput in a real workload characteristics using these counters and calcu-
system, one counts the number of transactions comlated the Instruction Per Cycle (IPC) and cache miss
pleted in a fixed time interval. For example, the TPC-Crates as observed on the real machine. We tuned the
benchmark specification measures performance by theorkloads by seeking maximum speed-ups, measured
number of transactions completed per minute (tpmCy wall-clock run times for benchmark runs on a limited

[21]. To measure throughput in our simulation environ-number of processors. For this purpose, we used the
ment, we instrument these workloads to signal the simuSolarispsrsettool to restrict given processes to run only

lator at the end of each transaction using a speciabn a subset of the available processors. Figure 1 shows
instruction. We then measure the amount of time it takeshe speedup of our set of workloads when running on 1,
to complete a fixed number of transactions. 2, 4, 8, and 16 processors. We also used the Solaris tool

mpstatto measure the fraction of time spent by each

However, cold-start transients occur when transaction(E{OCessor in user, kernel, idle, or I/O wait mode. These
are executed before the system has reached a steadyjization statistics allowed us to detect load-imbalance
state condition (e.g., the database buffer pool does ngfqplems and verify that all processors are being suffi-
contain a frequently accessed index page). End trafsiently utilized (with less than 10% idle or 1/O wait

sients occur when most processors become idle whﬂﬁme)_ After this validation step was complete, we

they wait for the last several transactions to Comp|eteimported the exact disk images into our full-system sim-
To minimize these effects we warm-up the system, then,|ation environment.

take a checkpoint. Starting from this point, we measure
the (simulated) time to complete a specified number of2
transactions. For example, benchmarking N transactions’
means time is measured and all processors continue exgull-size commercial workloads can have memory
cution until the Nth transaction completes. Even as thisequirements of many gigabytes, and secondary storage
transaction completes, other transactions are in flightrequirements of several terabytes. These memory and
By simulating a sufficiently large number of transac- disk requirements often stress execution on native sys-
tions, we reduce the effect of these partially completetems, and it is not currently possible to simulate such
transactions on the throughput. As we define transaclarge systems. Moreover, simulators usually run on host
tions on a per benchmark basis, the work necessary tworkstations that are much less powerful than server
complete one varies between benchmarks. Two transagystems. For example, our studies are conducted on PC-
tions in the same benchmark may represent significantlpased Linux systems that have a 32-bit virtual address
different amount of work (e.g., the “New Order” and the space limit.

“Order Status” transactions in the OTLP benchmark). " N

3 Scaling Down Workloads

2.2 Setup and Validation of Workloads

o
=1 N
10 1Proc

We set up and tuned our applications on a real multipro-% | m2Prc
cessor machine, with the goal of developing workloadsg — A 4Proc

. . .3 [ M 8Proc
with reasonable multiprocessor speedup, and measuring — 6P

microarchitectural statistics to be used in comparison®

with our simulation results. Using real machines makes |

setup much faster than under simulation, and permits

rapid performance testing with different parameters. " oe wEoms  mpame | Smoe | Baneohu

Due to the complexity of commercial workloads, they Figure 1. Workload parallel speedups
require a considerable amount of tuning in order to have




For these reasons, it is necessary to scale down thé/e simulate 8 users per processor (e.g., 128 users on 16
workloads so that they can be run in our simulationprocessors), similar to Stets et al. [19]. Users are simu-
environment. We scaled down the workloads using triallated using drivers from the IBM benchmark kit. A dif-
and error to find the largest configuration of a workloadferent process is started for each user. Each simulated
that would run adequately in our simulator. Then weuser randomly executes transactions according to the
tested the performance of the scaled-down workloads ofPC-C transaction mix specifications using a private
real hardware, to verify that the scaling has a minimalrandom number generator. The database was warmed up
effect on workload behavior. For example, our OLTP by running for 10,000 transactions before taking mea-
benchmark (based on TPC-C) uses a 10-warehouse $surements. Our results were based on runs of 1,000
GB database on five raw disks with a single log disk.transactions, unless otherwise specified. All completed
Real TPC-C benchmark setups are normally two ordergransactions are measured, even those that do not satisfy
of magnitude larger in terms of the database size andome timing constraints in the original TPC-C bench-
number of disks used. Our setup on the Sun E6000nark specification.

machine suffered a throughput penalty (in terms of

tpmC numbers) of less than 30% compared to a 1003.2 SPECjbb

warehouse, 100 GB database constructed on 35 raWaya-hased middleware applications are increasingly

disks and 10 log disks. However, our simulation envi-ysed in modern e-business infrastructure. SPECjbb is a

versions of workloads. on the middle tier. It fully implements the middle tier
business logic. SPECjbb is inspired by the TPC-C
3 Workloads benchmark and loosely follows the TPC-C specification

This section summarizes the set of workloads evaluateébr its schema, input generation, and transaction profile.
in this paper. This set includes two database on-lineSPECjbb runs in a single Java Virtual Machine (JVM) in

transaction processing applications, two web-servewhich threads represent terminals in a warehouse. Each
applications, and a scientific benchmark for comparisorthread independently generates random input (tier 1

purposes. emulation) before calling transaction-specific business
logic. The business logic operates on the data held in
3.1 OLTP binary trees of java objects (tier 3 emulation). The spec-

The TPC-C [22] benchmark models the database activification states that the benchmark does no disk 1/O or
ity of a wholesale supplier, with many concurrent usersn€twork 1/0.

performing business transactions against the databas@e used Sun’s HotSpot 1.4.0 Server JVM and Solaris’s
The supplier operates out of a number of warehousegative thread implementation. The system heap size was
and their associated sales districts. The benchmark Cabt to 1.8GB to avoid as much garbage collection as pos-
be scaled by increasing the number of warehouses, bufiple. Our experiments used 24 threads and 24 ware-
the database maintains fixed ratios of 10 sales districtioyses, with a data size of approximately 500 MB. The
per warehouse and 3000 customers per district. Transagystem was warmed up for 100,000 transactions, and

tions performed are of five transaction types, all relatecyyr results are based on runs of 100,000 transactions.
to the order-entry environment. Performance is mea-

sured by the number of “New Order” transactions per-3.3 Apache
formed per minute (tpmC), subject to certain

. Apache is a popular open-source web server used in
constraints.

many internet/intranet environments. In this benchmark,
Our OLTP workload is based on the TPC-C v3.0 bench-we focus on static web content serving.

mark, but we scale down the data set. We use IBM'S compiled Apache 1.3.19 on Solaris with GCC ver-

DB2 V7.2 EEE da_ltabase_management system and on 2.95.3. We made two compile-time changes to
IBM bevr\1/chtr)n ﬁ;k k'; ;[_?(,)Bbf(l)ld thehdatabzs? gnd mOd]f Iimprove performance. First, we set Apache to use
users. We burd a -warehouse database on IVgqq v mtexes to serialize server processes waiting on

raw disks, and we use one additional dedlcated_dlsk fofatccept() . Second, we set the dynamic module limit

C client think time to be zero. We set the disk I/O
latency in the simulator to be low and fixed (10 micro-
seconds), emulating the high performance I/O subWe use the Scalable URL Request Generator (SURGE)
system in high-end servers. [4] as the client. SURGE generates a sequence of static

group’s performance notes [14].



URL requests which exhibit representative distributions4 Target System & Simulation Infrastructure

for doculmen(: popu_lalnlty, dlpcumeant S|zbesd,dregudest SIZ€Srpis section presents our simulation model of a target
temporal and spatial locality, and embedded documenty o and details of our simulation infrastructure.
count. We ran 10 SURGE client threads per processor,

and set the client think time to be zero. 4.1 Target System Model

Our experiments used a repository of 2000 files, withwe model a 16-node system similar to the Sun E10000
total size of approximately 50 MB, generated by [7]. Each node contains a processor, caches, and an inte-
SURGE using its default parameters. The system wagrated memory controller for a portion of the 2 GB
warmed up for 80,000 transactions, and our results werghared main memory. System caches are kept coherent

based on runs of 2,500 transactions. using an MOSI invalidation-based snooping cache
coherence protocol. We assume a single crossbar switch
3.4 Slashcode for the interconnection network to connect the nodes,

Dynamic web content Serving has become increasingbVVith a delay of 50 ns for each interconnection network
important for web sites that serve large amount of infor-traversal (which includes wire propagation, synchroni-
mation. Serving dynamic content is essential for onlinezation, and routing). We selected 80 ns for memory
stores, instant news, and community message board syRAM access time. When a protocol request arrives at

tems. Our Slashcode benchmark is developed to repred processor or at memory, it takes 25 ns or 80 ns, respec-
sent these workloads. tively, to provide data to the interconnect. These

] ] assumed latencies result in a 180 ns latency to obtain a
Slashcode is an open-source dynamic web messagfiock from memory and a 125 ns latency for a cache-to-

posting system used by the popular slashdot.org messache transfer. We assume an integrated processor and
sage board system of the Linux user community. Wefirst |evel cache model that would complete four billion
used Slashcode 2.0, Apache 1.3.20, and Apachesiryctions per second if the memory system beyond
mod_perl module 1.25 on the server side. MySQLhe |1 caches was perfect. This establishes the relative
3.23..39 is used as the database engine. The Server Colseed of the memory system with respect to the proces-
tent is a snapshot from the slashcode.com site, and ¥qrs and is representative of a 2 GHz processor with a
contains approximately 3000 messages, with a total sizge fect L2-cache that has an IPC of 2. L2 caches are
of 5 MB. This benchmark is not database-oriented, SQy,odeled as being 4 MB 4-way set associative with 64-

the size of the content has a small impact on systenbyte blocks. We assume a 1 GHz system clock, hence
behavior. Most of the run time is spent on dynamic webipe system cycle time is 1 ns.

page generation.

Autoslash is a multi-threaded user emulation program -2 Full-System Simulation

we developed to simulate user browsing and postingNVe use Simics [1], a full-system multiprocessor simula-
behavior. Each user independently and randomly genetor, to simulate the same commercial workloads we set
ates browsing and posting requests to the server accordyp on the real hardware. Simics is a system-level archi-
ing to a transaction mix specification. There are 3tectural simulator developed by Virtutech AB that is
simulated users per processor. The system was warmezapable of booting unmodified commercial operating
up for 240 transactions before taking measurementssystems and running unmodified applications. We con-
Our results are based on runs of 50 transactions. Botfigured Simics to model an E6000-like SPARC V9 tar-
server and client are compiled with Sun’s WorkShop Cget system running unmodified Solaris 8. Simics is only

6.1 with aggressive optimization. a functional simulator by default, but it supports exten-
sions to model timing. We use Simics’ functional pro-
3.5 Barnes-Hut cessor model to model a simple blocking processor that

For comparison, we selected one application from theexecutes all instructions in one simulate_d processor
SPLASH-2 [23] benchmark suite: Barnes-Hut with 64K Cycle. We assume a processor clock that is four times
bodies. The benchmark was compiled with Sun’s Work-the frequency of the system clock (i.e., 4 GHz). We

Shop C 6.1 with profile-based feedback and uses th&Xtended this simple timing model with a memory hier-

PARMACS shared-memory macros used by Artiaga e@rchy _su_nulator that accurately models memory refer-
al. [3]. The macro library was modified to enable user-&nce timing.

level synchronization through test-and-set locks rather .

than POSIX-thread library calls. We began measure4-3 Memory System Simulator

ment at the start of the parallel phase to avoid measurin@ur memory system simulatdRuby processes requests

initialization and thread forking. from Simics and blocks memory operations on cache



Table 1. Workload properties

Memory L2 cache misses Supervisor Time Spent in

blocks touched  Unique miss per 1000 misses Kernel
Workload (64 bytes) PCs instructions (% of total) (% of total)
OLTP 57 MB 12136 3.0 43% 28%
SPECjbb 353 MB 8163 3.2 15% 1%
Apache 102 MB 10214 29 82% 84%
Slashcode 173 MB 17009 1.1 48% 43%
Barnes-Hut 16 MB 3413 0.3 16% 3%

misses. A blocked Simics processor will complete noone execution but not in any others, using this methodol-
instructions until Ruby explicitly un-blocks the proces- ogy should isolate this non-systematic effect.

SR?erWTgrl;hteuglfi?n% ro%e;sgr'l%ecr:)trrr'ggecsanzz'iznzllg‘g;:onversely, when (most) researchers perform simula-
y P g-cep ion studies, they (implicitly) assume thelt experimen-

lock contention that cannot be captured using a trace;

driven methodoloav. Rubv supports a broad ranae Ottal factors are controlled and present results from a
coherence rotocgo){:s wh>i/ch 2?e specified using Oursinglesimulation run. This assumption seems plausible,

\cEé protocols, P 9 OUince a deterministic simulator will always return the
table-driven specification methodology [18]. The speci-

fication is codified using our domain specific language . . .
9 P guag system parameters. However, just because a simulator is

g:lcig’ C(:(S)ﬁgfgrcaet'ogn dLiE?tvvzgrg t(];(())rls Lrgplz?:rg?gq[hdeterministic does not mean that the workload is also
) 9 Jeterministic. While a single-threaded, user-level appli-
C++ source code for the protocol state machines used in

) : . . cation running on a uniprocessor may be deterministic, a
Ruby. Using this methodology, our simulations capture g P y

o . . ) . multi-threaded commercial workload on a multiproces-
timing races and state transitions (including transient

same result for a given combination of workload and

. SOr is not.
states) of the coherence protocols in cache and memory
controllers. Workload non-determinism can be caused by small tim-
ing variations that cause the application or operating
5 Workload Properties system to take different execution paths. On a unipro-

Table 1 presents some properties of our workloads fronf©SSO" @ small d|ffer¢nce n the arnvgl time of a dey|ce
interrupt may result in a radically different operating

simulations of a 16-processor system. This table corrob-S stem scheduling decision. On a multiorocessor. svn-
orates previous results by showing that our OTLP y 9 ' P ' SY

benchmark spends approximately one-quarter of its timghronlzatlon races may cause the application or operat-

in the kernel [5], and that commercial applications haveg‘l?,[czi/:;ergf t?nea;glr‘"rer;ggls(saw d déf(f:(re]ree dnljnﬁrd%r;i;gﬁs
significantly worse cache performance characteristics . Y ) g
otentially leads to divergent executions, which may

mpared to the Barnes-Hut scientifi nchmark. P X . . .
compared to the Barnes-Hut scientific benchma yield widely varying results for the simulated execution

In the following sections, we present non-deterministictime after the completion of the same number of trans-
effects that we observed in the OLTP benchmark. Theactions, or may even execute different mixes of transac-
four commercial workloads studied in this paper exhibittions. Since the amount of work required to complete a
these effects to different extents. Ranked from mostransaction in a given workload can vary, executing a
variable to least variable, the commercial workloads ardlifferent mix of transactions would likely result in dif-
slashcode, OLTP, Apache, and SPECjbb. We chose tterent simulated execution times.

present OLTP’s behavior as representative of thesgve performed an experiment that shows that small

workloads. changes in memory latencies can affect process schedul-
. . ing even in a deterministic uniprocessor simulation envi-
6 Commercial Workload Non-determinism ro%ment. We ran two OLTP F;imulations starting from
When measuring real systems, researchers normallthe same checkpoint and artificially introduced instruc-
make multiple measurements and use standard statistion cache misses every 100 instructions. In the first run,
cal technigues to ensure statistically significant resultgshese additional cache misses are introduced at instruc-
[2]. The goal of this methodology is to ensure thattions 0, 100, etc., while in the second they are intro-
uncontrolled experimental factors do not lead to falseduced at instructions 50, 150, etc. While these two runs
conclusions. For example, if the paging daemon runs irhave the same cache miss rate, they report up to 9% dif-
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Figure 2. OS scheduling decisions are affected by memory latency

ference in simulated execution time after 2000 transacthe L2 cache no more than four times per 1000 instruc-
tions. By instrumenting the simulator to report which tions, the worst-case variation in CPI should be no more
processes are scheduled, we were able to show that tlilean 4%. And since there are millions of misses in each
OS makes different scheduling decisions. Figure 2run, the law of large numbers [2] suggests that the actual
shows a snapshot of the execution of these two runsvariation should be much less. However, this perturba-
Runl shows the execution of a process in process groujon results in widely varying execution times, whose

1, alternating between executing in kernel mode (blackyange is approximately 10% of the mean. The minimum

or user mode (dark grey). In this same interval for Run2execution time for the direct-mapped case is lower (bet-
the OS swaps out process group 1 and schedules a prter) than the maximum for the set-associative case. If a
cess of process group 2 (light grey). This snapshotesearcher performed only a single simulation run for

shows the interval in which the initial divergence each case, s/he might draw the erroneous conclusion
occurred. Both runs scheduled the same process groupisat the direct-mapped cache performs better than the
prior to this snapshot, but the scheduling decisions werset-associative cache. By performing multiple runs with

completely different beyond this point of divergence. random perturbations, statistically significant results can

be obtained, that is the enhanced configuration performs
To mitigate the effects introduced by non-determinism,better than the base case.

we run multiple simulations for each particular hard-

ware configuration, and use their mean simulated execu/ Workload Variability

tion time as our performance metric. We illustrate belowOur transaction-oriented methodology simulates a given
how this methodology can be used to effectively sepaworkload for a fixed number of transactions. A trade-off
rate systematic improvements from random effectss made between simulation time and accuracy. Longer
caused by non-determinism. simulations amortize cold-start effects (e.g., cold

Figure 3 presents statistics of the simulated execution 3pq
time, gathered from a set of fifteen 1000-transaction
OLTP runs on two different cache configurations. For __

. . . (%)
each configuration, the left and right columns show the §

minimum and maximum (simulated) runtime, respec-= 2001 RSy Mininum
tively. The center columns show the mean, with error% B Mean
bars indicating the standard deviation. Each run begins> Maximum

from the same checkpoint, but the simulator randomly@> 1004
introduces small perturbations in the memory system.O
On each L2 cache miss, the latency is randomly

increased by a uniform random number between zero 7/

and seven nanoseconds. This perturbation effectively = 6—— A —

increases the contention-free memory access time to Direct-Mapped  4-way SA

183.5 ns and 128.5 ns, for memory and cache-to-cach&igure 3. Execution time variations for two different
misses respectively. Since the OLTP workload misses in cache configurations



Table 2. Some OLTP properties for different simulation lengths

Number of simulated transactions 200 400 600 800 1000 1200
System cycles per transaction 4.09 4.21 4.27 441 4.57 4.98
System cycles per instruction 0.78 0.74 0.72 0.70 0.66 0.66
L2 misses per 1000 instructions 3.79 3.50 3.39 3.23 2.99 2.98
L2 supervisor mode misses (%) 41.8 41.4 41.1 42.0 42.4 42{3
L2 misses per transaction (thousands) 19.78 19.99 20.11 20.48 20.70 20.[73
Simulation runtime (hours) 1.92 3.88 5.89 8.02 10.18 12.23

caches) and smooth out variations due to heterogeneoysove valuable to complete an architectural study within
transactions. To quantify this effect, we evaluated oura reasonable simulation time [10, 12]. We intend to
workloads for different numbers of simulated transac-explore this further in future work.

tions. Table 2 shows some architectural characteristics,

computed from an average of twenty OLTP simulations8 Related Work

on a 16_'pr°°es$°f system. We had initially hoped thaYDrior work has studied commercial workloads for their
the runtime statistics would converge as we ran longer,

) ) .2 architectural and micro-architectural characteristics, and
simulation. However, as shown in Figures 4, 5, and 6,
even long simulations reveal that the workload exhibits

different characteristics over time.

has used them for simulation studies and for perfor-
mance evaluations. The characterization studies can be
classified by the level of detail in the processor model
Using the OLTP workload, we simulated 8,000 transac-(in-order or out-of-order), their tools (real hardware or
tions on a 16-processor system. These graphs show tismulation), and the workloads studied. Our work distin-
average results of twenty separate runs, starting from thguishes itself from these related works as it uses newer
same checkpoint, measured every 200 transactions. THE&nchmarks, such as SPECjbb, larger configurations (in
error bars indicate the standard deviations for each intergeneral), and studies these workloads’ sensitivities to
val. Figure 4 shows there is variability during the run in timing changes.

the throughput of the system (the number of cycles to

complete transactions). Figure 5 shows that the numbel]?:arroso et al. [5] is an influential characterization study

of cache misses necessary to complete transactions ?é commercial workloads on multiprocessors using both

relatively stable across the run. Figure 6 shows there iglardware counters, and in-order simulation tools. Ran-

considerable variability in the number of instructions ganathan et al. [16] uses user-level out-of-order simula-

executed to complete transactions in the OLTP benchton to _ShOW thf'ﬂ database workloads running -on
mark sequentially consistent systems can perform within 10-

15% of release consistent systems. Keeton et al. [9]
Clearly a single short simulation run cannot capture thestudy the effects of out-of-order speculative execution
wide spectrum of the commercial workloads’ behavior.on multiprocessor database workloads using hardware
Time-sampling is a well-known technique that may performance counters. Dedicated snooping hardware
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has been used to study the memory system performand@eferences

of commercial workloads running in real hardware sys-
tems [13]. The web-based on-line transaction processinbl]
benchmark TPC-W has also been studied in prior work
[6]. The memory system performance of Decision Sup2]
port System (DSS) workloads in multiprocessors have
been characterized by Trancoso et al. [20].

In our simulation methodology we use an in-order pro-[3]
cessor model. Pai et al. [15] demonstrate that a key char-
acteristic in shared-memory multiprocessor simulation
is how the memory system is modelled. Durbhakula et
al. [8] show this principle can be applied to approximate
an out-of-order processor model using a simple proces-
sor model trading, achieving a significant speedup and
introducing relatively little error. [4]

9 Conclusions

This paper describes the methodology we adopt in
developing four multiprocessor commercial workloads
into benchmarks for simulation studies. In this method-
ology, we perform the setup of these workloads on rea(s]
hardware for tuning and evaluation, then import them
into our simulation environment. We provide a detailed
explanation of our workloads and our simulation envi-
ronment. We present some speed-up measurements of
the tuned commercial workloads on the real hardware,
and workload-specific tuning issues. [6]

In order to deal with the non-determinism present in
multiprocessor simulations, we proposed a transaction-
based approach for simulation runs, that helps decrease
cold-start and end transient effects. We demonstrate that
even a fully deterministic simulation of a uniprocessor
can exhibit non-deterministic behavior due to OS sched!7]
uling. We present how an incorrect conclusion can be
reached if the issue of non-determinism is ignored. We
demonstrate that commercial applications can exhibitg]
different characteristics, and that these characteristics
could lead to a large variation in simulation results. We
propose a methodology for coping with this non-deter-
minism by introducing minor perturbations in memory
system latencies, and running multiple simulations for
the same hardware configuration. This approach can
lead to statistically significant results for these non-g
deterministic workloads.
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