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Abstract
Full-system simulation is increasingly used to evaluate
the performance of commercial workloads on future
multiprocessor designs. However, challenges such as
simulation slowdown, sizing constraints, and workload
tuning impede the development of commercial work-
loads for timing simulators. We describe how we
address these challenges in our development of four
commercial workload benchmarks.

This paper introduces non-deterministic workload
behavior as another potential challenge in timing simu-
lation. Non-determinism refers to the sensitivity of the
system’s timing to small changes in its parameters. This
problem is nearly universally ignored because most sim-
ulators (including ours) are deterministic: they produce
the same timing result every time, for given a workload
and system parameters. However, we find that small
changes in the memory latency can cause large changes
in run-time (nearly 10%). We propose a methodology
that uses pseudo-random perturbations and standard
statistical techniques to compensate for these non-deter-
ministic effects. Finally, we provide evidence that com-
mercial workloads have different characteristics over
time, further supporting a sampled simulation method-
ology.

1  Introduction
Commercial workload performance is an important met-
ric for shared-memory multiprocessor computer sys-
tems. Full-system timing simulation is increasingly used
to evaluate the performance of these workloads on
future multiprocessor designs [11, 17]. However using
commercial workloads in simulation environments
requires addressing issues such as their long run times,
large memory and disk requirements, and the complex-
ity involved in tuning them.

Our workload development methodology (similar to
prior work [5]) entails reducing simulation times, vali-
dating speed-ups, and scaling down the applications (as
necessary). To reduce simulation time, we use simula-
tion checkpointsto store a snapshot of the memory and
disks after a long warm-up period. We use atransaction-
based methodology that increases the accuracy of
shorter simulation runs by reducing the start and end

transient effects. To construct these workloads, we fi
tune them on an existing hardware platform, and th
we load theexact disk imagesinto our full-system simu-
lation environment. These generic workload develo
ment concerns are addressed in Section 2, and
specifics of each workload is described in Section 3. W
describe the target system and simulation infrastructu
in Section 4, and present the properties of our workloa
in Section 5.

The results in Sections 6 and 7 show that non-determ
ism exists in tuned multi-threaded commercial work
loads, and that neglecting this behavior can result
incorrect conclusions. This problem is almost unive
sally ignored because most simulators (including our
are deterministic: they produce the same result eve
time, given the same workload and system paramete
Unfortunately, small changes in system parameters c
expose the inherent non-determinism of the workloa
For example, consider reducing the L2 cache mi
latency of abasesystem by one cycle to produce an
enhancedsystem. Intuitively, this enhancement shoul
improve performance. However, this small change m
result in completely different execution paths (e.g., du
to lock races or external event timing), possibly resu
ing in worse performance. We demonstrate that th
problem does indeed occur, then describe a method
ogy that uses pseudo-random perturbations and stand
statistical measurement techniques to address this iss

2  Workload Development
This section addresses the methodology we used
develop our commercial workload benchmarks. Firs
we describe how we shorten simulation time usin
checkpoints and a transaction-based measurement m
odology. Second, we describe the two-step process
setting up and validating applications on an existin
machine, then porting the applications into our simul
tion environment. Third, we describe our method fo
scaling down the workloads for tractable simulation.

2.1  Reducing Simulation Run Times
Running end-to-end simulations of commercial work
loads would result in prohibitive run-times, due to th
slowdown present in system-level multiprocessor sim
lation. For example, the TPC-C specification require
1
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that the benchmark runs for at least two hours on a real
multiprocessor system [21]. Using a uniprocessor to
simulate TPC-C on a 16-processor system would take
more than 133 days, assuming a 1600x slowdown (100x
per-processor). To limit simulation time, we use our
simulator’s checkpoint facility to capture the architec-
tural state of the simulated system at the end of a warm-
up period (which can take days to complete). All timing
runs then start from the exact same checkpoint.

The commercial workloads presented in this paper are
throughput-oriented. To measure throughput in a real
system, one counts the number of transactions com-
pleted in a fixed time interval. For example, the TPC-C
benchmark specification measures performance by the
number of transactions completed per minute (tpmC)
[21]. To measure throughput in our simulation environ-
ment, we instrument these workloads to signal the simu-
lator at the end of each transaction using a special
instruction. We then measure the amount of time it takes
to complete a fixed number of transactions.

However, cold-start transients occur when transactions
are executed before the system has reached a steady-
state condition (e.g., the database buffer pool does not
contain a frequently accessed index page). End tran-
sients occur when most processors become idle while
they wait for the last several transactions to complete.
To minimize these effects we warm-up the system, then
take a checkpoint. Starting from this point, we measure
the (simulated) time to complete a specified number of
transactions. For example, benchmarking N transactions
means time is measured and all processors continue exe-
cution until the Nth transaction completes. Even as this
transaction completes, other transactions are in flight.
By simulating a sufficiently large number of transac-
tions, we reduce the effect of these partially complete
transactions on the throughput. As we define transac-
tions on a per benchmark basis, the work necessary to
complete one varies between benchmarks. Two transac-
tions in the same benchmark may represent significantly
different amount of work (e.g., the “New Order” and the
“Order Status” transactions in the OTLP benchmark).

2.2  Setup and Validation of Workloads

We set up and tuned our applications on a real multipro-
cessor machine, with the goal of developing workloads
with reasonable multiprocessor speedup, and measuring
microarchitectural statistics to be used in comparison
with our simulation results. Using real machines makes
setup much faster than under simulation, and permits
rapid performance testing with different parameters.
Due to the complexity of commercial workloads, they
require a considerable amount of tuning in order to have

reasonable speed-ups and scale-ups on multiproce
systems and to avoid load imbalance.

We used a number of techniques to evaluate the appli
tions’ speed-ups and scale-ups, including hardwa
counters and operating system utilities. During this pr
cess, we used a Sun E6000 machine with sixteen 2
MHz UltraSparcII processors, each with a 1 MB unifie
L2 cache. UltraSparc processors have hardware perf
mance counters that can be used to measure archi
tural events on a per-processor basis. We measu
workload characteristics using these counters and cal
lated the Instruction Per Cycle (IPC) and cache mi
rates as observed on the real machine. We tuned
workloads by seeking maximum speed-ups, measu
by wall-clock run times for benchmark runs on a limite
number of processors. For this purpose, we used
Solarispsrsettool to restrict given processes to run onl
on a subset of the available processors. Figure 1 sho
the speedup of our set of workloads when running on
2, 4, 8, and 16 processors. We also used the Solaris t
mpstat to measure the fraction of time spent by eac
processor in user, kernel, idle, or I/O wait mode. The
utilization statistics allowed us to detect load-imbalanc
problems and verify that all processors are being suf
ciently utilized (with less than 10% idle or I/O wait
time). After this validation step was complete, w
imported the exact disk images into our full-system sim
ulation environment.

2.3  Scaling Down Workloads

Full-size commercial workloads can have memor
requirements of many gigabytes, and secondary stora
requirements of several terabytes. These memory a
disk requirements often stress execution on native s
tems, and it is not currently possible to simulate suc
large systems. Moreover, simulators usually run on ho
workstations that are much less powerful than serv
systems. For example, our studies are conducted on P
based Linux systems that have a 32-bit virtual addre
space limit.
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For these reasons, it is necessary to scale down the
workloads so that they can be run in our simulation
environment. We scaled down the workloads using trial
and error to find the largest configuration of a workload
that would run adequately in our simulator. Then we
tested the performance of the scaled-down workloads on
real hardware, to verify that the scaling has a minimal
effect on workload behavior. For example, our OLTP
benchmark (based on TPC-C) uses a 10-warehouse 1-
GB database on five raw disks with a single log disk.
Real TPC-C benchmark setups are normally two orders
of magnitude larger in terms of the database size and
number of disks used. Our setup on the Sun E6000
machine suffered a throughput penalty (in terms of
tpmC numbers) of less than 30% compared to a 100-
warehouse, 100 GB database constructed on 35 raw
disks and 10 log disks. However, our simulation envi-
ronment currently limits us to studying scaled-down
versions of workloads.

3  Workloads
This section summarizes the set of workloads evaluated
in this paper. This set includes two database on-line
transaction processing applications, two web-server
applications, and a scientific benchmark for comparison
purposes.

3.1  OLTP

The TPC-C [22] benchmark models the database activ-
ity of a wholesale supplier, with many concurrent users
performing business transactions against the database.
The supplier operates out of a number of warehouses
and their associated sales districts. The benchmark can
be scaled by increasing the number of warehouses, but
the database maintains fixed ratios of 10 sales districts
per warehouse and 3000 customers per district. Transac-
tions performed are of five transaction types, all related
to the order-entry environment. Performance is mea-
sured by the number of “New Order” transactions per-
formed per minute (tpmC), subject to certain
constraints.

Our OLTP workload is based on the TPC-C v3.0 bench-
mark, but we scale down the data set. We use IBM’s
DB2 V7.2 EEE database management system and an
IBM benchmark kit to build the database and model
users. We build a 1 GB 10-warehouse database on five
raw disks, and we use one additional dedicated disk for
the database log. The TPC-C consistency requirements
on the sizes of tables were maintained. We set the TPC-
C client think time to be zero. We set the disk I/O
latency in the simulator to be low and fixed (10 micro-
seconds), emulating the high performance I/O sub-
system in high-end servers.

We simulate 8 users per processor (e.g., 128 users on
processors), similar to Stets et al. [19]. Users are sim
lated using drivers from the IBM benchmark kit. A dif-
ferent process is started for each user. Each simula
user randomly executes transactions according to
TPC-C transaction mix specifications using a priva
random number generator. The database was warmed
by running for 10,000 transactions before taking me
surements. Our results were based on runs of 1,0
transactions, unless otherwise specified. All complet
transactions are measured, even those that do not sa
some timing constraints in the original TPC-C bench
mark specification.

3.2  SPECjbb

Java-based middleware applications are increasin
used in modern e-business infrastructure. SPECjbb i
Java program emulating a 3-tier system with empha
on the middle tier. It fully implements the middle tier
business logic. SPECjbb is inspired by the TPC-
benchmark and loosely follows the TPC-C specificatio
for its schema, input generation, and transaction profi
SPECjbb runs in a single Java Virtual Machine (JVM) i
which threads represent terminals in a warehouse. Ea
thread independently generates random input (tier
emulation) before calling transaction-specific busine
logic. The business logic operates on the data held
binary trees of java objects (tier 3 emulation). The spe
ification states that the benchmark does no disk I/O
network I/O.

We used Sun’s HotSpot 1.4.0 Server JVM and Solaris
native thread implementation. The system heap size w
set to 1.8GB to avoid as much garbage collection as p
sible. Our experiments used 24 threads and 24 wa
houses, with a data size of approximately 500 MB. Th
system was warmed up for 100,000 transactions, a
our results are based on runs of 100,000 transactions

3.3  Apache

Apache is a popular open-source web server used
many internet/intranet environments. In this benchma
we focus on static web content serving.

We compiled Apache 1.3.19 on Solaris with GCC ve
sion 2.95.3. We made two compile-time changes
improve performance. First, we set Apache to u
POSIX mutexes to serialize server processes waiting
accept() . Second, we set the dynamic module lim
to zero, reducing the memory usage. We compiled a
configured the Apache server according to the Apac
group’s performance notes [14].

We use the Scalable URL Request Generator (SURG
[4] as the client. SURGE generates a sequence of sta
3
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URL requests which exhibit representative distributions
for document popularity, document sizes, request sizes,
temporal and spatial locality, and embedded document
count. We ran 10 SURGE client threads per processor,
and set the client think time to be zero.

Our experiments used a repository of 2000 files, with
total size of approximately 50 MB, generated by
SURGE using its default parameters. The system was
warmed up for 80,000 transactions, and our results were
based on runs of 2,500 transactions.

3.4  Slashcode

Dynamic web content serving has become increasingly
important for web sites that serve large amount of infor-
mation. Serving dynamic content is essential for online
stores, instant news, and community message board sys-
tems. Our Slashcode benchmark is developed to repre-
sent these workloads.

Slashcode is an open-source dynamic web message
posting system used by the popular slashdot.org mes-
sage board system of the Linux user community. We
used Slashcode 2.0, Apache 1.3.20, and Apache’s
mod_perl module 1.25 on the server side. MySQL
3.23.39 is used as the database engine. The server con-
tent is a snapshot from the slashcode.com site, and it
contains approximately 3000 messages, with a total size
of 5 MB. This benchmark is not database-oriented, so
the size of the content has a small impact on system
behavior. Most of the run time is spent on dynamic web
page generation.

Autoslash is a multi-threaded user emulation program
we developed to simulate user browsing and posting
behavior. Each user independently and randomly gener-
ates browsing and posting requests to the server accord-
ing to a transaction mix specification. There are 3
simulated users per processor. The system was warmed
up for 240 transactions before taking measurements.
Our results are based on runs of 50 transactions. Both
server and client are compiled with Sun’s WorkShop C
6.1 with aggressive optimization.

3.5  Barnes-Hut

For comparison, we selected one application from the
SPLASH-2 [23] benchmark suite: Barnes-Hut with 64K
bodies. The benchmark was compiled with Sun’s Work-
Shop C 6.1 with profile-based feedback and uses the
PARMACS shared-memory macros used by Artiaga et
al. [3]. The macro library was modified to enable user-
level synchronization through test-and-set locks rather
than POSIX-thread library calls. We began measure-
ment at the start of the parallel phase to avoid measuring
initialization and thread forking.

4 Target System & Simulation Infrastructure
This section presents our simulation model of a targ
system and details of our simulation infrastructure.

4.1  Target System Model

We model a 16-node system similar to the Sun E100
[7]. Each node contains a processor, caches, and an i
grated memory controller for a portion of the 2 GB
shared main memory. System caches are kept cohe
using an MOSI invalidation-based snooping cach
coherence protocol. We assume a single crossbar sw
for the interconnection network to connect the node
with a delay of 50 ns for each interconnection netwo
traversal (which includes wire propagation, synchron
zation, and routing). We selected 80 ns for memo
DRAM access time. When a protocol request arrives
a processor or at memory, it takes 25 ns or 80 ns, resp
tively, to provide data to the interconnect. Thes
assumed latencies result in a 180 ns latency to obtai
block from memory and a 125 ns latency for a cache-t
cache transfer. We assume an integrated processor
first level cache model that would complete four billio
instructions per second if the memory system beyo
the L1 caches was perfect. This establishes the relat
speed of the memory system with respect to the proc
sors, and is representative of a 2 GHz processor with
perfect L2-cache that has an IPC of 2. L2 caches a
modeled as being 4 MB 4-way set associative with 6
byte blocks. We assume a 1 GHz system clock, hen
the system cycle time is 1 ns.

4.2  Full-System Simulation

We use Simics [1], a full-system multiprocessor simula
tor, to simulate the same commercial workloads we s
up on the real hardware. Simics is a system-level arc
tectural simulator developed by Virtutech AB that i
capable of booting unmodified commercial operatin
systems and running unmodified applications. We co
figured Simics to model an E6000-like SPARC V9 tar
get system running unmodified Solaris 8. Simics is on
a functional simulator by default, but it supports exten
sions to model timing. We use Simics’ functional pro
cessor model to model a simple blocking processor th
executes all instructions in one simulated process
cycle. We assume a processor clock that is four tim
the frequency of the system clock (i.e., 4 GHz). W
extended this simple timing model with a memory hie
archy simulator that accurately models memory refe
ence timing.

4.3  Memory System Simulator

Our memory system simulator,Ruby, processes requests
from Simics and blocks memory operations on cach
4
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misses. A blocked Simics processor will complete no
instructions until Ruby explicitly un-blocks the proces-
sor when the miss processing completes. This allows
Ruby to capture timing-dependent race conditions and
lock contention that cannot be captured using a trace-
driven methodology. Ruby supports a broad range of
coherence protocols, which are specified using our
table-driven specification methodology [18]. The speci-
fication is codified using our domain specific language
SLICC (Specification Language for Implementing
Cache Coherence) and software tools to generate the
C++ source code for the protocol state machines used in
Ruby. Using this methodology, our simulations capture
timing races and state transitions (including transient
states) of the coherence protocols in cache and memory
controllers.

5  Workload Properties
Table 1 presents some properties of our workloads from
simulations of a 16-processor system. This table corrob-
orates previous results by showing that our OTLP
benchmark spends approximately one-quarter of its time
in the kernel [5], and that commercial applications have
significantly worse cache performance characteristics
compared to the Barnes-Hut scientific benchmark.

In the following sections, we present non-deterministic
effects that we observed in the OLTP benchmark. The
four commercial workloads studied in this paper exhibit
these effects to different extents. Ranked from most
variable to least variable, the commercial workloads are
slashcode, OLTP, Apache, and SPECjbb. We chose to
present OLTP’s behavior as representative of these
workloads.

6  Commercial Workload Non-determinism
When measuring real systems, researchers normally
make multiple measurements and use standard statisti-
cal techniques to ensure statistically significant results
[2]. The goal of this methodology is to ensure that
uncontrolled experimental factors do not lead to false
conclusions. For example, if the paging daemon runs in

one execution but not in any others, using this method
ogy should isolate this non-systematic effect.

Conversely, when (most) researchers perform simu
tion studies, they (implicitly) assume thatall experimen-
tal factors are controlled and present results from
singlesimulation run. This assumption seems plausibl
since a deterministic simulator will always return th
same result for a given combination of workload an
system parameters. However, just because a simulato
deterministic does not mean that the workload is al
deterministic. While a single-threaded, user-level app
cation running on a uniprocessor may be deterministic
multi-threaded commercial workload on a multiproce
sor is not.

Workload non-determinism can be caused by small tim
ing variations that cause the application or operatin
system to take different execution paths. On a unipr
cessor, a small difference in the arrival time of a devic
interrupt may result in a radically different operatin
system scheduling decision. On a multiprocessor, sy
chronization races may cause the application or oper
ing system to acquire locks in different orders. Th
outcome of memory races and scheduling decisio
potentially leads to divergent executions, which ma
yield widely varying results for the simulated executio
time after the completion of the same number of tran
actions, or may even execute different mixes of transa
tions. Since the amount of work required to complete
transaction in a given workload can vary, executing
different mix of transactions would likely result in dif-
ferent simulated execution times.

We performed an experiment that shows that sm
changes in memory latencies can affect process sche
ing even in a deterministic uniprocessor simulation env
ronment. We ran two OLTP simulations starting from
the same checkpoint and artificially introduced instru
tion cache misses every 100 instructions. In the first ru
these additional cache misses are introduced at instr
tions 0, 100, etc., while in the second they are intr
duced at instructions 50, 150, etc. While these two ru
have the same cache miss rate, they report up to 9%

Table 1. Workload properties

Workload

Memory
blocks touched

(64 bytes)
Unique miss

PCs

L2 cache misses
per 1000

instructions

Supervisor
misses

(% of total)

Time Spent in
Kernel

(% of total)

OLTP 57 MB 12136 3.0 43% 28%

SPECjbb 353 MB 8163 3.2 15% 1%

Apache 102 MB 10214 2.9 82% 84%

Slashcode 173 MB 17009 1.1 48% 43%

Barnes-Hut 16 MB 3413 0.3 16% 3%
5
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ference in simulated execution time after 2000 transac-
tions. By instrumenting the simulator to report which
processes are scheduled, we were able to show that the
OS makes different scheduling decisions. Figure 2
shows a snapshot of the execution of these two runs.
Run1 shows the execution of a process in process group
1, alternating between executing in kernel mode (black)
or user mode (dark grey). In this same interval for Run2,
the OS swaps out process group 1 and schedules a pro-
cess of process group 2 (light grey). This snapshot
shows the interval in which the initial divergence
occurred. Both runs scheduled the same process groups
prior to this snapshot, but the scheduling decisions were
completely different beyond this point of divergence.

To mitigate the effects introduced by non-determinism,
we run multiple simulations for each particular hard-
ware configuration, and use their mean simulated execu-
tion time as our performance metric. We illustrate below
how this methodology can be used to effectively sepa-
rate systematic improvements from random effects
caused by non-determinism.

Figure 3 presents statistics of the simulated execution
time, gathered from a set of fifteen 1000-transaction
OLTP runs on two different cache configurations. For
each configuration, the left and right columns show the
minimum and maximum (simulated) runtime, respec-
tively. The center columns show the mean, with error
bars indicating the standard deviation. Each run begins
from the same checkpoint, but the simulator randomly
introduces small perturbations in the memory system.
On each L2 cache miss, the latency is randomly
increased by a uniform random number between zero
and seven nanoseconds. This perturbation effectively
increases the contention-free memory access time to
183.5 ns and 128.5 ns, for memory and cache-to-cache
misses respectively. Since the OLTP workload misses in

the L2 cache no more than four times per 1000 instru
tions, the worst-case variation in CPI should be no mo
than 4%. And since there are millions of misses in ea
run, the law of large numbers [2] suggests that the actu
variation should be much less. However, this perturb
tion results in widely varying execution times, whos
range is approximately 10% of the mean. The minimu
execution time for the direct-mapped case is lower (be
ter) than the maximum for the set-associative case. I
researcher performed only a single simulation run f
each case, s/he might draw the erroneous conclus
that the direct-mapped cache performs better than
set-associative cache. By performing multiple runs wi
random perturbations, statistically significant results c
be obtained, that is the enhanced configuration perfor
better than the base case.

7  Workload Variability
Our transaction-oriented methodology simulates a giv
workload for a fixed number of transactions. A trade-o
is made between simulation time and accuracy. Long
simulations amortize cold-start effects (e.g., co

Figure 2. OS scheduling decisions are affected by memory latency
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Figure 3. Execution time variations for two different
cache configurations
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caches) and smooth out variations due to heterogeneous
transactions. To quantify this effect, we evaluated our
workloads for different numbers of simulated transac-
tions. Table 2 shows some architectural characteristics,
computed from an average of twenty OLTP simulations
on a 16-processor system. We had initially hoped that
the runtime statistics would converge as we ran longer
simulation. However, as shown in Figures 4, 5, and 6,
even long simulations reveal that the workload exhibits
different characteristics over time.

Using the OLTP workload, we simulated 8,000 transac-
tions on a 16-processor system. These graphs show the
average results of twenty separate runs, starting from the
same checkpoint, measured every 200 transactions. The
error bars indicate the standard deviations for each inter-
val. Figure 4 shows there is variability during the run in
the throughput of the system (the number of cycles to
complete transactions). Figure 5 shows that the number
of cache misses necessary to complete transactions is
relatively stable across the run. Figure 6 shows there is
considerable variability in the number of instructions
executed to complete transactions in the OLTP bench-
mark.

Clearly a single short simulation run cannot capture the
wide spectrum of the commercial workloads’ behavior.
Time-sampling is a well-known technique that may

prove valuable to complete an architectural study with
a reasonable simulation time [10, 12]. We intend
explore this further in future work.

8  Related Work
Prior work has studied commercial workloads for the
architectural and micro-architectural characteristics, a
has used them for simulation studies and for perfo
mance evaluations. The characterization studies can
classified by the level of detail in the processor mod
(in-order or out-of-order), their tools (real hardware o
simulation), and the workloads studied. Our work distin
guishes itself from these related works as it uses new
benchmarks, such as SPECjbb, larger configurations
general), and studies these workloads’ sensitivities
timing changes.

Barroso et al. [5] is an influential characterization stud
of commercial workloads on multiprocessors using bo
hardware counters, and in-order simulation tools. Ra
ganathan et al. [16] uses user-level out-of-order simu
tion to show that database workloads running o
sequentially consistent systems can perform within 1
15% of release consistent systems. Keeton et al.
study the effects of out-of-order speculative executio
on multiprocessor database workloads using hardw
performance counters. Dedicated snooping hardwa

Table 2. Some OLTP properties for different simulation lengths

Number of simulated transactions 200 400 600 800 1000 1200

System cycles per transaction 4.09 4.21 4.27 4.41 4.57 4.58

System cycles per instruction 0.78 0.74 0.72 0.70 0.66 0.66

L2 misses per 1000 instructions 3.79 3.50 3.39 3.23 2.99 2.98

L2 supervisor mode misses (%) 41.8 41.4 41.1 42.0 42.4 42.3

L2 misses per transaction (thousands) 19.78 19.99 20.11 20.48 20.70 20.73

Simulation runtime (hours) 1.92 3.88 5.89 8.02 10.18 12.23
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has been used to study the memory system performance
of commercial workloads running in real hardware sys-
tems [13]. The web-based on-line transaction processing
benchmark TPC-W has also been studied in prior work
[6]. The memory system performance of Decision Sup-
port System (DSS) workloads in multiprocessors have
been characterized by Trancoso et al. [20].

In our simulation methodology we use an in-order pro-
cessor model. Pai et al. [15] demonstrate that a key char-
acteristic in shared-memory multiprocessor simulation
is how the memory system is modelled. Durbhakula et
al. [8] show this principle can be applied to approximate
an out-of-order processor model using a simple proces-
sor model trading, achieving a significant speedup and
introducing relatively little error.

9  Conclusions
This paper describes the methodology we adopt in
developing four multiprocessor commercial workloads
into benchmarks for simulation studies. In this method-
ology, we perform the setup of these workloads on real
hardware for tuning and evaluation, then import them
into our simulation environment. We provide a detailed
explanation of our workloads and our simulation envi-
ronment. We present some speed-up measurements of
the tuned commercial workloads on the real hardware,
and workload-specific tuning issues.

In order to deal with the non-determinism present in
multiprocessor simulations, we proposed a transaction-
based approach for simulation runs, that helps decrease
cold-start and end transient effects. We demonstrate that
even a fully deterministic simulation of a uniprocessor
can exhibit non-deterministic behavior due to OS sched-
uling. We present how an incorrect conclusion can be
reached if the issue of non-determinism is ignored. We
demonstrate that commercial applications can exhibit
different characteristics, and that these characteristics
could lead to a large variation in simulation results. We
propose a methodology for coping with this non-deter-
minism by introducing minor perturbations in memory
system latencies, and running multiple simulations for
the same hardware configuration. This approach can
lead to statistically significant results for these non-
deterministic workloads.
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