Devirtualizing Memory in Heterogeneous Systems

Swapnil Haria
University of Wisconsin-Madison
swapnilh@cs.wisc.edu

Abstract

Accelerators are increasingly recognized as one of the ma-
jor drivers of future computational growth. For accelerators,
shared virtual memory (VM) promises to simplify program-
ming and provide safe data sharing with CPUs. Unfortu-
nately, the overheads of virtual memory, which are high for
general-purpose processors, are even higher for accelerators.
Providing accelerators with direct access to physical mem-
ory (PM) in contrast, provides high performance but is both
unsafe and more difficult to program.

We propose Devirtualized Memory (DVM) to combine the
protection of VM with direct access to PM. By allocating
memory such that physical and virtual addresses are almost
always identical (VA==PA), DVM mostly replaces page-level
address translation with faster region-level Devirtualized Ac-
cess Validation (DAV). Optionally on read accesses, DAV can
be overlapped with data fetch to hide VM overheads. DVM
requires modest OS and IOMMU changes, and is transparent
to the application.

Implemented in Linux 4.10, DVM reduces VM overheads
in a graph-processing accelerator to just 1.6% on average.
DVM also improves performance by 2.1X over an optimized
conventional VM implementation, while consuming 3.9X
less dynamic energy for memory management. We further
discuss DVM'’s potential to extend beyond accelerators to
CPUs, where it reduces VM overheads to 5% on average,
down from 29% for conventional VM.
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Figure 1. Heterogeneous systems with (a) conventional VM
with translation on critical path and (b) DVM with Devirtu-
alized Access Validation alongside direct access on reads.

1 Introduction

The end of Dennard Scaling and slowing of Moore’s Law has
weakened the future potential of general-purpose comput-
ing. To satiate the ever-increasing computational demands
of society, research focus has intensified on heterogeneous
systems having multiple special-purpose accelerators and
conventional CPUs. In such systems, computations are of-
floaded by general-purpose cores to these accelerators.

Beyond existing accelerators like GPUs, accelerators for
big-memory workloads with irregular access patterns are
steadily gaining prominence [19]. In recent years, propos-
als for customized accelerators for graph processing [1, 25],
data analytics [61, 62], and neural computing [15, 26] have
shown performance and/or power improvements of several
orders of magnitude over conventional processors. The suc-
cess of industrial efforts such as Google’s Tensor Processing
Unit (TPU) [31] and Oracle’s Data Analytics Accelerator
(DAX) [58] further strengthens the case for heterogeneous
computing. Unfortunately, existing memory management
schemes are not a good fit for these accelerators.

Ideally, accelerators want direct access to host physical
memory to avoid address translation overheads, eliminate
expensive data copying and facilitate fine-grained data shar-
ing. This approach is simple to implement as it does not need
large, power-hungry structures such as translation lookaside
buffers (TLBs). Moreover, the low power and area consump-
tion are extremely attractive for small accelerators.

However, direct access to physical memory (PM) is not
generally acceptable. Applications rely on the memory pro-
tection and isolation of virtual memory (VM) to prevent
malicious or erroneous accesses to their data [41]. Similar
protection guarantees are needed when accelerators are mul-
tiplexed among multiple processes. Additionally, a shared vir-
tual address space is needed to support ‘pointer-is-a-pointer’
semantics. This allows pointers to be dereferenced on both
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the CPU and the accelerator which increases the programma-
bility of heterogeneous systems.

Unfortunately, the benefits of VM come with high over-
heads, particularly for accelerators. Supporting conventional
VM in accelerators requires memory management hardware
like page-table walkers and TLBs. For CPUs, address trans-
lation overheads have worsened with increasing memory
capacities, reaching up to 50% for some big-memory work-
loads [5, 32]. These overheads occur in processors with mas-
sive two-level TLBs and could be accentuated in accelerators
with simpler translation hardware.

Fortunately, conditions that required VM in the past are
changing. Previously, swapping was crucial in systems with
limited physical memory. Today, high-performance systems
are often configured with sufficient PM to mostly avoid swap-
ping. Vendors already offer servers with 64 TB of PM [53],
and capacity is expected to further expand with the emer-
gence of non-volatile memory technologies [21, 29].

Leveraging these opportunities, we propose a radical idea
to de-virtualize virtual memory by eliminating address trans-
lation on most memory accesses (Figure 1). We achieve this
by allocating most memory such that its virtual address (VA)
is the same as its physical address (PA). We refer to such
allocations as Identity Mapping (VA==PA). As the PA for
most accesses is identical to the VA, DVM replaces slow
page-level address translation with faster region-level Devir-
tualized Access Validation (DAV). For DAV, the IO memory
management unit (IOMMU) verifies that the process holds
valid permissions for the access and that the access is to an
identity-mapped page. Conventional address translation is
still needed for accesses to non identity-mapped pages. Thus
DVM also preserves the VM abstraction.

DAV can be optimized by exploiting the underlying con-
tiguity of permissions. Permissions are typically granted
and enforced at coarser granularities and are uniform across
regions of virtually contiguous pages, unlike translations.
While DAV is still performed via hardware page walks, we
introduce the Permission Entry (PE), which is a new page ta-
ble entry format for storing coarse-grained permissions. PEs
reduce DAV overheads in two ways. First, depending on the
available contiguity, page walks can be shorter. Second, PEs
significantly reduce the size of the overall page table thus
improving the performance of page walk caches. DVM for
accelerators is completely transparent to applications, and re-
quires small OS changes to identity map memory allocations
on the heap and construct PEs.

Furthermore, devirtualized memory can optionally be used
to reduce VM overheads for CPUs by identity mapping all
segments in a process’s address space. This requires addi-
tional OS and hardware changes.

This paper describes a memory management approach for
heterogeneous systems and makes these contributions:

e We propose DVM to minimize VM overheads, and
implement OS support in Linux 4.10.

e We develop a compact page table representation by
exploiting the contiguity of permissions through a new
page table entry format called the Permission Entry.

e We design the Access Validation Cache (AVC) to re-
place both TLBs and Page Walk Caches (PWC). For
a graph processing accelerator, DVM with an AVC is
2.1X faster while consuming 3.9X less dynamic energy
for memory management than a highly-optimized VM
implementation with 2M pages.

e We extend DVM to support CPUs (cDVM), thereby
enabling unified memory management throughout the
heterogeneous system. cDVM lowers the overheads of
VM in big-memory workloads to 5% for CPUs.

However, DVM does have some limitations. Identity Map-
ping allocates memory eagerly and contiguously (Section 4.3.1)
which aggravates the problem of memory fragmentation, al-
though we do not study this effect in this paper. Additionally,
while copy-on-write (COW) and fork are supported by DVM,
on the first write to a page, a copy is created which cannot
be identity mapped, eschewing the benefits of DVM for that
mapping. Thus, DVM is not as flexible as VM, but avoids
most of the VM overheads. Finally, the Meltdown [37] and
Spectre [34] design flaws became broadly known just as
this paper was being finalized. One consequence is that fu-
ture implementations of virtual memory, including DVM,
may need to be careful about leaving detectable changes
to micro-architecture state made during misspeculation, as
these changes may be used as timing channels [35].

2 Background

Our work focuses on accelerators running big-memory work-
loads with irregular access patterns such as graph-processing,
machine learning and data analytics. As motivating exam-
ples, we use graph-processing applications like Breadth-First
Search, PageRank, Single-Source Shortest Path and Collab-
orative Filtering as described in Section 6. First, we discuss
why existing approaches for memory management are not a
good fit for these workloads.

Accelerator programming models employ one of two ap-
proaches for memory management (in addition to unsafe
direct access to PM). Some accelerators use separate address
spaces [31, 40]. This necessitates explicit copies when shar-
ing data between the accelerator and the host processor. Such
approaches are similar to discrete GPGPU programming
models. As such, they are plagued by the same problems: (1)
the high overheads of data copying require larger offloads
to be economical; and (2) this approach makes it difficult
to support pointer-is-a-pointer semantics, which reduces
programmability and complicates the use of pointer-based
data structures such as graphs.
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Figure 2. TLB miss rates for Graph Workloads with 128-
entry TLB

To facilitate data sharing, accelerators (mainly GPUs) have
started supporting unified virtual memory, in which accel-
erators can access PM shared with the CPU using virtual
addresses. This approach typically relies on an IOMMU to ser-
vice address translation requests from accelerators [2, 30], as
illustrated in Figure 1. We focus on these systems, as address
translation overheads severely degrade the performance of
these accelerators [16].

For our graph workloads, we observe high TLB miss rates
of 21% on average with a 128-entry TLB (Figure 2). There
is little spatial locality and hence using larger 2MB pages
improves the TLB miss rates only by 1% on average. TLB
miss rates of about 30% have also been observed for GPU
applications [45, 46]. While optimizations specific to GPU
microarchitecture for TLB-awareness (e.g., cache-conscious
warp scheduling) have been proposed to mitigate these over-
heads, these optimizations are not general enough to support
efficient memory management in heterogeneous systems
with multiple types of accelerators.

Some accelerators (e.g., Tesseract [1]) support simple ad-
dress translation using a base-plus-offset scheme such as
Direct Segments [5]. With this scheme, only memory within
a single contiguous PM region can be shared, limiting its
flexibility. Complicated address translation schemes such
as range translations [32] are more flexible as they support
multiple address ranges. However, they require large and
power-hungry Range TLBs, which may be prohibitive given
the area and power budgets of accelerators.

As a result, we see that there is a clear need for a sim-
ple, efficient, general and performant memory management
approach for accelerators.

3 Devirtualizing Memory

In this section, we present the high-level design of our Devir-
tualized Memory (DVM) approach. Before discussing DVM,
we enumerate the goals for a memory management approach
suitable for accelerators (as well as CPUs).

3.1 List of Goals

Programmability. Simple programming models are impor-
tant for increased adoption of accelerators. Data sharing

Virtual 0x1000:0x1fff 0x34000:0x35fff 0x60000:0x6ffff

Addressl | | | | |

[ ---11]
Identity Non-Identity Identity
Mapping Mapping Mapping

Physical X e —

Address | |

Space 5, 1000:0x1f _ 0x21000: 0x44000:
ox21fff  Oxd44fff

0x60000:0x6ffff

Figure 3. Address Space with Identity Mapped and Demand
Paged Allocations.

between CPUs and accelerators must be supported, as accel-
erators are typically used for executing parts of an applica-
tion. Towards this end, solutions should preserve pointer-
is-a-pointer semantics. This improves the programmability
of accelerators by allowing the use of pointer-based data
structures without data copying or marshalling [50].
Power/Performance. An ideal memory management scheme
should have near zero overheads even for irregular access
patterns in big-memory systems. Additionally, MMU hard-
ware must consume little area and power. Accelerators are
particularly attractive when they offer large speedups under
small resource budgets.

Flexibility. Memory management schemes must be flexible
enough to support dynamic memory allocations of vary-
ing sizes and with different permissions. This precludes ap-
proaches whose benefits are limited to a single range of
contiguous virtual memory.

Safety. No accelerator should be able to reference a physi-
cal address without the right authorization for that address.
This is necessary for guaranteeing the memory protection
offered by virtual memory. This protection attains greater
importance in heterogeneous systems to safeguard against
buggy or malicious third-party accelerators [42].

3.2 Devirtualized Memory

To minimize VM overheads, DVM introduces Identity Map-
ping and leverages permission validation [36, 60] in the form
of Devirtualized Access Validation. Identity mapping allocates
memory such that all VAs in the allocated region are iden-
tical to the backing PAs. DVM uses identity mapping for
all heap allocations. Identity mapping can fail if no suitable
address range is available in both the virtual and physical ad-
dress spaces. In this case, DVM falls back to demand paging.
Figure 3 illustrates an address space with identity mapping.
As PA==VA for most data on the heap, DVM can avoid
address translation on most memory accesses. Instead, it is
sufficient to verify that the accessed VA is identity mapped
and that the application holds sufficient permissions for the
access. We refer to these checks as Devirtualized Access
Validation. In rare cases when PA!=VA, DAV fails and DVM
resorts to address translation as in conventional VM.
Optionally on read accesses, DAV can be performed off the
critical path. By predicting that the accessed VA is identity
mapped, a premature load or preload is launched for the
PA==VA of the access in parallel with DAV. In the common
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Figure 4. Memory Accesses in DVM

case (PA==VA), DAV succeeds and the preload is treated
as the actual read access. If DAV fails, the preloaded value
has to be discarded. Address translation is performed and a
regular read access is launched to the translated PA. Memory
accesses in DVM are illustrated in Figure 4.

DVM is designed to satisfy the goals listed earlier:
Programmability. DVM enables shared address space in
heterogeneous systems at minimal cost, thus improving pro-
grammability of such systems.

Power/Performance. DVM optimizes for performance and
power-efficiency by performing DAV much faster than full
address translation. DAV latency is minimized by exploiting
the contiguity of permissions for compact storage and effi-
cient caching performance (Section 4.1.1). In case of loads,
DVM can perform DAV in parallel with data preload, mov-
ing DAV off the critical path and offering immediate access
to PM. Even in the rare case of an access to a non-identity
mapped page, performance is no worse than conventional
VM as DAV reduces the address translation latency, as ex-
plained in Section 4. However, additional power is consumed
to launch and then squash the preload.

Flexibility. DVM facilitates page-level sharing between the
accelerator and the host CPU since regions as small as a
single page can be identity mapped independently, as shown
in Figure 3. This allows DVM to benefit a variety of applica-
tions, including those that do not have a single contiguous
heap. Furthermore, DVM is transparent to most applications.
Safety. DVM completely preserves conventional virtual mem-
ory protection as all accesses are still checked for valid per-
missions. If appropriate permissions are not present for an
access, an exception is raised on the host CPU.

4 Implementing DVM for Accelerators

Having established the high-level model of DVM, we now
dive into the implementation of identity mapping and de-
virtualized access validation. We add support for DVM in

accelerators with modest changes to the OS and IOMMU and
without any CPU hardware modifications.

First, we describe page table improvements and hardware
mechanisms for fast DAV. Next, we show how DAV over-
heads can be minimized further for reads by overlapping it
with preload. Finally, we discuss OS modifications to support
identity mapping. Here, we use the term memory region to
mean a collection of virtually contiguous pages with the
same permissions. Also, we use page table entries (PTE) to
mean entries at any level of the page table.

4.1 Devirtualized Access Validation

We support DAV with compact page tables and an access
validation cache. We assume that the IOMMU uses separate
page tables to avoid affecting CPU hardware. We use the
following 2-bit encoding for permissions—00:No Permission,
01:Read-Only, 10:Read-Write and 11:Read-Execute.

4.1.1 Compact Page Tables

We leverage available contiguity in permissions to store them
at a coarse granularity resulting in a compact page table
structure. Figure 5 shows an x86-64 page table. An L2 Page
Directory entry (L2PDE) @ maps a contiguous 2MB VA range
®. Physical Page Numbers are stored for each 4K page in
this range, needing 512 L1 page table entries (PTEs) @ and
4KB of memory. However, if pages are identity mapped, PAs
are already known and only permissions need to be stored.
If permissions are the same for the entire 2MB region (or an
aligned sub-region), these could be stored at the L2 level. For
larger regions, permissions can be stored at the L3 and L4
levels. For new 5-level page tables, permissions can also be
stored at the L5 levels.

We introduce a new type of leaf PTE called the Permissions
Entry (PE), shown in Figure 6. PEs are direct replacements
for regular PTEs at any level, with the same size (8 bytes) and
mapping the same VA range as the replaced PTE. PEs contain
sixteen permission fields, currently 2-bit each. A permission
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entry bit is added to all PTEs, and is 1 for PEs and 0 for other
regular PTEs.

Each PE records separate permissions for sixteen aligned
regions comprising the VA range mapped by the PE. Each
constituent region is 1/16th the size of the range mapped by
the PE, aligned on an appropriate power-of-two granularity.
For instance, an L2PE maps a 2MB VA range of sixteen 128KB
(=2MB/16) regions aligned on 128KB address boundaries. An
L3PE maps a 1GB VA range of sixteen 64MB regions aligned
on 64MB address boundaries. Other intermediate sizes can
be handled simply by replicating permissions. Thus a 1IMB
region is mapped by storing permissions across 8 permission
fields in an L2PE. Region @ in Figure 5 can be mapped by
an L2PE with uniform permissions stored in all 16 fields.

PEs implicitly guarantee that any allocated memory in the
mapped VA range is identity-mapped. Unallocated memory
i.e., gaps in the mapped VA range can also be handled grace-
fully, if aligned suitably, by treating them as regions with no
permissions (00). This frees the underlying PAs to be re-used
for non-identity mapping in the same or other applications
or for identity mappings in other applications. If region 3 is
replaced by two adjacent 128 KB regions at the start of the
mapped VA range with the rest unmapped, we could still
use an L2PE to map this range, with relevant permissions
for the first two regions, and 00 permissions for the rest of
the memory in this range.

On an accelerator memory request, the IOMMU performs
DAV by walking the page table. A page walk ends on encoun-
tering a PE, as PEs store information about identity mapping
and permissions. If insufficient permissions are found, the
IOMMU may raise an exception on the host CPU.

If a page walk encounters a leaf PTE, the accessed VA may
not be identity mapped. In this case, the leaf PTE is used to
perform address translation i.e., use the page frame number
recorded in the PTE to generate the actual PA. This avoids
a separate walk of the page table to translate the address.
More importantly, this ensures that even in the fallback case
(PA!=VA), the overhead (i.e., full page walk) is no worse than
conventional VM.

Input Page Tables % occupied P:vgii};r ;;I:S
Graph (in KB) by L1PTEs (in KB)
FR 616 0.948 48
Wiki 2520 0.987 48
LJ 4280 0.992 48
S24 13340 0.996 60
NF 4736 0.992 52
BIP1 2648 0.989 48
BIP2 11164 0.996 68

Table 1. Page Table Sizes for PageRank and CF. PEs reduce
the page table size by eliminating most L1PTEs.

63 62:32 310
[PE=1| Unused [P15|P14| o0 oo

|P1|Po|

Figure 6. Structure of a Permission Entry. PE: Permission
Entry, P15-P0: Permissions.

Incorporating PEs significantly reduces the size of page ta-

bles (Table 1) as each higher-level (L2-L4) PE directly replaces
an entire sub-tree of the page table. For instance, replacing an
L3PTE with a PE eliminates 512 L2PDEs and up to 512 X 512
L1PTEs, saving as much as 2.05 MB. Most of the benefits
come from eliminating L1PTEs as these leaf PTEs comprise
about 98% of the size of the page tables. Thus, PEs make page
tables more compact.
Alternatives. Page table changes can be minimized by us-
ing existing unused bits in PTEs instead of adding PEs. For
instance, using 8 out of the 9 unused bits in L2PTEs provides
four 512KB regions. Similarly, 16 out of 18 free bits in L3PTEs
can support eight 128MB regions. DAV latency can also be
traded for space by using flat permission bitmaps for the
entire virtual address space as in Border Control [41].

4.1.2 Access Validation Cache

The major value of smaller page tables is improved efficacy
of caching PTEs. In addition to TLBs which cache PTEs,
modern IOMMU s also include page walk caches (PWC) to
store L2-L4 PTEs [4]. During the course of a page walk, the
page table walker first looks up internal PTEs in the PWC
before accessing main memory. In existing systems, LIPTEs
are not cached to avoid polluting the PWC [8]. Hence, page
table walks on TLB misses incur at least one memory access,
for obtaining the L1PTE.

We propose the Access Validation Cache (AVC), which
caches all intermediate and leaf entries of the page table, to
replace both TLBs and PWCs for accelerators. The AVC is a
standard 4-way set-associative cache with 64B blocks. The
AVC caches 128 distinct PTEs, resulting in a total capacity of
1 KB. It is physically-indexed and physically tagged cache,
as page table walks use physical addresses. For PEs, this
provides 128 sets of permissions. The AVC does not support
translation skipping [4].



On every memory reference by an accelerator, the IOMMU
walks the page table using the AVC. In the best case, page
walks require 2-4 AVC accesses and no main memory ac-
cess. Caching L1PTEs allows AVC to exploit their temporal
locality, as done traditionally by TLBs. But, L1IPTEs do not
pollute the AVC as the introduction of PEs greatly reduces
the number of L1PTEs. Thus, the AVC can perform the role
of both a TLB and a traditional PWC.

Due to the smaller page tables, even a small 128-entry
(1KB) AVC has very high hit rates, resulting in fast access
validation. As the hardware design is similar to conventional
PWCs, the AVC is just as energy-efficient. Moreover, the
AVC is more energy-efficient than a comparably sized, fully
associative (FA) TLB due to a less associative lookup.

4.2 Preload on Reads

If an accelerator supports the ability to squash and retry
an inflight load, DVM allows a preload to occur in parallel
with DAV. As a result, the validation latency for loads can
be overlapped with the memory access latency. If the access
is validated successfully, the preload is treated as the actual
memory access. Otherwise, it is discarded, and the access
is retried to the correct, translated PA. For stores, this opti-
mization is not possible because the physical address must
be validated before the store updates memory.

4.3 Identity Mapping

As accelerators typically only access shared data on the heap,
we implement identity mapping only for heap allocations,
requiring minor OS changes. The application’s heap is actu-
ally composed of the heap segment (for smaller allocations)
as well as memory-mapped segments (for larger allocations).

To ensure VA==PA for most addresses in memory, firstly,
physical frames (and thus PAs) need to be reserved at the
time of memory allocation. For this, we use eager paging [32].
Next, the allocation is mapped into the virtual address space
at VAs equal to the backing PAs. This may result in heap
allocations being mapped anywhere in the process address
space as opposed to a hardcoded location. To handle this,
we add support for a flexible address space. Below, we de-
scribe our implementation in Linux 4.10. Figure 7 shows the
pseudocode for identity mapping.

4.3.1 Eager Contiguous Allocations

Identity Mapping in DVM is enabled by eager contiguous
allocations of memory. On memory allocations, the OS al-
locates physical memory then sets the VA equal to the PA.
This is unlike demand paging used by most OSes, which
allocates physical frames lazily at the time of first access
to a virtual page. For allocations larger than a single page,
contiguous allocation of physical memory is needed to guar-
antee VA==PA for all the constituent pages. We use the eager
paging modifications to Linux’s default buddy allocator de-
veloped by others [32] to allocate contiguous powers-of-two

Memory-Allocation (Size S)
PA « contiguous-PM-allocation(S)
if PA # NULL then
VA « VM-allocation(S)
Move region to new VA, equal to PA
if Move succeeds then
‘ return VA, // Identity-Mapped
end
else
Free-PM(PA,S)
return VA // Fallback to Demand-Paging
end
nd
else
VA « VM-allocation(S)
return VA // Fallback to Demand-Paging
end

[}

Figure 7. Pseudocode for Identity Mapping

pages. Once contiguous pages are obtained, additional pages
obtained due to rounding up are returned immediately. Ea-
ger allocation can increase physical memory use if programs
allocate much more memory then they actually use.

4.3.2 Flexible Address Space

Operating systems historically dictated the layout of user-
mode address spaces, specifying where code, data, heap, and
stack reside. For identity mapping, our modified OS assigns
VAs equal to the backing PAs. Unfortunately, there is little
control over the allocated PAs without major changes to the
default buddy allocator in Linux. As a result, we could have
a non-standard address space layout, for instance with the
heap below the code segment in the address space. To allow
such cases, the OS needs to support a flexible address space
with no hard constraints on the location of the heap and
memory-mapped segments.

Heap. We modify the default behavior of glibc malloc to al-
ways use the mmap system call instead of brk. This is because
identity mapped regions cannot be grown easily, and brk
requires dynamically growing a region. We initially allocate
a memory pool to handle small allocations. Another pool
is allocated when the first is full. Thus, we turn the heap
into noncontiguous memory-mapped segments, which we
discuss next.

Memory-mapped segments. We modify the kernel to ac-
commodate memory-mapped segments anywhere in the ad-
dress space. Address Space Layout Randomization (ASLR)
already allows randomizing the base positions of the stack,
heap as well as memory-mapped regions (libraries) [57]. Our
implementation further extends this to allow any possible
positions of the heap and memory-mapped segments.



Low-memory situations. While most high-performance
systems are configured with sufficient memory capacity, con-
tiguous allocations can result in fragmentation over time and
preclude further contiguous allocations.

In low memory situations, DVM reverts to standard pag-
ing. Furthermore, to reclaim memory, the OS could convert
permission entries to standard PTEs and swap out mem-
ory (not implemented). We expect such situations to be rare
in big-memory systems, which are our main target. Also,
once there is sufficient free memory, the OS can reorganize
memory to reestablish identity mappings.

5 Discussion

Here we address potential concerns regarding DVM.
Security implications. While DVM sets PA==VA in the
common case, this does not weaken isolation. Just because
applications can address all of PM does not give them per-
missions to access it [14]. This is commonly exploited by
OSes. For instance, in Linux, all physical memory is mapped
into the kernel address space, which is part of every process.
Although this memory is addressable by an application, any
user-level access will to this region will be blocked by hard-
ware due to lack of permissions in the page table. However,
with a cache, preloads could be vulnerable to the Meltdown
exploit [37], so this optimization could be disabled.

The semi-flexible address space layout used in modern
OSes allows limited randomization of address bits. For in-
stance, Linux provides 28 bits of ASLR entropy while Win-
dows 10 offers 24 bits for the heap. DVM gets randomness
from physical addresses, which may have fewer bits, such
as 12 bits for 2MB-aligned allocation in 8GB physical ad-
dress space. However even the stronger Linux randomiza-
tion has already been derandomized by software [23, 52]
and hardware-based attacks [24]. A comprehensive security
analysis of DVM is beyond the scope of this work.
Copy-on-Write (CoW). CoW is an optimization for mini-
mizing the overheads of copying data, by deferring the copy
operation till the first write. Before the first write, both the
source and destination get read-only permissions to the orig-
inal data. It is most commonly used by the fork system call
to create new processes.

CoW can be performed with DVM without any correctness
issues. Before any writes occur, there is harmless read-only
aliasing. The first write in either process allocates a new
page for a private copy, which cannot be identity-mapped,
as its VA range is already visible to the application, and the
corresponding PA range is allocated for the original data.
Thus, the OS reverts to standard paging for the address.
Thus, we recommend against using CoW for data structures
allocated using identity mapping.

Unix-style Fork. The fork operation in Unix creates a child
process, and copies a parent’s private address space into the
child process. Commonly, CoW is used to defer the actual

copy operation. As explained in the previous section, CoW
works correctly, but can break identity mapping.

Hence, we recommend calling fork before allocating struc-

tures shared with accelerators. If processes must be created
later, then the posix_spawn call (combined fork and exec)
should be used when possible to create new processes with-
out copying. Alternatively, vfork, which shares the address
space without copying, can be used, although it is typically
considered less safe than fork.
Virtual Machines. DVM can be extended for virtualized
environments as well. The overheads of conventional virtual
memory are exacerbated in such environments [7] as mem-
ory accesses need two levels of address translation (1) guest
virtual address (gVA) to guest physical address (gPA) and (2)
guest physical address to system physical address (sPA).

To reduce these costs, DVM can be extended in three ways.

With guest OS support for multiple non-contiguous physical
memory regions, DVM can be used to map the gPA to the
sPA directly in the hypervisor, or in the guest OS to map gVA
to gPA. These approaches convert the two-dimensional page
walk to a one-dimensional walk. Thus, DVM brings down
the translation costs to unvirtualized levels. Finally, there is
scope for broader impact by using DVM for directly mapping
gVA to sPA, eliminating the need for address translation on
most accesses.
Comparison with Huge Pages. Here we offer a qualita-
tive comparison, backed up by a quantitative comparison in
Section 6. DVM breaks the serialization of translation and
data fetch, unlike huge pages. Also, DVM exploits finer gran-
ularities of contiguity by having 16 permission fields in each
PE. Specifically, 128KB (=2MB /16) of contiguity is sufficient
for leveraging 2MB L2PEs, and 64MB (=1GB/16) contiguity
is sufficient for 1GB L3PEs.

Moreover, supporting multiple page sizes is difficult [17,
54], particularly with set associative TLBs which are com-
monly used due to their power-efficiency. On the other hand,
PEs at higher levels of the page table allow DVM to gracefully
scale with increasing memory sizes.

Finally, huge page TLB performance still depends on the
locality of memory references. TLB performance can be an
issue for big-memory workloads with irregular or streaming
accesses [43, 47], as shown in Figure 2. In comparison, DVM
exploits the locality in permissions which is found in most
applications due to how memory is typically allocated.

6 Evaluation
6.1 Methodology

We quantitatively evaluate DVM using a heterogeneous sys-
tem containing an out-of-order core and the Graphicionado
graph-processing accelerator [25]. Graphicionado is opti-
mized for the low computation-to-communication ratio of
graph applications. In contrast to software frameworks, where
94% of the executed instructions are for data movement,



Graphicionado uses an application-specific pipeline and mem-
ory system design to avoid such inefficiencies. Its execution

pipeline and datapaths are geared towards graph primitives—
edges and vertices. Also, by allowing concurrent execution

of multiple execution pipelines, the accelerator is able to

exploit the available parallelism and memory bandwidth.

To match the flexibility of software frameworks, Graphi-
cionado uses reconfigurable blocks to support the vertex pro-
gramming abstraction. Thus a graph algorithm is expressed
as operations on a single vertex and its edges. Most graph
algorithms can be specified and executed on Graphicionado
with three custom functions, namely processEdge, reduce
and apply. The graph is stored as a list of edges, each in the
form of a 3-tuple (srcid, dstid, weight). A list of vertices is
maintained where each vertex is associated with a vertex
property (i.e., distance from root in BFS or rank in PageR-
ank). The vertex properties are updated during execution.
Graphicionado also maintains ancillary arrays for efficient
indexing into the vertex and the edge lists.

We simulate a heterogeneous system with one CPU and
the Graphicionado accelerator with the open-source, cycle-
level gem5 simulator [12]. We implement Graphicionado
with 8 processing engines and no scratchpad memory as
an IO device with its own timing model in gem5. The com-
putation performed in each stage of a processing engine is
executed in one cycle, and memory accesses are made to
the shared memory. We use gem5’s full-system mode to run
workloads on our modified Linux operating system. The con-
figuration details of the simulation are shown in Table 2. For
energy results, we use access energy numbers from Cacti
6.5 [38] and access counts from our gem5 simulation.

6.2 Workloads

We run four common graph algorithms on the accelerator—
PageRank, Breadth-First Search, Single-Source Shortest Path
and Collaborative Filtering. We run each of these workloads
with multiple real-world as well as synthetic graphs. The
details of the input graphs can be found in Table 3. The syn-
thetic graphs are generated using the graph500 RMAT data
generator [13, 39]. To generate synthetic bipartite graphs, we
convert the synthetic RMAT graphs following the methodol-
ogy described by Satish et al [51].

6.3 Results

We evaluate seven separate implementations. We evaluate
conventional VM implementations using an IOMMU with
128-entry fully associative (FA) TLB and 1KB PWC. We show
the performance with three page sizes—4KB, 2MB and 1GB.
Next, we evaluate three DVM implementations with differ-
ent DAV hardware. First, we store permissions for all VAs in
a flat 2MB bitmap in memory for 1-step DAV, with a sepa-
rate 128-entry cache for caching bitmap entries (DVM-BM).
2-bit permissions are stored for all identity-mapped pages
in the application’s heap for fast access validation. If no

CPU
Cores 1
Caches 64KB L1, 2MB L2
Frequency 3 GHz

Accelerator

Processing Engines 8

TLB Size 128-entry FA
TLB Latency 1 cycle
PWC/AVC Size 128-entry, 4-way SA
PWC/AVC Latency 1 cycle
Frequency 1 GHz
Memory System
Memory Size 32 GB
Memory B/W 4 channels of DDR4 (51.2 GB/s)

Table 2. Simulation Configuration Details

Graph # Vertices  # Edges Heap Size

Flickr (FR) [20] 0.82M 9.84M 288 MB
Wikipedia (Wiki) [20] 3.56M 84.75M  1.26 GB
LiveJournal (LJ) [20] 4.84M 68.99M 2.15 GB
RMAT Scale 24 (RMAT) 6.79 GB

. 480K users,
Netflix (NF) [6] 18K movies 99.07M 2.39 GB

R . 969K users,
Synthetic Bipartite 1 (SB1) 100K movies 53.82M 1.33GB
Synthetic Bipartite 2 (SB2) 27 0M USeIS  9359M  5.66 GB

100K movies

Table 3. Graph Datasets Used for Evaluation

permissions (i.e., 00) are found, full address translation is
performed, expedited by a 128-entry FA TLB. Second, we
implement DAV using page tables modified to use PEs and
a 128-entry (1KB) AVC (DVM-PE). Third, we extend DVM-
PE by allowing preload on reads (DVM-PE+). Finally, we
evaluate an ideal implementation in which the accelerator
directly accesses physical memory without any translation
or protection checks.

6.3.1 Performance

Figure 8 shows the execution time of our graph workloads
for different input graphs for the above systems, normalized
to the ideal implementation.

DVM-PE outperforms most other VM implementations
with only 3.5% overheads. Preload support in DVM-PE+ fur-
ther reduces DVM overheads to only 1.7%. The performance
improvements come from being able to complete most page
walks entirely from the AVC without any memory references.
Conventional PWCs typically avoid caching L1PTEs to pre-
vent cache pollution, so page walks for 4K pages require at
least one memory reference.

DVM-BM incurs 23% DVM overheads, much lower than
most other VM implementations but greater than the other
DVM variants. Unfortunately, the hit rate of the BM cache
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Figure 8. Execution time for accelerator workloads, normalized to runtime of ideal implementation.

is not as high as the AVC, due to the much larger size of
standard page tables and use of 4KB pages instead of 128KB
or larger regions.

4K, TLB+PWC and 2M,TLB+PWC have high VM overheads,
on average 119% and 114% respectively. As seen in Figure 2,
the irregular access patterns of our workloads result in high
TLB miss rates. Using 2MB pages does not help much, as
the TLB reach is still limited to 256 MB (128*2MB), which
is smaller than the working sets of most of our workloads.
NF has high TLB hit rates due to higher temporal locality of
accesses. Being a bipartite graph, all its edges are directed
from 480K users to only 18K movies. The small number
of destination nodes results in high temporal locality. As a
result, moving to 2MB pages exploits this locality showing
near-ideal performance.

1G,TLB+PWC also performs well—virtually no VM overhead—

for the workloads and system that we evaluate, but with three
issues. First, <10 1GB pages are sufficient to map these work-
loads, but not necessarily for future workloads. Second, there
are known OS challenges for managing 1GB pages. Third, the
128-entry fully associatve TLB we assume is power-hungry
and often avoided in industrial designs (e.g., Intel currently
uses four-way set associative).

6.3.2 Energy

Energy is a first-order concern in modern systems, partic-
ularly for small accelerators. Here, we consider the impact
of DVM on reducing the dynamic energy spent in MMU
functions, like address translation for conventional VM and
access validation for DVM. We calculate this dynamic energy
by adding the energy of all TLB accesses, PWC accesses, and
memory accesses by the page table walker [33]. We show

the dynamic energy consumption of VM implementations,
normalized to 4K, TLB+PWC in Figure 9.

DVM-PE offers 76% reduction in dynamic translation en-
ergy over the baseline. This mainly comes from removing
the FA TLB. Also, page walks can be entirely serviced with
AVC cache accesses without any main memory accesses,
significantly decreasing the energy consumption. Memory
accesses for discarded preloads for non-identity mapped
pages increase dynamic energy slightly in DVM-PE+.

DVM-BM shows a 15% energy reduction over the baseline.
Energy consumption is higher than other DVM variants due
to memory references on bitmap cache misses.

1G,TLB+PWC shows low energy consumption due to lack
of TLB misses.

6.3.3 Identity Mapping

To evaluate the risk of fragmentation with eager paging
and identity mapping, we use the shbench benchmark from
MicroQuill, Inc [28]. We configure this benchmark to con-
tinuously allocate memory of variable sizes until identity
mapping fails to hold for an allocation (VA!=PA). Experi-
ment 1 allocated small chunks of memory, sized between
100 and 10,000 bytes. Experiment 2 allocated larger chunks,
sized between 100,000 and 10,000,000 bytes. Finally, we ran
four concurrent instances of shbench, all allocating large
chunks as in experiment 2. For each of these, we report the
percentage of memory that could be allocated before iden-
tify mapping failed for systems with 16 GB, 32 GB and 64
GB of total memory capacity. We observe that 95 to 97% of
memory can be allocated with identity mapping, even in
memory-constrained systems with 16 GBs of memory. Our
complete results are shown in Table 4.
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Figure 9. Dynamic energy spent in address translation/access validation, normalized to the 4KB, TLB+PWC implementation.

% Memory Allocated (PA==VA)

System Memory Expt1l Expt2 Expt 3
16 GB 96% 95% 96%
32 GB 97% 97% 96%
64 GB 97% 97% 97%

Table 4. Percentage of total system memory successfully
allocated with identity mapping.

7 Towards DVM across Heterogeneous
Systems

DVM can provide similar benefits for CPUs (cDVM). With
the end of Dennard Scaling and the slowing of Moore’s Law,
one avenue for future performance growth is to reduce waste
everywhere. Towards this end, we discuss the use of DVM
for CPU cores to reduce waste due to VM. This opportunity
comes with CPU hardware and OS changes that are real, but
more modest than we initially expected.

7.1 Hardware Changes for Processors

In addition to the DVM benefits described for accelerators,
the cDVM approach can also optimize stores by exploiting
the write-allocate policy of write-back caches. Under the
write-allocate policy, a cacheline is first fetched from mem-
ory on a store missing in the cache. Subsequently, the store
updates the cached location. cDVM speculatively performs
the long-latency cacheline fetch in parallel with address
translation, thus decreasing the latency of store operations.
If speculation is found incorrect on DAV, implementations
may wish to undo micro-architectural changes to mitigate
timing channel exploits [34, 35, 37].

Affected Feature LOC changed

Code Segment 39
Heap Segment 1*
Memory-mapped Segments 56
Stack Segment 63
Page Tables 78
Miscellaneous 15

Table 5. Lines of code changed in Linux v4.10 split up by
functionality. *Changes for memory-mapped segments affect
heap segment, so we only count them once.

7.2 OS Support for DVM in CPUs

The simplest way to extend to CPUs is to enable the OS
VM and CPU page table walkers to handle the new compact
page tables with PEs. Next, we can optionally extend to code
and/or stack, but typically heap is much larger than other
segments. We have implemented a prototype providing this
flexibility in Linux v4.10. The lines of code changed is shown
in Table 5.

Stack. The base addresses for stacks are already randomized
by ASLR. The stack of the main thread is allocated by the
kernel, and is used to setup initial arguments to launch the
application. To minimize OS changes, we do not identity
map this stack initially. Once the arguments are setup, but
before control passes to the application, we move the stack
to the VA matching its PA.

Dynamically growing a region is difficult with identity
mapping, as adjacent physical pages may not be available.
Instead, we eagerly allocate an 8MB stack for all threads.
This wastes some memory, but this can be adjusted. Stacks
can be grown above this size using gec’s Split Stacks [55].



The stacks of other threads beside the main thread in a
multi-threaded process are allocated as memory-mapped
segments, and can be handled as discussed previously.
Code and globals. In unmodified Linux, the text segment
(i.e., code) is located at a fixed offset near the bottom of the
process address space, followed immediately by the data
(initialized global variables) and the bss (uninitialized global
variables) segments. To protect against return-oriented pro-
gramming (ROP) attacks [49], OSes have begun to support
position independent executables (PIE) which allow binaries
to be loaded at random offsets from the base of the address
space [48]. PIE incurs a small cost on function calls due to
an added level of indirection.

PIE randomizes the base position of the text segment and
keeps data and bss segments adjacent. We consider these
segments as one logical entity in our prototype and allocate
an identity-mapped segment equal to the combined size of
these three segments. The permissions for the code region are
then set to be Read-Execute, while the other two segments
are to Read-Write.

7.3 Performance Evaluation

We evaluate the performance benefits of cDVM using mem-
ory intensive CPU-only applications like mcf from SPEC
CPU 2006 [27], BT, CG from NAS Parallel Benchmarks [3],
canneal from PARSEC [11] and xsbench [56].

Using hardware performance counters, we measure L2
TLB misses, page walk cycles and total execution cycles of
these applications on an Intel Xeon E5-2430 machine with 96
GB memory, 64-entry L1 DTLB and 512-entry DTLB. Then,
we use BadgerTrap [22] to instrument TLB misses and esti-
mate the hit rate of the AVC. Finally, we use a simple ana-
lytical model to conservatively estimate the VM overheads
under cDVM, like past work [5, 8, 9, 18, 32, 44]. For the ideal
case, we estimate running time by subtracting page walk
cycles for 2MB pages from total execution cycles.

We compare cDVM with conventional VM using 4KB
pages and 2MB pages with Transparent Huge Paging (THP).
From our results in Figure 10, we see that conventional VM
adds about 29% overheads on average with 4KB pages and
13% with THP, even with a two-level TLB hierarchy. THP im-
proves performance by expanding TLB reach and shortening
page walks. Due to the limits of our evaluation methodol-
ogy, we can only estimate performance benefits of the AVC:
we do not implement preloads. Even so, cDVM reduces VM
overheads from 13% with 2MB pages to within 5% of the
ideal implementation without address translation. The per-
formance benefits come from shorter page walks with fewer
memory accesses. Thus, we believe that cDVM merits more
investigation to optimize systems with high VM overheads.

84%

B 4K [ THP B cDVM

VM overheads

mcf bt cg

canneal xsbench Average

Figure 10. Runtime of CPU-only workloads, normalized to
the ideal case.

8 Related Work

Overheads of VM. The increasing VM overheads have been
studied for CPU workloads (e.g., Direct Segments [5]), and
recently for accelerators (e.g., Cong et al. [16]).

VM for Accelerators. Border Control (BC) [41] recognized
the need for enforcing memory security in heterogeneous
systems. BC provides mechanisms to checking permissions
on physical addresses of requests leaving the accelerator.
However, BC does not aim to mitigate virtual memory over-
heads. Our DVM-BM implementation optimizes BC for fast
access validation with DVM.

Most prior proposals have lowered virtual memory over-
heads for accelerators using changes in TLB location or hi-
erarchy [16, 59]. For instance, two-level TLB structures in
the IOMMU with page walks on the host CPU have been
shown to reduce VM overheads to within 6.4% of ideal [16].
This design is similar to our 2M,TLB+PWC implementation
which uses large pages to improve TLB reach instead of a
level 2 TLB as in the original proposal, and uses the IOMMU
PWC. We see that TLBs are not very effective for workloads
with irregular access patterns. Moreover, using TLBs greatly
increases the energy use of accelerators.

Particularly for GPGPUs, microarchitecture-specific opti-
mizations such as coalescers have been effective in reducing
the address translation overheads [45, 46]. However, these
techniques cannot be easily extended for other accelerators.
Address Translation for CPUs. Several address transla-
tion mechanisms have been proposed for CPUs, which could
be extended to accelerators. Coalesced Large-Reach TLBs
(CoLT) [44] use eager paging to increase contiguity of mem-
ory allocations, and coalesces translation of adjacent pages
into each TLB entries. However, address translation remains
on the critical path of memory accesses. CoLT can be opti-
mized further with identity mapping and DVM. Cooperative
TLB prefetching [10] has been proposed to exploit correla-
tions in translations across multicores. The AVC exploits any
correlations among the processing lanes of the accelerator.

Coalescing can also be performed for PTEs to increase
PWC reach [8]. This can be applied directly to our proposed



AVC design. However, due to our compact page table struc-
ture, benefits will only be seen for workloads with much
higher memory footprints. Furthermore, page table walks
can be expedited with translation skipping [4]. Translation
skipping does not increase the reach of the page table, and
is less effective with DVM, as page table walks are not on
the critical path for most accesses.

Direct Segments (DS) [5] are efficient but inflexible. Using
DS requires a monolithic, eagerly-mapped heap with uniform
permissions, whose size is known at startup. On the other
hand, DVM individually identity-maps heap allocations as
they occur, helping mitigate fragmentation. RMM [32] are
more flexible than DS, supporting heaps composed of mul-
tiple memory ranges. However, it requires power-hungry
hardware (range-TLBs, range-table walkers in addition to
TLBs and page-table walkers) thus being infeasible for accel-
erators, but could also be optimized with DVM.

9 Conclusion

Shared memory is important for increasing the programma-
bility of accelerators. We propose Devirtualized Memory
(DVM) to minimize the performance and energy overheads
of VM for accelerators. DVM enables almost direct access
to PM while enforcing memory protection. DVM requires
modest OS and IOMMU changes, and is transparent to appli-
cations. We also discuss ways to extend DVM throughout a
heterogeneous system, to support both CPUs and accelera-
tors with a single approach.
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