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Abstract
Emerging non-volatile memory (NVM) technologies promise
durability with read and write latencies comparable to
volatile memory (DRAM). We define Persistent Memory
(PM) as NVM accessed with byte addressability at low la-
tency via normal memory instructions. Persistent-memory
applications ensure the consistency of persistent data by
inserting ordering points between writes to PM allowing
the construction of higher-level transaction mechanisms. An
epoch is a set of writes to PM between ordering points.

To put systems research in PM on a firmer footing, we de-
veloped and analyzed a PM benchmark suite called WHIS-
PER that comprises ten PM applications we gathered to
cover all current interfaces to PM. A quantitative analysis
reveals several insights: (a) only 4% of writes in PM-aware
applications are to PM and the rest are to volatile memory,
(b) software transactions are often implemented with 5 to 50
ordering points (c) 75% of epochs update exactly one 64B
cache line, (d) 80% of epochs from the same thread depend
on previous epochs from the same thread, while few epochs
depend on epochs from other threads.

Based on our analysis, we propose the Hands-off Persis-
tence System (HOPS) to track updates to PM in hardware.
Current hardware design requires applications to force data
to PM as each epoch ends. HOPS provides high-level ISA
primitives for applications to express durability and order-
ing constraints separately and enforces them automatically,
while achieving 24.3% better performance over current ap-
proaches to persistence.

CCS Concepts • Information systems → Storage class
memory
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1. Introduction
Persistent memory (PM) has received significant attention
in software research [9, 18, 21, 39], hardware research
[26, 36, 43], and industry [5, 23, 25, 37]. We define PM
as non-volatile memory (NVM) accessed with byte address-
ability (not just blocks) at low latency (not I/O bus) via reg-
ular memory instructions (not system calls). Prior PM re-
search studied either existing applications targeting tradi-
tional volatile memory systems and disk storage technolo-
gies or micro-benchmarks developed in isolation that exer-
cise only a specific mechanism. Although this has been a
great first step, it is challenging to compare various PM sys-
tems and be confident that proposed systems are optimized
for actual use.

The time is ripe to consider a comprehensive benchmark
suite that captures important and unique properties expected
in PM applications. First, PM applications are expected to
store data directly in PM for fast persistence in addition to
accessing data through more traditional block-based filesys-
tem and database interfaces that offer other useful function-
ality such as sharing and global naming. Second, heteroge-
neous memory systems—which contain volatile DRAM and
NVM—will likely be the dominant model for main mem-
ory in the near future [22] due to the performance, reliabil-
ity and cost of candidate NVM technologies. This organi-
zation precludes automatically making all memory persis-
tent [34, 36], and instead requires applications to selectively
allocate data in PM and ensure its consistency and durability.
As a result, applications will likely include both volatile and
persistent memory data structures, thus exhibiting a mix of
memory traffic. Finally, PM applications have to be crash-
recoverable. In contrast to volatile memory programs, they
have to carefully order and persist writes to memory with
respect to failures. At a low level, these properties are en-
sured by (i) explicitly writing data back from the processor
cache to PM, (ii) enforcing ordering between writes to de-
pendent structures [15], and (iii) waiting for data to become
durable in PM before continuing execution. The set of writes
between ordering points constitute an epoch [18, 35] and can
reach PM in any order, as long as they are durable before any
writes from following epochs are durable. Software can im-
plement persistent transactions with ACID semantics using
the ordering guarantees of epochs [28].



This paper seeks to put PM systems research on a firmer
footing by developing, analyzing and releasing a PM bench-
mark suite called WHISPER: Wisconsin-HP Labs Suite for
Persistence. It comprises ten PM applications we gathered to
cover a wide variety of PM interfaces such as databases, in-
memory data stores, and persistent heaps. WHISPER cov-
ers applications that access PM directly, those using a PM
transactional library such as Mnemosyne [39], and those
accessing PM through a filesystem interface. We modified
the applications to be recoverable and instrumented them
for our own and future analysis. WHISPER is available at
research.cs.wisc.edu/multifacet/whisper.
PM analysis. A trace-based and quantitative analysis of
WHISPER yields several behavioral characteristics and in-
sights into the design of future PM Systems. On average,
(a) only 4% writes in PM-aware applications are to PM and
the rest are to volatile memory, (b) software transactions
are often implemented with 5 to 50 ordering points and re-
quire durability only after the last ordering point, (c) 75%
of epochs update exactly one 64B cache line, not necessar-
ily the same line (d) 80% of epochs from the same thread
depend on previous epochs from the same thread while few
epochs depend on epochs from other threads. These obser-
vations suggest there is value in handling PM writes in a
special structure—that does not disturb the writeback caches
used for the 96% of volatile accesses—but one that supports
multiple writes to the same lines from different epochs.
HOPS design. Following our analysis, we propose the
Hands-Off Persistence System (HOPS) design. HOPS re-
alizes the special structure mentioned above with logi-
cally per-thread Persist Buffers (PBs) that (i) support multi-
versioning (same line stored from different epochs) (ii)
separate a more common, light-weight ordering barrier
(ofence) from a less common, heavy-weight durability bar-
rier (dfence), and (iii) distribute state to per-thread/core
structures for scalability to larger processors. Our results in-
dicate that HOPS improves application performance by 25%
over current approaches to persistence.

The rest of this paper is as follows. Section 2 presents
various programming models for PM. Section 3 discusses
the applications comprising WHISPER. Section 4 describes
our methodology. Section 5 reports our results and insights
into PM application behavior. Section 6 concludes with a
description of HOPS and its evaluation.

2. Background
Three central challenges exist in programming for PM. First,
data is only durable when it reaches PM; data in volatile
processor caches are currently lost on a power failure. As
a result, applications that require durability must ensure that
data leaves the cache and wait for it to reach PM. Second,
system crashes including power failure amidst persistent
data structure modifications may result in an inconsistent
state on recovery. Finally, write-back processor caches can

re-order updates to PM, implying that even ordered updates
may reach PM out of order.

Although the terms non-volatile memory (NVM) and per-
sistent memory (PM) are often used interchangeably, we dif-
ferentiate between the two in this paper. NVM refers to a
class of memory technologies that exhibit near-DRAM ac-
cess latency, and preserve data across power failures. We
define PM as NVM accessed with byte address-ability (not
just blocks) at low latency (not I/O bus) via user-mode CPU
memory instructions (not system calls).
Programming persistent memory. We classify existing
software programming models for PM into three broad
categories—Native Persistence, Library Persistence, and
Filesystem Persistence. Figure 1 shows a simple example
programmed in different styles, with the objective that the
update to flag is never made durable before the update to pt.
Native persistence. Applications can be written to ensure
consistent updates to PM by writing data to PM and wait-
ing for it to become durable. For this purpose, the x86-
64 architecture specification now includes the clflushopt

and clwb instructions [19] that flush or writeback a spe-
cific line from the cache hierarchy to memory1. A subse-
quent sfence instruction stalls the thread until all its out-
standing flushes and writebacks are complete. The instruc-
tion sequence clwb A; sfence guarantees that when the
sfence completes the data in cache line A will survive a
crash. Applications can also use non-temporal instructions
(NTIs) to bypass the cache and write directly to PM; the
fence is still required to ensure durability and ordering by
waiting for write-combining buffers (WCB) to drain. Pro-
grammers use these operations directly by moving data to
PM for durability and ordering updates for consistency as
needed. Figure 1(a) shows an example of native persistence.

There are two drawbacks to this model. First, it conflates
ordering with durability. In Figure 1, it may be sufficient
to ensure that the update to object pt is ordered before the
flag update, while durability is not needed until later, at the
end of the code sequence [15]. Currently, x86-64 does not
provide an instruction to express order of updates to PM,
so the pt update must be durable before initiating the flag
update. These cache flushes are long-latency operations and
occur in the foreground of program execution. Using careful
programming, it is possible to overlap some of the flushes
but this optimization is case-specific.

Second, this approach forces the programmer to reason
about the layout of application state in memory at cache line
granularity. If an object spans multiple cache lines, as does
pt, the programmer must flush each individual cache line,
and update this code sequence if the object layout changes.
This assembly-language style of programming may result in
buggy code and decrease developer productivity.

1 Intel proposed the pcommit instruction to flush data from memory-
controller buffers, but has deprecated it. Intel now requires platform support
to flush memory-controller buffers on a power failure [20].



Figure 1. Persistent memory programming models. The diagram shows five ways of updating a persistent structure pt
that contains two variables x and y. Setting a persistent flag indicates a successful update to pt. x and y do not occupy the
same 64B cache line. Updates to x and y can be re-ordered with respect to each other but must happen before the flag is set,
to preserve crash consistency. (a) Native persistence (b) Library persistence—Durable transactions (c) Library persistence—
Atomic updates (d) Filesystem persistence (e) Our proposal HOPS with ordering and durability primitives.

Library persistence. The task of enforcing consistent up-
dates to PM can be delegated to libraries like Mnemosyne,
NV-Heaps, and NVML [17, 39]. Libraries provide use-
ful functionality such as memory allocation, memory leak
avoidance, type safety, durable transactions and atomic up-
dates. These libraries provide a transaction interface, shown
in Figure1(b), that provides atomic and durable updates of
multiple objects. Figure 1(c) illustrates how libraries provide
an atomic update operation that persists a value atomically.
This interface frees programmers from the burden of man-
ual data movement. However, the general-purpose nature of
these libraries can preclude low-level software optimizations
and results in conservative ordering constraints. For exam-
ple, atomic transactions may not be needed for some data
structures, such as an append-mostly log or copy-on-write
trees [18]. Additionally, the persistent metadata maintained
by these libraries for consistency can amplify the number
of updates to PM. The use of flush/write-back/fence instruc-
tions in these systems can also result in the same perfor-
mance degradation seen with native persistence.
Filesystem persistence. Legacy applications written for file
systems can gain the performance benefits of PM by using
PM-aware file systems such as PMFS, BPFS, NOVA [18,
21, 41] and DAX-based filesystems on Linux such as {ext2,
ext4, XFS}-DAX. These filesystems bypass the operating
system block layer and directly update data and metadata in
PM. Hence they can provide stronger reliability and consis-
tency guarantees than traditional file systems by persisting
data synchronously, rather than asynchronously as done for
hard drives and SSDs. Figure 1(d) shows a program issuing
system calls to the file system to persist data.

3. WHISPER
We have assembled and made publicly available [research.
cs.wisc.edu/multifacet/whisper] a new benchmark
suite of ten PM applications, WHISPER—Wisconsin-HP
Labs Suite for Persistence—that captures various proposed
software layers for accessing PM including native, heap li-

braries and filesystems. Table 1 summarizes the applications,
how they access PM, our driving workloads, and their inten-
sity of epoch use. Three characteristics of WHISPER are
essential for guiding hardware and software design for PM.

• WHISPER includes a mix of real-world applications and
micro-benchmarks exploiting the properties of PM. Us-
ing full programs generates realistic memory traffic to
both PM and DRAM. We include both legacy and newly
written programs, including popular industrial systems
such as Memcached, Redis, NFS and the Exim mail
server. For simulator-suitable studies, we include two
micro-benchmarks whose memory access patterns are
representative of larger workloads.

• WHISPER includes crash-recoverable applications, which
means that they persist all information in PM that is nec-
essary to recover after a crash. For example, we modified
Vacation from the STAMP suite [33] to persist its data
structures, to observe the true cost of persistence.

• WHISPER assumes heterogeneous memory as noted
in the introduction. We modified Vacation, N-store and
Echo, which originally assumed all memory is persistent,
to selectively place their data structures in PM.

3.1 Access Layers
We leverage three existing PM systems to act as access
layers for the applications: two transactional PM libraries,
Mnemosyne [39] and Intel’s NVM library NVML [5], and
a PM-aware filesystem, PMFS [21]. We also include two
applications that directly interact with PM: the N-store SQL
database [9] and the Echo NoSQL key-value store [10].
Libraries. Mnemosyne and NVML are x86-64 libraries that
provide access to PM via durable transactions. We used
publicly available NVML v1.0. We ported Mnemosyne to
GCC, as it was originally written for the now obsolete Intel
TM compiler. These expose PM through memory-mapped
segments that are broken up into objects by a persistent
allocator. Both libraries provide transactions to consistently



Benchmark Access Layer Workload/Configuration Epochs per second
Echo Native echo-test / 4 clients, 1 million transactions 1.6 million
N-store Native YCSB like / 4 clients, 8 million transactions, 80% writes. 5 million

TPC-C like / 4 clients, 400K transactions, 40% writes 7.3 million
Redis Library/NVML redis-cli / lru-test, 1 million keys 1.3 million
C-tree Library/NVML 4 clients, 100K INSERT transactions 1 million
Hashmap Library/NVML 4 clients, 100K INSERT transactions 1.3 million
Vacation Library/Mnemosyne 4 clients, 2 million transactions, 16 million tuples 700K
Memcached Library/Mnemosyne memslap / 4 clients, 100K ops, 5% SET 1.5 million
NFS FS/PMFS filebench / 8 clients, 8 NFS threads, fileserver profile 250K
Exim FS/PMFS postal / 8 clients, 100 KB msgs, 1000 msgs/min, 250 mailboxes 6250
MySQL FS/PMFS OLTP-complex / sysbench, 4 clients, 1 table of 10 million tuples 60K

Table 1. WHISPER Applications. The rightmost column in the table shows the number of epochs per second in each
application under the workload in the third column.

and atomically update arbitrary data structures, such as hash
tables, stored in the segments. A key difference between the
two libraries is that Mnemosyne automatically detects and
logs all updates to a persistent object within a transaction,
while NVML has to be informed of such updates, unless the
object was allocated in the same transaction.
Crash consistency: Mnemosyne achieves consistency of
data structures via a redo log. It updates the log using non-
temporal instructions (NTI) ordered by an sfence. It saves
modified data to a temporary location, and at transaction
commit uses cacheable stores to update data structures fol-
lowed by flushing modified cache lines to persist updates.
It provides APIs to atomically allocate and free persistent
objects (pmalloc() and pfree()). NVML achieves consis-
tency of data structures via an undo log. It uses cacheable
stores/flushes to execute all log and data updates to PM and
provides APIs to atomically allocate and free objects in PM
(pmemobj tx alloc() and pmemobj tx free()).
File system. PMFS is a Linux filesystem for x86-64 that pro-
vides access to PM via system calls. Although deprecated,
it is the most functional filesystem for PM to date and is
representative of other research prototypes like BPFS [18]
and SCMFS [40]. It exposes PM using files, and persists
user data and filesystem metadata synchronously. Most other
filesystems persist state asynchronously and thus can lose re-
cent data on a crash.
Crash consistency: PMFS stores user data in 4KB blocks
and metadata in persistent B-trees. It employs an undo log to
ensure metadata consistency and uses cacheable stores for
metadata related updates, and flushing and fencing instruc-
tions for consistency. It does not guarantee consistency of
user data, which is updated by NTIs that bypass the cache
followed by an sfence. This design assumes that user data
in files has low temporal locality.

3.2 WHISPER Applications
3.2.1 Native Applications
WHISPER includes two applications that persist their data
structures in PM using custom transactions.

N-store [9] is a RDBMS for PM inspired by the design of
H-store [27]. It models the database (DB) as partitions of
tables and each DB thread executes transactions on a single
partition independent of others. Each tuple in a table is an
array pointing to one primary key and a number of attributes
of varying sizes. Among the six back-end engines in N-store,
we chose the optimized write-ahead log (OPTWAL) engine.
OPTWAL directly interacts with PM without relying on a
filesystem to persist data, making it the fastest of the engines.
Crash consistency: OPTWAL maintains a doubly linked list
of PM segments, allocated per thread by a global PM allo-
cator. OPTWAL places tables and indexes in these segments
and uses an undo log to atomically update them. It updates
logs, tables and indexes using cacheable stores and flushes
them from the cache, using fences to enforce ordering.
Modifications: N-store originally assumed a homogeneous
memory system in which all memory is persistent. We mod-
ified it to place tables, indexes and logs in PM, keeping
thread stacks and heap in DRAM. This required changes to
77 LOC. We ensure that all updates to PM occur atomically
in durable transactions. To illustrate the behavior across dif-
ferent workloads, we used simple implementations of TPC-
C and YCSB, shipped with N-store.
Echo [10] is a scalable key-value store (KVS) for PM. It
employs a master thread to manage the persistent KVS while
client threads batch and send updates to KV pairs to the
master. Each client thread contains a volatile KVS similar in
structure to the master, which it uses to service local reads,
and finalize and batch updates, making Echo scalable.
Crash consistency. The master KVS is a persistent hash
table. Each hash table entry is a key and a chronologically
ordered list of versions of a value. Client submit updates to
key-value pairs, which are stored in a persistent log. After
a successful submission, the master processes the log and
moves the updates to its persistent KVS in PM.
Modifications: We modified Echo to use the persistent mem-
ory allocator from N-store. We instrumented and ensured all
updates to the heap occur in durable transactions. This re-
quired changes to 80 LOC.



3.2.2 Library-based Applications
WHISPER includes three object stores using transaction li-
braries to store and access key-values pairs in PM. We modi-
fied Memcached, and Vacation from the STAMP suite to ac-
cess PM via Mnemosyne, and used Redis modified to access
PM via NVML.
Memcached [24] is an in-memory key-value store used by
web applications as an object cache between the application
and a remote object store. It stores objects in a hash table
and an LRU replacement policy.
Modifications: We modified Memcached to allocate the hash
table in PM segments, ensured that all accesses to PM ex-
ecute atomically in durable transactions, and replaced all
locks used for synchronizing concurrent access to the table
with transactions. This required changes to 17 LOC.
Vacation [13] is an OLTP system that emulates a travel
reservation system. It implements a key-value store using
red black trees and linked lists to track customers and their
reservations. Several client threads perform a number of
transactions to make reservations and cancellations.
Modifications: We modified Vacation to allocate red black
trees and linked lists in PM segments using Mnemosyne
and ensured that all accesses to PM execute atomically in a
durable transaction. During this process, we fixed many stray
updates in Vacation that altered PM non-atomically, leading
to the possibility of an inconsistency.
Redis [14] is a REmote DIctionary Service used by web
applications like Twitter as an in-memory key-value store.
It stores frequently accessed key-value pairs in a hash table
and resolves collisions through chaining. It uses a single-
threaded event programming model to serve clients.
Modifications: We borrowed a partially recoverable version
of Redis from a third party source [6] that was modified to
store string keys and values in a hash table allocated in PM
using NVML. We ensured that all accesses to PM execute
atomically in a durable transaction.
C-tree and Hashmap are multi-threaded micro-benchmarks
written for NVML that perform inserts and deletes opera-
tions into a persistent crit-bit tree or a hashmap [1]. These
benchmarks are part of the examples shipped with NVML.

3.2.3 Filesystem Applications
WHISPER includes three common applications to store and
access files in PM using PMFS. These applications are un-
modified popular open-source programs.
NFS is an in-kernel Linux server and client that provides
remote access to a filesystem. We exported a PMFS vol-
ume using NFS and executed the fileserver profile from
filebench [38] to act as a remote application.
Exim [2] is a mail server. For each connection, a master
process spawns three child processes that receive the mail,
append it to a per-user mail box, and log the delivery.

1  /* Update undo log size in PMFS */
2         PM_SET(journal->size,               \
3                     cpu_to_le32(size)); 
---
1  /* Write log entry in Mnemosyne */
2  #define asm_movnti(addr, ...)              \
3         PM_MOVNTI(addr, sizeof(pcm_word_t), \
4                     sizeof(pcm_word_t));    \
5         PM_FENCE();                    
---
1  /* Set tuple values in N-store */
2  void set_varchar(vc_str, ...) {
3          PM_STRCPY((vc), vc_str.c_str(),   \
4                      (vc_str.size()+1));   \
5          PM_MEMCPY((&(data[sptr->columns   \
6                      [field_id].offset])), \
7                      (&vc),(sizeof(char*)));
---
1  /* Flush CPU cache in NVML */
2  void flush_clflush(addr, ...) {
3         PM_FLUSH((addr), (64), (64));

Figure 2. WHISPER instrumentation. PM * macros emit
a trace of PM updates and fences for offline analysis.

MySQL [4] is one of the most widely used RDBMSs, of-
ten used for online transaction processing. We ran OLTP-
Complex workload from Sysbench [8].

4. Methodology
Our goal is to characterize the write behavior of WHISPER
applications. Ensuring consistency of writes is the domi-
nant cost of making data persistent. WHISPER includes a
trace framework that records PM updates, hardware barri-
ers, cache flushes, and transaction begin and end events per-
formed during application execution. Our tracing framework
incurs 2-10x overhead, depending upon the rate of PM ac-
cesses by the application, mostly for writing out the trace.
Identification: We identified code that performs PM ac-
cesses in each application. For user-space code, we used In-
tel’s PIN tool and found over 100 statements in each code
base. As PIN cannot be used for kernel filesystem code, we
modified mmiotrace [3]—a memory-access tracer for device
drivers in Linux—to identify all statements that perform PM
accesses in the kernel. There are 265 statements in PMFS
and ten in the rest of the kernel.
Instrumentation: We annotate all PM operations in our ap-
plications to enable a variety of analyses beyond those in this
paper. We designed C macros (PM *) to capture all modes of
updating PM and emit a trace of PM addresses accessed dur-
ing a transaction or system call. The size of the trace is lim-
ited only by storage capacity. We identify transaction start
and end events by instrumenting routines in access layers or
program code that indicate these events. For our analysis,
these macros generate trace entries captured by ftrace [7], a
function tracer in Linux. A key benefit of our framework is
that it can trace and record PM accesses from user space and
kernel code on all processor architectures.
Execution: We execute WHISPER applications on an Intel
i7-6700K Skylake Processor running at 4 GHz. It contains
4 cores, each with 2 hardware threads, and 8GB of DRAM,
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Figure 3. Distribution of transaction sizes. The size of a
transaction is the number of epochs or ordering points in
the transaction. Echo and N-Store TPC-C have well over a
hundred epochs per transaction.

of which we reserved and used 4GB as PM. All applica-
tions ran to completion (roughly two minutes) and produced
a trace of persistent operations along with a timestamp for
each operation using a global clock provided by ftrace.

5. Persistent-Memory Application Behavior
In this section we first present an analysis of the epoch-level
behavior of all ten applications followed by a discussion
of cross-cutting issues. We then analyze the relationship
between DRAM and PM accesses based on a simulation
study for a subset of WHISPER applications.

5.1 Epoch-level Behavior
We consider an epoch to consist of stores, whether cacheable
or non-temporal, to PM between two sfence instructions.
For this analysis, we ignore cache flush operations. Higher-
level consistency mechanisms such as transactions are built
using epochs, to order their writes and perform consistent
updates to PM. We identify transaction boundaries from the
program or library code.
Epochs per transaction. Most durable transactions had be-
tween 5 and 50 epochs, although in some cases, like Echo
and TPC-C with N-store, there were well over a hundred.
Figure 3 gives the median of the number of epochs per trans-
action. Native PM applications and TM libraries showed
the highest rate of epochs while filesystem applications had
the lowest (Table 1). Importantly, transactions do not re-
quire durability until they commit, which is generally the
last epoch. Thus, enforcing durability for every epoch, as
done in current hardware, is an overkill. Our results show
that current software is far from an ideal high-performance
transaction modeled by Kolli et al. [28] as containing just 3
epochs.
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Figure 4. Distribution of epoch sizes. The size of an epoch
is the number of unique 64B cache lines it stored to PM.

CONSEQUENCE 1. Epoch implementations should separate
ordering requirements for epochs from durability require-
ments for transactions.

CONSEQUENCE 2. Epoch implementations should be fast,
as epochs are much more common than transactions.

Epoch size. Figure 4 shows the distribution of epoch sizes
for WHISPER applications. On average 75% of epochs in
native and library-based applications were singletons, i.e.,
they were just one 64B cache line in size. 25% of epochs had
sizes varying between 2 and 63 PM cache lines. In contrast,
on average 30% of epochs in PMFS update a single cache
line, 30% update two cache lines, 30% update 64 cache lines
while the remaining 10% update anywhere between 3 and 63
cache lines. We see large epochs in PMFS because it updates
64 cache lines when writing a file-system block of 4KB. We
observed that some applications (N-store and those using
NVML) sometimes modify data in one epoch and flush it in
another. This occurs with undo logging: fencing after writing
an undo record may add unflushed data writes to an epoch,
with the flushes performed at transaction commit.

While fast PM encourages fine-grained writes, we ob-
served the dominant cause of small epochs was not appli-
cation data but metadata writes from memory allocation and
logging. All our PM applications contain log operations for
recovery at cache line granularity. Mnemosyne, NVML and
PMFS process or clear each log entry in its own epoch,
which contributes to the large number of singletons. This
could be avoided without compromising crash consistency
by processing or clearing log entries in a batch. Undo logs,
used in PMFS and NVML, exhibit more small epochs than
redo logs: undo entries must be ordered before data writes to
ensure the old value is available for recovery, and thus they
fragment a transaction into a series of alternating epochs to
write log entries and to update data. Redo logging, in con-
trast, allows batching by writing back all log entries in one
epoch and then writing back data in another epoch.
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Figure 5. Epoch dependencies. The diagram shows epochs
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a fraction of total epochs in application execution. Self-
dependencies are abundant, while cross-dependencies are
rare.

CONSEQUENCE 3. Epoch implementations can optimize for
singleton epochs for better performance.

Of the singletons, we saw that 60% updated fewer than 10
bytes. As we discuss in more detail in the next section, many
of these writes are from the user-space persistent memory al-
locator, which uses only a few bytes to update the state of the
allocator. Log metadata (e.g., log descriptors in Mnemosyne)
also contributed many of the small writes.

CONSEQUENCE 4. Epoch implementations should optimize
for byte-level persistence.

Cross- and Self-dependencies. Epoch dependencies in PM
applications arise when application threads either update
shared persistent data, or metadata to preserve crash con-
sistency of persistent state. For our analysis, we measure
and study write-after-write (WAW) dependencies to PM ad-
dresses. To simplify trace processing, we only look for de-
pendencies within a 50 µsec window, which is the upper
limit for which a flushed cache line could be buffered be-
fore becoming persistent. For clarity, we define:

• Em
i is a set of cache lines updated by thread i during the

m-th epoch.
• Cross-dependency: Em

i ⊗c E
n
j denotes m-th and n-th

epoch on threads i and j, respectively, that write to cache
line c, where En

j follows Em
i in the order of execution.

• Self-dependency: Em
k 	c E

m′

k denotes epoch m and m’
on thread k that write to cache line c, where Em′

k follows
Em

k in the order of execution.

Applications had a small fraction of epochs with cross-
dependencies—5% for NFS, 1.16% for exim, and less for the
rest. In contrast, Figure 5 shows that there is wide variation
in the occurence of self-dependencies across applications.
The fraction of epochs with self-dependencies varies be-
tween 25% and 55% for native applications (TPC-C, YCSB,

Echo), but increases to 80% for NVML-based Redis, ctree
and hashmap applications. Mnemosyne-based applications
exhibit a moderate amount of self-dependencies. MySQL
shows the lowest amount of self-dependencies as it has
few metadata writes, which are the primary cause of self-
dependencies with PMFS.

We found three sources of both cross- and self- depen-
dencies: (i) applications writing the same data repeatedly,
such as shared persistent variables, (ii) transaction metadata,
and (iii) the persistent memory allocator. At the applica-
tion level, Vacation has global counters of the number of
cars/flights/rooms which are updated in transactions, leading
to cross-dependencies. Similarly, Echo initializes a descrip-
tor associated with its data structures and alters its status
from INPROGRESS to CREATED, using two consecutive
epochs in a thread that writes the same cache line.

Transaction metadata self-dependencies occur in PMFS,
NVML and Mnemosyne, when they initialize the status and
contents of the log to prepare it for use. For example, NVML
sets and clears its log entries and PMFS alters the status in
the log descriptor from UNCOMMITTED to COMMITTED
after a successful commit.

Memory allocator self- and cross-dependencies occur in
the single-slab allocators of PMFS, Echo and N-store when
they recycle PM blocks across and within threads. Multiple-
slab allocators, such as in Mnemosyne, are also susceptible
to dependencies, although less frequently. Applications us-
ing PM as a scalable DRAM may require additional epochs
to label a block as either persistent or volatile. For example,
N-store allocates both volatile and persistent data from a per-
sistent heap, and decides later which objects should persist
across crashes by storing a state variable with each block—
FREE, VOLATILE or PERSISTENT. Transactions that alter
the state of a block write to this variable thrice cause self-
dependencies in N-store.

Dependent epochs across threads require that writes from
one thread must be persisted after those from another thread;
if this is not done correctly then data may be inconsistent af-
ter a failure. This can occur, for example, in a producer-
consumer situation where a consuming epoch becomes
durable before the producing epoch.

CONSEQUENCE 5. Cross-dependencies exist and must be
handled correctly, but are uncommon.

Within a thread, repeated writes to a cache line require
either that the thread wait for an earlier write to become
durable before updating it, which is slow, or that multiple
copies of the cache line exist simultaneously. This contrasts
with the standard use of volatile memory, where fast caches
encourages re-accessing the same cache line.

CONSEQUENCE 6. To gracefully handle self-dependencies,
processors should allow multiple versions of a cache line
from different epochs to be buffered simultaneously to avoid



stalling while data from an earlier epoch is written back to
NVM.

CONSEQUENCE 7. Applications should avoid data struc-
ture designs that repeatedly write to the same persistent
data across epochs, with different allocation policies (i.e.,
not LIFO) and object layouts.

5.2 Cross-cutting Behavior
In addition to epoch behavior, we also investigated other
cross-cutting behaviors in our benchmark applications.
How does memory allocation affect behavior? Persistent
memory allocators have an unexpectedly large impact on
behavior. They are often invoked within transactions. The
N-store and Echo allocators have a single heap for all al-
location sizes, leading to frequent splits and coalescing of
blocks, each requiring a persistent metadata write. Alloca-
tors with multiple slabs for different allocation sizes, as in
Mnemosyne and NVML, store a bitmap of allocated blocks
and use volatile structures to speed allocation. Furthermore,
NVML’s allocator guarantees atomicity, so blocks allocated
during an aborted transaction are freed, but at the cost of
extra epochs for logging. Mnemosyne’s allocator can leak
memory if a power failure occurs during a transaction, but
does not create more epochs.

One approach to eliminating epochs introduced by the
allocator is to do away with persistent maps that explicitly
track allocated objects, as done by BPFS [18]. BPFS consid-
ers a block as allocated when there is a reference to it. Al-
though this requires a scan of the file system structure to find
free blocks, this design optimization dramatically reduces
the number of ordering points and commits [16]. Further,
writing to a newly allocated data block avoids the need to
do either undo or redo logging—the block can simply be re-
claimed on failure, if the write to it is interrupted. Language
and runtime support, such as garbage collection [11] of un-
reachable objects after a restart, could similarly help reduce
ordering points in PM applications.

CONSEQUENCE 8. Memory allocator designs should con-
sider relaxing guarantees or rely on other runtime support
such as garbage collection to reduce the number of epochs
needed to execute a transaction.

How much write amplification occurs? We define write
amplification as the number of additional bytes written to
PM for every byte of user data stored in PM during a trans-
action. The additional bytes are incurred by recovery mecha-
nisms such as undo and redo logs and the memory allocator.
For PMFS, the amplification is 10%: for every 4096-bytes
of user data appended to a file, roughly 400 additional bytes
of filesystem metadata and journal are written out to PM in a
transaction. PMFS does not log user data. For Mnemosyne,
the amplification is between 300% and 600% for updat-
ing the persistent allocator state, which is a bitmap of free
blocks. In contrast, for NVML, the amplification is 1000%

because it (i) logs the allocator state in a redo log before
mutating it, (ii) mutates the state after processing the redo
log, (iii) sets/clears transaction undo log entries and (iv) ini-
tializes several other auxiliary data structures. Much of this
cost is avoided in Mnemosyne by allowing memory to leak
during a failure, leading to the need for a garbage collec-
tion mechanism. For N-store, amplification varies between
200% and 1400%, depending on the workload and oper-
ations, largely due to its PM allocator that uses a buddy
system.

CONSEQUENCE 9. PM libraries add substantial overhead
in order to provide atomicity and recovery, so applications
should consider whether they need all the properties offered
by the libraries.

How is PM written? Applications write to PM using
cacheable store instructions followed by flushes, or un-
cacheable NTIs, which do not leave data in the cache. NTIs
are useful for persistent data that is only needed for recovery,
as in recovery logs. For example, Mnemosyne uses NTIs
to write redo log entries, which are only read following a
restart. PMFS avoids cache pollution when writing user data
and for zeroing pages with NTIs. Overall, about 96% of
writes in PMFS and 67% in Mnemosyne use NTIs. Despite
important uses, some proposals for epochs [18, 26] do not
discuss bypassing the cache for non-temporal stores.

CONSEQUENCE 10. PM hardware systems should allow by-
passing the cache when writing low-locality data.

5.3 Proportion of PM Accesses
Although our trace-based analysis yielded useful results
about PM usage, it can only trace PM accesses, and hence
does not describe how PM and DRAM accesses relate. We
evaluate the relationship between PM and DRAM accesses
using the gem5 simulator [12] on the subset of benchmark
applications that run well in simulation; Section 6.4 gives
the full methodology for these results.

As shown in Figure 6, we observe that the majority
(>96%) of accesses are to DRAM. We expect that this trend
will continue for three main reasons. As access latencies
to PM are much higher than DRAM, applications optimize
by placing transient data structures in volatile memory. For
example, volatile indexes speed allocation in Mnemosyne
without increasing the amount and cost of making data per-
sistent. Similarly, Echo maintains a local volatile store for
each worker thread, which is frequently used, while the per-
sistent master store is rarely updated. Second, most NVM
technologies are expected to have limited write endurance,
which is not an issue for DRAM. As a result, software tech-
niques will be employed along with hardware optimizations
to reduce PM writes. Finally, most applications need only a
limited amount of data to recover from a crash. For example,
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Figure 6. Proportion of PM accesses among all memory
accesses. PM accesses constitute only a small fraction of
total memory accesses.

checkpoints for long-running scientific workloads and save
files for games have typically been kept small.

CONSEQUENCE 11. Hardware facilitating persistent ac-
cesses should not add overheads to volatile accesses.

6. Hands-Off Persistence System
We use the insights from our workload analysis to guide the
design of hardware support for efficient PM access. Here,
we assume that a specific range of physical memory is ear-
marked for PM. By default, loads and stores refer solely to
non-volatile accesses and threads refer to hardware threads.

6.1 Goals
Based on our observations in earlier sections, we see that the
following design goals facilitate efficient hardware design.

• In PM applications, accesses to DRAM make up about
96% of all accesses. Any PM-specific additions to caches
and other structures shared between PM and DRAM
should not adversely impact volatile memory accesses.

• ACID transactions are made up of 5-50 epochs. Ordering
guarantees suffice between most epochs, and durability is
only needed at transaction commit. Hence, a standalone,
lightweight ordering primitive should be supported.

• Epochs from different threads rarely conflict with each
other. Thus, in the common case, ordering and durability
can be ensured locally, although inter-thread conflicts
need to be handled for correctness.

• Epochs frequently conflict with prior epochs from the
same thread. Such conflicts lead to flushing on the crit-
ical path, as dirty cache lines from older epochs cannot
be overwritten by newer epochs, to prevent illegal re-
orderings. This can be avoided by maintaining multiple
versions of cache lines with some ordering information.

In addition, we seek a solution that makes data persistent
without explicit flushes, removing the need for programs to
be conscious of how their data is laid out across cache lines.

Figure 7. Persist buffer. Figure shows split persist buffer
design to track and order persistent writes.

6.2 HOPS Design
We propose the Hands-Off Persistence System (HOPS)
to achieve our hardware design goals. HOPS orders and
persists PM updates in hardware to facilitate program-
ming of crash-consistent applications, while allowing high-
performance implementations. HOPS consists of hardware
extensions, Persist Buffers (PB), and two ISA primitives,
ofence and dfence. Persist Buffers (Figure 7) track up-
dates to PM redundantly along with the cache hierarchy and
enforce write ordering to PM as per the Buffered Epoch Per-
sistency model (BEP) [26]. BEP enables multiple epochs to
be buffered in volatile structures. The lightweight ofence
ensures ordering between different epochs from a thread,
while dfence provides durability guarantees when needed
(e.g. ACID transactions).
ISA Primitives. HOPS independently supports both order-
ing and durability primitives — Ordering FENCE (ofence)
and Durability Fence (dfence). These primitives are based
on the overloaded Persist/Sync Barriers [26, 28] used to de-
marcate software epochs. ofence signals an epoch bound-
ary, thereby ordering stores preceding it before later stores.
dfence makes the stores preceding it durable. Thus, the for-
mer can be used as an asynchronous flush of buffered PM up-
dates, and the later as a synchronous flush. Programmers can
use ofence at the end of epochs, and dfence when commit-
ting ACID transactions or before irreversible I/O operations.
Figure 8 demonstrates a simple undo-log based persistent
transaction implemented using these primitives.

Writes from different threads are made persistent in an
order determined by the synchronization of threads. The
order can be inferred from RAW and WAW conflicts be-
tween epochs from different threads. In the absence of con-
flicts, epochs from different threads are unordered and can
be flushed out simultaneously.
Persist Buffers. Persistent updates are buffered and tracked
in per-thread PBs, moving long-latency PM flushes to the
background of execution while preserving crash consistency.



Figure 8. A persistent transaction implemented using
epochs with ofence and dfence.

Each PM store updates the PB and the L1 cache. This redun-
dancy allows caches to service data reuse, but keeps addi-
tional complexity and state needed for tracking PM writes
out of the caches. The modified data is only written out to
PM by the PBs, and is dropped by the LLC on eviction.

PBs rely on ofence for intra-thread ordering and mon-
itor coherence activity for gleaning inter-thread ordering.
Intra-thread ordering is facilitated by BEP as updates only
need to be tracked at epoch granularity. To handle the fre-
quent self-dependencies without flushing, multiple versions
of a cache line are allowed to exist in the PBs, with only
the latest value present in the volatile caches. For main-
taining inter-thread ordering, cross-thread dependencies be-
tween buffered epochs are preserved. A cross-thread depen-
dency is (conservatively) identified based on the loss of ex-
clusive permissions to a cache line by an L1 cache. The
thread acquiring exclusive permissions is provided informa-
tion about the source thread and epoch to allow it to en-
force this dependency when the dependent epoch is being
flushed. Epoch deadlocks are prevented by splitting epochs,
as demonstrated previously [26].

Finally, HOPS minimizes the performance degradation of
flushing buffered updates, especially with multiple memory
controllers (MCs). In the absence of cross-dependencies,
epochs from different threads are unordered as are writes
from a thread belonging to the same epoch. Such writes
are flushed concurrently to the MCs, thereby sustaining high
performance with small-sized PBs.

6.3 HOPS Implementation
We implement the persist buffers using a split design to
minimize the use of valuable silicon real estate near the
cores. The PB Front End contains the metadata for each
buffered update (address, epoch TS, dependency pointer)
and is located near the private L1D cache. The PB front end
behaves as a circular buffer, with newer updates appended
to the tail, and flushes beginning at the head. Based on the
address of the buffered update, the modified cache lines
belonging to updates from all cores are co-located in larger
PB Back Ends situated near each of the PM controllers.
The PB Back Ends are statically partitioned among threads,

Figure 9. Hardware requirements of PB entries.

and allow optimizations such as epoch coalescing, which we
leave for future work.

HOPS maintains write ordering with 16-bit epoch times-
tamps (TSs). Each hardware thread maintains a thread TS
register near the private L1 cache, which indicates the
timestamp of the current, inflight epoch. This thread TS is
recorded as the epoch TS field of the PB Front End entry for
each PM store from the thread. The ofence primitive sim-
ply increments the thread TS register to denote the end of an
epoch, and thus is a low latency operation. Epoch TSs are
local to a thread, and are used to govern the order in which
epochs from a thread become durable. In case of inter-thread
dependencies, dependency pointers containing both a thread
ID and a source epoch TS are used to identify the epoch from
another thread after which a PB entry is ordered. To simplify
the hardware, we conservatively use the current epoch TS at
the source thread instead of the exact source epoch TS.

When making updates from an epoch durable, HOPS
issues write requests for all entries belonging to the same
epoch simultaneously, without waiting for ACKs from the
memory controllers. However, flushing an epoch can only
commence after all ACKs are received for the previous
epoch. Note that the MC ACK may be sent when PM is
updated or earlier, if the MC request queues are automat-
ically flushed on failures. For preserving cross-thread de-
pendencies while writing updates to PM, HOPS maintains
a global TS register at the LLC. This register is a vector
of per-thread epoch TSs, storing a recently flushed epoch
TS from each thread, and is updated regularly. HOPS looks
up this register in case of a cross-dependency, to delay the
flushing of dependent epochs till the source epoch has been
completely flushed to PM. Thus, a dfence instruction that
cleans a thread’s PB can be a heavyweight operation in case
of cross-dependencies, but otherwise can be handled locally.

A complete PB entry consists of the data (Back End)
and its metadata (Front End). The hardware overheads of
a PB entry are shown in Figure 9. Beyond the PBs, some
additional hardware changes are needed. HOPS adds a single
bit to each cache line state indicating whether the address
is part of PM. We re-use existing x86 memory-type range
registers (MTRRs) or the Page Attribute Table to indicate
which addresses are persistent. A sticky-M state is used
in the LLC to point to the L1 cache which most recently
held exclusive permissions to a cache line, a technique used
previously in LogTM [42]. Thus, after an L1 replacement of



Events Action
ofence Increment Thread TS to end current epoch.
dfence Increment Thread TS to end current epoch, and

stall thread till local PB is flushed clean.
L1 read hit,
miss

No change.

L1 write hit,
miss

Get exclusive permissions (miss), update cache
line and mark clean. Create PB entry with epoch
TS = thread TS and dependency pointer (if any).

Forwarded
GET

Respond with data and (if line cached exclu-
sively) dependency pointer (thread ID, TS) to re-
questor.

LLC hit No change.
LLC miss Send request to MC, which stalls request if ad-

dress present in any PB.

Table 2. Handling of major events in HOPS.

a buffered cache line, the LLC can still forward requests to
the source cache and PB to populate the dependency pointer
on a dependency. We associate counting Bloom filters with
the PB Back End to maintain a conservative list of buffered
addresses. On a last-level cache (LLC) miss, if the address
is present in this list, the miss is stalled until the address is
written back to PM. Such stalls are expected to be rare as
the modified data is expected to survive longer in the cache
hierarchy than in the PBs. Hence, we choose to make the
PB simple write-only structures, and stall on affected LLC
misses. Finally, to virtualize PBs, the OS must flush PBs on
context switches.

The overall PB operation is summarized in Table 2 and
can be illustrated using a simple example. Consider the fol-
lowing code sequence:

mov A, 10; ofence;

mov A, 20; dfence;

Suppose the thread TS is 1 initially. The first store to A
brings the cache line into the L1 cache, updates the cached
value of A to 10 and creates an entry in the thread’s PB
of {ts:1, Address:A, value:10}. When ofence exe-
cutes, it marks the start of a new epoch by incrementing the
thread’s TS to 2 (a purely local operation). The second store
to A updates the cached value and creates another entry in
the PB with {ts:2, Address:A, value:20}. Finally, the
dfence increments the thread’s TS to 3 and waits for the PB
to drain. The PB writes the value 10 to address A in PM and
when it receives an ACK from the memory controller that
the update is durable, the PB writes 20 to address A. When
the second ACK reaches the PB, the dfence completes.

6.4 Evaluation

Methodology. We use the gem5 micro-architectural simu-
lator [12] to evaluate the benefit of HOPS. We use Linux
v3.10 in full-system simulation mode. The simulated system
is a four-core (one hardware thread per core) 8-way out-of-
order x86 processor with a two-level cache hierarchy and
two memory controllers. Table 3 shows the relevant con-
figuration parameters of the simulated system. We evaluate

HOPS with 32 entry PBs per thread, and flushing is launched
at 16 buffered entries. We use a subset of applications from
WHISPER and run them to completion.

CPU Cores 4 cores, 8-way OOO, 2Ghz
CPU L1 Caches private, 64 KB, Split I/D
CPU L2 Caches private, 2 MB
Cache Policy writeback, exclusive
Coherence MOESI hammer protocol
DRAM 4GB, 40 cycles read/write latency
PM 4GB, 160 cycles read/write latency

Table 3. Simulation configuration.

We compare HOPS to the current x86-64 approach of
using clwb and sfence instructions to persist data, and to
an ideal implementation. Our ideal implementation obvi-
ates clwb and sfence, thus ignoring all order between PM
writes and is not crash-consistent. For the x86-64 and the
HOPS implementations, we evaluate the performance under
two conditions. First, with conventional memory controllers,
data becomes durable only when it reaches NVM. Thus, the
long-latency NVM write is on the critical path for a durabil-
ity operation such as a dfence. Second, a persistent write
queue (PWQ) at the PM controller guarantees that the data
reaching the MC will become durable before a subsequent
crash. Thus, this results in faster durability operations. This
does not affect the non crash-consistent ideal implementa-
tion that does not guarantee durability.

Figure 10 shows the runtimes normalized to the x86-
64 implementation with durability guaranteed at NVM. For
the x86-64 implementation, the PWQ reduces runtimes by
15.5% on average. HOPS without PWQ outperforms the
x86-64 implementation without PWQ by 24.3% and more
importantly, outperforms the x86-64 implementation with
PWQ by 10%. HOPS only guarantees durability at the rare
dfence instructions. Hence, the PWQ only improves run-
time by 1.4% for HOPS. This improvement comes from
moving most flushes from the foreground to the background
of execution. As such, the individual speedups observed are
roughly proportional to the frequency of PM accesses and
flushes in our workloads. The ideal implementation outper-
forms the baseline (x86-64 NVM) by 40.7% and HOPS
(NVM) by 19.7%.

7. Related work
PM workloads. Prior PM proposals have used micro-
benchmarks [17, 18, 26, 31, 32, 36, 43], conventional non-
PM workloads [26, 28, 30, 36], or at best, a few persistent
workloads [18, 21, 31, 39] for evaluating their implemen-
tations. As seen in our analysis, simple micro-benchmarks
or non-PM applications do not capture the unique behavior
of real-world PM applications. To counter this, WHISPER
comprises applications that consider various interfaces to
PM, update PM consistently and are recoverable.
Software/Hardware support for PM. There have been
many hardware proposals facilitating fast PM accesses.
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BPFS [18] proposed augmenting caches with epoch order-
ing hardware to allow software control of the order of write-
backs. Efficient Persist Barriers [26] builds on this idea to
provide lightweight epoch ordering and efficiently support
inter-thread dependencies. Both proposals lack the durability
needed for ACID transactions. Kiln [43] supports hardware
transactions but without isolation guarantees. These propos-
als add state to volatile caches, which can adversely affect
volatile accesses.

Most closely related is Delegated Persist Ordering (DPO),
a concurrent proposal that shares with HOPS the develop-
ment of persist buffers, albeit with different support mech-
anisms [29]. Like HOPS, DPO optimizes for fast epoch
boundaries by ordering epochs without making their up-
dates durable, handles inter-thread and intra-thread conflicts
without explicit flushes and provides an express lane for per-
sists. However, DPO does not make clear how applications
ensure data is durable, e.g., for implementing ACID trans-
actions. Additionally, DPO enforces Buffered Strict Persis-
tency (BSP), which allows concurrent flushing of updates
from the same epoch in systems with a single MC and a
relaxed consistency model (ARMv7). BSP may not scale
well with multiple MCs and a stronger consistency model
(x86-TSO), resulting in serialized flushing of updates within
an epoch. DPO’s precise cross-dependency tracking mech-
anism requires that all incoming snoop requests, includ-
ing common volatile accesses, snoop fully-associative PBs.
HOPS’s epoch-granular dependency tracking eliminates this
overhead at the cost of false positives. DPO also requires a
global broadcast on every flush of a buffered update from
the PBs.

Techniques like deferred commit and execute in log have
been proposed to optimize persistent transactions [28, 31].
Although these techniques consider an idealistic view of per-
sistent transactions that differs from our observations of real-
world workloads, the proposed techniques can be used even
for transactions implemented with ofence and dfence.

ThyNVM [36] proposes hardware checkpointing for
crash-consistency. Although transparent checkpointing re-
moves the burden of modifying code to support persistent
memory, it precludes the use of heterogeneous memory sys-
tems that include both volatile and persistent memory.
Ordering and durability. An analogous problem of con-
flated ordering and durability in file systems was solved
by Optimistic Crash Consistency [15]. OCC introduces two
new primitives—osync and dsync—to improve file system
performance while satisfying application-level consistency
requirements. We follow a similar approach in this work.

Loose-Ordering Consistency (LOC) [32] also proposes
to relax the ordering constraints of transactions. LOC intro-
duces eager commit and speculative persistence to reduce
intra-transaction and inter-transaction dependencies. These
techniques are complementary to HOPS, which instead han-
dles dependencies efficiently.

8. Conclusion
Persistent memory is a promising interface for exposing the
low-latency persistence of forthcoming NVMs to program-
mers. We assembled a benchmark suite, WHISPER, that
comprises realistic PM applications to analyze their access
patterns and identify general trends. We propose HOPS that
achieves 24.3% gain in application performance by tracking
and enforcing ordering and durability constraints of PM ap-
plications in hardware.
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