
Crossing Guard:

Mediating Host-Accelerator Coherence Interactions

Lena E. Olson ∗ Mark D. Hill David A. Wood

University of Wisconsin-Madison

{lena, markhill, david} @cs.wisc.edu

Abstract

Specialized hardware accelerators have performance and

energy-efficiency advantages over general-purpose proces-

sors. To fully realize these benefits and aid programmabil-

ity, accelerators may share a physical and virtual address

space and full cache coherence with the host system. How-

ever, allowing accelerators – particularly those designed by

third parties – to directly communicate with host coherence

protocols poses several problems. Host coherence protocols

are complex, vary between companies, and may be propri-

etary, increasing burden on accelerator designers. Bugs in

the accelerator implementation may cause crashes and other

serious consequences to the host system.

We propose Crossing Guard, a coherence interface be-

tween the host coherence system and accelerators. The

Crossing Guard interface provides the accelerator designer

with a standardized set of coherence messages that are sim-

ple enough to aid in design of bug-free coherent caches. At

the same time, they are sufficiently complex to allow cus-

tomized and optimized accelerator caches with performance

comparable to using the host protocol. The Crossing Guard

hardware is implemented as part of the trusted host, and pro-

vides complete safety to the host coherence system, even in

the presence of a pathologically buggy accelerator cache.

CCS Concepts •Hardware → Hardware accelerators;

Robustness; •Computer systems organization → Het-

erogeneous (hybrid) systems

Keywords accelerators, cache coherence, coherence inter-

faces

∗ Now at Google.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ASPLOS ’17 April 8–12, 2017, Xi’an, China.

c© 2017 ACM. ISBN 978-1-4503-4465-4/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3037697.3037715

1. Introduction

Specialized hardware accelerators have recently been pro-

posed for a wide range of applications [4, 10, 15, 18, 22,

25, 26, 29]. Some complex accelerators can benefit from the

ability to share a unified address space with the host system.

In particular, future accelerators may wish to share data with

the host at a fine granularity, where the particular data to be

accessed is not known a priori.

For many years, CPUs have optimized fine-grained, data-

dependent accesses through the use of hardware cache co-

herence. Hardware coherence aids in both performance and

programmability by freeing the programmer from explicitly

managing where data is located in memory and the cache hi-

erarchy. There is an increasing recognition that accelerators

can benefit from hardware coherence as well [1, 3, 16, 28].

There are several major differences between coherence

protocols designed for CPUs and those designed for ac-

celerators. First, some accelerators may benefit from spe-

cific accelerator cache organizations. Unlike CPUs, which

are general-purpose and may exhibit many access patterns,

accelerators may access data in very specific ways. For ex-

ample, a video decoder may be block-based, while a graph

processing accelerator may make many data-dependent ac-

cesses. The coherence and cache organization design space

is large and provides many opportunities for optimizations:

caches may be inclusive, exclusive, or non-inclusive; write-

back or write-through; write allocate or write no-allocate;

prefetching or not. A simple coherence protocol may include

only Invalid (I) and Valid (V) states; most coherence proto-

cols also include states such as M (Modified), S (Shared), E

(Exclusive), O (Owned) and/or F (Forward) [31]. Accelera-

tor designers may choose to allocate cache resources based

on their knowledge of likely data access patterns. An accel-

erator that performs mostly streaming accesses may prefetch

aggressively while a GPGPU might have caches designed

specifically for write-coalescing. Similarly, the FUSION ac-

celerator coherence protocol [16] is designed to migrate data

between a set of cooperating accelerators working on the

same application. Giving accelerator designers coherence

flexibility will lead to better accelerator performance.



Second, any particular accelerator may be integrated with

a range of host systems. These host systems will be designed

by different companies and will have different coherence

protocols. For example, Intel uses an inclusive cache hierar-

chy with a MESI(F) protocol, ARM uses a MESI-like proto-

col and inclusive or exclusive caches, and AMD uses an ex-

clusive MOESI protocol. In addition, the specific messages

that these host systems use may be proprietary and unknown

to the accelerator designer. Even if the protocol is known, it

is a substantial burden for the accelerator designer to design

and implement different caches for each host system. Giving

accelerator designers a single standard coherence inter-

face will ease accelerator development.

Third, accelerator designers may not have the same ex-

pertise in developing complex coherence protocols as host

designers. Coherence protocols are notoriously difficult to

design and implement correctly [8]. For performance rea-

sons, protocols may allow messages between components

of the coherence system to race. Direct communication be-

tween caches at the same level of the hierarchy, such as be-

tween L1s, also improves performance at the cost of com-

plexity. Much of the difficulty of implementing coherence

protocols comes from handling these cases. Giving acceler-

ator designers a simple coherence interface will make it

easier for them to implement and verify correct coherent

accelerator caches.

Finally, accelerators may not share the same presumption

of correctness and trustworthiness as CPUs. If the accelera-

tor cache incorrectly discards a request from the host rather

than responding to it, the host system may wait indefinitely.

Over time, this bug could consume host resources until the

host system is rendered unusable – including for processes

that never use the accelerator. Similarly, unexpected mes-

sages from the accelerator may cause cache controller er-

rors. It is even possible that an accelerator could contain ma-

licious hardware that could be triggered to perform incorrect

coherence actions as a denial of service attack, or to collect

information on other processes through the coherence side

channel. Giving host designers a standardized coherence

interface will allow them to limit the incorrect actions an

accelerator can perform, reducing the attack surface and

improving reliability and security.

Industry recognizes the emerging importance of these is-

sues and is developing initial interfaces between third-party

(FPGA) accelerators and host systems. IBM’s Coherent Ac-

celerator Processor Interface (CAPI) [14, 32] provides the

accelerator with an interface to which it can make loads and

stores by virtual address, but does not allow it to build its

own customized caches. Similarly, ARM also provides a co-

herence interface in the form of the ARM Accelerator Co-

herency Port (ACP) [12], which allows accelerators to make

coherent requests by physical address but does not forward

invalidations to the accelerator. In addition, these interfaces

work only with the IBM POWER8 and ARM, respectively.

To provide a more interoperable interface, a group of

seven companies–including IBM and ARM–recently formed

the Cache Coherent Interconnect for Accelerators (CCIX)

Consortium [1]. CCIX promises interoperability across host

systems with different ISAs, as well as higher bandwidth and

improved latency compared to current interfaces. While spe-

cific details of the interface have yet to be released, the for-

mation of the CCIX consortium and its subsequent growth

to 22 member companies indicates that industry values inter-

operable coherent third-party accelerators. In the best case,

Crossing Guard can influence future versions of industrial

approaches like CCIX.

This paper explores the design space of safe and stan-

dardized accelerator-host coherence interfaces. We propose

Crossing Guard: host hardware that forms an interface be-

tween the host system and the accelerator and which medi-

ates coherence interactions between the host and the accel-

erator. Crossing Guard is similar to the software concept of

an Application Program Interface (API), which provides a

public interface which is simple and stable. Meanwhile, the

back-end implementation can be treated as a black box and

can change without notifying users of the API. The narrow

set of interactions that are allowed by the API (or Crossing

Guard) limits the potential error cases.

Crossing Guard provides benefits to both the host and

accelerator designers. For the host designer, Crossing Guard

provides a set of safety guarantees even in the presence of a

buggy or malicious accelerator. Crossing Guard:

• Allows accelerators to use customized caches

• Provides a simple, standardized coherence interface

• Provides safety and reliability for the host system

We define a standardized set of coherence requests and re-

sponses for accelerators, and implement two accelerator co-

herence protocols that use the interface. The first is a single-

level high-performance MESI cache, which requires only 4

stable states and a single transient state. The second is a two-

level accelerator protocol, with an L2 shared between multi-

ple accelerator cores running the same application.

We implement Crossing Guard in a heterogeneous system

where CPUs and GPGPUs coherently access shared mem-

ory. To demonstrate that it allows freedom for the host de-

signer, we show that the CPUs can use an exclusive, AMD

Hammer-like protocol or an inclusive MESI protocol. We

stress-test the accelerator protocol by sending a stream of

random requests from each accelerator core, and find that

Crossing Guard’s interface provides correct coherence oper-

ation. We then bombard the Crossing Guard with a stream of

random coherence messages to random addresses, and find

that Crossing Guard provides safety even when the accelera-

tor is behaving badly: this fuzz testing never leads to a crash

or deadlock. When used with a correct GPGPU cache hier-

archy, we find that Crossing Guard performs similarly to the

unsafe, hard-to-design accelerator-side cache and better than

a safe but high-latency host-side cache.



Accelerator Events XG Requests XG Responses

States Load Store Replacement Invalidate DataM DataE DataS WB Ack

M hit hit issue PutM / B send Dirty WB / I - - - -

E hit hit / M issue PutE / B send Clean WB / I - - - -

S hit issue GetM / B issue PutS / B send InvAck / I - - - -

I issue GetS / B issue GetM / B - send InvAck - - - -

B stall stall stall send InvAck / M / E / S / I

Table 1. Sample accelerator L1 cache implementing Crossing Guard’s (XG) interface. Entries are of the form action /

next state, and - indicates an impossible transition.

2. Crossing Guard

Crossing Guard consists of hardware that implements a sim-

ple, standardized interface for coherence and translates re-

quests between the host and the accelerator. It also ensures

that an accelerator cannot affect other processes running on

the CPU, no matter how pathologically bad the accelerator’s

behavior is; in particular, it protects against unexpected mes-

sages or deadlocks. We focus on systems where the acceler-

ator maintains a TLB to allow it to use physical addresses.

Crossing Guard provides translation between protocols:

the accelerator caches can make requests to Crossing Guard

with a standardized set of coherence messages, and the host

can use the normal host protocol. To the host coherence pro-

tocol, Crossing Guard will appear as simply another coher-

ent cache. Any complex interactions with the other caches in

the system, such as counting acknowledgment messages or

handling races, will be taken care of by Crossing Guard.

There is one instance of Crossing Guard per accelerator

in the system. It is implemented by the host designer, who

has full knowledge of the coherence protocol running on

the host. Once implemented, the Crossing Guard hardware

works with any accelerator making use of the interface; it

only needs to be updated when the host protocol changes.

We describe the interface and protocols at a high level

in this paper, and provide the full transition tables and slicc

code at http://research.cs.wisc.edu/multifacet/xguard/.

2.1 Accelerator Coherence Interface

We define a set of requests and responses that form the co-

herence interface. The messages chosen determine optimiza-

tions the accelerator coherence protocol can make. For ex-

ample, if the only way for the accelerator to request a block

is with a generic Get message, the accelerator will only be

able to implement a VI protocol.

In our design, the accelerator can make a total of five

requests to the host and receive one of four responses from

the Crossing Guard interface; the host can make one request

to the accelerator and receive one of three responses. Every

request always results in exactly one response.

The accelerator may request a block from the host with

GetS (shared and read-only) or GetM (exclusive and read-

write). In return, it can receive DataS (shared+clean), DataE

(exclusive+clean), or DataM (exclusive+modified). The ac-

celerator may receive DataE or DataM on either a GetS or

GetM request. We allow the accelerator to receive an exclu-

sive block on a shared request because it is an optimization

for common access patterns.

When the accelerator cache replaces a block, it must send

an appropriate request: PutM, PutE, or PutS. The PutM and

PutE messages carry data to avoid the complexity of a multi-

phase commit. In response to any Put request, the cache will

receive a WritebackAck. E and M are both owned states;

when the host sends an Invalidate request, the accelerator

must respond with Clean Writeback or Dirty Writeback,

respectively. Otherwise, the accelerator must respond with

an InvAck (Invalidation Acknowledgment).

As long as the accelerator cache follows these rules, the

interface guarantees that normal coherence invariants will

hold (e.g., single-writer / multiple-reader). These messages

are sufficient to implement a fully coherent cache with sim-

ilar performance characteristics to more complex traditional

protocols such as AMD Hammer or Intel MESI(F), and

which can communicate with a variety of host cache designs.

Not all of these messages are necessary for integration

with all host protocols; e.g., when connecting to a host proto-

col that allows silent eviction of blocks in S state, the Cross-

ing Guard does not pass the PutS message to the host. In

practice, we saw that unnecessary PutS messages comprised

about 1-4% of Crossing Guard-to-host bandwidth. An opti-

mization would be to provide a mechanism (such as a reg-

ister) to tell Crossing Guard to suppress PutS requests when

the host does not need them. This would decrease overhead

while still allowing the Crossing Guard interface to work

with a wide variety of traditional coherence protocols.

To demonstrate the use of this interface, Table 1 shows

an example transition matrix in the style of Sorin et al. [31]

for an accelerator L1 cache. In this case, a single private L1

cache is connected to each Crossing Guard. This example

cache implements the MESI stable states, and has only a sin-

gle transient state, B (Busy). In comparison, the private L1

in our baseline implementation of an inclusive MESI host

protocol can receive four host requests and seven host re-

sponses, and has six transient states, some of which include

extra information such as a dirty bit or counters. These extra

states and messages are required to handle races and count

pending acks.



Guarantees to Host Protocol for Coherence Messages on Behalf of Accelerator

0. Accelerator requests must respect page permissions.

(a) The accelerator cannot make any request for a block for which it has no page access permissions.

(b) The accelerator cannot make an exclusive (write) request or respond with exclusive data for a block for which it does

not have page write permission.

1. Accelerator requests must be correct with respect to the host protocol.

(a) The accelerator cannot make a request inconsistent with the stable state of the block at the accelerator.

(b) The accelerator cannot make a request inconsistent with the transient state of the block at the accelerator.

2. Accelerator responses must be correct with respect to the host protocol.

(a) The accelerator cannot make a response inconsistent with the stable state of the block at the accelerator.

(b) The accelerator cannot make a response inconsistent with the transient state of the block at the accelerator.

(c) The accelerator must respond to any request from the host within a reasonable time.

Figure 1. List of guarantees provided to the host system by Crossing Guard.

While the host and accelerator may each internally use

an unordered network, we require that the network between

Crossing Guard and the accelerator be ordered. This avoids

all races between the accelerator except between an accel-

erator Put and a host Invalidate request. All other races and

complexity are hidden by Crossing Guard.

To demonstrate that the Crossing Guard interface allows

a range of accelerator protocol designs, we also implement a

hierarchical two-level accelerator cache design: private per-

core L1s connected to a shared L2, which communicates

with Crossing Guard. Blocks can be shared between accel-

erator L1s, with the L2 coordinating sharing. The accelera-

tor cache hierarchy and protocol are completely independent

of the host design, and connect to the host using the same

Crossing Guard hardware as the single-level protocol.

If an accelerator benefits more from simplicity than from

being able to implement a full MESI protocol, the acceler-

ator cache can reduce complexity by treating several mes-

sages identically. For example, an accelerator cache can im-

plement a VI design by sending only GetM requests. An MSI

design is possible by treating DataE as DataM (and sending

only Dirty Writebacks).

Finally, although we focus on fully coherent caches, it

is also possible to implement an accelerator protocol with

weaker coherence guarantees than the host system. For ex-

ample, an accelerator may have multiple private L1s and a

shared L2, and a programming model that requires an ex-

plicit flush before data from one core is guaranteed visible at

other accelerator L1s. Crossing Guard places no restrictions

on coherence behavior within the accelerator protocol.

2.2 Crossing Guard Guarantees to Host

Crossing Guard ensures that coherence messages to the host

protocol on behalf of the accelerator are consistent with three

guarantees, shown in Figure 1.

If the accelerator message (or lack of message) to Cross-

ing Guard would violate one of these guarantees, Crossing

Guard does not forward the message to the host (or will send

an appropriate message on a timeout), and reports an error

to the OS. The OS can then use an appropriate policy to han-

dle the error; for example, it can terminate the process run-

ning on the accelerator, disable the accelerator to prevent it

from making further accesses, and/or not schedule further

processes on the accelerator and alert the user. In practice,

we believe that the simpler coherence interface associated

with Crossing Guard will limit accelerator protocol errors.

At a high level, Crossing Guard enforces these guarantees

as follows:

Guarantee 0: This guarantee ensures that an accelerator

cannot read information to which it does not have read per-

missions or corrupt data for which it does not have write

permissions. Crossing Guard enforces it by checking page

permissions as described in prior work such as Border Con-

trol [23], and blocking incorrect accesses.

Guarantee 1: This guarantee protects the host from re-

ceiving unexpected requests from the accelerator, such as a

PutM when the accelerator does not own the block, or a sec-

ond GetS request for the same block before the first receives

a response.

For 1a, Crossing Guard tracks the state relative to the host

of all blocks in the accelerator cache. If the request type is

incorrect given this state (e.g., writing back a block that it

does not have), Crossing Guard will block the request and

report an error to the OS.

For 1b, Crossing Guard tracks all pending accelerator co-

herence requests. If there is already a pending accelerator

request for an address, it will block all subsequent accelera-

tor requests to the same address and report an error.

Guarantee 2: This guarantee protects the host from re-

ceiving unexpected responses from the accelerator, such as



an InvAck without a corresponding request; it also ensures

that the host always receives an appropriate response. Cross-

ing Guard ensures that the response message type is correct,

but cannot ensure correctness of data in the presence of an

accelerator protocol error – the accelerator caches are mal-

functioning, so data they provide is not trustworthy either.

Crossing Guard may thus send stale or zero data in response

to a host request, but will always alert the OS so that it can

take proper action.

For 2a, Crossing Guard again checks the response type

against its record of the state of the block at the accelerator.

If the response type is incorrect based on this information, it

corrects the response type and reports an error. For example,

if the accelerator owns a block but responds to an Invalidate

with an InvAck, Crossing Guard will send a Writeback of a

zero block instead.

For 2b, Crossing Guard keeps state indicating whether

there is a pending request from the host for the block. If not,

it blocks the response and reports an error.

For 2c, Crossing Guard detects whether the accelerator

responds to a request within a timeout interval. If the ac-

celerator does not respond to the request within a timeout,

Crossing Guard will report an error and respond on its be-

half with an appropriate message.

To enforce these guarantees, Crossing Guard must as-

sume that an incorrect accelerator might send any message

at any time, and respond accordingly.

2.2.1 Guarantees Not Provided by Crossing Guard

Crossing Guard does not and cannot protect against an accel-

erator writing incorrect data to a block for which the accel-

erator has write permission. This is because Crossing Guard

does not have access to internal accelerator logic. It is the

responsibility of the accelerator designer to ensure that the

accelerator operates correctly. The goal of Crossing Guard

is simply to protect the host system from incorrect accelera-

tor coherence messages and provide host stability.

2.3 Types of Crossing Guard

There are several possible implementations of the Crossing

Guard hardware. They provide the same interface to the ac-

celerator, but have different benefits depending on specifics

of the host protocol and the importance of minimizing the

storage needed by Crossing Guard. We discuss two types

of Crossing Guard here, and evaluate their performance and

implementation tradeoffs in Section 4. First, the Full State

Crossing Guard places few restrictions on the characteristics

of the host protocol, allowing it to be used with no modifi-

cations to the host protocol. However, it needs to store infor-

mation about every block currently held by the accelerator.

Second, the Transactional Crossing Guard alternative only

tracks open coherence transactions: cases where the host or

the accelerator has made a request but not yet received all

responses. It has much lower storage requirements, but re-

quires that the host coherence protocol have certain proper-

ties. We find that existing coherence protocols (such as an

AMD Hammer-like protocol and an inclusive MESI proto-

col) require only minor changes to work with Transactional

Crossing Guard.

2.3.1 Full State Crossing Guard

Full State Crossing Guard tracks the state of every block

present at the accelerator. In effect, this design adds a trusted

inclusive directory between the host protocol and the accel-

erator. Because the accelerator sends PutS requests, Crossing

Guard can store exactly the blocks in the accelerator caches.

Because this directory contains a trusted copy of all data

and metadata for each block, it allows Crossing Guard to

work with a wide variety of host coherence protocols. When-

ever Crossing Guard enters some stable state for a block, it

can forward it on to the accelerator, no matter the details of

how the block was obtained (e.g., via a data message + acks

or by gathering tokens). When Crossing Guard loses access

to a block (e.g., due to an invalidation or forward request or

timeout), it can notify the accelerator to invalidate its copy.

Thus, Full State Crossing Guard works with a variety of un-

changed host coherence protocols.

Full State Crossing Guard must store all data and meta-

data that could lead to a host coherence error if it were im-

properly modified. At minimum, it must store tags for all

blocks currently held by the accelerator. For a 256kB accel-

erator cache with 64B blocks, this storage is around 16kB. In

addition, it requires storage for blocks in MSHRs or buffers.

Crossing Guard may also need to store data for some

blocks. For example, if the accelerator is allowed to own

a block to which it does not have Read-Write permission,

Crossing Guard must store a copy of the data to avoid vi-

olating Guarantee 0b. This can happen for host protocols

which respond to a GetS request with DataE or DataM if no

other cache has the block. This allows silent upgrades to M

state later, and optimizes for a common case of blocks that

are read, then written. However, the accelerator may later

be expected to provide data to other caches for this block –

which is prohibited for a read-only block by Guarantee 0b

because it would allow an incorrect accelerator to modify a

block for which it does not have write permission. Further-

more, the performance optimization is not helpful because

the block will not be written by the accelerator. In practice,

many protocols provide a means of making non-upgradable

GetS requests for blocks that are expected to be read-only,

such as instructions.

Due to the storage overhead for Full State Crossing

Guard, it may be most appropriate for accelerators with

small caches or where the host protocol maintains metadata

with all blocks.

2.3.2 Transactional Crossing Guard

Transactional Crossing Guard only tracks open coherence

transactions, greatly reducing the storage required. It may

also ease time-sharing of the Crossing Guard hardware be-



tween accelerators, because storage will not need to be sized

for a specific accelerator.

Most of Crossing Guard’s guarantees to the host can

be easily enforced without Crossing Guard knowing the

state of the block at the accelerator. Guarantee 0 requires

only knowledge of each coherence request/response type

and address, along with the corresponding page permissions.

Guarantees 1b & 2b require only knowledge about tran-

sient states to determine allowed message type(s), while

Guarantee 2c requires only knowing how long a block has

been in a transient state at the Crossing Guard.

However, Guarantees 1a & 2a require Crossing Guard

to determine whether a message is consistent with the state

of the block at the accelerator. Full State Crossing Guard

handles them by storing information on the stable state of

blocks held by the accelerator.

An alternate approach, which we use for Transactional

Crossing Guard, is to instead require that the host proto-

col have certain properties that make any message that is

consistent with the transient accelerator state also consistent

with stable accelerator state. We require that the host main-

tain normal coherence invariants for any accelerator mes-

sage reflecting the true state of the block at the accelerator.

For all other messages consistent with the transient acceler-

ator state, we require only that the host protocol tolerate the

message. For example, if the accelerator holds a block in S

but sends a PutM request, the host may handle this by dis-

carding the data or by updating its copy of the block. If it

updates the block, this may result in multiple values of the

block in the host coherence system, in violation of normal

coherence invariants. However, as the accelerator is already

behaving incorrectly, the data is not trustworthy even if the

message is discarded. We focus instead on ensuring that the

host caches do not experience deadlock or livelock or en-

ter undefined states. We simply require that the host system

eventually converge on a single value for each physical ad-

dress in the system.

For Guarantee 1a, we require that the host protocol

be able to handle any request from an accelerator for a

block, regardless of “true” stable state of that block at the

accelerator, as long as the request does not violate any other

guarantee. For example, the host protocol must be able to

tolerate a Put message for a block the accelerator does not

hold, or a PutM message for a block in S. In some cases,

the directory maintains owner information, which allows the

host to determine if a Put is erroneous and report an error

(and recover). Similarly, a protocol that uses PutS is likely

to do exact sharer tracking, allowing it to determine if a PutS

message is correct.

In some protocols, non-owner PutM requests can occur

due to a non-erroneous race condition [31]. If the host proto-

col generates Nacks or takes other action on the Put (besides

simply sinking it), it is necessary to ensure that these actions

do not cause harm. For example, if an improper accelerator

Put can result in a spurious Nack later being sent to a CPU

cache, it is necessary that the CPU cache can detect this case

and safely handle the message.

For Guarantee 2a, we require that the host protocol be

able to tolerate any response from an accelerator that is ap-

propriate to the originating request, regardless of stable state

at the accelerator. As an example, consider a protocol that

does not track sharers and thus broadcasts a Forward mes-

sage to all caches, whether or not they have the block. The

correct response thus depends on the state of the block at the

accelerator: a Data message if the accelerator is the owner,

otherwise an InvAck. If the accelerator responds incorrectly,

Crossing Guard will forward the incorrect response to the

host. This can result in problems in the accelerator host pro-

tocol, where a cache might receive zero or multiple copies

of data instead of the exactly one copy it expects.

One way for a host protocol to maintain safety is to

ensure that there is a one-to-one correspondence between

requests and responses in the host protocol. The host can

precisely track owner and sharer information for each block,

and send different types of Forward messages based on this

state. An alternate approach that requires less storage is to

modify the host protocol to handle the different responses

interchangeably; rather than counting acks, the requestor can

count the number of responses received. The protocol may

then receive zero or multiple copies of data for the block,

resulting in corrupted data, but without disrupting the host

protocol.

Finally, Transactional Crossing Guard is inappropriate for

protocols that require non-modifiable metadata to be stored

along with accelerator stable states. In general, any data

or metadata given to the accelerator in a stable state must

be considered unsafe and potentially modified; this means

that, for example, a Token protocol where each block is

associated with virtual tokens [20] would require extensive

changes to work with Transactional Crossing Guard.

In practice, we find that our baseline host protocols re-

quire only minor changes to work correctly (Section 3.2).

Since both Crossing Guard and the host coherence proto-

col are implemented in the host, it may be reasonable to

optimize Crossing Guard storage by making host protocol

changes, especially if the changes do not require extensive

redesign. The trade-offs between Full State Crossing Guard

and Transactional Crossing Guard may weigh differently for

different host systems. Since both use the same interface

with the accelerator, the decision can be made independently

of any accelerator design decisions.

2.4 Comparison with Traditional Protocols

There are several differences between our interface and ex-

isting host protocols like our baselines, an AMD Hammer-

like exclusive MOESI protocol and Intel-like inclusive

MESI. First, Crossing Guard prevents direct communica-

tion between an accelerator cache and other sibling caches

in the system. In contrast, many protocols allow a cache



to forward data to other caches at the same level. Crossing

Guard’s interface allows the accelerator cache to communi-

cate only with a single controller (Crossing Guard), which

in turn communicates with the other caches in the system.

This design choice has benefits and drawbacks. The prin-

ciple drawbacks of disallowing cache-to-cache communica-

tion are that some transitions will require more hops, and

there will be more traffic through the directory. The main

benefit is avoidance of the complexity associated with send-

ing data or acknowledgements between sibling caches. In

the Hammer-like protocol, a request for a block will fre-

quently result in a response from every other cache; in the

MESI inclusive protocol, the requestor is told by the L2

how many responses it should receive. In both cases, the re-

questor must count acks, determine the type (e.g., DataS,

DataE, or DataM) of data received, and determine whether

to send an unblock message to the parent. This adds com-

plexity and thus implementation, debugging, and verification

difficulty. We shift this complexity to Crossing Guard, which

only needs to be designed once per host protocol. In return,

the accelerator protocol can be drastically simplified.

A second difference is that Crossing Guard filters out

race conditions. In some traditional protocols, if a cache

requests a block in S, it may receive an invalidation before

the data, in which case it must enter a transient state such

as ISI [31], since the cache does not know whether the data

or the invalidation was sent first. Handling race conditions

correctly is difficult and adds complexity. Crossing Guard

hides these races from the accelerator cache. The accelerator

designer then need not consider them; if the block is not in

a stable state, the accelerator cache should always return an

InvAck on an Invalidate request and take no further action.

Third, the protocol does not constrain cache design in

terms of inclusivity / non-inclusivity / exclusivity or number

of levels. In the two-level accelerator protocol, the accelera-

tors can use an entirely different cache organization than the

host. Our accelerator L2 is inclusive and shared between a

number of L1s, all running the same application, which al-

lows data to be transferred between the L1s without going

through Crossing Guard and the host directory. It can be in-

tegrated with the host protocol, regardless of host inclusivity

and the number of levels in the host protocol.

2.5 Other Benefits of Crossing Guard

Besides the safety guarantees already discussed, Crossing

Guard can protect against denial of service attacks where a

misbehaving accelerator sends legitimate messages at a very

high rate, consuming bandwidth, directory entries, or other

resources shared with the host. Unchecked, this could cause

significant performance degradation for processes being run

on the host system. To avoid this situation, Crossing Guard

can limit the rate at which an accelerator can send requests

(responses should always be sent immediately). This rate

limiting could be controlled by registers set by OS policies.

Using a configurable limit would also allow correct acceler-

Accel

Accel-side

Cache

Accel

Host-side

Cache

Accel

L1

Cache

XG

Accel

L1

Cache

XG

Accel

L1

Cache

L2 Cache

(a) (b) (c) (d)

accelerator

host

Figure 2. Cache organization options for accelerators.

(a) Accelerator-side cache (unsafe), using the host protocol.

(b) Host-side cache, with no cache at the accelerator.

(c) Accelerator with Crossing Guard, with a single-level

accelerator cache using an accelerator protocol.

(d) Multicore accelerator with Crossing Guard, with two-

level cache using an accelerator protocol.

ators to be throttled when they are impacting performance of

other components of the system, while allowing them more

resources when available.

Crossing Guard, along with translating between coher-

ence protocols, may also translate between coherence block

sizes. If the accelerator uses a larger block size than the host,

Crossing Guard can merge requests and responses. On an ac-

celerator request, it can request all needed host blocks, and

once they arrive, it can forward the merged block to the ac-

celerator. On a writeback, it can split the single accelerator

block back into component blocks. (However, if the applica-

tion developer does not realize that the block sizes are dif-

ferent, performance could suffer due to an increase in false

sharing.)

If the accelerator uses a smaller block size than the host,

Crossing Guard can request blocks at host granularity and

store them, forwarding only pieces of them to the accelera-

tor. Although this allows for correct operation, it increases

necessary storage at the Crossing Guard. We believe that it

is unlikely that an accelerator would use smaller granularity

blocks than the host, since host block size is already rela-

tively small (64B).

3. Crossing Guard Implementation

To better understand how our proposed interface works with

various host protocols, we design Crossing Guard hardware

to connect our example one- and two-level accelerator pro-

tocols with two baseline host protocols: an AMD Hammer-

like exclusive protocol and an inclusive MESI protocol. For

our baseline protocols, we use the versions implemented in

gem5 [5] as the protocol description. We integrate Crossing

Guard with pre-existing protocol implementations to avoid

making design choices in the host protocols that might inad-

vertently make it easier for us to integrate Crossing Guard.

Crossing Guard appears to the host protocol as an ordi-

nary cache: for Hammer-like as a private L2, and for MESI

inclusive as a private L1. Because the accelerator caches are



behind Crossing Guard, the host protocol is completely ag-

nostic to their design.

We show some of the design alternatives in Figure 2.

First, in (a), the accelerator may implement a cache using the

host protocol; this is unsafe and requires the host protocol

to be exposed to the accelerator, but may be suitable if the

accelerator is designed by the same company as the host.

Second, in (b), the host provides a host-side cache to which

the accelerator directly makes load and store requests by

virtual address. While safe, this may increase access latency

as well as disallowing the accelerator freedom to customize

its cache design. Finally, in (c) and (d), the host exports the

Crossing Guard interface, while the accelerator implements

an L1 cache customized to its needs (c) or an L1 and shared

L2 using its own protocol (d). In this case, Crossing Guard

provides safety and an interface with the host, while letting

the accelerator use customized caches.

In total, we evaluate 8 possible configurations using

Crossing Guard: 2 host protocols, 2 Crossing Guard vari-

ants, and 2 accelerator protocols. In addition, we evaluate 4

configurations without Crossing Guard: an accelerator-side

and a host-side cache for each host protocol.

3.1 Permission Information

Crossing Guard ensures that page access permissions are re-

spected (Guarantee 0), as in prior work [23]. For each ac-

celerator or host request where there is not already a pending

transaction, Crossing Guard first obtains the page permis-

sions (Read-Write, Read, or None), as in Border Control. It

then stores the page permission information with any buffer

entries or cache lines for the address. These permissions are

used to provide protection; e.g., if a block has read-only per-

mission, the accelerator should not be able to send any mes-

sages for that block containing data.

3.2 Integration with Host Protocols

We integrate Full State and Transactional Crossing Guard

with two existing coherence protocols in gem5-gpu [27],

with the general-purpose GPU as a proxy for a general high-

performing accelerator. We discuss our experiences with

each and the necessary host protocol modifications.

Although a different Crossing Guard implementation is

needed for each host protocol, there were significant simi-

larities. We discuss the general operation of Crossing Guard,

then address host protocol-specific considerations.

First, the accelerator may make a Get request. If the re-

quest violates its guarantees, Crossing Guard reports an er-

ror and does not forward it to the host. Otherwise, Cross-

ing Guard forwards the request, then waits for data and/or

metadata such as acks from the host system. When Cross-

ing Guard determines the request has been satisfied (i.e., it

has received a copy of the data and the requisite number of

acks), it passes the data along to the accelerator with the ap-

propriate message (DataS, DataE, DataM). If needed, it also

sends the appropriate unblock message to the host directory.

Second, the accelerator may make a Put request. If the

request violates its guarantees, Crossing Guard again reports

an error. Otherwise, Crossing Guard forwards the request

and acks the accelerator, then waits for a writeback ack

from the host. In a two-part writeback as in the Hammer-like

protocol, Crossing Guard then sends the data.

Third, the host may make an Invalidate or Forward re-

quest. If Full State Crossing Guard shows that the accel-

erator does not have the block in a conflicting state (e.g.,

block is in S on a forwarded GetS), or if Transactional Cross-

ing Guard can deduce block state from open transactions or

page permissions, Crossing Guard can simply send an Ack

on the accelerator’s behalf. Otherwise, Crossing Guard for-

wards an Invalidate to the accelerator, then translates the ac-

celerator’s response and sends it to the host (i.e., directory,

sibling cache, or both) with appropriate message type and

number of acks, etc. Crossing Guard also enforces a timeout

for these transactions, so that if the accelerator takes too long

to reply, Crossing Guard can recover by sending a zero data

block or an ack to the requestor and alerting the OS that an

error has occurred.

Even though Transactional Crossing Guard does not store

full accelerator cache state information, it can respond to

snoops for blocks where the accelerator has no permissions

without consulting the accelerator. This has two benefits:

first, it avoids needless messages and associated latency.

Second, if the accelerator is malicious, coherence traffic

could be a side channel; this is particularly true if the pro-

tocol is broadcast or bus-based. Preventing the accelerator

from observing coherence traffic for blocks it cannot access

prevents side-channel attacks.

Finally, there may be a race between an accelerator and

host request, resulting in a transaction that is waiting for

both the host and the accelerator. For example, the accel-

erator may make a Put request at the same time as the host

makes an Invalidate request for the same block. In this case,

Crossing Guard must ensure that both the host and accelera-

tor receive appropriate responses.

3.2.1 Integration with Hammer-Like Protocol

The MOESI hammer protocol, as implemented in gem5, com-

bines the private L1I, L1D, and L2 into a single cache con-

troller, with a directory in a separate controller. We integrate

Crossing Guard to act like a private L1/L2 cache. We dis-

cuss some of the nuances of implementing Crossing Guard

for this protocol.

The Hammer-like protocol includes a non-exclusive owned

state (O), which gives the owning cache a shared copy of

the block but requires it to respond to requests from other

caches. The Crossing Guard accelerator interface does not

have a way of communicating this state to the accelerator

with the messages in its interface. Therefore, Transactional

Crossing Guard ensures that the host never considers the ac-

celerator in this state. The O state is reached when there are

multiple GetS requests from different cores in the Hammer-



like protocol to a block in an exclusive owned state (M). The

directory then forwards a merged GetS request to the owner.

The expected response is for the owner to downgrade to the

non-exclusive owned state O and also provide the data to the

requestors. We handle this case by having Crossing Guard

request an invalidation from the accelerator cache, then for-

ward the data in the resulting writeback to the requestors.

Crossing Guard also sends the data to the directory with a

Put message, relinquishing ownership.

Three host protocol changes are required to support

Transactional Crossing Guard. First, the Hammer-like pro-

tocol we build on does not include a non-upgradable GetS

message; a cache in modified M state always responds with

exclusive data. The accelerator cannot own a block with

read-only permission without violating Guarantee 0b, so

we add a non-upgradable GetS only request. Similarly, we

add a Fwd GetS only message to the host L1/L2. We believe

that commercially implemented protocols generally already

implement such a request for use by instruction caches.

Second, to ensure that any request from the accelerator

is valid regardless of stable block state (Guarantee 1a), the

protocol must be modified to handle unexpected accelerator

Put requests. The baseline directory already handles Put

requests when it believes that the directory already owns the

block, because this can happen in a correctly implemented

protocol if the Put request races with a Get from another

cache. The directory then responds with a Nack. However, if

the accelerator sends an incorrect Put, it can lead to a host

cache receiving an unexpected Nack at a later time. We thus

modify the host L1/L2 caches to sink unexpected Nacks and

generate an error.

Third, to ensure that any response corresponding to a re-

quest from the host is always valid regardless of accelerator

stable state (Guarantee 2a), we must modify the host L1/L2

logic for counting Acks on a Get request. Rather than count-

ing Acks, the L1/L2 instead counts the number of responses.

This allows it to receive zero or multiple copies of the data

without a protocol disruption.

These changes require no additional states; in total, we

added one new event to the directory and one to the L1/L2.

3.2.2 Integration with MESI Two-Level

The MESI Two Level protocol has a shared L2 that is in-

clusive of private L1s (where the L1I and L1D share a con-

troller). Implementing Full State Crossing Guard is straight-

forward. The only change to the baseline protocol required

for Transactional Crossing Guard is treating Acks and Data

as equivalent responses to a Forward request (Guarantee

2a). This is mostly simple, except in the case where Crossing

Guard receives an invalidation due to a GetM request from

a host L1 and the accelerator is not the owner. If the accel-

erator is buggy and responds with a Writeback rather than

an InvAck, Crossing Guard will forward the data to the L2

rather than acking the requesting L1. Therefore, it is neces-

sary for the L2 to respond to this unexpected event by acking

the requestor on behalf of the accelerator.

The host protocol can handle requests from the accelera-

tor at any time (Guarantee 1a) with no changes. Thus, the

MESI inclusive protocol works with Transactional Crossing

Guard without additional states or events in the host con-

trollers.

4. Results

To explore the effects of accelerator cache organization and

the performance and error tolerance properties of Crossing

Guard, we evaluate a range of cache organizations in gem5-

gpu [27]. We evaluate Crossing Guard for three properties:

correctness given a correct accelerator cache; safety with an

incorrect accelerator cache; and expected performance with

a correct accelerator cache.

4.1 Protocol Stress Test

We first evaluate the correctness of our implementation of

the accelerator protocols and the interface with the host

protocols. We stress-test the protocols by running a random

testing framework which makes rapid loads and stores to

random addresses and checks correctness of the data [33].

To increase contention, only a small number of addresses are

used, and the cache sizes are correspondingly decreased so

that replacements are frequent; message latencies are chosen

randomly to model the case where messages are delayed in

the network. We expect that if the tester is run with varying

random seeds and cache sizes, all possible transitions will

eventually be seen. We assume for this test that all blocks

have full read-write permission at the accelerator.

We choose this approach over formal verification (e.g.,

model checking with Murφ, [9]) because of practical lim-

itations of existing verification methods. These approaches

typically can verify a protocol for only a single address in

the system, and rely on symmetry between cores that our

heterogeneous system lacks. These methods require making

simplifications for tractability and do not model all aspects

of the protocol. An industrial implementation of Crossing

Guard would likely include formal verification to comple-

ment stress testing.

We ran the random tester for at least 240 million load /

check pairs per configuration, with up to 82 billion for con-

figurations that did not have complete coverage. Across con-

figurations, the tests ran for a sum of 22 compute years.

To understand the coverage of the tester, we counted the

state/event pairs that the random tester visited at each cache

controller and compared it with the number that we believe

are possible, based on transitions defined by the baseline

protocols. In the case of a missing transition or coherence

bug that caused incorrect data, the tester would produce an

error; we did not observe any errors or missing transitions

in the final versions of the protocols. We manually inspected

transitions that were never visited and determined that some



Protocol Full State XG Transactional XG

Host Accel Visited Possible % Visited Possible %

Hammer-like 1-level 60+148+70+19 60+148+73+19 99% 60+148+67+20 60+148+69+20 99.3%

Hammer-like 2-level 60+148+92+85+18 60+148+92+85+19 99.8% 60+148+68+87+18 60+148+69+87+18 99.5%

MESI 1-level 60+121+45+19 60+121+45+19 100% 60+121+43+20 60+121+43+20 100%

MESI 2-level 60+121+63+85+18 60+121+64+85+19 99.4% 60+121+43+87+18 60+121+43+87+19 99.7%

Table 2. Coverage with random tester. Hammer-like totals are for Directory+Host L1/L2 Cache+Crossing Guard+Accelerator

L1 (+ Accelerator L2). MESI totals are for Host L2+Host L1+Crossing Guard+Accelerator L1 (+ Accelerator L2).

Host Protocol Full State XG Transactional XG

Visited Possible % Visited Possible %

Hammer-like 148+57+211 148+60+211 99.3% 172+61+154 172+61+153 99.7%

MESI 60+121+148 60+121+149 99.7% 60+127+93 60+127+93 100%

Table 3. Coverage with fuzz tester. Hammer-like totals are for Directory+Host L1/L2 Cache+Crossing Guard. MESI totals are

for Host L2+Host L1+Crossing Guard.

of them were not actually reachable (e.g., Replacement event

for a block not in the cache); we therefore removed them

from the total. We show the totals in Table 2. These cover-

age totals do not include transitions only reachable due to

accelerator misbehavior.

The higher the percentage of transitions visited, the more

likely it is that the tester would have uncovered any latent

bugs. Although the percentage of visited transitions at each

controller does not directly indicate the percentage of visited

global transitions, it provides a lower bound on coverage.

We observed that over 99% of transitions were reached

for each configuration for both host protocols. The remain-

ing transitions tended to be reachable only by multiple races

between host invalidations and accelerator replacements,

making them very infrequent.

4.2 Accelerator Protocol Fuzz Testing

To test whether the host is protected from the accelerator

when the accelerator caches are incorrect, we employed fuzz

testing [21], where we generated random input to Crossing

Guard from the accelerator side. The fuzz tester takes the

place of the accelerator cache(s). It repeatedly randomly se-

lects one message type and an address, and makes a request

to the host (via Crossing Guard), without considering the

cache state of the address. This generates a stream of re-

quests unlike what would be seen in a correctly function-

ing cache: for example, multiple GetM messages without

receiving or relinquishing data, PutM messages when not

the owner, and unsolicited Writebacks or InvAcks. It also can

lead to missing responses, normally resulting in deadlock.

The host side continues to run the previous random stress

tester, but the check for data correctness is removed.

Table 3 shows that coverage with the fuzz tester was over

99%. This method quickly uncovered numerous errors in our

initial implementation; however, in the final implementation

we find no invalid transitions or deadlocks. These results

suggest that Full State Crossing Guard fully protects an un-

modified host protocol. In addition, Transactional Crossing

Guard can, in concert with a slightly modified host protocol,

hide accelerator misbehavior from the rest of the system.

4.3 Performance

Although safety is Crossing Guard’s primary goal, our pro-

tection mechanism must not significantly degrade perfor-

mance in normal operation. We therefore evaluate perfor-

mance on one type of accelerator, a general-purpose GPU.

GPGPUs are complex, high-performance accelerators that

can benefit from sharing a coherent address space with the

host system.

Tables 4 and 5 give details of our simulator configuration.

We evaluate our approach using shared-memory versions of

workloads from the Rodinia benchmark suite [6]. For obtain-

ing page permissions, we implement Border Control [23],

which uses a table updated on accelerator TLB misses to

determine permissions; we assume a 2 cycle latency to ac-

cess an 8kB Border Control Cache. We hold the total system

cache capacity constant across all configurations; thus, in the

two-level accelerator cache design, the L1s will be smaller

than in the single-level accelerator cache, as shown in Ta-

ble 5. Although different cache sizes and numbers of lev-

els make it difficult to directly compare performance across

cache coherence protocols, our goal is only to determine

whether performance is significantly degraded when using

Crossing Guard.

We compare Crossing Guard with two alternate ap-

proaches. First, the accelerator-side cache gives each ac-

celerator a unified L1 similar to the CPU caches. This cache

uses the host protocol and is unsafe, but may be appropriate

when the accelerator is designed by a trusted party. Sec-

ond, the host-side cache provides the accelerator with an

interface to which it can make loads and stores by virtual

address. However, the cache has long latency on hits. The

host-side cache is similar to CAPI’s approach, but without

allowing a trusted cache on the accelerator side.



CPU

CPU Cores 1

CPU Frequency 3 GHz

Host Caches

Hammer-like MESI Inclusive

L1I & L1D 32kB each 32kB each

L2 128kB private 512kB shared w/ GPGPU

Table 4. CPU simulation configuration details.

GPGPU

Cores 4

GPU Frequency 700 MHz

GPGPU Caches (Hammer-like)

Accel-side Host-side / 1-level 2-level

L1 16kB I and D 160kB 32kB

L2 128kB private - 512kB shared

GPGPU Caches (MESI Inclusive)

Accel-side Host-side / 1-level 2-Level

L1 32kB I and D 64kB 16kB

L2 - - 192kB shared

Cache-to-Cache Latency

Accelerator L1 to L2 10 cycles

Accelerator L2 to XG 200 cycles

XG to Directory/Shared L2 10 cycles

Accelerator to Host-side Cache 210 cycles

Table 5. GPGPU simulation configuration details.

We assume that the accelerator is not as closely inte-

grated with the host L2/Directory as the rest of the caches,

but rather has 20x the latency. High latency might result if

the accelerator and host directory are in different clock do-

mains. In addition, the high latency is consistent with perfor-

mance results for integrated GPGPUs. Finally, the GPGPU

and its workloads are fairly latency-insensitive and the high

latency link emphasizes the difference in configurations,

which might be more apparent for latency-sensitive accel-

erators. We place the host-side cache and Crossing Guard on

the host side of the connection, and any accelerator caches

at the other side.

Figure 3 shows performance for the Hammer-like case

and Figure 4 for the inclusive MESI case, each normalized

to the accelerator running an unchanged host protocol.

For the Hammer-like exclusive host protocol, we find

that allowing the accelerator a cache is important for perfor-

mance. The host-side cache degrades performance by an av-

erage of 27% compared to the unsafe accelerator-side cache,

due to the long latency to access the host-side cache. Inter-

estingly, in some cases the host-side cache performs better

than the accelerator cache; this is because the Hammer-like

protocol does not track sharers, and Forward requests thus

must traverse the long-latency hop to the accelerator. This

is particularly harmful when the accelerator does not have

the block, and accounts for much of the slowdown of the

backprop bfs hotspot lud nn nw pathfinder AVG

Benchmark

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

a
li
z
e
d
 A

c
c
e
le

ra
to

r
E
x
e
c
u
ti

o
n
 T

im
e

Unsafe Accel-side $

Host-side $

Full XG, L1 $

Full XG, L1 + L2 $

Trans. XG, L1 $

Trans. XG, L1 + L2 $

Figure 3. Performance with Hammer-like host protocol,

normalized to an unsafe accelerator-side cache.

backprop bfs hotspot lud nn nw pathfinder AVG

Benchmark

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

N
o
rm

a
li
z
e
d
 A

c
c
e
le

ra
to

r
E
x
e
c
u
ti

o
n
 T

im
e

Unsafe Accel-side $

Host-side $

Full XG, L1 $

Full XG, L1 + L2 $

Trans. XG, L1 $

Trans. XG, L1 + L2 $

Figure 4. Performance with MESI inclusive host protocol,

normalized to an unsafe accelerator-side cache.

Transactional Crossing Guard. The effect is stronger for the

single-level accelerator cache, because the two-level cache

allows accelerators to share blocks without traversing the

link to the host. The combination of Crossing Guard and

an accelerator cache provides the fast cache access of the

accelerator-side cache plus the fast Forwards of the host-side

cache, with performance results compared to the accelerator-

side cache ranging from a 9% average improvement to a 4%

overhead depending on configuration.

For the MESI inclusive host protocol, we find that the

host-side cache has an average performance overhead of

36% compared to the unsafe accelerator-side cache. The

two-level accelerator cache with Crossing Guard suffers

from a combination of limited capacity and expensive de-

mand misses. However, the single-level accelerator cache

performs indistinguishably to the unsafe case while provid-

ing safety.

Together, these results suggest that Crossing Guard can

provide safety to host while maintaining high performance.

5. Related Work

Crossing Guard targets coherent accelerators that are high-

performance, potentially buggy, and possibly designed by

third parties. For accelerators not falling into these cate-

gories, other approaches may be viable. We discuss several



Approach Accelerator-side Host-side Robust Full State XG Transactional XG

Avoid Host Changes ✓ ✓ ✗ ✓ Minimal

Standardized for Accelerators ✗ ✓ ✗ ✓ ✓

Safe for Hosts ✗ ✓ ✓ ✓ ✓

High Performance ✓ ✗ ✗ ✓ ✓

Low Storage Overheads ✓ ✗ ✗ ✗ ✓

Allows Cache Customization ✓ ✗ ✓ ✓ ✓

Table 6. Summary of related approaches to accelerator-host memory interactions.

alternatives which trade off host modification, safety, and

performance, and summarize them in Table 6.

First, the accelerator could directly use the unchanged

host protocol. This requires the host protocol to be known

to the accelerator designer, and for the host designer to

trust or verify that the accelerator is correctly implemented.

The benefit of this approach is that there is no need to add

hardware or modify existing cache coherence protocols, and

performance will be good. It may be suitable for accelerators

designed by the same company as the host system. There is

considerable work on testing and verifying [2, 7, 9, 19, 24]

cache coherence of systems without accelerators, some of

which may be applied to heterogeneous systems.

Second, several companies have introduced interfaces

for coherent memory accesses for third-party accelerators.

IBM’s Coherent Accelerator Processor Interface (CAPI) [14]

allows accelerators to make coherent load and store re-

quests to host memory, but precludes accelerator design-

ers from implementing high-performance cache hierarchies.

This model is well-suited for FPGAs, but may not be for

complex, high-performance accelerators that benefit from

customized and optimized accelerator cache organizations.

The ARM Accelerator Coherency Port (ACP) [12] also

allows an accelerator to make coherent accesses to the host:

an ACP access will return the most up-to-date copy of the

block, even if it resides in a CPU cache. However, it does

not provide full coherence: a request from the host will not

return data modified by the accelerator until the accelerator

has flushed its caches. This may be a reasonable approach

for some classes of accelerators; in particular, those using

a bulk-synchronous model where caches are flushed at the

end of kernel execution. However, it is less well-suited when

the accelerator, workload, or programming model cannot

determine when the accelerator is done with a block.

CAPI and ACP are limited to a single host architecture;

the CCIX Consortium [1] promises a standardized coherence

interface. Detailed information has yet to be released to the

public.

Third, if data access patterns are coarse-grained or known

a priori, coherence may be unnecessary and the accelerator

can instead use scratchpads or other software-managed stor-

age. Even if coherence is desirable from a programmability

or performance standpoint, knowledge of specific coherence

patterns may allow the accelerator designer to emulate hard-

ware coherence at the cost of lower performance [3].

Finally, host coherence protocols could be redesigned to

tolerate all bad coherence messages from accelerators. This

approach has the benefit of providing protection both against

bugs in the host caches and the accelerators. However, it

requires a complete redesign of host coherence protocols,

which is expensive. In addition, prior work degrades perfor-

mance or is limited to certain error conditions (e.g., missing

messages but not incorrect messages) [11, 30]. This is be-

cause these robust coherence protocols generally address a

different fault model: they guarantee correctness of data as

well as correctness of coherence messages.

Prior work has considered incorrect accelerator behavior.

Border Control [23] enforces virtual memory permissions

for accelerators, even if they make memory accesses by

physical addresses. However, it does not prevent against

incorrect types of coherence messages.

There have been several proposals for hardware that con-

verts between coherence protocols; Stanford FLASH [17]

mentions the possibility, but does not explore its implemen-

tation. Hagersten et al. [13] propose a coherence transformer.

To our knowledge, no previous work discusses translating

between coherence protocols with protection against incor-

rect coherence behavior.

6. Conclusion

Some future hardware accelerators will benefit from hard-

ware cache coherence. However, accelerator designers face

complex and proprietary host protocols, while host design-

ers may be reluctant to allow potentially buggy accelerator

caches to participate in host coherence. Crossing Guard ad-

dresses both challenges by providing a safe and standardized

coherence interface, while maintaining high performance.

Acknowledgments

We are grateful to our anonymous reviewers for valuable

feedback that improved the final version of the paper. We

thank Michael Swift, Jason Lowe-Power, and other mem-

bers of the Multifacet group for valuable discussions. This

work is supported in part by the National Science Foun-

dation (CNS-1302260, CCF-1438992, CCF-1533885, CCF-

1617824), John P. Morgridge Chair, Google, and the Univer-

sity of Wisconsin-Madison (Amar and Balindar Sohi Profes-

sorship in Computer Science). Hill and Wood have a signif-

icant financial interest in AMD and Google.



References

[1] Cache Coherent Interconnect for Accelerators (CCIX). URL

http://www.ccixconsortium.com/.

[2] D. Abts, D. J. Lilja, and S. Scott. So many states, so little time:

Verifying memory coherence in the cray x1. In Proceedings

of the 17th International Parallel and Distributed Processing

Symposium (IPDPS), Apr. 2003.

[3] N. Agarwal, D. Nellans, E. Ebrahimi, T. F. Wenisch,

J. Danskin, and S. W. Keckler. Selective GPU caches

to eliminate CPU-GPU HW cache coherence. In Proc.

of the 22nd IEEE Symp. on High-Performance Computer

Architecture, Mar. 2016.

[4] K. Atasu, R. Polig, C. Hagleitner, and F. R. Reiss. Hardware-

accelerated regular expression matching for high-throughput

text analytics. In Field Programmable Logic and Applications

(FPL), 2013 23rd International Conference on, pages 1–

7, Sept. 2013. doi: 10.1109/FPL.2013.6645534. URL

http://dx.doi.org/10.1109/FPL.2013.6645534.

[5] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi,

A. Basu, J. Hestness, D. R. Hower, T. Krishna, S. Sardashti,

R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and D. A.

Wood. The gem5 simulator. Computer Architecture News

(CAN), 2011. URL http://gem5.org.

[6] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-

H. Lee, and K. Skadron. Rodinia: A benchmark suite for

heterogeneous computing. In Proceedings of the International

Symposium on Workload Characterization, pages 44–54,

October 2009. doi: 10.1109/IISWC.2009.5306797. URL

http://dx.doi.org/10.1109/IISWC.2009.5306797.

[7] E. M. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. E.

Long, K. L. McMillan, and L. A. Ness. Verification of the

Futurebus+ cache coherence protocol. In CHDL, volume 93,

pages 15–30. Citeseer, 1993.

[8] A. DeOrio, A. Bauserman, and V. Bertacco. Post-silicon

verification for cache coherence. In Computer Design, 2008.

ICCD 2008. IEEE International Conference on, pages 348–

355, Oct 2008. doi: 10.1109/ICCD.2008.4751884.

[9] D. L. Dill. The mur φ verification system. In Computer Aided

Verification, pages 390–393. Springer, 1996.

[10] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger.

Neural acceleration for general-purpose approximate pro-

grams. In Proc. of the 45th Annual IEEE/ACM In-

ternational Symp. on Microarchitecture, pages 449–

460, Dec. 2012. doi: 10.1109/MICRO.2012.48. URL

http://dx.doi.org/10.1109/MICRO.2012.48.

[11] R. Fernandez-Pascual, J. M. Garcia, M. E. Acacio, and

J. Duato. A low overhead fault tolerant coherence protocol

for cmp architectures. In Proc. of the 13th IEEE Symp. on

High-Performance Computer Architecture, Feb. 2007.

[12] J. Goodacre. The evolution of the ARM ar-

chitecture towards big data and the data-centre.

http://virtical.upv.es/pub/sc13.pdf, Nov. 2013. URL

http://virtical.upv.es/pub/sc13.pdf.

[13] E. E. Hagersten, M. D. Hill, and D. A. Wood. Methods

and apparatus for a coherence transformer for connecting

computer system coherence domains, Jan. 12 1999. US

Patent 5,860,109.

[14] Coherent Accelerator Processor Interface User’s Manual.

IBM, 2014.

[15] O. Kocberber, B. Grot, J. Picorel, B. Falsafi, K. Lim, and

P. Ranganathan. Meet the walkers: Accelerating index

traversals for in-memory databases. In Proc. of the 46th

Annual IEEE/ACM International Symp. on Microarchitecture,

pages 468–479, Dec. 2013. doi: 10.1145/2540708.2540748.

URL http://doi.acm.org/10.1145/2540708.2540748.

[16] S. Kumar, A. Shriraman, and N. Vedula. Fusion : Design

tradeoffs in coherent cache hierarchies for accelerators.

In Proc. of the 42nd Annual Intnl. Symp. on Computer

Architecture, June 2015.

[17] J. Kuskin, D. Ofelt, M. Heinrich, J. Heinlein, R. Si-

moni, K. Gharachorloo, J. Chapin, D. Nakahira, J. Baxter,

M. Horowitz, A. Gupta, M. Rosenblum, and J. Hennessy.

The Stanford FLASH multiprocessor. In Proc. of the 21st

Annual Intnl. Symp. on Computer Architecture, pages 302–

313, Apr. 1994. doi: 10.1109/ISCA.1994.288140. URL

http://dx.doi.org/10.1109/ISCA.1994.288140.

[18] J. V. Lunteren, T. Engbersen, J. Bostian, B. Carey, and C. Lars-

son. XML accelerator engine. In In The First International

Workshop on High Performance XML Processing. ACM,

2004.

[19] Y. A. Manerkar, D. Lustig, M. Pellauer, and M. Martonosi.

Ccicheck: using µhb graphs to verify the coherence-

consistency interface. In Proceedings of the 48th Interna-

tional Symposium on Microarchitecture, pages 26–37. ACM,

2015.

[20] M. M. K. Martin, M. D. Hill, and D. A. Wood. Token

coherence: Decoupling performance and correctness. In Proc.

of the 30th Annual Intnl. Symp. on Computer Architecture,

pages 182–193, June 2003.

[21] B. P. Miller, L. Fredriksen, and B. So. An empirical study of

the reliability of UNIX utilities. Communications of the ACM,

33(12):32–44, Dec. 1990. doi: 10.1145/96267.96279. URL

http://doi.acm.org/10.1145/96267.96279.

[22] D. Moloney, B. Barry, R. Richmond, F. Connor, C. Brick,

D. Donohoe, A. Lupas, S. Mitchell, D. Nicholls, and V. Toma.

Myriad 2: Eye of the computational vision storm. In Hot

Chips 26, 2014.

[23] L. E. Olson, J. Power, M. D. Hill, and D. A. Wood. Border

control: Sandboxing accelerators. In Proc. of the 48th Annual

IEEE/ACM International Symp. on Microarchitecture, pages

470–481, Dec. 2015. doi: 10.1145/2830772.2830819. URL

http://doi.acm.org/10.1145/2830772.2830819.

[24] S. Park and D. L. Dill. Verification of FLASH cache

coherence protocol by aggregation of distributed transactions.

In Proc. of the 8th ACM Symp. on Parallel Algorithms and

Architectures, pages 288–296, June 1996.

[25] W.-C. Park, H.-J. Shin, B. Lee, H. Yoon, and T.-D. Han. Ray-

Chip: Real-time ray-tracing chip for embedded applications.

In Hot Chips 26, 2014.

[26] S. Phillips. M7: Next generation SPARC. In Hot Chips 26,

2014.



[27] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood.

gem5-gpu: A heterogeneous cpu-gpu simulator. Computer

Architecture Letters, 13(1). doi: 10.1109/LCA.2014.2299539.

URL http://dx.doi.org/10.1109/LCA.2014.2299539.

[28] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D.

Hill, S. K. Reinhardt, and D. A. Wood. Heterogeneous

system coherence for integrated cpu-gpu systems. In

Proceedings of the 46th Annual IEEE/ACM International

Symposium on Microarchitecture, MICRO-46, pages 457–

467, New York, NY, USA, 2013. ACM. ISBN 978-

1-4503-2638-4. doi: 10.1145/2540708.2540747. URL

http://doi.acm.org/10.1145/2540708.2540747.

[29] V. Rajagopalan. All programmable devices: Not just an FPGA

anymore. In Proceedings of the 2012 45th Annual IEEE/ACM

International Symposium on Microarchitecture, MICRO-45,

2013. Keynote presentation.

[30] D. J. Sorin, M. M. Martin, M. D. Hill, and D. A. Wood.

SafetyNet: improving the availability of shared memory

multiprocessors with global checkpoint/recovery. In Proc.

of the 29th Annual Intnl. Symp. on Computer Architecture,

pages 123–134. IEEE, May 2002.

[31] D. J. Sorin, M. D. Hill, and D. A. Wood. A Primer on Memory

Consistency and Cache Coherence. Synthesis Lectures in

Computer Architecture, 2011.

[32] J. Stuecheli, B. Blaner, C. R. Johns, and M. S. Siegel. CAPI:

A coherent accelerator processor interface. IBM Journal of

Research and Development, 59(1):7:1–7:7, Jan. 2015. ISSN

0018-8646. doi: 10.1147/JRD.2014.2380198.

[33] D. A. Wood, G. A. Gibson, and R. H. Katz. Verifying a

multiprocessor cache controller using random test generation.

IEEE Design and Test of Computers, pages 13–25, Aug. 1990.


