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Multithreaded deterministic replay has important applications in 
cyclic debugging, fault tolerance and intrusion analysis. Memory 
race recording is a key technology for multithreaded deterministic 
replay. In this paper, we considerably improve our previous 
always-on Flight Data Recorder (FDR) in four ways: 

•Longer recording by reducing the log size growth rate to 
approximately one byte per thousand dynamic instructions.

•Lower hardware cost by reducing the cost to 24 KB per 
processor core.

• Simpler design by modifying only the cache coherence 
protocol, but not the cache. 

•Broader applicability by supporting both Sequential 
Consistency (SC) and Total Store Order (TSO) memory 
consistency models (existing recorders support only SC).

These improvements stem from several ideas: (1) a Regulated 
Transitive Reduction (RTR) recording algorithm that creates 
stricter and vectorizable dependencies to reduce the log growth 
rate; (2) a Set/LRU timestamp approximation method that better 
approximates timestamps of uncached memory locations to reduce 
the hardware cost; (3) an order-value-hybrid recording method
that explicitly logs the value of potential SC-violating load 
instructions to support multiprocessor systems with TSO. 

Categories and Subject Descriptors.   C.4 [Computer Systems 
Organization]: Performance of Systems — Measurement 
Techniques; D.2.5 [Software Engineering]: Testing and 
Debugging — Debugging Aids; 

General Terms.   Algorithms, Measurement, Reliability

Keywords.   Multithreading, Determinism, Race Recording 

1.  Introduction
Deterministic replay of multithreaded programs has several 
important uses. First, determinism can help developers effectively 
debug multithreaded programs using cyclic debugging [23] 
because the erroneous executions can be repeated. Furthermore, 
determinism is also necessary in fault detection [30], fault 
recovery [15], and replay-based intrusion analysis [8]. 

To faithfully replay a multithreaded execution, we need to replay 
the following information: (1) program initial states; (2) program 
inputs; and (3) memory races among threads. A recorder records 

these types of information through three mechanisms: 
checkpointing, input logging and memory race recording. 

Existing software-based recorders are often limited to offline uses
due to their prohibitive runtime overheads. As transistors get 
cheaper, spending a small amount of chip area on a hardware-
based, low-overhead recorder is becoming more economical. In a 
previous paper, we proposed a hardware-based Flight Data 
Recorder (FDR) [33], which includes checkpointing, input 
logging, and memory race recording with little runtime overhead. 
In this paper, we improve FDR’s memory race recording with 
significant reduction in the log size and hardware cost. We focus 
on memory race recording for three reasons.
1) Race recording limited FDR. The log size of FDR’s memory 

race recorder is approximately 2 MB/1GHz-processor/second 
(compressed). The size of both the memory race log and the 
checkpoint log limits FDR to only one second of recording, 
which may be sufficient for debugging [20]. However, other 
applications may need much longer recording [8, 30]. To do 
that, we need to reduce the memory race log and the checkpoint 
log. It is relatively easy to reduce checkpoint log because it can 
be eliminated (if one records from the beginning of an 
execution) or amortized by longer checkpoint intervals (the 
checkpoint size is a constant for each checkpoint interval).
Therefore, it is more important to reduce the memory race log. 
Furthermore, FDR’s race recorder requires the sequential 
consistency (SC) memory model, which is supported by a
limited subset of existing multiprocessor systems. Therefore, it 
is important to develop a new race recorder that supports more 
memory models. 

2) Race recording requires non-trivial hardware. FDR’s memory 
race recorder is integrated with the memory caches. This adds 
undesirable complexity [22] to the caches, which are 
performance-critical structures. FDR increases the chip area of 
the caches by 6.25% (or 256 KB for a 4 MB L2). A hardware 
race recorder is more attractive if its hardware cost is reduced.
Therefore, it is important to develop a new recorder that has 
lower complexity and requires smaller chip area. 

3) After BugNet [20], race recording is a priority. BugNet is 
another recorder, which improves FDR’s checkpointing and 
input logging. By logging first-time-load-values, BugNet 
reduces the log size of checkpointing and input logging, as well 
as the hardware cost (reduced to 16 KB per processor). 
Considering these improvements, memory race recording is 
likely a bottleneck for future recorders. 

This paper presents several improvements over FDR. 

Regulated Transitive Reduction (RTR). Netzer’s Transitive 
Reduction (TR) [21], generates the most compact log among 
existing partial order race recording algorithms. TR logs only 
conflicts. We show that further reduction of the log size is possible 
if we judiciously log stricter and vectorizable dependencies, which 
are not necessarily conflicts. We propose a new partial order 
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recording algorithm—Regulated Transitive Reduction (RTR). RTR 
logs stricter dependencies, which are stricter because enforcing 
them is sufficient but not necessary for faithful replay. RTR creates 
stricter dependencies so that a large number of dependencies are 
vectorizable. Vectorized dependencies are reminiscent to 
vectorized computations—one type of computation is performed 
on multiple data. This vectorization compacts the log. We show 
that RTR is better than TR and reduces the log size by 28% on 
average (Section 10.2.2). 

Set/LRU Timestamp Approximation. In order to find those 
dynamic instructions that race with each other, Netzer’s recorder 
incurs non-trivial hardware cost by storing the last read/write 
“timestamps” for each memory block [21]. FDR reduces this 
hardware cost by storing only those timestamps of cached blocks 
and approximates the timestamp if a block is uncached. FDR’s 
approximation method often causes a false race to be logged 
whenever a block is missed in the cache, i.e., FDR’s log growth 
rate goes up as the hardware cost (timestamp memory size) goes 
down. In this paper, we propose a new timestamp approximation 
method, which simultaneously reduces the log size and the 
hardware cost. This new method approximates the missing 
timestamps using the Least-Recently-Used (LRU) block’s 
timestamp within the same associative set. We call this Set/LRU

Timestamp Approximation, which reduces the hardware cost to 
24 KB per core (Section 10.2.1) and, together with RTR, reduces 
the log size by 96% over FDR (Section 10.2.2). 

Decoupled Timestamp Memory. FDR couples timestamps 
with cache blocks. This can introduce much design complexity to 
the memory caches, which are performance-critical components. 
We move timestamps out of cache (decoupling), which allows us 
to independently size the timestamp memory and potentially 
reduce the overall design complexity (Section 10.2.1). 

Support TSO Consistency Model. When used with the 
Total-Store-Order (TSO) memory consistency model, existing race 
recorders can run into replay deadlocks because they assume 
Sequential Consistency (SC). We propose a new order-value-
hybrid recording method to support TSO (which is x86-like). The 
hybrid method avoids replay deadlocks and deterministically 
replays TSO executions by recording additional information of the 
load values when load instructions potentially violate the SC 
ordering (Section 6). 

We make the following contributions in this paper. 
1) We improve FDR’s race recording algorithm, through RTR and 

Set/LRU. The new algorithm enables significant log size and 
hardware cost reductions. 

2) We improve a race recorder implementation by lowering the 
design complexity and supporting TSO. 

3) We design and evaluate a race recorder on a four-way Chip 
MultiProcessor (CMP) system using full-system simulations 
and commercial workloads. 

Next, we review race recorders in Section 2. We present the new 
recording algorithm with small log size and low hardware cost in 
Sections 3-4. We propose moving the timestamps out of processor 
caches and present a method to support TSO in Sections 5-7. We
describe a concrete recorder: RTR/CMP, a CMP-based hardware 
race recorder (Section 8-9). We evaluate RTR/CMP and explore a 
design space in Section 10. We discuss related work in Section 11
and conclude in Section 12. 

2.  Background: Hardware Race Recorders
Conflicts and Memory Races. In multithreaded executions, 
two memory accesses conflict if and only if they are executed by 
different threads, access the same memory location, and at least 
one of them is a write. Therefore, three types of conflicts exist: 
read-after-write (RAW), write-after-read (WAR) and write-after-
write (WAW). Herein, we assume programs are divided into RISC-
like instructions and we label a dynamic instruction with a tuple 
TID:IC. TID is the thread ID of the thread that executes a 
dynamic instruction. Dynamic Instruction Count (IC) is a 
monotonically increasing number that we give to each dynamic 
instruction executed by a thread in the program order. A conflict is 
denoted i:xÆj:y, where Æ denotes the order of the conflict. 

Figure 1: In (a), a multithreaded execution is shown. In (b), 
FDR’s hardware race recorder detects the race. The 
notations rd(x) and wr(x) denote read and write to 
memory location x.

Informally, memory races (or simply, races) are those conflicts in 
which the instruction order is not determined by the program. 
Because all races are conflicts (the converse is not true), it is 
sufficient to record all conflicts in order to record races. But, why 
do we want to record races? 

Figure 1a shows an example conflict (i:2Æj:3), which happens 
to be a race. Two threads i and j both write a variable z. The ICs 
are shown in the numbered circles. The final value of z is 
determined by which thread “loses” the race. In general, the 
nondeterminism caused by races can prevent multithreaded 
executions from being deterministically replayed. 

Race Recorders. In order to deal with this nondeterminism, 
researchers have proposed to use race recorders to enable faithful 
replay [23]. The goal of race recorders is to record the races that 
occur in the original executions and use the recorded information 
to enable deterministic replay. Existing recorders assume SC, as do 
we until we generalize our recorder to TSO in Section 6.

FDR. In 2003, we proposed a hardware recorder called Flight 
Data Recorder (FDR) [33]. FDR augments each cache block with 
a timestamp, which is the IC of the instruction that last accessed 
the cache block. Then, by piggybacking the timestamp on cache 
coherence messages, FDR can detect and log conflicts on-the-fly. 

For example, Figure 1b shows how the conflict (i:2Æj:3) in 
Figure 1a is detected by FDR. The two threads (i and j) execute 
on two processors (P1 and P2). The variable z can be cached in the 
processor caches (denoted by rectangles). We illustrate each step 
in the conflict detection using a dark numbered circle. First, after 
P1 writes z (ICP1=2), the cache block is in the Modified (M) state 
in P1’s cache. P1 also timestamps the block with the IC of the 
write instruction. When P2 attempts to write z (ICP2=3), it issues a 
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GETX (get exclusive) request to the directory at the memory, 
because the block is in the Invalid (I) state in P2’s cache. The 
directory then forwards the GETX to the block’s current owner 
(P1). Upon receiving the forwarded request, P1 sends the data 
block and the timestamp (TS=2) to P2. Finally, FDR detects this 
conflict when P2 receives P1’s message. 

3.  Reducing Log Size Using RTR

Figure 2: Four steps in reducing the dependence log: 
log-them-all; TR; stricter dependencies; vectorizing.

To ensure deterministic replay, it is sufficient to log every conflict. 
We call the log the Dependence Log because the logged conflicts 
serve as interthread dependencies, which need to be enforced 
during replay to resolve the races. However, on modern machines 
with fast interthread communication, conflicts can happen 
frequently, which causes this log-them-all method to suffer from 
generating huge logs. This section presents a log size reduction 
algorithm, which is illustrated through an example in Figure 2. To 
start, Figure 2a shows an execution with five conflicts. Assuming 
each IC is 64-bit wide, the log-them-all method generates a 
dependence log of five dependencies. 

3.1.  Netzer’s Transitive Reduction (TR)
One way to reduce the dependence log is to record only a subset of 
the conflicts. Netzer observed that some conflicts are transitively 
implied by others and he proposed the Transitive Reduction (TR) 
method to reduce the number of conflicts to be recorded [21]. 
Figure 2b shows the conflict i:1Æj:4 is implied by the conflict 
i:2Æj:3, because i:1, i:2 and j:3, j:4 are in program 
order. Enforcing i:2Æj:3 during a replay execution enforces 
i:1Æj:4. Therefore, conflict i:1Æj:4 is removed from the 
log. After this reduction, the log is reduced to four dependencies. 
In practice, Netzer showed that TR reduces the log size 
significantly (82% - 99.8%) over the log-them-all method [21]. 

3.2.  Regulated Transitive Reduction (RTR)
In this paper, we go beyond recording a subset of the conflicts and 
find that actively creating artificial dependencies can further 
reduce the log. Our recorder creates stricter and vectorized
dependencies in the log. The new algorithm is named Regulated 
Transitive Reduction (RTR), because it regulates the replay. 

3.2.1  Log Size Reduction
Stricter Dependencies. Figure 2c shows how RTR enables 
more transitive reduction by creating artificial dependencies in the 
log. In the recording, after the conflict i:3Æj:5 is detected, 
RTR writes a stricter dependence i:4Æj:5 in the log. The 
dependence is stricter than i:3Æj:5 because enforcing it during 
replay is sufficient but not necessary to satisfy i:3Æj:5. As a 
result of this stricter dependence, i:3Æj:5 and i:4Æj:6 are 
transitively reduced. Thus, RTR reduces the log to three conflicts. 
This is not possible if we log only a subset of the original conflicts.

Vectorized Dependencies. But why does RTR decide to create 
i:4Æj:5 out of many possibilities? RTR creates i:4Æj:5
because this dependence and the previous dependence 
(i:2Æj:3) are vectorizable. Dependencies are vectorizable if 
and only if the dependencies have the same IC stride (herein 
denoted by D). As we show visually in Figure 2d, i:4Æj:5 and 
i:2Æj:3 both have their IC stride equal to one. Vectorized 
dependencies help reduce the log with a compact format: 

{(x-D)Æx | x={3,5}, D=1}
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where (x-D)Æx is the template of the vectorized dependencies; x is 
substituted with a set of logged ICs (i.e., {3,5}) during replay.

With both stricter and vectorized dependencies, RTR enables a 
greater log size reduction over TR. In practice, about 1/3 of the 
reduction is from transitivity of the stricter dependencies and 2/3 
of the reduction is from the vectorized compact format. 

The vectorized dependencies work by exploiting the regularity 
within multithreaded executions, e.g., once a thread loses in a race, 
the loser tends to lose the next race because the winner and the 
loser spend a similar amount of time computing before the next 
race. Thus, the two races tend to be vectorizable.

Figure 3: An overly strict dependence causes a deadlock.

 

3.2.2  Replay Correctness and Performance
Correctness. For correctness, we consider i:vÆj:w stricter
than i:xÆj:y if and only if that in program order, (1) i:v is 
after or equal to i:x; (2) j:w is before or equal to j:y. 

However, RTR must not create overly strict dependencies, or it 
will cause replay deadlocks. For example, in Figure 3, let’s assume 
RTR creates i:3Æj:1 to replace i:3Æj:5. At a glance, 
i:3Æj:1 may appear correct because it is stricter than 
i:3Æj:5. However, a cycle of dependence, namely 
i:3Æj:1Æj:2Æi:3, is created after this dependence is 
added. Note that a program order dependence (j:1Æj:2) is in 
the cycle. This cycle will cause replay to deadlock because one 
cannot decide whether i:3 or j:1 should be executed first. 

To avoid replay deadlocks, RTR conservatively ensures that all 
stricter dependencies are in a total order. It is natural to follow the 
SC total order in a live execution. This avoids any cycle of 
dependencies, because the SC total order is a topological sort of all 
dependencies (within and between threads) in replay. 

Replay Performance. During replay of a recorded execution, 
each dependence, say i:xÆj:y, requires a check between two 
threads. The check incurs additional delay to operation j:y only if 
i:x is not yet finished when j:y is ready. RTR affects replay 
performance in two ways. First, creating stricter dependencies can 
add more delays to replay, because stricter dependencies are 
sufficient but not necessary for replaying the conflicts. On the other 
hand, RTR may improve replay performance with reduced number 
of checks between threads. We leave a quantitative evaluation of 
the impact on replay performance to future work. 

3.2.3  The RTR Algorithm
We now provide a high-level RTR algorithm in Table 1, assuming 
infinite cache capacities, in-order processor cores, no counter 

wrap-around, etc. Compared with the TR algorithm in FDR, we 
believe RTR is only slightly more complex than TR. Nevertheless, 
two major differences exist.
1) When sending a coherence response, a processor sends both the 

last access timestamp of the block and the processor’s current 
IC, instead of just the single last access timestamp as in FDR.

Table 1: RTR Algorithm on Ideal Hardware.
States at processor j
IC: Instruction Count of processor j
LOG: Log buffer at each processor j
CTS[M]: Cache TimeStamp. Last access timestamps (scalar) of 

blocks in j’s cache. M is the total number of memory blocks
VC: Vector Clock. Maximal timestamp (vector) of processor i

that is ordered before an IC of processor j. VC has P-1
elements, where P is the total number of processors. 

D_min[P]/D_max[P]: Sliding window of the IC stride for 
vectorizable dependencies from another processor to j. 

Actions at processor j
On commit of an instruction insn {

IC++ // After, IC is insn’s dynamic instruction count
if (insn is a memory operation) {

// insn.block is the block accessed by insn
CTS[insn.block] := IC

}
}
On sending a coherence response for block b to proc k {

// Send both last access IC and processor current IC
ID := j
last_access_TS := CTS[b]
current_processor_IC := IC
SEND(ID, last_access_TS, current_processor_IC)

}
On receiving a coherence response for block b from proc i {

// 1. Drop the conflict if it is transitive reducible
// 2. Create a vectorizable stricter dependence if possible 
// 3. Otherwise, log the previous groups of conflicts
(ID, last_access_TS, current_processor_IC) := RECEIVE()
min := IC - current_processor_IC
max := IC - last_access_TS
if (last_access_TS <= VC[i]) {

// Transitively reduced, do nothing
} else if ( [min, max] overlaps [D_min[i], D_max[i]] ) {

D_min[i] := MAXIMAL(min, D_min[i])
D_max[i] := MINIMAL(max, D_max[i])
VC[i] := IC - D_max[i] // for transitive reduction
APPEND(LOG, ID, IC) // a conflict ending is logged

} else {
APPEND(LOG, D_max[i]) // a stride is logged
D_min[i] := min // reset the stride min
D_max[i] := max // reset the stride max
VC[i] := IC - D_max[i] // for transitive reduction

}
}

2) A processor maintains a sliding window of stricter 
dependencies that it is allowed to create. The window is 
represented by two IC strides: from the IC stride of the precise 
dependence to the IC stride of the strictest dependence allowed 
by the SC total order. A vectorizable stricter dependence is 
created if a conflict has a window that overlaps with the 
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window of preceding conflicts. Otherwise, preceding 
vectorized dependencies are flushed out to the log. As in FDR, 
the variable VC[i] is used in transitive reduction, but its value is 
computed based on the stricter dependencies created by RTR. 

In more detail, the algorithm in Table 1 keeps a timestamp CTS[b]
for every cache block b at each processor. The timestamps are 
updated when any memory instruction that accesses b commits. 
Later, if another processor requests b, the timestamp and the 
current processor IC are sent to the requestor in a coherence 
response message. When the response message arrives at the 
requestor, the conflict is detected and one of the following three 
actions are performed. First, transitivity reduction is done based on 
the previously-logged dependencies (a maximal-received-
timestamp, VC[i]:=IC-D_max[i], was computed). If the conflict is 
irreducible and it has a window of stricter dependencies that 
overlaps with the current sliding window (denoted by 
D_max[i]/D_min[i] at each processor), a stricter and vectorizable 
dependence is created and the sliding window is updated. 
Otherwise, in the final case, the existing group of stricter and 
vectorized dependencies are flushed out to the log and the sliding 
windows is reset according to the conflict. 

4.  Reducing Hardware Cost Using Set/LRU

The RTR algorithm in Table 1 assumes infinite caches. In reality, 
however, cache size is limited and the cost of storing timestamps 
for all memory blocks is prohibitive. Therefore, whenever a 
processor P receives an invalidation request for a cache block b
that is no longer cached at P (this can happen when the directory 
still thinks that P is a sharer of b), P must respond to the request 
with an ACK message containing the timestamp that approximates 
the timestamp that b would have if b was still cached (and b’s 
timestamp was maintained precisely). 

Figure 4: In contrast to FDR, the Set/LRU approximation 
method likely creates reducible dependencies. 

i j

rd(x)

rd(y)

rd(z)

wr(z)

wr(x)current IC

Precise, reducible

Set/LRU’s, reducible

FDR’s, irreducible

In FDR [33], we observed that it is safe to approximate an 
uncached block’s timestamp (herein called the precise timestamp) 
with any timestamp within the inclusive range from the precise 
timestamp to the current IC of the responding processor. This 
observation is called Send Observation. Send Observation is safe 
for the same reasons that RTR can create stricter (and not overly 
strict) dependencies. FDR conservatively chooses to always use 
the current IC to approximate the precise timestamp. This is safe 
but unfortunately always creates a dependence that is irreducible 
by transitivity, meaning the dependence will be logged. FDR’s 
approximation method presents an undesired trade-off between the 
log size and the hardware cost (i.e., keeping few timestamps helps 
reduce the hardware cost of the recorder, but tends to generate 
many extra irreducible dependencies, which increase the log size). 

We now propose a new timestamp approximation method, called 
Set/LRU Timestamp Approximation (Set/LRU, in short). Instead of 

using the current IC, like in FDR, Set/LRU approximates the 
precise timestamp with the timestamp of the Least Recently Used 
(LRU) block that maps to the same associative cache set as the 
uncached block. Because the new approximations tend to preserve 
the transitive reducibility of the dependencies, Set/LRU 
outperforms the current IC approximation method by reducing 
both the hardware cost and the log size.

For example in Figure 4, a thread i on processor P1 serially reads 
three different memory blocks x, y and z, which map to the same 
cache set. If P1’s cache associativity is two, by the time i reads z, 
x needs to be evicted. After x is evicted, if another thread j on 
processor P2 serially writes z and x, first, a conflict on block z
from i to j is detected and the corresponding dependence is 
logged. Second, the conflict on block x is detected if the directory 
remembers P1 as a sharer of x after x is evicted. Using the Set/LRU

method, P1 chooses the timestamp of y of approximate the precise 
timestamp of x. The approximated timestamp is guaranteed to be 
in the range allowed by the Send Observation and to be the closest 
to the precise timestamp among the timestamps of the cached 
blocks in the cache set. This is so because of the LRU replacement 
policy. More importantly, Set/LRU preserves the reducibility of the 
conflict on x. Unlike the current IC approximation used in FDR, 
no extra dependence is logged. Therefore, it is possible for Set/LRU

to significantly reduce the hardware cost by storing only a small 
number of timestamps that likely correspond to the small number 
of irreducible conflicts. As described in Xu’s Ph.D. 
dissertation [32], non-LRU replacement is also supported.

5.  Reducing Complexity Using D-TSM
FDR integrates the timestamp memory with the memory caches. 
The caches record, for each block, the timestamp of the latest read 
or write access to the block. In this section, we describe a 
Decoupled Timestamp Memory (D-TSM), which is simpler and 
more flexible than the integrated timestamp memory.

Figure 5: A decoupled timestamp memory (D-TSM) and 
its data paths (shaded) in a 2-way CMP. 

Figure 5 shows the high level structures of the D-TSMs in a 2-way 
CMP. The D-TSMs have both read and write ports, connecting 
respectively to the processor pipeline and the coherence controller. 
When the processor commits a memory instruction, it writes the IC 
of the instruction to the timestamp memory, which is indexed by 
memory block address. When coherence requests and responses 
arrive at the L1 coherence controller, the controller looks up the 
corresponding timestamp from the timestamp memory, then either 
sends the timestamp to the requestor or conditionally writes the 
log. The D-TSM latency needs to be as fast as the memory caches, 
just like the case of the integrated timestamp memory. This speed 
can be met relatively easily since the size of the D-TSMs is usually 
small (Section 10.2.1). 
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Decoupling has two benefits. First, D-TSM may reduce the design 
complexity. Memory caches are performance-critical. Integrated 
timestamp memory increases design complexity, which may affect 
the cache performance and may generate push-back from the 
designers [22]. A dedicated timestamp memory is simpler than 
memory caches, because (1) it does not need to modify the cache 
and can be designed separately “on the side”; (2) it does not need 
to keep any MOESI state1; (3) it does not need to support 
invalidations; (4) decoupling allows D-TSMs to implement the 
LRU replacement policy, while the cache to implement another 
policy. The second benefit of decoupling is the flexibility. We can 
vary the size (number of associative sets and associativity) of the 
D-TSMs independently with respect to the size of the caches. In 
Section 10.2.1, we show that the D-TSMs can be sized much 
smaller than the caches, thanks to the Set/LRU method. A drawback 
of decoupling is the duplicated address tag arrays, which is 
insignificant due to the small size.

6.  Broadening Applicability: Supporting TSO
We now extend our recorder to supporting the Total Store Order 
(TSO) memory model [31]. We focus on TSO because it is well 
defined [31] and perhaps widely implemented in the popular x86 
architecture as a valid implementation of the Processor 
Consistency (PC) model [14]. 

We have three goals in extending RTR to TSO systems. 
1) Recording TSO executions without forcing the executions to 

conform to SC. 
2) (At most) Modestly increasing the log of the recorder. 
3) (At most) Modestly increasing the hardware complexity and 

cost of the recorder. 

Because our simulation infrastructure supports only the Sequential 
Consistency (SC), we do not quantitatively evaluate the TSO 
recording method described in this section. But, we qualitatively 
argue that the TSO recording method achieves these goals. 

6.1.  TSO and its Impact on Race Recording
TSO relaxes write-to-read ordering to the shared memory. With 
TSO, a processor can implement a hardware first-in-first-out 
(FIFO) write buffer. Informally, we say a store instruction commits
by placing its write value in the write buffer. Later, the store 
instruction is ordered (at the memory) when the instruction exits 
the write buffer and updates the memory. Furthermore, TSO 
requires a processor’s stores to be ordered in commit order (i.e., 
FIFO write buffer). Load instructions from the same processor can 
bypass the memory system from the write buffer. 

A load instruction commits and is ordered (at the memory) after all 
instructions before the load instruction commit. When a load 
returns its value from the memory system, we call it a loadM (load-
memory), otherwise a loadB (load-bypass). (If a load instruction 
partially bypasses from the write buffer, we break it into smaller 
loadM and loadB sub-operations.) 

Our race recording algorithm (as presented so far) can fail under 
TSO systems. In particular, some loadM instructions can 
potentially cause instruction reordering; some LoadB instructions 
can potentially cause store atomicity violation. Arvind and 
Maessen have shown that TSO and SC differ only in the properties 
of instruction reordering and store atomicity [2]. Therefore, we 
believe a solution is complete if it handles both instruction 

reordering and store atomicity violations. We now use examples to 
illustrate the impact of instruction reordering and store atomicity 
violations to race recording in more detail.

In an SC system, instructions (executed by the same thread) 
commit and are ordered in the program order. In a TSO system, 
even though the instructions commit in program order, the write 
buffer can cause independent load and store instructions to order 
differently from the program order. This reordering can cause a 
multithreaded execution to violate the strong SC semantics. We 
call those multithreaded executions that are allowed by the TSO 
memory model the TSO executions. 

Figure 6: Example TSO executions that are not SC. (a) 
The store instructions are delayed by the write buffer. (b) 
the load instructions reads its value directly from the 
write buffer. In both (a) and (b), a load instruction is 
ordered (at the memory) before a preceding store. The 
numbers in /* */ denote the memory ordering.

i j
wr(A) /* 2 */

wr(B) /* 5 */

rd(A) /* 1 */

wr(A) /* 3 */

wr(B) /* 4 */
Write 

Bypass
Buffer

(a)

(b)

1

2

3

1

2

i j
A = 1 /* 3 */1

%r1 = B /* 1 */2

B = 1 /* 4 */1

%r1 = A /* 2 */2

init: A = 0, B = 0

Figure 6a shows an example TSO execution that is not an SC 
execution. In this execution, thread i first writes memory location 
A then reads a different memory location B, thread j first writes B
then reads A. Let us assume thread i and j run on two different 
processors. Because of the write buffers, the two loadM
instructions are ordered (i.e., commit) before the two store 
instructions are ordered. The numbers in /* */ denote the 
memory ordering. For this execution, our race recorder would log 
two interthread dependencies i:2Æj:1 and j:2Æi:1. During 
the replay, if the replayer follows the SC order, the recorded 
dependencies cause a deadlock (i.e., cycle of dependencies). 

Figure 6b shows another TSO execution that is not an SC 
execution caused by a loadB instruction. The loadB instruction 
i:3 reads A’s value from i:1 through the write buffer during 
recording. Although i:3 is ordered (at 1) before i:2 (ordered at 
2), our recorder logs the dependence i:3Æj:1, rather than 
i:1Æj:1, because i:3 is after i:1 in the program order (with a 
larger IC). Thus, a cycle of dependencies is recorded due to the 
write buffer bypassing. 

Therefore, recording only interthread dependencies can potentially 
deadlock a SC-replay for TSO executions.

6.2.  An Order-Value-Hybrid Recorder
We propose an order-value-hybrid recorder to handle TSO 
executions. Our key observation is that some load instructions 
cause replay deadlocks, because these load instructions are ordered 
(at the memory) differently with respect to the program order. 

1.  All timestamps are initiated to zero.
6



 

Therefore, we give special treatment to those “problematic” load 
instructions, in effect, replaying these load instructions by value, 
rather than by ordering. 

In addition to recording dependencies (the orders), our recorder 
records the value of a load instruction if the load instruction may 
violate the SC ordering. The hybrid recording method deals with 
the loadM and loadB instructions uniformly: the recorder monitors 
the loaded memory location from the (physical) time t1 to 
(physical) time t2, where time t1 is when a loadM instruction 
becomes ordered or the store that feeds a loadB instruction 
becomes ordered; time t2 is when all preceding instructions (in 
program order) of the loadM or the loadB are ordered. During this 
monitored time period, if the loaded memory location is written by 
another thread, the recorder logs the value of the load instruction. 
The load instruction is called a potential SC-violating load. If the 
memory location is not written by another thread, the recorder 
does not log the load value, because the load instruction is 
logically ordered in program order, which means the dependencies 
will ensure correct replay of the load. 

The definition of time t1 is different for loadM and loadB
instructions. It is relatively easier to understand why we start to 
monitor a loadM instruction after the loadM is ordered. After all, if 
no other thread writes the loaded memory location in the time 
interval [t1, t2], the instruction reordering logically did not 
happen. On the other hand, we choose to start monitoring a loadB
after the store (say store_x) feeding the loadB becomes ordered, 
rather than when the loadB is ordered. This is because the loaded 
value is from the store_x. A potential SC violation happens if 
the value is written in [t1, t2]. 

From a hardware perspective, to achieve this value recording, we 
augment the processor core with additional hardware that monitors 
the accessed cache line after the value of a load instruction is 
returned by the cache or a bypassed store value is written into the 
cache line. Should the cache line be written (invalidated) by 
another processor before all preceding (in the program order) store 
instructions (which are delayed by the write buffer) are ordered, 
we treat the load as a potential SC-violating load. For these loads, 
our recorder logs the loaded value and omits logging the WAR 
dependence that sources from the load instruction, which may 
cause replay deadlocks. The detection circuitry is similar to the 
misspeculation detection circuitry in the SC systems (e.g., MIPS
R10000 [34]) that utilize speculative execution techniques [9]. The 
difference is that our hardware logs the load values of potential SC 
violations rather than triggering recovery. 

We now apply this hybrid recording method to the example in 
Figure 6a. The hybrid recorder would monitor the memory 

locations A and B, at thread j and thread i respectively, after the 
two loadM instructions are ordered. Because A is written by thread 
i before the store instruction j:1 is ordered, the recorder would 
log the load value of j:2 (A=0). Similarly, for the example in 
Figure 6b, the hybrid method starts monitoring the memory 
location A after i:1 is ordered. Because A is written before i:1 
(which precedes i:3) is ordered, the recorder would log the load 
value of i:3. 

During replay, the logged values are used to overrule the 
(potentially incorrect) values read from the memory. In Figure 6a, 
without the WAR dependence j:2Æi:1, the replay will not 
deadlock. When it comes time to execute j:2, however, the 
replayer uses the logged value to overrule the value loaded from 
the memory. Therefore, in addition to the changes in the recorder, 
the order-value-hybrid method requires a (small) change in the 
replayer so that the replayer can overrule the value of a potential 
SC-violating load instruction using the value log. 

The hybrid recording algorithm has the following properties. 

This order-value-hybrid recording method does not force TSO 
executions to conform to the SC model. Instead, the new method 
logs additional values to deal with the potential deadlocks during 
the in-order replay. 

Figure 7: TR and TSO executions. Applying TR to TSO executions directly can cause incorrect replay. The dependence 
i:wr(C)Æj:wr(C) is transitively reduced by the WAR dependence (i:rd(B)Æj:wr(B)). However, because the WAR dependence is 
removed to break the cycle of dependencies, as shown by the incorrect replay order, the dependence i:wr(C)Æj:wr(C) is not 
satisfied. Our solution is to avoid using those removable WAR dependencies in transitive reduction in the recording. 

i j

TR Reduced wr(A)

wr(C)

rd(B)

wr(B)

wr(C)

rd(A)

The recording order:

j:rd(A) Æ i:rd(B) Æ i:wr(A) Æ j:wr(B) Æ i:wr(C) Æ j:wr(C)

The values of j:rd(A) and i:rd(B) are logged.

The conflict i:wr(C) Æ j:wr(C) is reduced by i:rd(B) Æ j:wr(B)

The incorrect replay order:

j:wr(B) Æ j:wr(C) Æ j:rd(A) Æ i:wr(A) Æ i:wr(C) Æ i:rd(B)-from value log

This order-value-hybrid recording method should (at most) 
slightly increase the log size of the recorder. Several studies have 
shown that, even under the consistency models that are weaker 
than TSO, cache lines of load instructions are rarely invalidated 
before the all preceding instructions are ordered [6, 10]. Therefore, 
the load values are infrequently logged. 

Without applying TR and RTR, the hybrid recorder is correct 
because it logs all conflicts except those WAR conflicts source 
from potential SC-violating loads. The recorder omits logging a 
subset of the WAR dependencies. The omission does not affect the 
replay correctness of the thread that wrote the conflicting memory 
location (the write is still executed in the right order with respect to 
other writes). It does affect the reading thread, because removing 
the WAR dependence causes the load instruction to the see a new 
version of the memory location. However, our value log supplies 
the correct value to the load instruction. Therefore, all load 
instructions get the same values in the original and the replay 
executions. As a result, the hybrid recording method provides a 
successful replay for both SC and TSO executions. The hybrid 
recording algorithm is given in Table 3-4 in Xu’s dissertation [32]. 

Next, we extend the hybrid recording method to the TR and RTR. 
The basic principle is that we suppress the TR and RTR 
optimizations for potential SC-violating loads. 
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6.3.  TR and the Hybrid Recording
As shown in Figure 7, It is incorrect to apply TR to the WAR 
dependencies that are later omitted. The dependence 
i:wr(C)Æj:wr(C) is transitively reduced by another WAR 
dependence (i:rd(B)Æj:wr(B)). However, if the WAR 
dependence is omitted in the recording to avoid replay deadlocks, 
an incorrect replay order can violate the dependence 
i:wr(C)Æj:wr(C). 

We can solve this problem by avoiding using those omitted WAR 
dependencies in TR. In particular, our recorder performs TR by 
comparing the timestamps received from a remote processor. 
When a processor receives an invalidation for a memory block that 
is currently being monitored for a potential SC-violating load, the 
processor piggybacks the older timestamp of the block, rather than 
the timestamp of the potential SC-violating load. This way, not 
only does the requestor avoid logging the WAR dependence, but 
also the correctness of TR is maintained. 

6.4.  RTR and the Hybrid Recording
Recall that RTR relies on the SC total order to avoid logging 
overly-strict dependencies. In TSO executions, the SC total order
does not exist. To extend RTR to TSO execution, we modify RTR 
so that it creates the stricter dependencies more conservatively to 
avoid replay deadlocks. In an SC system, RTR is allowed to create 
stricter dependencies sourced from the precise timestamp to the 
most recently committed IC. In a TSO system, because of the write 
buffer, committed instructions may still be unordered at the 
memory. Therefore, RTR is allowed to create stricter dependencies 
only from a narrower sliding window, which is the largest window 
of ordered and consecutive instructions.

Figure 8: A narrower sliding window for RTR. 

a

b

c

i j

Stricter Dependence

Impossible

Figure 8 depicts this new sliding window, say [i:a, i:b], where 
i:a is the conflicting instruction to j:c and i:b is the latest 
instruction that satisfies the condition that all instructions between 
i:a and i:b (in program order) are ordered and next instruction 
after i:b (in program order) is unordered. There must not be any 
cycle of dependencies, because such dependence like the one 
shown in the dashed arrow, requires either (i) an instruction 
between i:a and i:b ordered after j:c, or (ii) an instruction 
after j:c ordered before j:c. By definition of the new sliding 
window, case (i) is impossible. Case (ii) is possible for potential 
SC-violating loads, but the cycle is avoided by omitted the WAR.

6.5.  Insufficiency for More Relaxed Models
The hybrid recording method cannot be directly applied to 
Processor Consistency (PC) and other more relaxed consistency 

models for reasons documented in Xu’s dissertation [32].
Supporting these consistency models is an open problem. 

7.  Other Timestamp Memory Optimizations
This section briefly describes two other optimizations of the 
decoupled timestamp memory. They each allow us to tune a 
parameters of the D-TSMs in Section 10.1. More details of these 
optimizations can be found in Xu’s dissertation [32].

7.1.  Two (Read and Write) vs. One Timestamp
The RTR algorithm in Table 1 stores a single last access timestamp 
in the CTS[b] variable for each block b. In fact, this is a 
simplification. More precisely, both the last-read timestamps and 
the last-write timestamps can be stored in the timestamp memory 
to improve the preciseness of the conflict detection. For example, 
only the last write timestamp is used, when a RAW conflict is 
detected, even though the last read timestamp may be more recent 
for the block. 

However, storing two timestamps per block doubles the hardware 
cost of the timestamp memory. In this paper, we show that the best 
choice of whether one or two timestamps should be stored depends 
on the size of the timestamp memory. We discuss the trade-off in 
more detail in Section 10.1. 

7.2.  Partial Timestamps
Like in FDR [33], we use partial timestamps to reduce the 
hardware cost. Our recorder stores only the least significant bits 
(LSBs) of the timestamp. For example, instead of storing 
timestamp 0x1234 in the timestamp memory, we store only 0x34. 
When the partial timestamp is read back, it is concatenated with 
the most significant bits from the current processor IC. Say, the 
current processor IC is 0x4321, the concatenation produces a 
timestamp 0x4334. Since 0x4334 is larger than the current 
processor IC, we use 0x4234 to approximate the original 
timestamp (0x1234), because 0x4234 is the largest possible IC that 
can produce the partial timestamp 0x34. If the concatenation is less 
than the current IC, we simply use it to approximate the original 
timestamp. This approximation again creates stricter (and not 
overly strict) dependencies. We explore the design space of the 
width of the partial timestamps in Section 10.1. 

8.  Example Recorder: RTR/CMP

We now describe a specific design of a hardware race recorder
called RTR/CMP. RTR/CMP differs from FDR (and other existing 
race recorders) in following ways: (1) use of the RTR algorithm; 
(2) use of the Set/LRU approximation; (3) use of the D-TSMs; 
(4) support of Chip MultiProcessor (CMP). Due the simulator
limitation, RTR/CMP does not implement the order-value-hybrid 
recording method. 

8.1.  The Baseline CMP System
Our baseline system (without the recorder) is a single-chip CMP 
system. Single-chip CMP systems, such as Sun UltraSPARC 
T1 [11], do not support memory coherence between multiple CMP 
chips. The complexity of the cache coherence protocols for single-
chip CMP systems is more manageable than that of the multichip 
CMP systems [18]. For RTR/CMP, a single-chip CMP baseline 
allows simple design and easy deployment because no off-chip 
change is required. 

If race recording is desired on large scale servers consisting of 
multiple CMPs, we believe coherence piggybacking is possible but 
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more complex. Both the on-chip and off-chip coherence protocols 
must work together to detect all conflicts with precise timestamps 
or safe timestamp approximations. 

At a high level, the baseline cache coherence protocol works as 
follows. The shared on-chip L2 cache keeps track of sharer and 
owner information of cache blocks in private L1 caches (similar to 
Piranha [5]). The MOSI coherence protocol implements notifying 
replacement, i.e., the L2 cache directory keeps a precise list of L1 
sharers for each block. 

8.2.  Recorder Implementation
Like FDR, RTR/CMP piggybacks the race recording function onto 
the cache coherence hardware and implements the RTR algorithm
(Section 3), rather than Netzer’s TR algorithm. In addition, 
RTR/CMP employs the Set/LRU timestamp approximation
(Section 4), and the D-TSMs (Section 5). The major 
implementation differences from FDR is the following. 
1) L2 Cache Replacement. Unlike the coherence directory used 

in FDR, our directory (at L2) removes sharer and owner 
information when a cache block is evicted from all caches of a 
chip. This is a problem for conflict detection, because when the 
block is brought back on to the chip, the L2 does not have the 
information about which processor cores were the owner or the 
sharers of the block. We solve this problem by conservatively 
assuming that all processor cores (except the requestor) had 
cached this block before. We then make the requestor the new 
owner of the block and subsequent requests to the block will 
conflict with only the requestor. This causes false conflicts to 
be detected, but never misses a true conflict. These false 
conflicts are likely reducible, because the Set/LRU

approximation returns old timestamps for these conflicts.
2) Notifying L1 Replacement. In FDR, when a cache replaces a 

read-only block, it does not notify the memory. If the block is 
later written by another processor, the memory sends an 
invalidation to all sharers regardless of whether the block is still 
cached by the original sharers. In RTR/CMP, however, a sharer 
notifies the L2 when a read-only block is replaced. If the block 
is later written by another core, the L2 does not need to send 
invalidations to sharers-who-replaced. This is a problem for 
conflict detection, because although the L2 can keep extra 
information about the sharers-who-replaced, it cannot provide 
the requestor with the necessary timestamps of the block 
(unless it sends extra messages to the sharers-who-replaced). 
We solve this problem by piggybacking block access 
timestamps in the replacement notification messages and 
caching the timestamps of the replaced blocks at the L2. This 

solution adds four extra D-TSMs to the L2 (one per core), but 
avoids extra coherence messages, which affect performance. 

3) Coherence Message Overhead. RTR/CMP uses 64-bit 
timestamps to avoid overflows. As shown in Table 1, RTR 
requires piggybacking two timestamps per coherence message. 
This incurs high bandwidth overhead. We reduce the overhead 
by encoding the timestamps with their first order differences 
(24-bit). Because messages may be re-ordered in the 
interconnection network, we also add a sequencing number (8-
bit) to each message to ensure correct re-construction of the 
full timestamps from the differences. 

9.  Evaluation Methods

Table 2: Simulation Parameters
Cores Four 1 GHz, 2-way, in-order superscalar

Private L1 
Caches

Split I & D, each 64 KB 4-way set associative 
with LRU replacement, 64-byte lines, 1-cycle

Shared L2 
Cache

Unified 16 MB, 4-way set associative with LRU 
replacement, 64-byte lines, 15-cycle

Memory 4 GB of DRAM, 80ns off-chip access time

Timestamp 
Memory

Decoupled, parameters vary by design, but we 
keep L1 and L2 TSMs have the same parameters

We

Table 3: Commercial Workloads
Apache is a static web serving workload. We use Apache 2.0.43, configured to use pthread locks and minimal logging as the web server. We use 
SURGE [4] to generate web requests. We use a repository of 20,000 files (totalling ~500 MB). We simulate 3200 clients, each with 25 ms think time 
between requests, and warm up for ~2 million requests before taking measurements for 600 requests.

Online Transaction Processing (OLTP) models database activities of a wholesale supplier, with many concurrent users performing transactions. Our 
setup uses TPC-C v3.0 benchmark and IBM’s DB2 v7.2 EEE database management system. We use a 5 GB database with 25,000 warehouses stored on 
eight raw disks and an additional dedicated database log disk. We reduced the number of districts per warehouse, items per warehouse, and customers per 
district to allow more concurrency provided by a larger number of warehouses. We simulate 128 users, and warm up the database for 100,000 transactions 
before taking measurements for 200 transactions.

SPECjbb is a server-side java benchmark that models a 3-tier system, focusing on the middle-ware server business logic. We use SUN’s HotSpot 1.4.0 
Server JVM. Our experiments use 1.5 threads and 1.5 warehouses per processor (6 for 4 processors), a data size of ~44 MB, a warm-up interval of 
200,000 transactions and a measurement interval of 10,000 transactions.

Zeus is another static web serving workload driven by SURGE. Zeus uses an event-driving server model. Each processor of the system is bound by a Zeus 
process, which is waiting for web serving event (e.g., open socket, read file, send file, etc.). The rest of the configuration is the same as Apache’s. 

 use Wisconsin GEMS full system simulation 
infrastructure [17] to evaluate RTR/CMP. GEMS (through 
Simics [16]) models an enterprise-level SPARC multiprocessor 
system in sufficient detail to run the unmodified Solaris 9 operating 
system. Table 2 summarizes the system configuration we simulate. 

We exercise RTR/CMP with four commercial workloads 
summarized in Table 3. We counter the workload variabilities 
using a pseudo-random perturbation method [1]. For performance 
simulations, we report the mean results and 95% confidence 
intervals from 20 randomized runs of approximately 100 million 
instructions per core for every workload. We report the average log 
growth rate of RTR/CMP in MegaBytes/core/second and 
Bytes/kilo-instructions. 

We do not directly compare the log size of RTR/CMP to the log size 
reported in the FDR paper, because RTR/CMP and FDR are based 
on different systems (i.e., CMP versus CC-NUMA). Instead, we 
approximate FDR by disabling RTR and Set/LRU, as well as 
sizing up the timestamp memory appropriately (details in 
Section 10.2). For both recorders, the log is first compressed with a 
first-order-difference encoding and then LZ77 [37]. The encoding 
is similar to a run-length encoding proposed by Ronsse et al. [29]. 
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10.  RTR/CMP Results
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Figure 9: Exploring the design space of the timestamp memory of RTR/CMP. 

In this section, we first explore a design space of RTR/CMP by 
varying the configuration of the decoupled timestamp memories 
(D-TSMs). Then, we select a specific configuration of RTR/CMP 

and evaluate the improvements over another configuration that 
approximates FDR. We believe both results are significant: the 
design space exploration shows RTR/CMP is tunable to meet 
different design goals; the specific design shows the effectiveness 
of RTR and Set/LRU as well as the improvements over FDR.

10.1.  Optimizing RTR/CMP

We vary four parameters of the D-TSMs: 
1) Size of the D-TSMs (same size for L1 and L2 D-TSMs); 
2) Bit-width of partial timestamps; 
3) Number of timestamps per block (one or two); 
4) Associativity of the D-TSMs.

Table 4: RTR/CMP vs. FDR - Hardware Cost

Recorder Parameters FDR RTR/CMP

Algorithm (RTR or TR) TR RTR

Set/LRU No Yes

# of Timestamps per Block 1 2

Partial Timestamp Bits 32-bit 24-bit

Timestamp Memory Associativity 4-way 64-way

Timestamp Memory Size/core 256 KB 12 KB+12 KB

We perform several sensitivity studies to determine the effects of 
these parameters. We report the results from a typical workload. In 
Figure 9a, we vary the size and number of timestamps per block 
for the D-TSMs. For comparison, we experimented with both the 
RTR and TR algorithms. Both the RTR and TR algorithms exhibit 
similar trends: (1) small D-TSMs (no more than 64 KB) achieve 
most of the log size reduction; (2) separate (two) timestamps per 
block should be used after the cache size is large enough that 
Set/LRU becomes effective. In Figure 9b, we vary the number of 
bits of partial timestamps. Although the full width of a timestamp 
is 64-bit, it is economical to store only the least significant 24 bits. 
In Figure 9c, we vary the associativity of the D-TSMs. Unlike the 
Set/LRU, the current IC approximation does not benefit from higher 
associativity2. In Section 10.2, we choose 64-way because higher 
associativity has a diminishing effect on the log size reduction.

These results show a tunable trade-off between the log size and the 
hardware cost in designing race recorders. 

10.2.  Improvements of RTR/CMP 
We select a specific configuration of RTR/CMP and compare it to 
the approximated FDR. Table 4 summarizes the parameters of the 
selected RTR/CMP and the approximated FDR, which does not use 
RTR, Set/LRU and the D-TSMs.

10.2.1  Hardware Cost
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Figure 10: RTR/CMP—Log Size. 

Table 4 shows the relative hardware cost of RTR/CMP and FDR. 
RTR/CMP requires two small timestamp memories per core. Each 
memory has 32 sets and 64 ways. With two timestamps per block 
and 24-bit partial timestamps, the total size of the timestamp 
memory is 24 KB–a significant hardware cost reduction over FDR. 
Further reducing the hardware cost is possible at the expense of 
larger log sizes. As we show in Figure 9a, reducing the timestamp 
memory to 2 KB increases the log growth rate to about 
0.5 MB/core/s. 

10.2.2  Log Size
Figure 10-left shows the log grows about one byte per kilo-
instruction for RTR/CMP. Comparing with FDR, RTR/CMP

significantly reduces the log growth rate for all workloads
(Figure 10-right). On average, the log size reduction is 96%—a 
factor of 25! The log size reduction is a result of the RTR 
algorithm and the Set/LRU approximation. Next, we evaluate them 
independently. 

TR vs. RTR. To isolate the effects of the RTR algorithm from 
the Set/LRU approximation, we give the recorder infinite timestamp 
memories, i.e., no timestamp memory misses, two timestamps per 
block, and full-width timestamps. Figure 11-left shows the log size 
reduction from changing the recording algorithm from TR to RTR. 
For all workloads, RTR has a lower log growth rate. The average 

2.  Because of encoding inefficiency in the log, RTR performs worse than 
TR when Set/LRU is not used. With 64 KB D-TSMs and without Set/LRU, 
RTR cannot vectorize most of the dependencies. 
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reduction is 28%, which is a result of RTR’s ability to create many 
groups of dependencies with the same IC stride. 

Set/LRU. Figure 11-right shows the effectiveness of the Set/LRU

approximation. With two 12 KB D-TSMs, the log growth rate is 
increased by no more than 10% over the perfect (infinite) D-TSMs. 
Set/LRU slightly outperforms perfect D-TSMs for Zeus. This is 
possible because RTR is a greedy heuristic and precise timestamps 
do not always help in transitive reduction. In other words, an 
approximated timestamp may enable better transitive reduction. 

Additional impacts of Set/LRU can be seen in Figure 9c. In that 
figure, we use 64 KB timestamp memories and vary the timestamp 
approximation method and the timestamp memory associativity. 
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Figure 11: Effectiveness of RTR and Set/LRU. 

The figure reveals three insights: (1) Set/LRU dramatically reduces 
the log size, because the dependencies are much more likely 
reducible by both TR or RTR; (2) The associativity of the D-TSMs 
helps Set/LRU, because higher associativity enables better 
approximations; (3) The RTR algorithm works better if it is 
combined with Set/LRU, because Set/LRU enables more flexibility 
for RTR to create stricter dependencies. 

10.2.3  Runtime and Bandwidth Overheads
Like FDR, due to the hardware assistance, RTR/CMP has negligible 
runtime overhead and modest interconnect overhead. Figure 12
shows the runtime performance overhead is less than 2%; the 
interconnect overhead is about 10%. 

11.  Related Work
One of the primary applications of memory race recording is 
debugging multithreaded software. In the past, software 
debuggers/recorders [23, 7, 27, 28] for parallel programs have 
been researched extensively. More recently, hardware-assisted 
debuggers/recorders [3, 19, 25, 33, 36, 35, 26, 20, 24] have 
gathered more attention. Among them, FDR [33] and BugNet [20]
(using FDR’s implementation for race recording) aim to provide 
efficient and low-cost solutions to multithreaded execution 
recording. Thus, they can benefit directly from our better and 
cheaper memory race recording. ReEnact [25] and CORD [24] 
aim to provide hardware-assisted online data race detection. We 
believe they can benefit indirectly from our memory race recording 
and the proposal of decoupled timestamp memory. 

ReVirt [8] and ExtraVirt [15] are two emerging applications, in 
which our new memory race recorder can facilitate intrusion 
analysis and fault tolerance. We note that both ReVirt and 
ExtraVirt are built on virtual machine techniques. We believe 
virtual machine techniques provide a good platform, on which race 
recording and deterministic replay can be implemented and used. 

The RTR algorithm in this paper is related to both partial order 
recording and total order recording algorithms. Instant 

Replay [13] proposed partial order recording of parallel 
executions by logging the orders of parallel events, not the data 
associated with such events. Netzer [21] proposed and proved the 
correctness of transitive reduction on partial order recordings and 
dramatically reduced the log size. Both papers focused on 
recording only the conflicts. We observe that one does not have to 
record only the conflicts. As a result, our RTR algorithm further 
reduces the log size. RecPlay [28] is a race detector based on 
recording and replaying thread synchronization. RecPlay uses total 
order recording, which uses Lamport Scalar Clocks [12] to record 
a total order of events. The RTR algorithm can provide a unified 
view of the partial order recording and the total order recording 
approaches. In fact, RecPlay’s algorithm is a special case of RTR, 
who creates stricter and vectorized dependencies to an extreme 
degree so that a partial order relation is reduced to a total order. It 
is interesting to note that partial order replay does not necessarily 
degrade replay performance, while the total order replay of every 
memory accesses is likely slow, because it allows only sequential 
(or lockstep-parallel) replay. 
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Figure 12: Runtime and interconnect overhead of RTR/CMP.
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12.  Conclusions and Future Work
To combat nondeterminism caused by memory races in 
multithreaded programs, we have proposed a new recording 
algorithm that significantly improves memory race recording in 
four aspects: the log size, the hardware cost, the complexity and 
the applicability. The Regulated Transitive Reduction (RTR) 
regulates how memory races are replayed to reduce the log size. 
RTR’s key novelty is in creating stricter and vectorizable 
dependencies in the dependence log. The Set/LRU timestamp 
approximation method computes more accurate timestamps for 
uncached blocks and enables a significant reduction in both the log 
size and the hardware cost. Moreover, we propose decoupled 
timestamp memory (D-TSM) to reduce the hardware complexity 
of the recorder. Finally, we extend race recording to handle TSO 
(x86-like), as well as SC to broaden its applicability. We are 
optimistic that our improved race recorder can benefit many 
applications of deterministic replay and may encourage adoptions 
of hardware race recorders. 

Future work includes (1) supporting Simultaneous Multithreading 
(SMT), snooping coherence protocols, and more relaxed memory 
consistency models, (2) evaluating RTR’s impact on replay 
performance, (3) exploring new recording methods with more 
compact representations of dependencies or with the assumption 
of out-of-order replay and (4) applying race recording to more 
applications in real-life scenarios. 
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