

Appears in Twelfth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS XII)

San Jose, California, USA, October 21-25, 2006.

A Regulated Transitive Reduction (RTR) for
Longer Memory Race Recording

Min Xu†

Electrical and Computer Engr. Dept.
University of Wisconsin-Madison

mxu@cae.wisc.edu

Rastislav Bodík

Computer Science Division, EECS
University of California, Berkeley

bodik@eecs.berkeley.edu

Mark D. Hill

Computer Sciences Dept.
University of Wisconsin-Madison

markhill@cs.wisc.edu
Abstract

†Now at VMware.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
ASPLOS’06 October 21–25, 2006, San Jose, California, USA.
Copyright © 2006 ACM 1-59593-451-0/06/0010. . .$5.00.

Multithreaded deterministic replay has important applications in
cyclic debugging, fault tolerance and intrusion analysis. Memory
race recording is a key technology for multithreaded deterministic
replay. In this paper, we considerably improve our previous
always-on Flight Data Recorder (FDR) in four ways:

•Longer recording by reducing the log size growth rate to
approximately one byte per thousand dynamic instructions.

•Lower hardware cost by reducing the cost to 24 KB per
processor core.

• Simpler design by modifying only the cache coherence
protocol, but not the cache.

•Broader applicability by supporting both Sequential
Consistency (SC) and Total Store Order (TSO) memory
consistency models (existing recorders support only SC).

These improvements stem from several ideas: (1) a Regulated
Transitive Reduction (RTR) recording algorithm that creates
stricter and vectorizable dependencies to reduce the log growth
rate; (2) a Set/LRU timestamp approximation method that better
approximates timestamps of uncached memory locations to reduce
the hardware cost; (3) an order-value-hybrid recording method
that explicitly logs the value of potential SC-violating load
instructions to support multiprocessor systems with TSO.

Categories and Subject Descriptors. C.4 [Computer Systems
Organization]: Performance of Systems — Measurement
Techniques; D.2.5 [Software Engineering]: Testing and
Debugging — Debugging Aids;

General Terms. Algorithms, Measurement, Reliability

Keywords. Multithreading, Determinism, Race Recording

1. Introduction
Deterministic replay of multithreaded programs has several
important uses. First, determinism can help developers effectively
debug multithreaded programs using cyclic debugging [23]
because the erroneous executions can be repeated. Furthermore,
determinism is also necessary in fault detection [30], fault
recovery [15], and replay-based intrusion analysis [8].

To faithfully replay a multithreaded execution, we need to replay
the following information: (1) program initial states; (2) program
inputs; and (3) memory races among threads. A recorder records

these types of information through three mechanisms:
checkpointing, input logging and memory race recording.

Existing software-based recorders are often limited to offline uses
due to their prohibitive runtime overheads. As transistors get
cheaper, spending a small amount of chip area on a hardware-
based, low-overhead recorder is becoming more economical. In a
previous paper, we proposed a hardware-based Flight Data
Recorder (FDR) [33], which includes checkpointing, input
logging, and memory race recording with little runtime overhead.
In this paper, we improve FDR’s memory race recording with
significant reduction in the log size and hardware cost. We focus
on memory race recording for three reasons.
1) Race recording limited FDR. The log size of FDR’s memory

race recorder is approximately 2 MB/1GHz-processor/second
(compressed). The size of both the memory race log and the
checkpoint log limits FDR to only one second of recording,
which may be sufficient for debugging [20]. However, other
applications may need much longer recording [8, 30]. To do
that, we need to reduce the memory race log and the checkpoint
log. It is relatively easy to reduce checkpoint log because it can
be eliminated (if one records from the beginning of an
execution) or amortized by longer checkpoint intervals (the
checkpoint size is a constant for each checkpoint interval).
Therefore, it is more important to reduce the memory race log.
Furthermore, FDR’s race recorder requires the sequential
consistency (SC) memory model, which is supported by a
limited subset of existing multiprocessor systems. Therefore, it
is important to develop a new race recorder that supports more
memory models.

2) Race recording requires non-trivial hardware. FDR’s memory
race recorder is integrated with the memory caches. This adds
undesirable complexity [22] to the caches, which are
performance-critical structures. FDR increases the chip area of
the caches by 6.25% (or 256 KB for a 4 MB L2). A hardware
race recorder is more attractive if its hardware cost is reduced.
Therefore, it is important to develop a new recorder that has
lower complexity and requires smaller chip area.

3) After BugNet [20], race recording is a priority. BugNet is
another recorder, which improves FDR’s checkpointing and
input logging. By logging first-time-load-values, BugNet
reduces the log size of checkpointing and input logging, as well
as the hardware cost (reduced to 16 KB per processor).
Considering these improvements, memory race recording is
likely a bottleneck for future recorders.

This paper presents several improvements over FDR.

Regulated Transitive Reduction (RTR). Netzer’s Transitive
Reduction (TR) [21], generates the most compact log among
existing partial order race recording algorithms. TR logs only
conflicts. We show that further reduction of the log size is possible
if we judiciously log stricter and vectorizable dependencies, which
are not necessarily conflicts. We propose a new partial order
1

recording algorithm—Regulated Transitive Reduction (RTR). RTR
logs stricter dependencies, which are stricter because enforcing
them is sufficient but not necessary for faithful replay. RTR creates
stricter dependencies so that a large number of dependencies are
vectorizable. Vectorized dependencies are reminiscent to
vectorized computations—one type of computation is performed
on multiple data. This vectorization compacts the log. We show
that RTR is better than TR and reduces the log size by 28% on
average (Section 10.2.2).

Set/LRU Timestamp Approximation. In order to find those
dynamic instructions that race with each other, Netzer’s recorder
incurs non-trivial hardware cost by storing the last read/write
“timestamps” for each memory block [21]. FDR reduces this
hardware cost by storing only those timestamps of cached blocks
and approximates the timestamp if a block is uncached. FDR’s
approximation method often causes a false race to be logged
whenever a block is missed in the cache, i.e., FDR’s log growth
rate goes up as the hardware cost (timestamp memory size) goes
down. In this paper, we propose a new timestamp approximation
method, which simultaneously reduces the log size and the
hardware cost. This new method approximates the missing
timestamps using the Least-Recently-Used (LRU) block’s
timestamp within the same associative set. We call this Set/LRU

Timestamp Approximation, which reduces the hardware cost to
24 KB per core (Section 10.2.1) and, together with RTR, reduces
the log size by 96% over FDR (Section 10.2.2).

Decoupled Timestamp Memory. FDR couples timestamps
with cache blocks. This can introduce much design complexity to
the memory caches, which are performance-critical components.
We move timestamps out of cache (decoupling), which allows us
to independently size the timestamp memory and potentially
reduce the overall design complexity (Section 10.2.1).

Support TSO Consistency Model. When used with the
Total-Store-Order (TSO) memory consistency model, existing race
recorders can run into replay deadlocks because they assume
Sequential Consistency (SC). We propose a new order-value-
hybrid recording method to support TSO (which is x86-like). The
hybrid method avoids replay deadlocks and deterministically
replays TSO executions by recording additional information of the
load values when load instructions potentially violate the SC
ordering (Section 6).

We make the following contributions in this paper.
1) We improve FDR’s race recording algorithm, through RTR and

Set/LRU. The new algorithm enables significant log size and
hardware cost reductions.

2) We improve a race recorder implementation by lowering the
design complexity and supporting TSO.

3) We design and evaluate a race recorder on a four-way Chip
MultiProcessor (CMP) system using full-system simulations
and commercial workloads.

Next, we review race recorders in Section 2. We present the new
recording algorithm with small log size and low hardware cost in
Sections 3-4. We propose moving the timestamps out of processor
caches and present a method to support TSO in Sections 5-7. We
describe a concrete recorder: RTR/CMP, a CMP-based hardware
race recorder (Section 8-9). We evaluate RTR/CMP and explore a
design space in Section 10. We discuss related work in Section 11
and conclude in Section 12.

2. Background: Hardware Race Recorders
Conflicts and Memory Races. In multithreaded executions,
two memory accesses conflict if and only if they are executed by
different threads, access the same memory location, and at least
one of them is a write. Therefore, three types of conflicts exist:
read-after-write (RAW), write-after-read (WAR) and write-after-
write (WAW). Herein, we assume programs are divided into RISC-
like instructions and we label a dynamic instruction with a tuple
TID:IC. TID is the thread ID of the thread that executes a
dynamic instruction. Dynamic Instruction Count (IC) is a
monotonically increasing number that we give to each dynamic
instruction executed by a thread in the program order. A conflict is
denoted i:xÆj:y, where Æ denotes the order of the conflict.

Figure 1: In (a), a multithreaded execution is shown. In (b),
FDR’s hardware race recorder detects the race. The
notations rd(x) and wr(x) denote read and write to
memory location x.

Informally, memory races (or simply, races) are those conflicts in
which the instruction order is not determined by the program.
Because all races are conflicts (the converse is not true), it is
sufficient to record all conflicts in order to record races. But, why
do we want to record races?

Figure 1a shows an example conflict (i:2Æj:3), which happens
to be a race. Two threads i and j both write a variable z. The ICs
are shown in the numbered circles. The final value of z is
determined by which thread “loses” the race. In general, the
nondeterminism caused by races can prevent multithreaded
executions from being deterministically replayed.

Race Recorders. In order to deal with this nondeterminism,
researchers have proposed to use race recorders to enable faithful
replay [23]. The goal of race recorders is to record the races that
occur in the original executions and use the recorded information
to enable deterministic replay. Existing recorders assume SC, as do
we until we generalize our recorder to TSO in Section 6.

FDR. In 2003, we proposed a hardware recorder called Flight
Data Recorder (FDR) [33]. FDR augments each cache block with
a timestamp, which is the IC of the instruction that last accessed
the cache block. Then, by piggybacking the timestamp on cache
coherence messages, FDR can detect and log conflicts on-the-fly.

For example, Figure 1b shows how the conflict (i:2Æj:3) in
Figure 1a is detected by FDR. The two threads (i and j) execute
on two processors (P1 and P2). The variable z can be cached in the
processor caches (denoted by rectangles). We illustrate each step
in the conflict detection using a dark numbered circle. First, after
P1 writes z (ICP1=2), the cache block is in the Modified (M) state
in P1’s cache. P1 also timestamps the block with the IC of the
write instruction. When P2 attempts to write z (ICP2=3), it issues a
2

GETX (get exclusive) request to the directory at the memory,
because the block is in the Invalid (I) state in P2’s cache. The
directory then forwards the GETX to the block’s current owner
(P1). Upon receiving the forwarded request, P1 sends the data
block and the timestamp (TS=2) to P2. Finally, FDR detects this
conflict when P2 receives P1’s message.

3. Reducing Log Size Using RTR

Figure 2: Four steps in reducing the dependence log:
log-them-all; TR; stricter dependencies; vectorizing.

To ensure deterministic replay, it is sufficient to log every conflict.
We call the log the Dependence Log because the logged conflicts
serve as interthread dependencies, which need to be enforced
during replay to resolve the races. However, on modern machines
with fast interthread communication, conflicts can happen
frequently, which causes this log-them-all method to suffer from
generating huge logs. This section presents a log size reduction
algorithm, which is illustrated through an example in Figure 2. To
start, Figure 2a shows an execution with five conflicts. Assuming
each IC is 64-bit wide, the log-them-all method generates a
dependence log of five dependencies.

3.1. Netzer’s Transitive Reduction (TR)
One way to reduce the dependence log is to record only a subset of
the conflicts. Netzer observed that some conflicts are transitively
implied by others and he proposed the Transitive Reduction (TR)
method to reduce the number of conflicts to be recorded [21].
Figure 2b shows the conflict i:1Æj:4 is implied by the conflict
i:2Æj:3, because i:1, i:2 and j:3, j:4 are in program
order. Enforcing i:2Æj:3 during a replay execution enforces
i:1Æj:4. Therefore, conflict i:1Æj:4 is removed from the
log. After this reduction, the log is reduced to four dependencies.
In practice, Netzer showed that TR reduces the log size
significantly (82% - 99.8%) over the log-them-all method [21].

3.2. Regulated Transitive Reduction (RTR)
In this paper, we go beyond recording a subset of the conflicts and
find that actively creating artificial dependencies can further
reduce the log. Our recorder creates stricter and vectorized
dependencies in the log. The new algorithm is named Regulated
Transitive Reduction (RTR), because it regulates the replay.

3.2.1 Log Size Reduction
Stricter Dependencies. Figure 2c shows how RTR enables
more transitive reduction by creating artificial dependencies in the
log. In the recording, after the conflict i:3Æj:5 is detected,
RTR writes a stricter dependence i:4Æj:5 in the log. The
dependence is stricter than i:3Æj:5 because enforcing it during
replay is sufficient but not necessary to satisfy i:3Æj:5. As a
result of this stricter dependence, i:3Æj:5 and i:4Æj:6 are
transitively reduced. Thus, RTR reduces the log to three conflicts.
This is not possible if we log only a subset of the original conflicts.

Vectorized Dependencies. But why does RTR decide to create
i:4Æj:5 out of many possibilities? RTR creates i:4Æj:5
because this dependence and the previous dependence
(i:2Æj:3) are vectorizable. Dependencies are vectorizable if
and only if the dependencies have the same IC stride (herein
denoted by D). As we show visually in Figure 2d, i:4Æj:5 and
i:2Æj:3 both have their IC stride equal to one. Vectorized
dependencies help reduce the log with a compact format:

{(x-D)Æx | x={3,5}, D=1}
3

where (x-D)Æx is the template of the vectorized dependencies; x is
substituted with a set of logged ICs (i.e., {3,5}) during replay.

With both stricter and vectorized dependencies, RTR enables a
greater log size reduction over TR. In practice, about 1/3 of the
reduction is from transitivity of the stricter dependencies and 2/3
of the reduction is from the vectorized compact format.

The vectorized dependencies work by exploiting the regularity
within multithreaded executions, e.g., once a thread loses in a race,
the loser tends to lose the next race because the winner and the
loser spend a similar amount of time computing before the next
race. Thus, the two races tend to be vectorizable.

Figure 3: An overly strict dependence causes a deadlock.

3.2.2 Replay Correctness and Performance
Correctness. For correctness, we consider i:vÆj:w stricter
than i:xÆj:y if and only if that in program order, (1) i:v is
after or equal to i:x; (2) j:w is before or equal to j:y.

However, RTR must not create overly strict dependencies, or it
will cause replay deadlocks. For example, in Figure 3, let’s assume
RTR creates i:3Æj:1 to replace i:3Æj:5. At a glance,
i:3Æj:1 may appear correct because it is stricter than
i:3Æj:5. However, a cycle of dependence, namely
i:3Æj:1Æj:2Æi:3, is created after this dependence is
added. Note that a program order dependence (j:1Æj:2) is in
the cycle. This cycle will cause replay to deadlock because one
cannot decide whether i:3 or j:1 should be executed first.

To avoid replay deadlocks, RTR conservatively ensures that all
stricter dependencies are in a total order. It is natural to follow the
SC total order in a live execution. This avoids any cycle of
dependencies, because the SC total order is a topological sort of all
dependencies (within and between threads) in replay.

Replay Performance. During replay of a recorded execution,
each dependence, say i:xÆj:y, requires a check between two
threads. The check incurs additional delay to operation j:y only if
i:x is not yet finished when j:y is ready. RTR affects replay
performance in two ways. First, creating stricter dependencies can
add more delays to replay, because stricter dependencies are
sufficient but not necessary for replaying the conflicts. On the other
hand, RTR may improve replay performance with reduced number
of checks between threads. We leave a quantitative evaluation of
the impact on replay performance to future work.

3.2.3 The RTR Algorithm
We now provide a high-level RTR algorithm in Table 1, assuming
infinite cache capacities, in-order processor cores, no counter

wrap-around, etc. Compared with the TR algorithm in FDR, we
believe RTR is only slightly more complex than TR. Nevertheless,
two major differences exist.
1) When sending a coherence response, a processor sends both the

last access timestamp of the block and the processor’s current
IC, instead of just the single last access timestamp as in FDR.

Table 1: RTR Algorithm on Ideal Hardware.
States at processor j
IC: Instruction Count of processor j
LOG: Log buffer at each processor j
CTS[M]: Cache TimeStamp. Last access timestamps (scalar) of

blocks in j’s cache. M is the total number of memory blocks
VC: Vector Clock. Maximal timestamp (vector) of processor i

that is ordered before an IC of processor j. VC has P-1
elements, where P is the total number of processors.

D_min[P]/D_max[P]: Sliding window of the IC stride for
vectorizable dependencies from another processor to j.

Actions at processor j
On commit of an instruction insn {

IC++ // After, IC is insn’s dynamic instruction count
if (insn is a memory operation) {

// insn.block is the block accessed by insn
CTS[insn.block] := IC

}
}
On sending a coherence response for block b to proc k {

// Send both last access IC and processor current IC
ID := j
last_access_TS := CTS[b]
current_processor_IC := IC
SEND(ID, last_access_TS, current_processor_IC)

}
On receiving a coherence response for block b from proc i {

// 1. Drop the conflict if it is transitive reducible
// 2. Create a vectorizable stricter dependence if possible
// 3. Otherwise, log the previous groups of conflicts
(ID, last_access_TS, current_processor_IC) := RECEIVE()
min := IC - current_processor_IC
max := IC - last_access_TS
if (last_access_TS <= VC[i]) {

// Transitively reduced, do nothing
} else if ([min, max] overlaps [D_min[i], D_max[i]]) {

D_min[i] := MAXIMAL(min, D_min[i])
D_max[i] := MINIMAL(max, D_max[i])
VC[i] := IC - D_max[i] // for transitive reduction
APPEND(LOG, ID, IC) // a conflict ending is logged

} else {
APPEND(LOG, D_max[i]) // a stride is logged
D_min[i] := min // reset the stride min
D_max[i] := max // reset the stride max
VC[i] := IC - D_max[i] // for transitive reduction

}
}

2) A processor maintains a sliding window of stricter
dependencies that it is allowed to create. The window is
represented by two IC strides: from the IC stride of the precise
dependence to the IC stride of the strictest dependence allowed
by the SC total order. A vectorizable stricter dependence is
created if a conflict has a window that overlaps with the
4

window of preceding conflicts. Otherwise, preceding
vectorized dependencies are flushed out to the log. As in FDR,
the variable VC[i] is used in transitive reduction, but its value is
computed based on the stricter dependencies created by RTR.

In more detail, the algorithm in Table 1 keeps a timestamp CTS[b]
for every cache block b at each processor. The timestamps are
updated when any memory instruction that accesses b commits.
Later, if another processor requests b, the timestamp and the
current processor IC are sent to the requestor in a coherence
response message. When the response message arrives at the
requestor, the conflict is detected and one of the following three
actions are performed. First, transitivity reduction is done based on
the previously-logged dependencies (a maximal-received-
timestamp, VC[i]:=IC-D_max[i], was computed). If the conflict is
irreducible and it has a window of stricter dependencies that
overlaps with the current sliding window (denoted by
D_max[i]/D_min[i] at each processor), a stricter and vectorizable
dependence is created and the sliding window is updated.
Otherwise, in the final case, the existing group of stricter and
vectorized dependencies are flushed out to the log and the sliding
windows is reset according to the conflict.

4. Reducing Hardware Cost Using Set/LRU

The RTR algorithm in Table 1 assumes infinite caches. In reality,
however, cache size is limited and the cost of storing timestamps
for all memory blocks is prohibitive. Therefore, whenever a
processor P receives an invalidation request for a cache block b
that is no longer cached at P (this can happen when the directory
still thinks that P is a sharer of b), P must respond to the request
with an ACK message containing the timestamp that approximates
the timestamp that b would have if b was still cached (and b’s
timestamp was maintained precisely).

Figure 4: In contrast to FDR, the Set/LRU approximation
method likely creates reducible dependencies.

i j

rd(x)

rd(y)

rd(z)

wr(z)

wr(x)current IC

Precise, reducible

Set/LRU’s, reducible

FDR’s, irreducible

In FDR [33], we observed that it is safe to approximate an
uncached block’s timestamp (herein called the precise timestamp)
with any timestamp within the inclusive range from the precise
timestamp to the current IC of the responding processor. This
observation is called Send Observation. Send Observation is safe
for the same reasons that RTR can create stricter (and not overly
strict) dependencies. FDR conservatively chooses to always use
the current IC to approximate the precise timestamp. This is safe
but unfortunately always creates a dependence that is irreducible
by transitivity, meaning the dependence will be logged. FDR’s
approximation method presents an undesired trade-off between the
log size and the hardware cost (i.e., keeping few timestamps helps
reduce the hardware cost of the recorder, but tends to generate
many extra irreducible dependencies, which increase the log size).

We now propose a new timestamp approximation method, called
Set/LRU Timestamp Approximation (Set/LRU, in short). Instead of

using the current IC, like in FDR, Set/LRU approximates the
precise timestamp with the timestamp of the Least Recently Used
(LRU) block that maps to the same associative cache set as the
uncached block. Because the new approximations tend to preserve
the transitive reducibility of the dependencies, Set/LRU
outperforms the current IC approximation method by reducing
both the hardware cost and the log size.

For example in Figure 4, a thread i on processor P1 serially reads
three different memory blocks x, y and z, which map to the same
cache set. If P1’s cache associativity is two, by the time i reads z,
x needs to be evicted. After x is evicted, if another thread j on
processor P2 serially writes z and x, first, a conflict on block z
from i to j is detected and the corresponding dependence is
logged. Second, the conflict on block x is detected if the directory
remembers P1 as a sharer of x after x is evicted. Using the Set/LRU

method, P1 chooses the timestamp of y of approximate the precise
timestamp of x. The approximated timestamp is guaranteed to be
in the range allowed by the Send Observation and to be the closest
to the precise timestamp among the timestamps of the cached
blocks in the cache set. This is so because of the LRU replacement
policy. More importantly, Set/LRU preserves the reducibility of the
conflict on x. Unlike the current IC approximation used in FDR,
no extra dependence is logged. Therefore, it is possible for Set/LRU

to significantly reduce the hardware cost by storing only a small
number of timestamps that likely correspond to the small number
of irreducible conflicts. As described in Xu’s Ph.D.
dissertation [32], non-LRU replacement is also supported.

5. Reducing Complexity Using D-TSM
FDR integrates the timestamp memory with the memory caches.
The caches record, for each block, the timestamp of the latest read
or write access to the block. In this section, we describe a
Decoupled Timestamp Memory (D-TSM), which is simpler and
more flexible than the integrated timestamp memory.

Figure 5: A decoupled timestamp memory (D-TSM) and
its data paths (shaded) in a 2-way CMP.

Figure 5 shows the high level structures of the D-TSMs in a 2-way
CMP. The D-TSMs have both read and write ports, connecting
respectively to the processor pipeline and the coherence controller.
When the processor commits a memory instruction, it writes the IC
of the instruction to the timestamp memory, which is indexed by
memory block address. When coherence requests and responses
arrive at the L1 coherence controller, the controller looks up the
corresponding timestamp from the timestamp memory, then either
sends the timestamp to the requestor or conditionally writes the
log. The D-TSM latency needs to be as fast as the memory caches,
just like the case of the integrated timestamp memory. This speed
can be met relatively easily since the size of the D-TSMs is usually
small (Section 10.2.1).
5

Decoupling has two benefits. First, D-TSM may reduce the design
complexity. Memory caches are performance-critical. Integrated
timestamp memory increases design complexity, which may affect
the cache performance and may generate push-back from the
designers [22]. A dedicated timestamp memory is simpler than
memory caches, because (1) it does not need to modify the cache
and can be designed separately “on the side”; (2) it does not need
to keep any MOESI state1; (3) it does not need to support
invalidations; (4) decoupling allows D-TSMs to implement the
LRU replacement policy, while the cache to implement another
policy. The second benefit of decoupling is the flexibility. We can
vary the size (number of associative sets and associativity) of the
D-TSMs independently with respect to the size of the caches. In
Section 10.2.1, we show that the D-TSMs can be sized much
smaller than the caches, thanks to the Set/LRU method. A drawback
of decoupling is the duplicated address tag arrays, which is
insignificant due to the small size.

6. Broadening Applicability: Supporting TSO
We now extend our recorder to supporting the Total Store Order
(TSO) memory model [31]. We focus on TSO because it is well
defined [31] and perhaps widely implemented in the popular x86
architecture as a valid implementation of the Processor
Consistency (PC) model [14].

We have three goals in extending RTR to TSO systems.
1) Recording TSO executions without forcing the executions to

conform to SC.
2) (At most) Modestly increasing the log of the recorder.
3) (At most) Modestly increasing the hardware complexity and

cost of the recorder.

Because our simulation infrastructure supports only the Sequential
Consistency (SC), we do not quantitatively evaluate the TSO
recording method described in this section. But, we qualitatively
argue that the TSO recording method achieves these goals.

6.1. TSO and its Impact on Race Recording
TSO relaxes write-to-read ordering to the shared memory. With
TSO, a processor can implement a hardware first-in-first-out
(FIFO) write buffer. Informally, we say a store instruction commits
by placing its write value in the write buffer. Later, the store
instruction is ordered (at the memory) when the instruction exits
the write buffer and updates the memory. Furthermore, TSO
requires a processor’s stores to be ordered in commit order (i.e.,
FIFO write buffer). Load instructions from the same processor can
bypass the memory system from the write buffer.

A load instruction commits and is ordered (at the memory) after all
instructions before the load instruction commit. When a load
returns its value from the memory system, we call it a loadM (load-
memory), otherwise a loadB (load-bypass). (If a load instruction
partially bypasses from the write buffer, we break it into smaller
loadM and loadB sub-operations.)

Our race recording algorithm (as presented so far) can fail under
TSO systems. In particular, some loadM instructions can
potentially cause instruction reordering; some LoadB instructions
can potentially cause store atomicity violation. Arvind and
Maessen have shown that TSO and SC differ only in the properties
of instruction reordering and store atomicity [2]. Therefore, we
believe a solution is complete if it handles both instruction

reordering and store atomicity violations. We now use examples to
illustrate the impact of instruction reordering and store atomicity
violations to race recording in more detail.

In an SC system, instructions (executed by the same thread)
commit and are ordered in the program order. In a TSO system,
even though the instructions commit in program order, the write
buffer can cause independent load and store instructions to order
differently from the program order. This reordering can cause a
multithreaded execution to violate the strong SC semantics. We
call those multithreaded executions that are allowed by the TSO
memory model the TSO executions.

Figure 6: Example TSO executions that are not SC. (a)
The store instructions are delayed by the write buffer. (b)
the load instructions reads its value directly from the
write buffer. In both (a) and (b), a load instruction is
ordered (at the memory) before a preceding store. The
numbers in /* */ denote the memory ordering.

i j
wr(A) /* 2 */

wr(B) /* 5 */

rd(A) /* 1 */

wr(A) /* 3 */

wr(B) /* 4 */
Write

Bypass
Buffer

(a)

(b)

1

2

3

1

2

i j
A = 1 /* 3 */1

%r1 = B /* 1 */2

B = 1 /* 4 */1

%r1 = A /* 2 */2

init: A = 0, B = 0

Figure 6a shows an example TSO execution that is not an SC
execution. In this execution, thread i first writes memory location
A then reads a different memory location B, thread j first writes B
then reads A. Let us assume thread i and j run on two different
processors. Because of the write buffers, the two loadM
instructions are ordered (i.e., commit) before the two store
instructions are ordered. The numbers in /* */ denote the
memory ordering. For this execution, our race recorder would log
two interthread dependencies i:2Æj:1 and j:2Æi:1. During
the replay, if the replayer follows the SC order, the recorded
dependencies cause a deadlock (i.e., cycle of dependencies).

Figure 6b shows another TSO execution that is not an SC
execution caused by a loadB instruction. The loadB instruction
i:3 reads A’s value from i:1 through the write buffer during
recording. Although i:3 is ordered (at 1) before i:2 (ordered at
2), our recorder logs the dependence i:3Æj:1, rather than
i:1Æj:1, because i:3 is after i:1 in the program order (with a
larger IC). Thus, a cycle of dependencies is recorded due to the
write buffer bypassing.

Therefore, recording only interthread dependencies can potentially
deadlock a SC-replay for TSO executions.

6.2. An Order-Value-Hybrid Recorder
We propose an order-value-hybrid recorder to handle TSO
executions. Our key observation is that some load instructions
cause replay deadlocks, because these load instructions are ordered
(at the memory) differently with respect to the program order.

1. All timestamps are initiated to zero.
6

Therefore, we give special treatment to those “problematic” load
instructions, in effect, replaying these load instructions by value,
rather than by ordering.

In addition to recording dependencies (the orders), our recorder
records the value of a load instruction if the load instruction may
violate the SC ordering. The hybrid recording method deals with
the loadM and loadB instructions uniformly: the recorder monitors
the loaded memory location from the (physical) time t1 to
(physical) time t2, where time t1 is when a loadM instruction
becomes ordered or the store that feeds a loadB instruction
becomes ordered; time t2 is when all preceding instructions (in
program order) of the loadM or the loadB are ordered. During this
monitored time period, if the loaded memory location is written by
another thread, the recorder logs the value of the load instruction.
The load instruction is called a potential SC-violating load. If the
memory location is not written by another thread, the recorder
does not log the load value, because the load instruction is
logically ordered in program order, which means the dependencies
will ensure correct replay of the load.

The definition of time t1 is different for loadM and loadB
instructions. It is relatively easier to understand why we start to
monitor a loadM instruction after the loadM is ordered. After all, if
no other thread writes the loaded memory location in the time
interval [t1, t2], the instruction reordering logically did not
happen. On the other hand, we choose to start monitoring a loadB
after the store (say store_x) feeding the loadB becomes ordered,
rather than when the loadB is ordered. This is because the loaded
value is from the store_x. A potential SC violation happens if
the value is written in [t1, t2].

From a hardware perspective, to achieve this value recording, we
augment the processor core with additional hardware that monitors
the accessed cache line after the value of a load instruction is
returned by the cache or a bypassed store value is written into the
cache line. Should the cache line be written (invalidated) by
another processor before all preceding (in the program order) store
instructions (which are delayed by the write buffer) are ordered,
we treat the load as a potential SC-violating load. For these loads,
our recorder logs the loaded value and omits logging the WAR
dependence that sources from the load instruction, which may
cause replay deadlocks. The detection circuitry is similar to the
misspeculation detection circuitry in the SC systems (e.g., MIPS
R10000 [34]) that utilize speculative execution techniques [9]. The
difference is that our hardware logs the load values of potential SC
violations rather than triggering recovery.

We now apply this hybrid recording method to the example in
Figure 6a. The hybrid recorder would monitor the memory

locations A and B, at thread j and thread i respectively, after the
two loadM instructions are ordered. Because A is written by thread
i before the store instruction j:1 is ordered, the recorder would
log the load value of j:2 (A=0). Similarly, for the example in
Figure 6b, the hybrid method starts monitoring the memory
location A after i:1 is ordered. Because A is written before i:1
(which precedes i:3) is ordered, the recorder would log the load
value of i:3.

During replay, the logged values are used to overrule the
(potentially incorrect) values read from the memory. In Figure 6a,
without the WAR dependence j:2Æi:1, the replay will not
deadlock. When it comes time to execute j:2, however, the
replayer uses the logged value to overrule the value loaded from
the memory. Therefore, in addition to the changes in the recorder,
the order-value-hybrid method requires a (small) change in the
replayer so that the replayer can overrule the value of a potential
SC-violating load instruction using the value log.

The hybrid recording algorithm has the following properties.

This order-value-hybrid recording method does not force TSO
executions to conform to the SC model. Instead, the new method
logs additional values to deal with the potential deadlocks during
the in-order replay.

Figure 7: TR and TSO executions. Applying TR to TSO executions directly can cause incorrect replay. The dependence
i:wr(C)Æj:wr(C) is transitively reduced by the WAR dependence (i:rd(B)Æj:wr(B)). However, because the WAR dependence is
removed to break the cycle of dependencies, as shown by the incorrect replay order, the dependence i:wr(C)Æj:wr(C) is not
satisfied. Our solution is to avoid using those removable WAR dependencies in transitive reduction in the recording.

i j

TR Reduced wr(A)

wr(C)

rd(B)

wr(B)

wr(C)

rd(A)

The recording order:

j:rd(A) Æ i:rd(B) Æ i:wr(A) Æ j:wr(B) Æ i:wr(C) Æ j:wr(C)

The values of j:rd(A) and i:rd(B) are logged.

The conflict i:wr(C) Æ j:wr(C) is reduced by i:rd(B) Æ j:wr(B)

The incorrect replay order:

j:wr(B) Æ j:wr(C) Æ j:rd(A) Æ i:wr(A) Æ i:wr(C) Æ i:rd(B)-from value log

This order-value-hybrid recording method should (at most)
slightly increase the log size of the recorder. Several studies have
shown that, even under the consistency models that are weaker
than TSO, cache lines of load instructions are rarely invalidated
before the all preceding instructions are ordered [6, 10]. Therefore,
the load values are infrequently logged.

Without applying TR and RTR, the hybrid recorder is correct
because it logs all conflicts except those WAR conflicts source
from potential SC-violating loads. The recorder omits logging a
subset of the WAR dependencies. The omission does not affect the
replay correctness of the thread that wrote the conflicting memory
location (the write is still executed in the right order with respect to
other writes). It does affect the reading thread, because removing
the WAR dependence causes the load instruction to the see a new
version of the memory location. However, our value log supplies
the correct value to the load instruction. Therefore, all load
instructions get the same values in the original and the replay
executions. As a result, the hybrid recording method provides a
successful replay for both SC and TSO executions. The hybrid
recording algorithm is given in Table 3-4 in Xu’s dissertation [32].

Next, we extend the hybrid recording method to the TR and RTR.
The basic principle is that we suppress the TR and RTR
optimizations for potential SC-violating loads.
7

6.3. TR and the Hybrid Recording
As shown in Figure 7, It is incorrect to apply TR to the WAR
dependencies that are later omitted. The dependence
i:wr(C)Æj:wr(C) is transitively reduced by another WAR
dependence (i:rd(B)Æj:wr(B)). However, if the WAR
dependence is omitted in the recording to avoid replay deadlocks,
an incorrect replay order can violate the dependence
i:wr(C)Æj:wr(C).

We can solve this problem by avoiding using those omitted WAR
dependencies in TR. In particular, our recorder performs TR by
comparing the timestamps received from a remote processor.
When a processor receives an invalidation for a memory block that
is currently being monitored for a potential SC-violating load, the
processor piggybacks the older timestamp of the block, rather than
the timestamp of the potential SC-violating load. This way, not
only does the requestor avoid logging the WAR dependence, but
also the correctness of TR is maintained.

6.4. RTR and the Hybrid Recording
Recall that RTR relies on the SC total order to avoid logging
overly-strict dependencies. In TSO executions, the SC total order
does not exist. To extend RTR to TSO execution, we modify RTR
so that it creates the stricter dependencies more conservatively to
avoid replay deadlocks. In an SC system, RTR is allowed to create
stricter dependencies sourced from the precise timestamp to the
most recently committed IC. In a TSO system, because of the write
buffer, committed instructions may still be unordered at the
memory. Therefore, RTR is allowed to create stricter dependencies
only from a narrower sliding window, which is the largest window
of ordered and consecutive instructions.

Figure 8: A narrower sliding window for RTR.

a

b

c

i j

Stricter Dependence

Impossible

Figure 8 depicts this new sliding window, say [i:a, i:b], where
i:a is the conflicting instruction to j:c and i:b is the latest
instruction that satisfies the condition that all instructions between
i:a and i:b (in program order) are ordered and next instruction
after i:b (in program order) is unordered. There must not be any
cycle of dependencies, because such dependence like the one
shown in the dashed arrow, requires either (i) an instruction
between i:a and i:b ordered after j:c, or (ii) an instruction
after j:c ordered before j:c. By definition of the new sliding
window, case (i) is impossible. Case (ii) is possible for potential
SC-violating loads, but the cycle is avoided by omitted the WAR.

6.5. Insufficiency for More Relaxed Models
The hybrid recording method cannot be directly applied to
Processor Consistency (PC) and other more relaxed consistency

models for reasons documented in Xu’s dissertation [32].
Supporting these consistency models is an open problem.

7. Other Timestamp Memory Optimizations
This section briefly describes two other optimizations of the
decoupled timestamp memory. They each allow us to tune a
parameters of the D-TSMs in Section 10.1. More details of these
optimizations can be found in Xu’s dissertation [32].

7.1. Two (Read and Write) vs. One Timestamp
The RTR algorithm in Table 1 stores a single last access timestamp
in the CTS[b] variable for each block b. In fact, this is a
simplification. More precisely, both the last-read timestamps and
the last-write timestamps can be stored in the timestamp memory
to improve the preciseness of the conflict detection. For example,
only the last write timestamp is used, when a RAW conflict is
detected, even though the last read timestamp may be more recent
for the block.

However, storing two timestamps per block doubles the hardware
cost of the timestamp memory. In this paper, we show that the best
choice of whether one or two timestamps should be stored depends
on the size of the timestamp memory. We discuss the trade-off in
more detail in Section 10.1.

7.2. Partial Timestamps
Like in FDR [33], we use partial timestamps to reduce the
hardware cost. Our recorder stores only the least significant bits
(LSBs) of the timestamp. For example, instead of storing
timestamp 0x1234 in the timestamp memory, we store only 0x34.
When the partial timestamp is read back, it is concatenated with
the most significant bits from the current processor IC. Say, the
current processor IC is 0x4321, the concatenation produces a
timestamp 0x4334. Since 0x4334 is larger than the current
processor IC, we use 0x4234 to approximate the original
timestamp (0x1234), because 0x4234 is the largest possible IC that
can produce the partial timestamp 0x34. If the concatenation is less
than the current IC, we simply use it to approximate the original
timestamp. This approximation again creates stricter (and not
overly strict) dependencies. We explore the design space of the
width of the partial timestamps in Section 10.1.

8. Example Recorder: RTR/CMP

We now describe a specific design of a hardware race recorder
called RTR/CMP. RTR/CMP differs from FDR (and other existing
race recorders) in following ways: (1) use of the RTR algorithm;
(2) use of the Set/LRU approximation; (3) use of the D-TSMs;
(4) support of Chip MultiProcessor (CMP). Due the simulator
limitation, RTR/CMP does not implement the order-value-hybrid
recording method.

8.1. The Baseline CMP System
Our baseline system (without the recorder) is a single-chip CMP
system. Single-chip CMP systems, such as Sun UltraSPARC
T1 [11], do not support memory coherence between multiple CMP
chips. The complexity of the cache coherence protocols for single-
chip CMP systems is more manageable than that of the multichip
CMP systems [18]. For RTR/CMP, a single-chip CMP baseline
allows simple design and easy deployment because no off-chip
change is required.

If race recording is desired on large scale servers consisting of
multiple CMPs, we believe coherence piggybacking is possible but
8

more complex. Both the on-chip and off-chip coherence protocols
must work together to detect all conflicts with precise timestamps
or safe timestamp approximations.

At a high level, the baseline cache coherence protocol works as
follows. The shared on-chip L2 cache keeps track of sharer and
owner information of cache blocks in private L1 caches (similar to
Piranha [5]). The MOSI coherence protocol implements notifying
replacement, i.e., the L2 cache directory keeps a precise list of L1
sharers for each block.

8.2. Recorder Implementation
Like FDR, RTR/CMP piggybacks the race recording function onto
the cache coherence hardware and implements the RTR algorithm
(Section 3), rather than Netzer’s TR algorithm. In addition,
RTR/CMP employs the Set/LRU timestamp approximation
(Section 4), and the D-TSMs (Section 5). The major
implementation differences from FDR is the following.
1) L2 Cache Replacement. Unlike the coherence directory used

in FDR, our directory (at L2) removes sharer and owner
information when a cache block is evicted from all caches of a
chip. This is a problem for conflict detection, because when the
block is brought back on to the chip, the L2 does not have the
information about which processor cores were the owner or the
sharers of the block. We solve this problem by conservatively
assuming that all processor cores (except the requestor) had
cached this block before. We then make the requestor the new
owner of the block and subsequent requests to the block will
conflict with only the requestor. This causes false conflicts to
be detected, but never misses a true conflict. These false
conflicts are likely reducible, because the Set/LRU

approximation returns old timestamps for these conflicts.
2) Notifying L1 Replacement. In FDR, when a cache replaces a

read-only block, it does not notify the memory. If the block is
later written by another processor, the memory sends an
invalidation to all sharers regardless of whether the block is still
cached by the original sharers. In RTR/CMP, however, a sharer
notifies the L2 when a read-only block is replaced. If the block
is later written by another core, the L2 does not need to send
invalidations to sharers-who-replaced. This is a problem for
conflict detection, because although the L2 can keep extra
information about the sharers-who-replaced, it cannot provide
the requestor with the necessary timestamps of the block
(unless it sends extra messages to the sharers-who-replaced).
We solve this problem by piggybacking block access
timestamps in the replacement notification messages and
caching the timestamps of the replaced blocks at the L2. This

solution adds four extra D-TSMs to the L2 (one per core), but
avoids extra coherence messages, which affect performance.

3) Coherence Message Overhead. RTR/CMP uses 64-bit
timestamps to avoid overflows. As shown in Table 1, RTR
requires piggybacking two timestamps per coherence message.
This incurs high bandwidth overhead. We reduce the overhead
by encoding the timestamps with their first order differences
(24-bit). Because messages may be re-ordered in the
interconnection network, we also add a sequencing number (8-
bit) to each message to ensure correct re-construction of the
full timestamps from the differences.

9. Evaluation Methods

Table 2: Simulation Parameters
Cores Four 1 GHz, 2-way, in-order superscalar

Private L1
Caches

Split I & D, each 64 KB 4-way set associative
with LRU replacement, 64-byte lines, 1-cycle

Shared L2
Cache

Unified 16 MB, 4-way set associative with LRU
replacement, 64-byte lines, 15-cycle

Memory 4 GB of DRAM, 80ns off-chip access time

Timestamp
Memory

Decoupled, parameters vary by design, but we
keep L1 and L2 TSMs have the same parameters

We

Table 3: Commercial Workloads
Apache is a static web serving workload. We use Apache 2.0.43, configured to use pthread locks and minimal logging as the web server. We use
SURGE [4] to generate web requests. We use a repository of 20,000 files (totalling ~500 MB). We simulate 3200 clients, each with 25 ms think time
between requests, and warm up for ~2 million requests before taking measurements for 600 requests.

Online Transaction Processing (OLTP) models database activities of a wholesale supplier, with many concurrent users performing transactions. Our
setup uses TPC-C v3.0 benchmark and IBM’s DB2 v7.2 EEE database management system. We use a 5 GB database with 25,000 warehouses stored on
eight raw disks and an additional dedicated database log disk. We reduced the number of districts per warehouse, items per warehouse, and customers per
district to allow more concurrency provided by a larger number of warehouses. We simulate 128 users, and warm up the database for 100,000 transactions
before taking measurements for 200 transactions.

SPECjbb is a server-side java benchmark that models a 3-tier system, focusing on the middle-ware server business logic. We use SUN’s HotSpot 1.4.0
Server JVM. Our experiments use 1.5 threads and 1.5 warehouses per processor (6 for 4 processors), a data size of ~44 MB, a warm-up interval of
200,000 transactions and a measurement interval of 10,000 transactions.

Zeus is another static web serving workload driven by SURGE. Zeus uses an event-driving server model. Each processor of the system is bound by a Zeus
process, which is waiting for web serving event (e.g., open socket, read file, send file, etc.). The rest of the configuration is the same as Apache’s.

 use Wisconsin GEMS full system simulation
infrastructure [17] to evaluate RTR/CMP. GEMS (through
Simics [16]) models an enterprise-level SPARC multiprocessor
system in sufficient detail to run the unmodified Solaris 9 operating
system. Table 2 summarizes the system configuration we simulate.

We exercise RTR/CMP with four commercial workloads
summarized in Table 3. We counter the workload variabilities
using a pseudo-random perturbation method [1]. For performance
simulations, we report the mean results and 95% confidence
intervals from 20 randomized runs of approximately 100 million
instructions per core for every workload. We report the average log
growth rate of RTR/CMP in MegaBytes/core/second and
Bytes/kilo-instructions.

We do not directly compare the log size of RTR/CMP to the log size
reported in the FDR paper, because RTR/CMP and FDR are based
on different systems (i.e., CMP versus CC-NUMA). Instead, we
approximate FDR by disabling RTR and Set/LRU, as well as
sizing up the timestamp memory appropriately (details in
Section 10.2). For both recorders, the log is first compressed with a
first-order-difference encoding and then LZ77 [37]. The encoding
is similar to a run-length encoding proposed by Ronsse et al. [29].
9

10. RTR/CMP Results

2 4 8 16 32 64 128 256 512 1024 2048

Size of the Timestamp Memory (KB)

0

1

2

3

L
og

B
an

dw
id

th
(M

B
/c

or
e/

se
co

nd
)

SPECjbb-1TS-RTR
SPECjbb-1TS-TR
SPECjbb-2TS-RTR
SPECjbb-2TS-TR

(64 ways, Full Timestamps, Set/LRU)

10 15 20 25 30

Partial Timestamp Width

10

1

0.1

0.01

L
og

B
an

dw
id

th
(M

B
/c

or
e/

se
co

nd
)

SPECjbb-TR
SPECjbb-RTR

(64sets, 64ways, Set/LRU)

2 4 8 16 32 64 128 256 512 1024

Associativity of the Timestamp Memory

10

1

0.1

0.01

L
og

B
an

d
w

id
th

(M
B

/c
or

e/
se

co
n

d
)

SPECjbb-CurrentIC-RTR
SPECjbb-CurrentIC-TR
SPECjbb-SetLRU-TR
SPECjbb-SetLRU-RTR

(64KB, Full R/W Timestamps)

Figure 9: Exploring the design space of the timestamp memory of RTR/CMP.

In this section, we first explore a design space of RTR/CMP by
varying the configuration of the decoupled timestamp memories
(D-TSMs). Then, we select a specific configuration of RTR/CMP

and evaluate the improvements over another configuration that
approximates FDR. We believe both results are significant: the
design space exploration shows RTR/CMP is tunable to meet
different design goals; the specific design shows the effectiveness
of RTR and Set/LRU as well as the improvements over FDR.

10.1. Optimizing RTR/CMP

We vary four parameters of the D-TSMs:
1) Size of the D-TSMs (same size for L1 and L2 D-TSMs);
2) Bit-width of partial timestamps;
3) Number of timestamps per block (one or two);
4) Associativity of the D-TSMs.

Table 4: RTR/CMP vs. FDR - Hardware Cost

Recorder Parameters FDR RTR/CMP

Algorithm (RTR or TR) TR RTR

Set/LRU No Yes

of Timestamps per Block 1 2

Partial Timestamp Bits 32-bit 24-bit

Timestamp Memory Associativity 4-way 64-way

Timestamp Memory Size/core 256 KB 12 KB+12 KB

We perform several sensitivity studies to determine the effects of
these parameters. We report the results from a typical workload. In
Figure 9a, we vary the size and number of timestamps per block
for the D-TSMs. For comparison, we experimented with both the
RTR and TR algorithms. Both the RTR and TR algorithms exhibit
similar trends: (1) small D-TSMs (no more than 64 KB) achieve
most of the log size reduction; (2) separate (two) timestamps per
block should be used after the cache size is large enough that
Set/LRU becomes effective. In Figure 9b, we vary the number of
bits of partial timestamps. Although the full width of a timestamp
is 64-bit, it is economical to store only the least significant 24 bits.
In Figure 9c, we vary the associativity of the D-TSMs. Unlike the
Set/LRU, the current IC approximation does not benefit from higher
associativity2. In Section 10.2, we choose 64-way because higher
associativity has a diminishing effect on the log size reduction.

These results show a tunable trade-off between the log size and the
hardware cost in designing race recorders.

10.2. Improvements of RTR/CMP
We select a specific configuration of RTR/CMP and compare it to
the approximated FDR. Table 4 summarizes the parameters of the
selected RTR/CMP and the approximated FDR, which does not use
RTR, Set/LRU and the D-TSMs.

10.2.1 Hardware Cost

0

20

40

60

80

100

N
or

m
al

iz
ed

L
og

Si
ze

(%
)

Approx. FDR - TR CurrentIC 256 B TSM

Determinizer/CMP - RTR Set/LRU 12x2 B D-TSM

Apache JBB OLTP Zeus AVG
0.0

0.5

1.0

1.5

2.0

L
og

Si
ze

(b
yt

e/
co

re
/k

ilo
-i

ns
tr

)

Apache JBB OLTP Zeus AVG

Figure 10: RTR/CMP—Log Size.

Table 4 shows the relative hardware cost of RTR/CMP and FDR.
RTR/CMP requires two small timestamp memories per core. Each
memory has 32 sets and 64 ways. With two timestamps per block
and 24-bit partial timestamps, the total size of the timestamp
memory is 24 KB–a significant hardware cost reduction over FDR.
Further reducing the hardware cost is possible at the expense of
larger log sizes. As we show in Figure 9a, reducing the timestamp
memory to 2 KB increases the log growth rate to about
0.5 MB/core/s.

10.2.2 Log Size
Figure 10-left shows the log grows about one byte per kilo-
instruction for RTR/CMP. Comparing with FDR, RTR/CMP

significantly reduces the log growth rate for all workloads
(Figure 10-right). On average, the log size reduction is 96%—a
factor of 25! The log size reduction is a result of the RTR
algorithm and the Set/LRU approximation. Next, we evaluate them
independently.

TR vs. RTR. To isolate the effects of the RTR algorithm from
the Set/LRU approximation, we give the recorder infinite timestamp
memories, i.e., no timestamp memory misses, two timestamps per
block, and full-width timestamps. Figure 11-left shows the log size
reduction from changing the recording algorithm from TR to RTR.
For all workloads, RTR has a lower log growth rate. The average

2. Because of encoding inefficiency in the log, RTR performs worse than
TR when Set/LRU is not used. With 64 KB D-TSMs and without Set/LRU,
RTR cannot vectorize most of the dependencies.
10

reduction is 28%, which is a result of RTR’s ability to create many
groups of dependencies with the same IC stride.

Set/LRU. Figure 11-right shows the effectiveness of the Set/LRU

approximation. With two 12 KB D-TSMs, the log growth rate is
increased by no more than 10% over the perfect (infinite) D-TSMs.
Set/LRU slightly outperforms perfect D-TSMs for Zeus. This is
possible because RTR is a greedy heuristic and precise timestamps
do not always help in transitive reduction. In other words, an
approximated timestamp may enable better transitive reduction.

Additional impacts of Set/LRU can be seen in Figure 9c. In that
figure, we use 64 KB timestamp memories and vary the timestamp
approximation method and the timestamp memory associativity.

0

20

40

60

80

100

N
or

m
al

iz
ed

L
og

Si
ze

(%
)

TR with Ideal TSM

RTR with Ideal TSM

Apache JBB OLTP Zeus AVG 0

20

40

60

80

100

N
or

m
al

iz
ed

L
og

Si
ze

(%
)

Perfect TSM

Set/LRU Approximation

Apache JBB OLTP Zeus AVG

Figure 11: Effectiveness of RTR and Set/LRU.

The figure reveals three insights: (1) Set/LRU dramatically reduces
the log size, because the dependencies are much more likely
reducible by both TR or RTR; (2) The associativity of the D-TSMs
helps Set/LRU, because higher associativity enables better
approximations; (3) The RTR algorithm works better if it is
combined with Set/LRU, because Set/LRU enables more flexibility
for RTR to create stricter dependencies.

10.2.3 Runtime and Bandwidth Overheads
Like FDR, due to the hardware assistance, RTR/CMP has negligible
runtime overhead and modest interconnect overhead. Figure 12
shows the runtime performance overhead is less than 2%; the
interconnect overhead is about 10%.

11. Related Work
One of the primary applications of memory race recording is
debugging multithreaded software. In the past, software
debuggers/recorders [23, 7, 27, 28] for parallel programs have
been researched extensively. More recently, hardware-assisted
debuggers/recorders [3, 19, 25, 33, 36, 35, 26, 20, 24] have
gathered more attention. Among them, FDR [33] and BugNet [20]
(using FDR’s implementation for race recording) aim to provide
efficient and low-cost solutions to multithreaded execution
recording. Thus, they can benefit directly from our better and
cheaper memory race recording. ReEnact [25] and CORD [24]
aim to provide hardware-assisted online data race detection. We
believe they can benefit indirectly from our memory race recording
and the proposal of decoupled timestamp memory.

ReVirt [8] and ExtraVirt [15] are two emerging applications, in
which our new memory race recorder can facilitate intrusion
analysis and fault tolerance. We note that both ReVirt and
ExtraVirt are built on virtual machine techniques. We believe
virtual machine techniques provide a good platform, on which race
recording and deterministic replay can be implemented and used.

The RTR algorithm in this paper is related to both partial order
recording and total order recording algorithms. Instant

Replay [13] proposed partial order recording of parallel
executions by logging the orders of parallel events, not the data
associated with such events. Netzer [21] proposed and proved the
correctness of transitive reduction on partial order recordings and
dramatically reduced the log size. Both papers focused on
recording only the conflicts. We observe that one does not have to
record only the conflicts. As a result, our RTR algorithm further
reduces the log size. RecPlay [28] is a race detector based on
recording and replaying thread synchronization. RecPlay uses total
order recording, which uses Lamport Scalar Clocks [12] to record
a total order of events. The RTR algorithm can provide a unified
view of the partial order recording and the total order recording
approaches. In fact, RecPlay’s algorithm is a special case of RTR,
who creates stricter and vectorized dependencies to an extreme
degree so that a partial order relation is reduced to a total order. It
is interesting to note that partial order replay does not necessarily
degrade replay performance, while the total order replay of every
memory accesses is likely slow, because it allows only sequential
(or lockstep-parallel) replay.

0

50

100

N
o

rm
a

li
ze

d
R

u
n

ti
m

e
(%

)

Without recorder

With recorder

Apache JBB OLTP Zeus

Figure 12: Runtime and interconnect overhead of RTR/CMP.

0

50

100

N
or

m
al

iz
ed

B
an

d
w

id
th

(%
)

Apache JBB OLTP Zeus

12. Conclusions and Future Work
To combat nondeterminism caused by memory races in
multithreaded programs, we have proposed a new recording
algorithm that significantly improves memory race recording in
four aspects: the log size, the hardware cost, the complexity and
the applicability. The Regulated Transitive Reduction (RTR)
regulates how memory races are replayed to reduce the log size.
RTR’s key novelty is in creating stricter and vectorizable
dependencies in the dependence log. The Set/LRU timestamp
approximation method computes more accurate timestamps for
uncached blocks and enables a significant reduction in both the log
size and the hardware cost. Moreover, we propose decoupled
timestamp memory (D-TSM) to reduce the hardware complexity
of the recorder. Finally, we extend race recording to handle TSO
(x86-like), as well as SC to broaden its applicability. We are
optimistic that our improved race recorder can benefit many
applications of deterministic replay and may encourage adoptions
of hardware race recorders.

Future work includes (1) supporting Simultaneous Multithreading
(SMT), snooping coherence protocols, and more relaxed memory
consistency models, (2) evaluating RTR’s impact on replay
performance, (3) exploring new recording methods with more
compact representations of dependencies or with the assumption
of out-of-order replay and (4) applying race recording to more
applications in real-life scenarios.
11

13. Acknowledgements
We would like to thank Remzi Arpaci-Dusseau, Mikko Lipasti,
Barton Miller, and David Wood for comments that helped improve
this paper and Xu’s dissertation. We would like to thank David
Bacon, Joel Emer, Babak Falsafi, Phillip Gibbons, Kevin Lepak,
Michael Kozuch, Todd Mowry, Chris Newburn, Lacky Shah and
Radu Teodorescu for comments and discussions. We are grateful to
Mike Marty, Kevin Moore, Dan Gibson and Luke Yen for
proofreading the paper and other fellow architecture students at
UW for continuous support. We thank all anonymous reviewers of
ASPLOS’06 for constructive and highly professional reviews.

This work is supported in part by the National Science Foundation
(NSF), with grants CCF-0085949, CCR-0093275, CCR-0105721,
EIA/CNS-0103670, CCR-0105721, EIA/CNS-0205286, CNS-
0225610, CCR-0243657, CCR-0324878, CCR-0326577 and an
award from University of California MICRO program, the Okawa
Research Award, as well as donations from IBM, Intel, Microsoft,
and Sun Microsystems. This work has also been supported in part
by the Defense Advanced Research Projects Agency (DARPA)
under contract No. NBCHC020056. Hill has a significant financial
interest in Sun Microsystems. The views expressed herein are not
necessarily those of DARPA, IBM, Intel, Microsoft, NSF, or Sun
Microsystems.

References
[1] A. R. Alameldeen, et al. Simulating a $2M Commercial Server on a

$2K PC. IEEE Computer, 36(2):50–57, Feb. 2003.
[2] Arvind and J.-W. Maessen. Memory Model = Instruction Reordering

+ Store Atomicity. In Proceedings of the 33nd Annual International
Symposium on Computer Architecture, June 2006.

[3] D. F. Bacon and S. C. Goldstein. Hardware-Assisted Replay of
Multiprocessor Programs. Proceedings of the ACM/ONR Workshop
on Parallel and Distributed Debugging, published in ACM SIGPLAN
Notices, pages 194–206, 1991.

[4] P. Barford and M. Crovella. Generating Representative Web
Workloads for Network and Server Performance Evaluation. In
Proceedings of the 1998 Sigmetrics Conference on Measurement and
Modeling of Computer Systems, pages 151–160, June 1998.

[5] L. A. Barroso, et al. Piranha: A Scalable Architecture Based on
Single-Chip Multiprocessing. In Proceedings of the 27th Annual
International Symposium on Computer Architecture, June 2000.

[6] H. W. Cain and M. H. Lipasti. Memory Ordering: A Value-Based
Approach. In Proceedings of the 31st Annual International
Symposium on Computer Architecture, June 2004.

[7] J.-D. Choi and H. Srinivasan. Deterministic Replay of Java
Multithread Applications. In Proceedings of the SIGMETRICS
Symposium on Parallel and Distributed Tools (SPDT-98), Aug. 1998.

[8] G. W. Dunlap, et al. ReVirt: Enabling Intrusion Analysis through
Virtual-Machine Logging and Replay. In Proceedings of the 2002
Symposium on Operating Systems Design and Implementation, pages
211–224, Dec. 2002.

[9] K. Gharachorloo, et al. Two Techniques to Enhance the Performance
of Memory Consistency Models. In Proceedings of the International
Conference on Parallel Processing, volume I, p355–364, Aug. 1991.

[10] C. Gniady, et al. Is SC + ILP = RC? In Proceedings of the 26th
International Symposium on Computer Architecture, May 1999.

[11] P. Kongetira, et al. Niagara: A 32-Way Multithreaded Sparc
Processor. IEEE Micro, 25(2):21–29, Mar 2005.

[12] L. Lamport. Time, Clocks and the Ordering of Events in a Distributed
System. Communications of the ACM, 21(7):558–565, July 1978.

[13] T. J. Leblanc and J. M. Mellor-Crummey. Debugging Parallel
Programs with Instant Replay. IEEE Transactions on Computers, C-
36(4):471–482, Apr. 1987.

[14] K. Lepak. Personal Communication, Mar. 2006.
[15] D. Lucchetti, et al. ExtraVirt: Detecting and recovering from transient

processor faults. In 2005 Symposium on Operating System Principles
work-in-progress session, Oct. 2005.

[16] P. S. Magnusson et al. Simics: A Full System Simulation Platform.
IEEE Computer, 35(2):50–58, Feb. 2002.

[17] M. Martin, et al. Multifacet’s General Execution-driven
Multiprocessor Simulator (GEMS) Toolset. Computer Architecture
News, pages 92–99, Sept. 2005.

[18] M. R. Marty, et al. Improving Multiple-CMP Systems Using Token
Coherence. In Proceedings of the Eleventh IEEE Symposium on High-
Performance Computer Architecture, Feb. 2005.

[19] S. L. Min and J.-D. Choi. An Efficient Cache-based Access Anomaly
Detection Scheme. In Proceedings of the Fourth International
Conference on Architectural Support for Programming Languages
and Operating Systems, pages 235–244, Apr. 1991.

[20] S. Narayanasamy, et al. BugNet: Continuously Recording Program
Execution for Deterministic Replay Debugging. In Proceedings of the
32nd International Symposium on Computer Architecture, June 2005.

[21] R. H. B. Netzer. Optimal Tracing and Replay for Debugging Shared-
Memory Parallel Programs. In Proceedings of the Workshop on
Parallel and Distributed Debugging (PADD), p1–11, 1993.

[22] C. Newburn. Personal Communication, Oct. 2003.
[23] C. M. Pancake and R. H. B. Netzer. A bibliography of parallel

debuggers, 1993 edition. In Proceedings of the ACM/ONR Workshop
on Parallel and Distributed Debugging (PADD), p169–186, 1993.

[24] M. Prvulovic. CORD: Cost-effective (and nearly overhead-free)
Order Recording and Data race detection. In Proceedings of the 12th
Symposium on High-Performance Computer Architecture, Feb. 2006.

[25] M. Prvulovic and J. Torrellas. ReEnact: Using Thread-Level
Speculation Mechanisms to Debug Data Races in Multithreaded
Codes. In Proceedings of the 30th Annual International Symposium
on Computer Architecture, pages 110–121, June 2003.

[26] F. Qin, S. Lu, and Y. Zhou. SafeMem: Exploiting ECC-Memory for
Detecting Memory Leaks and Memory Corruption During Production
Runs. In Proceedings of the Eleventh IEEE Symposium on High-
Performance Computer Architecture, Feb. 2005.

[27] B. Richards and J. R. Larus. Protocol-based Data-race Detection. In
SIGMETRICS symposium on Parallel and Distributed Tools, 1998.

[28] M. Ronsse and K. De Bosschere. Non-intrusive On-the-fly Data Race
Detection using Execution Replay. In AADEBUG, Nov. 2000.

[29] M. Ronsse, et al. Efficient coding of execution-traces of parallel
programs. In Proceedings of the ProRISC & IEEE-Benelux workshop
on Circuits, Systems and Signal Processing, p251 – 258, Mar. 1995.

[30] M. Rosenblum. Virtual is Better Than Real.
http://www.vmware.com/vmworld/2005/keynote_rosenblum.pdf.

[31] D. L. Weaver and T. Germond, editors. SPARC Architecture Manual
(Version 9). PTR Prentice Hall, 1994.

[32] M. Xu. Race Recording for Multithreaded Deterministic Replay
Using Multiprocessor Hardware. PhD thesis,
http://www.cs.wisc.edu/multifacet/theses/min_xu_phd.pdf,
University of Wisconsin-Madison, 2006.

[33] M. Xu, et al. A “Flight Data Recorder” for Enabling Full-system
Multiprocessor Deterministic Replay. In Proceedings of the 30th
Annual International Symposium on Computer Architecture, 2003.

[34] K. C. Yeager. The MIPS R10000 Superscalar Microprocessor. IEEE
Micro, 16(2):28–40, Apr. 1996.

[35] P. Zhou, et al. AccMon: Automatically Detecting Memory-related
Bugs via Program Counter-based Invariants. In Proceedings of the
37th Annual International Symposium on Microarchitecture, 2004.

[36] P. Zhou, et al. iWatcher: Efficient Architectural Support for Software
Debugging. In Proceedings of the 31st Annual International
Symposium on Computer Architecture, page 224, June 2004.

[37] J. Ziv and A. Lempel. A Universal Algorithm for Sequential Data
Compression. IEEE Transactions on Information Theory, 23(3):337–
343, May 1977.
12

	Abstract
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. Introduction
	Regulated Transitive Reduction (RTR).
	Set/lru Timestamp Approximation.
	Decoupled Timestamp Memory
	Support TSO Consistency Model

	2. Background: Hardware Race Recorders
	Conflicts and Memory Races
	Figure 1: In (a), a multithreaded execution is shown. In (b), FDR’s hardware race recorder detects the race. The notations rd(x) and wr(x) denote read and write to memory location x.

	Race Recorders
	FDR

	3. Reducing Log Size Using RTR
	Figure 2: Four steps in reducing the dependence log: log-them-all; TR; stricter dependencies; vectorizing.
	3.1. Netzer’s Transitive Reduction (TR)
	3.2. Regulated Transitive Reduction (RTR)
	3.2.1 Log Size Reduction
	Stricter Dependencies
	Vectorized Dependencies
	Figure 3: An overly strict dependence causes a deadlock.

	3.2.2 Replay Correctness and Performance
	Correctness
	Replay Performance

	3.2.3 The RTR Algorithm
	Table 1: RTR Algorithm on Ideal Hardware.

	4. Reducing Hardware Cost Using Set/lru
	Figure 4: In contrast to FDR, the Set/lru approximation method likely creates reducible dependencies.

	5. Reducing Complexity Using D-TSM
	Figure 5: A decoupled timestamp memory (D-TSM) and its data paths (shaded) in a 2-way CMP.

	6. Broadening Applicability: Supporting TSO
	6.1. TSO and its Impact on Race Recording
	Figure 6: Example TSO executions that are not SC. (a) The store instructions are delayed by the write buffer. (b) the load instr...

	6.2. An Order-Value-Hybrid Recorder
	Figure 7: TR and TSO executions. Applying TR to TSO executions directly can cause incorrect replay. The dependence i:wr(C)Æj:wr(...

	6.3. TR and the Hybrid Recording
	6.4. RTR and the Hybrid Recording
	Figure 8: A narrower sliding window for RTR.

	6.5. Insufficiency for More Relaxed Models

	7. Other Timestamp Memory Optimizations
	7.1. Two (Read and Write) vs. One Timestamp
	7.2. Partial Timestamps

	8. Example Recorder: RTR/cmp
	8.1. The Baseline CMP System
	8.2. Recorder Implementation

	9. Evaluation Methods
	Table 2: Simulation Parameters
	Table 3: Commercial Workloads
	Online Transaction Processing (OLTP) models database activities of a wholesale supplier, with many concurrent users performing t...
	SPECjbb is a server-side java benchmark that models a 3-tier system, focusing on the middle-ware server business logic. We use S...
	Zeus is another static web serving workload driven by SURGE. Zeus uses an event-driving server model. Each processor of the syst...

	10. RTR/cmp Results
	Figure 9: Exploring the design space of the timestamp memory of RTR/cmp.
	10.1. Optimizing RTR/cmp
	Table 4: RTR/cmp vs. FDR - Hardware Cost

	10.2. Improvements of RTR/cmp
	10.2.1 Hardware Cost
	Figure 10: RTR/cmp-Log Size.

	10.2.2 Log Size
	TR vs. RTR
	Set/lru
	Figure 11: Effectiveness of RTR and Set/lru.

	10.2.3 Runtime and Bandwidth Overheads

	11. Related Work
	Figure 12: Runtime and interconnect overhead of RTR/cmp.

	12. Conclusions and Future Work
	13. Acknowledgements
	References

	A Regulated Transitive Reduction (RTR) for Longer Memory Race Recording
	Min Xu†
	Rastislav Bodík
	Mark D. Hill

