
How to Open a File and Not Get Hacked

James A. Kupsch Barton P. Miller

Computer Sciences Department

University of Wisconsin

Madison, WI 53706-1685 USA

{kupsch,bart}@cs.wisc.edu

Abstract

Careless attention to opening files, often caused by prob-

lems with path traversal or shared directories, can expose

applications to attacks on the file names that they use. In

this paper we present criteria to determine if a path is safe

from attack and how previous algorithms are not sufficient

to protect against such attacks. We then describe an algo-

rithm to safely open a file when in the presence of an attack

(and how to detect the presence of such an attack), and pro-

vide a new library of file open routines that embodies our

algorithm. These routines can be used as one-for-one sub-

stitutes for conventional POSIX open and fopen calls.

1. Introduction

Common programming idioms can allow adversaries to

violate security constraints. Some of these programming

idioms that allow exploits to occur involve opening, creat-

ing and performing other operations on files. In this paper

we focus on opening and performing file operations in such

way that an adversary will not be able to subvert security.

In particular we are assuming the adversary has local ac-

cess to the machine running the program, but not as a user

the program must trust, such as the root account. The ac-

cess to the untrusted account may be achieved by numerous

means, including having a legitimate account, breaking into

the account, or by exploiting a service with a network inter-

face. We assume the adversary has the capability to create,

remove and otherwise manipulate files and directories any-

where the permissions of an untrusted account allows.

Specific types of attacks that can occur against opening

include (1) race conditions when the idiom uses a file name

multiple times such as between checking for the existence

of a file and creating it [4, pages 528–530], (2) race condi-

tion between opening or creating the file and checking the

ownership and permissions of the file to prevent confiden-

tial data from being disclosed as in Globus’s gt4 [5], (3) in-

advertently following symbolic links allowing the creation

or modification of files in unexpected locations as in IBM’s

DB2 [3] and Xsession [2], and (4) weak file permissions

resulting from incorrect use of the API.

This paper is organized into two main parts. The first

part (Section 2) shows how to detect if a file name is safe

from adversarial attacks; we encapsulate this detection in an

algorithm that checks if a file name is a trusted path. The

second part (Section 3) describes functions that are safe re-

placements for the standard library functions for opening

and creating files. These functions also provide a mech-

anism for an application to detect if file names used with

these functions are being manipulated to refer to different

file system objects as might occur during an active attack

on the file name.

The use of these new routines alone does not guarantee

correct security behavior as it is still possible for a design

flaw or coding errors in the use of these functions to cause

a vulnerability in the program. However the use of our new

routines should significantly reduce the risk of many com-

mon security exploits.

2. Trusted Paths

A path is a string used to refer to files to perform op-

erations such as opening a file. An example of a path is

/home/user/report.pdf. Each time a path is presented

to the operating system, it traverses the file system direc-

tory by directory to find the file system object referred to

by the path. If an attacker can manipulate this traversal by

making changes to directory entries, the same path can refer

to different file system objects and can be used to exploit a

program by making it think that it is acting on one file when

it is really acting on a different one.

This section describes how to assess if a path traversal or

contents of a file can be manipulated by a malicious user in a

POSIX [7] environment as found in operating systems such

as UNIX and Linux. File system objects have one owning

user and group id, plus three sets of capabilities (the set cho-

sen is based on the file’s owning user id, group id, and those

of the process). Of the capabilities in each set, the paper is

This research funded in part by National Science Foundation under subcontract with San Diego Supercomputer Center

and NATO CLG-983049.

c©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted

component of this work in other works must be obtained from the IEEE.



concerned with the write flag as it controls modifications to

the object.

To meet security requirements, programs often need as-

surances that the contents of a file could have only been

modified by processes that were run with a user id and group

ids from a set that the program trusts not to be malicious.

The set of ids that the program trusts not to be malicious

will be referred to as trusted ids. A process that has at least

one trusted id for its user or groups will be referred to as

a trusted process. The root user id is trusted, since file ac-

cess for a process running with the root user id is always

granted. Other trusted ids are determined by the applica-

tions requirements, and may also vary from file to file. For

instance, an application may use a trusted id list of root for

its configuration file, and root and app-user for its data files.

A trusted path is one where the permissions are such that

only a trusted set of user and group ids can manipulate the

traversal to the file system object or contents of the object

referred to by the path. Only trusted processes can modify

the meaning of a trusted path, and they should not modify

the path in a way that violates the security requirements of

the program. These properties allow a trusted path to be

used in ways that would create security problems if the path

were not trusted, such as assuming the contents of a file

do not change, or multiple uses of a path always access the

same file. A function to determine if a path is trusted is not a

standard operating system or library service, and published

algorithms are deficient in some respect.

The rest of this section presents the types of exploits pos-

sible if a path is not trusted, how to check if a path is trusted,

and a list of properties that an algorithm should have to de-

termine the trust of a path. We then describe two previous

algorithms for determining if a path is trusted, and evaluate

how well they meet the properties given. Finally we present

a new algorithm that satisfies all the desired properties.

2.1. Possible Attacks

These are different types of exploits that an untrusted

process could accomplish if a path is untrusted and would

be prevented if the path is trusted.

Modify contents of a file - if the permissions on the file

itself are untrusted

Denial of service - remove a directory entry in an un-

trusted directory along the path traversal to make the file

system object inaccessible through this path.

Replace directory entry - remove or rename a directory

entry in an untrusted directory along the path traversal, and

insert a new directory or file in its place. This allows an

attack to control the permissions and contents of file system

objects even though the attacker might not be able to modify

the original object referred to by the path.

Symbolic link manipulation - create a symbolic link in

an untrusted directory along the path traversal to make the

path refer to any arbitrary file system object to be opened or

possibly created.

Hard link attack - is an attack where it appears that a

trusted process created a file with a particular path, when

it did not. The attack is possible in any directory in which

an untrusted process can create a file, such as a sticky bit

directory like /tmp. The attack is based on the fact that

any process can create a hard link to any file regardless of

the file’s ownership and permissions. This link can be cre-

ated anywhere the untrusted process could create an ordi-

nary file. The newly created hard link is indistinguishable

from the original file and any changes made to one are seen

by the other including ownership, permissions and contents.

If an application uses /tmp directly for storing files and in-

correctly assumes any file with the correct ownership and

permissions are trusted files, then an attacker can create ad-

ditional files with these properties at a given path by using

a hard link to an existing file.

For this reason, any file system object that allows a hard

link (everything except directories) should never be trusted

in a sticky bit directory.

Race conditions - if the program uses the same path

multiple times in system calls, combinations of the previ-

ously described attacks can be used to make the program

access one file system object in one call and different one in

a subsequent call. If some property of the file is checked in

the first call and then conditionally used in subsequent calls,

this is known as a time of check, time of use (TOCTOU) at-

tack.

2.2. Checking the trust of a path

This section explains how to determine if a path is

trusted. First, we show how to assess if a directory entry

is trusted. Then, we show how to use a directory entry be-

ing trusted to assess if a whole path is trusted. Finally, we

discuss how to tell if a file system object is trusted, which

means that there is a path to the file system object that is a

trusted path. There are three possible outcomes for trust:

trusted, sticky dir trusted and untrusted. Trusted means

that an untrusted process cannot modify the contents of the

file system object or to which file system object the path

refers. Untrusted means that an untrusted process can do

those things. Finally, sticky dir trusted meets some of the

properties of a trusted directory but not all, as explained be-

low.

The trust of a directory entry can be determined recur-

sively using the trust of the parent directory and by the prop-

erties of the file system object to which the directory entry

points. The relevant properties consists of the object’s type,

owning user and group ids, permissions and sticky bit (rel-

evant for directories). If the sticky bit is set on a directory,

2



only the directory’s owner, or the directory entry’s owner

can remove entries in such a directory.

The trust of a directory entry is determined by the first

matching condition: (1) if the parent directory is not trusted,

then the directory entry is untrusted as an attacker can ma-

nipulate the untrusted ancestor, (2) if the parent directory

is sticky dir trusted and the directory entry is not a direc-

tory, then the directory entry is untrusted (due to hard link

attacks), (3) if the type is a directory, the owner is trusted,

and the sticky bit is set, then the directory entry is sticky dir

trusted, (4) the directory is trusted, so if the permissions on

the directory entry prevent untrusted processes from mod-

ifying its contents, the directory entry is trusted, otherwise

(5) the directory entry is untrusted.

A trusted path is a path where all the components of

the path and components of symbolic link referents (a path

name pointer to another location in the file system) are com-

prised solely of trusted directory entries.

The directory entries of the path are checked left to right.

If a directory entry is found that is untrusted, processing

stops and untrusted is returned. If a symbolic link is found

then the referent of it must be assessed recursively before

the remainder of the current path is checked.

If the path is relative, then it is also a requirement that all

the directories from the process’s current working directory

to the root directory are also trusted. This requirement is

necessary because the process or its parent used a path or

several in succession to set the current working directory.

If the canonical path (the direct path from the root direc-

tory to the given path) is not trusted, then no path to the

current working directory can be trusted, and rerunning the

executable could result in a different current working direc-

tory, therefore the current working directory should not be

trusted. This does not mean that all the paths used to get to

the current working directory are trusted, but it is assumed

that the path(s) used to set the current working directory are

trusted if you wish to trust relative paths.

2.3. Properties

An algorithm to check if a path is trusted should have the

following properties: (1) supports multiple trusted user and

groups ids, (2) works on all file system object types, includ-

ing files and directories, (3) only fails to produce a result if

the operating system would also fail when presented with

the path, so constructing paths and calls such as getcwd

cannot be used because they can fail in deeply nested di-

rectories, (4) properly checks symbolic link referents and

detects symbolic link loops, (5) works properly with sticky

bit directories, (6) is efficient in the number of system calls,

directory scans, and inode accesses (operations on file de-

scriptors should be preferred over those using a path), (7) is

concurrent execution safe, and (8) if the algorithm returns

the path is trusted, an untrusted process cannot (a) modify

the object referred to by the path (multiple uses of the path

refer to the same file system object), (b) modify the object’s

contents, and (c) an untrusted process cannot create, rename

or delete a directory entry owned by a trusted user and group

id.

2.4. Prior Work

This section describes two prior algorithms for checking

if a directory or a path is trusted. It will describe the algo-

rithms, the properties they satisfy, and the complexity of the

algorithms.

2.4.1. safe dir algorithm. In the book Building Secure

Software [8, pages 222–225], John Viega and GaryMcGraw

present an algorithm, safe dir, to check if a directory is

trusted. This algorithm only checks directories, and only

allows a single trusted user id.

The algorithm works by changing the process’s current

working directory to the path argument, and checking if the

directory is trusted (the directory is owned by the root or

supplied trusted user id, and the group and other are not

allowed to write to the directory). Next, the algorithm per-

forms the same test on each directory from the supplied di-

rectory to the root directory, “/”. It works its way up the

directory tree by changing directory to the parent directory,

“..”, and repeats this loop until the root directory is found

by checking if getcwd returns the root directory, “/”.

This algorithm would be correct if the path was a canon-

ical path. Unfortunately, safe dir only checks if the last

component of the path is a symbolic link.

There is a TOCTOU race condition in this function, not

in the algorithm itself but in the interface provided. The

design of the interface and the authors’ stated use for this

algorithm is to call this function with a path to check if it

is trusted, and if so, use the path a second time to change

directories to the checked path. The race condition occurs

because the algorithm does not check the path, but instead

checks the trust of all the directories of the canonical path.

A trusted canonical path does not imply that all paths to the

same directory are trusted, as the path given could traverse

untrusted directories or symbolic links. Since the argument

is not verified to be a canonical path, the two uses of the path

can result in different directories (the first being a directory

with a trusted canonical path, and the second an untrusted

path.

Given these problems, this algorithm is only safe to use

if the path given contains no symbolic links and no parent

directory components. There is one useful case where this

is true and that is in checking the current working directory,

“.”, which is guaranteed not to be a symbolic link.

The limitations of this algorithm include (1) not check-

3



ing the path, but the canonical path to the directory, (2) only

supporting a single trusted user id and root, (3) not han-

dling the unique properties of sticky bit directories, (4) fail-

ing if the canonical path gets too long, and (5) not being

concurrent-execution safe as it changes the current working

directory,

If the path is not a canonical path, this algorithm satisfies

none of the desired properties of Section 2.3.

2.4.2. trustfile algorithm.Matt Bishop [1, pages 300–

307] presented an algorithm, trustfile, that checks if a

path is trusted.

This algorithm works on paths to arbitrary file system

objects, and takes a list of trusted and untrusted user ids.

The trust of the group id is computed from the supplied user

id for each directory encountered in the path. While the

approach of computing the trusted group ids is correct, it is

both inefficient, and it increases the operational overhead.

Adding a new user to the system may require updating the

applications list of trusted user ids.

Bishop’s algorithm works by first textually manipulat-

ing the path into a path without components referring to

the current directory, “.” (just removed), and the par-

ent directory, “..” (remove it and the preceding directory

component). This transformation appears correct but the

transformation can result in a path that is not equivalent

in the case of a symbolic link preceding a parent directory

such as /tmp/symlink/../file. The algorithmwould test

/tmp/file, but the actual file could be anywhere. If the

path contains a symbolic link the operating system and al-

gorithm will access different file system objects.

The algorithm correctly processes the components in the

path one-by-one to check if it trusted using the criteria of

Section 2.2, except non-directory entries in a sticky bit di-

rectory are trusted.

If a symbolic link type is found while processing the

path, a new path is formed based on the referent and

trustfile is recursively called. There is no check to limit

the amount of recursion in the event of a symbolic link loop

and the algorithm goes into an infinite loop. In the case of a

relative path referent, the new path is formed by concatena-

tion of the path to the symbolic link, “/../”, and the refer-

ent (exactly the troublesome case described previously). An

absolute path referent is used as-is for the new path. This

technique could result in a path that exceeds the maximum

length allowed for a path.

The limitations of this algorithm include (1) creating

and checking the canonical path instead of the actual path,

which can test the wrong file system object if given a dy-

namic path, or can miss untrusted directories given a static

path, (2) trusting paths that resolve to a non-directory file

system object in a sticky bit directory, (3) not detecting sym-

bolic link loops, and (4) possibly creating a path that is too

large from an initial path of appropriate size.

If the path is not canonical, then this algorithm only sat-

isfies only properties 1, 2 and 7 of Section 2.3, i.e. supports

multiple trusted user ids, works on all types of file system

objects, and is concurrent safe.

2.5. safe is path trusted r algorithm

Figure 1 presents our algorithm for checking if a path is

trusted. Figure 2 shows the internal state of the algorithm

while processing a path. It satisfies all the properties of Sec-

tion 2.3 for all paths.

The algorithm works by using the techniques of Sec-

tion 2.2. If the path is a relative path, then if first

checks the trust of the current working directory. Next

it processes the components of the path one-by-one un-

til they are all consumed. A path is formed using the

functions RemoveNextComponent and PathRelative. Re-

moveNextComponent removes and returns the next com-

ponent of the path to process (if the path was absolute, it

returns “/” for the initial call). Similarly PathRelativeTo re-

turns the concatenation of the two paths (if the new path is

“/”, “/” is returned).

Each directory entry is tested for trust using the defini-

tion of directory entry trust in Section 2.2. If an untrusted

directory entry is encountered, untrusted is immediately re-

turned. Otherwise the trust value when the entire path is

consumed is returned.

If a symbolic link is encountered the current path is

pushed on a stack and the referent is then processed.

Loops are detected by the depth of the stack exceeding

SYMLOOP MAX.

This algorithm satisfies all the properties of Section 2.3

except 3, i.e. failure due to path length limitations. This is

caused by the algorithm creating paths that may become to

large due to the current working directory being too deep, or

the contents of symbolic links causing the path to become

too large. Without changing directories, it is not possible to

satisfy property 3, but if the directory is changed then the

concurrency property (8) cannot be satisfied. The next we

show how to perform these mutually exclusive properties so

all the properties are met.

safe is path trusted r can detect when the path be-

comes too long and can call safe is path trusted fork.

This function sets up a communication channel to a forked

process that can safely change the working directory with

without a concurrency problem.

This new algorithm, safe is path trusted, is similar

to the safe is path trusted r, except it changes directo-

ries during processing instead of concatenating a path name

together, so the name returned by RemoveNextComponent

is always in the current working directory (or is the root

directory).

4



Figure 1. safe is path trusted r algo-
rithm.

function safe is path trusted r(path, u, g)

— u is the trusted user list

— g is the trusted group list

if path is relative then

curPath← “.”
curStat← lstat(curPath)

curTrust← TrustEntry(TRUSTED, curStat, u, g)
repeat

dirTrust← TrustEntry(TRUSTED, curStat, u, g)
if dirTrust is UNTRUSTED then

return UNTRUSTED

append(curPath, “/..”)

if length(curPath) > PATH MAX then

return safe path is trusted fork(path, u, g)

prevStat← curStat
curStat← lstat(curPath)

until curStat = prevStat — at root directory

else

curTrust← TRUSTED

p← path
s← empty stack
curPath← “”
while p is not empty

nextName← RemoveNextComponent(p)
if p is empty then

if not stack is empty(s) then

p← pop(s)
if nextName = “.” or nextName is empty then

restart loop

prevPath← curPath
curPath← PathRelativeTo(prevPath, nextName)
if curPath > PATH MAX then

return safe path is trusted fork(path, u, g)

curStat← lstat(curPath)

curTrust← TrustEntry(curTrust, curStat, u, g)
if curTrust is UNTRUSTED then

return UNTRUSTED

if curStat type is symbolic link then

if num elements(s) > SYMLOOP MAX then

return ELOOP error

if p is not empty then

push(s, p)

p← readlink(curPath)

curPath← prevPath
else if p is not empty then

if curStat type is not a directory then

return ENOTDIR error

return curTrust

Combined these algorithms satisfy all the requirements

and only have the overhead of a fork when needed.

3. Safe Open

Opening and creating files in a POSIX environment is a

common cause of security problems, caused by interfaces

that are easy to use incorrectly and, in some cases, have

semantics that are difficult to use securely for files that are

Figure 2. File system traversal and algorithm
operation while processing /link1/file in

the directory structure shown. The numbers

show the order of the traversal.

/ ÀÄ

link1 Á
→ dir1/link2/..

dir1 Â dir2 ÅÇ

link2 Ã
→ /dir2/dir3

dir3 Æ file È

(a) Example file system structure showing directory entries vis-

ited while verifying the trust of /link1/file. /link1 and

/dir1/link2 are symbolic links with referents of dir/link2/..

and /dir2/dir3 respectively.

/ À link1 Á file È

dir1 Â link2 Ã .. Ç

/ Ä dir2 Å dir3 Æ

/dir1
curPath

p

top of

stack

(b) The state of the variables of the algorithm in Figure 1 immedi-

ately after processing link2. The grayed names 1–4 on the stack

have already been been removed from the path, and show what each

path was originally.

not a trusted path. Security problems arise because of the

way these functions handle symbolic links and the way that

permissions of newly created files are determined.

We first describe common types of problems when using

the standard system calls to open and create files: open,

creat, and fopen. We then present a set of replacement

functions for these standard system call that do not have

the problems. We also describe a facility provided by these

functions that notifies an application when the paths to files

they are trying to open are being manipulated by a potential

attacker.

Files are created in a POSIX environment using the open

system call. This call takes a file name, a set of flags that

controls the semantics, and an optional permissions value

used when a file is created. creat exists for historical rea-

sons and can be replaced with a call to open, and will not

be discussed further. The standard C [6] function fopen is

discussed separately as fopen cannot directly be replaced

by open.

5



3.1. Problems with open and fopen

Some applications need to use an untrusted path to open

existing files or to create files. The application may have to

open or create files in the /tmp directory, or needs to process

files in an untrusted user’s home directory. Without precau-

tions, an untrusted process can manipulate components of

the path to get the application to create or open a file at an

arbitrary location as described in Section 2.1.

Symbolic links in the directory portion of the file name

can be avoided by changing the current working directory

to the directory portion of the file name, and verifying that

the current working directory satisfies the security require-

ments. Detecting a symbolic link in the last component of

the file name is more difficult.

The result of the lstat function is commonly used to de-

termine if the application can safely proceed with the open

by verifying properties of the file such as the existence, type

(including regular file or symbolic link), owner and permis-

sions. This is not safe because there is a TOCTOU race

condition between the lstat and the open.

A common approach to avoid this race condition is to

open the file and use the fstat system call on the file de-

scriptor to assure that a file with expected properties was

opened. Unfortunately, using fstat cannot detect if the last

component of the file name was a symbolic link. Another

problem is that the actions of the open call alone can cause

security problems before the properties can be checked. The

problem is caused by insecure use of two of flags to open:

O CREAT (create the file if it does not exist), and O TRUNC

(truncate the file to zero length). We combine these two

techniques to check if the last component is a symbolic link

while avoiding the race condition in the next section

A call of open with the O CREAT flag and without

O EXCL, causes a file to be atomically created if the file does

not exist or opened if the file does exist. If the file does not

exist, and the final component is a symbolic link, the file is

created at the path specified by the link. The manipulation

of the symbolic link can then easily be used as an attack

vector, if the process is running with elevated privilege, to

create files anywhere the privilege allows.

The use of O CREAT with O EXCL changes the semantics

of open to create a file if it does not exist, and to fail if

the file already exists or if the final file name component

is a symbolic link. When used together, the file is always

created in the directory that is the file name with the final

component removed. O CREAT should always be used with

O EXCL as this combination guarantees that an attacker can-

not use a symbolic link in the last component of the file

name as an attack vector.

A call of open with the O TRUNC flag truncates an exist-

ing file as part of opening the file. If the file name is an

untrusted path, an untrusted process can modify the path to

point to an arbitrary file and cause any file that the applica-

tion’s privilege allows to be truncated.

Another problem with open is that the function is a vari-

adic function; the initial file permissions is not required by

the compiler, but the function uses the value when creating

a file. When a file is created in such a case, the initial per-

missions of the file are whatever happened to be next on the

stack after the flags. This omission may result in too lenient

permissions, exposing the contents to an attacker.

fopen uses a set of characters in a mode string instead

of a set of flags. fopen internally calls open, but O CREAT

is always used without O EXCL, so fopen is vulnerable to

the symbolic link attacks described above when creating a

file. The permissions of a newly created file are implicitly

derived from the process’s umask value (all the read and

write permissions are enabled except those permissions that

are included in the process’s umask value). If different per-

missions are needed for different files, then the process’s

global umask needs to be changed. Modifying this global

value can lead to a race condition if the process has multiple

threads of control.

Viega and McGraw [8] present symbolic link attacks and

show how to detect if the final component of file name is a

symbolic link. They also show a safe replacement function,

safe open wplus, for fopen with flags of “wb+”. Their

function provides only a direct replacement for two out of

the twelve possible mode flags (“w” and “wb+”) of fopen.

This function is also susceptible to a cryogenic sleep attack

(described in the next section), and can return an anomalous

error if the file exists and is deleted during the execution of

their function.

3.2. Desired Properties

Replacement functions for open and fopen should have

the following properties to make them use both secure and

easy to use:

(1) O CREAT should never be used without O EXCL, to

prevent a file being created in an arbitrary location if the

last component is a symbolic link, (2) when an existing file

is opened, the call should by default fail if the last compo-

nent is a symbolic link to avoid opening a file in an arbitrary

location, (3) the initial file permissions should be required

and explicit whenever a function can create a file, (4) the re-

placement functions easily should be substituted for exist-

ing calls to open and fopen, and (5) replacement functions

should operate as if they were atomic, just like the original

calls.

3.3. Direct safe open replacements

We provide two direct replacement functions for open,

safe open wrapper and safe open wrapper follow.

6



Figure 3. safe open wrapper algorithm.

function safe open wrapper(fn, flags, perms)

if O CREAT is in flags then

if O EXCL is in flags then

f ← safe create fail if exists(fn, flags, perms)

else

f ← safe create keep if exists(fn, flags, perms)

else

f ← safe open no create(fn, flags)

return f

They behave the same as open except they require the initial

permissions to be present, and fail if the last component is

a symbolic link when creating a file. safe open wrapper

also fails with the same error if the last component of the

file name is a symbolic link.

Selecting between these two functions is application spe-

cific. safe open wrapper follow changes the seman-

tics the least and should be used in the general case.

safe open wrapper should be used when the directory en-

try referred to by the file name should never be a sym-

bolic link, i.e. the last component of the filename is not

a symbolic link. safe open wrapper provides the prop-

erty that the file system object referred to by the file name

/d1/.../dn/f is contained in the directory /d1/.../dn if

the open succeeds.

These functions are implemented in terms of the ad-

vanced safe open replacement functions described in Sec-

tion 3.5. safe open wrapper is implemented by call-

ing the proper advanced replacement function based on

the O CREAT and O EXCL flags as shown in Figure 3.

safe open wrapper follow is similarly written using the

follow version of the advanced replacement functions.

3.4. Path Manipulation Warning Facility

All the safe open and fopen replacement functions sup-

port an optional facility to notify the application if they de-

tect the file system object to which the file name refers has

changed during the course of its operation.

This facility allows the application to register a func-

tion callback that will be called each time a manipulation

of the path is detected. Under normal operations this should

not happen because applications should be using unique file

names and no other application should be manipulating the

path of the file name. If the event occurs often it is likely a

sign of an active attack or a misbehaving application.

3.5. Advanced safe open replacements

There are six advanced safe replacement functions for

open. Their operation depends on the whether the file ex-

ists and whether the last component is a symbolic link.

Figure 4. Safe open replacement functions.

function safe open no create(fn, flags)

if flags contains O CREAT or O EXCL then

return error EINVAL

want trunc← O TRUNC is in flags

if want trunc then

remove O TRUNC from flags

label TRY AGAIN:

f ← open(fn, flags)

entryStat← lstat(fn)

if lstat failed and open failed then

return error from lstat

if lstat failed and open succeeded then

close(f )

goto TRY AGAIN

if entryStat type is a symbolic link then

if f 6= -1 then
close(f )

return error EEXIST

if open failed with ENOENT then

goto TRY AGAIN

if open failed then

return error from open

fdStat← fstat(f )

if entryStat and fdStat refer to different files then

close(f )

goto TRY AGAIN

if want trunc and fdStat.size 6= 0
and f is not a tty and f is not a fifo then

ftruncate(f, 0)

return f

function safe create fail if exists(fn, flags, perms)

add O CREAT and O EXCL to flags

return open(fn, flags, perms)

function safe create keep if exists(fn, flags, perms)

remove O CREAT and O EXCL from flags

loop forever

f ← safe create fail if exists(fn, flags, perms)

if f 6= -1 or errno is not EEXIST then
return f

f ← safe open no create(fn, flags)

if f 6= -1 or errno is not ENOENT then
return f

function safe create replace if exists(fn, flags, perms)

loop forever

unlink(fn)

if unlink failed and errno is not ENOENT then

return -1

f ← safe create fail if exists(fn, flags, perms)

if f 6= -1 or errno is not EEXIST then
return f

They all fail if the last component of the file name is

a symbolic link and the referent of the symbolic link

does not exist. The functions safe open no create and

safe create keep if exists also fail if the last compo-

nent is a symbolic link to an existing file.

The implementation of four of the functions is presented

in Figure 4. Some error handling and the path manipulation

detection (detected on retries) in these functions has been

7



omitted to simplify the presentation.

safe open no create opens an existing file and fails if the

file does not exist. An error occurs if O CREAT is included in

the flags. O TRUNC is handled specially to prevent the wrong

file from being truncated, and to work around an undefined

behavior with O TRUNC when the file name is a device file.

safe open no create checks for a symbolic link as the

last component of the file name. A symbolic link can only

be detected by using the lstat function. If the lstat suc-

ceeds and the type of file system object is a symbolic link,

then an error indicating the symbolic link, EEXIST, is re-

turned without using the results of the open.

The race condition between the open and the lstat is

prevented by verifying that both system calls refer to the

same file system object. If the immutable properties (de-

vice, inode and type are fixed at creation) of the opened file

and the file in the file system match, then the files are the

same.

The typical idiom for checking if the lstat and open

refer to the same file is to perform the lstat first, then the

open and finally the fstat. This approach is susceptible to

what Kirch calls a cryogenic sleep attack [4]. The attacker

stops the process after the lstat, but before the open, waits

for the file to be removed, then waits until a file with the

same device and inode can be created, and finally allows

the process to resume. The process does not detect that the

file opened was not at the file name given and that the last

component was a symbolic link. To prevent this attack the

open must be performed first, as the device and inode can-

not be reused until the file descriptor is closed.

safe open no create detects if open and the lstat ac-

cessed different files and tries again until the functions ac-

cess the same file. The function eventually completes as the

attacker would have to always be able to replace file name

between the open and the lstat for this function to never

complete.

safe create fail if exists opens the file if it exists and fails

if it does not.

safe create keep if exists creates the file if it does not exist

and safely opens the file if it does exist. The function is im-

plemented by alternating between safe open no create

and safe create fail if exists until one of them suc-

ceeds or fails with an error that does not indicate the other

function should succeed.

safe create replace if exists always returns a freshly cre-

ated file. If the file exists, the file is deleted and then created.

The function is implemented by alternating between the

unlink and safe create fail if exists until the cre-

ate succeeds or an error occurs that does not indicate the

function should succeed. This function is useful when an

application needs to create a temporary file in a directory

such as /tmp and does not care about the previous contents.

safe open no create follow and safe open keep if -

exists follow are equivalent to safe open no create and

safe create keep if exists respectively except the last

component of the file name is allowed to be a symbolic

link.

3.6. fopen replacements

The replacement functions for fopen are the same as

those for open except a “f” appears before “open” and

“create” in the name, the flag parameter is replaced with

the fopen mode string and a FILE* is returned instead of a

file descriptor. The behavior of these function is similar to

their open counterpart.

These functions are implemented by converting the

mode string to an appropriate set of open flags, calling the

corresponding safe open replacement function and convert-

ing the returned file descriptor to stream using fdopen.

The functions have the all the benefits of the open re-

placements. They also require the permissions be passed

on each call instead of being determined from the global

umask, and thus is more expressive. For instance, a file can

now be opened for writing without creating the file if the

file does not exist.

4. Conclusion

The use of the functions presented will eliminate com-

mon types of attacks, and improve the security of software.

An implementation of the functions are available in source

form at http://www.cs.wisc.edu/∼kupsch/safefile.

References

[1] M. Bishop. How attackers break programs, and how to write

programs more securely. http://nob.cs.ucdavis.edu/

bishop/secprog/sans2002.pdf, 2002.
[2] Cve-2006-5215. http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2006-5215, 2006. Xsession /tmp

Symbolic Link Race Condition.
[3] Cve-2007-4270. http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2007-4270, 2007. DB2 /tmp

Symbolic Link Race Condition.
[4] M. Dowd, J. McDonald, and J. Schuh. The Art of Software Se-

curity Assessment: Identifying and Preventing Software Vul-

nerabilities. Addison-Wesley, 2007.
[5] Globus bugzilla bug 4648. http://bugzilla.org/globus/

show bug.cgi?id=4648, 2006.
[6] S. P. Harbison, III and G. L. Steele, Jr. C: A Reference Man-

ual, 5th edition. Prentice Hall, 2002.
[7] The Single UNIX Specification Version 3. The Open Group,

2004. http://www.opengroup.org/bookstore/catalog/

t041.html.
[8] J. Viega and G. McGraw. Building Secure Software. Addison-

Wesley, 2002.

8


