
How to Open a File and Not Get Hacked

James A. Kupsch Barton P. Miller

Computer Sciences Department

University of Wisconsin

Madison, WI 53706-1685 USA

{kupsch,bart}@cs.wisc.edu

Abstract

Careless attention to opening files, often caused by prob-

lems with path traversal or shared directories, can expose

applications to attacks on the file names that they use. In

this paper we present criteria to determine if a path is safe

from attack and how previous algorithms are not sufficient

to protect against such attacks. We then describe an algo-

rithm to safely open a file when in the presence of an attack

(and how to detect the presence of such an attack), and pro-

vide a new library of file open routines that embodies our

algorithm. These routines can be used as one-for-one sub-

stitutes for conventional POSIX open and fopen calls.

1. Introduction

Common programming idioms allow adversaries to vio-

late security constraints. Some of these programming id-

ioms that allow exploits to occur involve opening, creat-

ing and performing other operations on files. In this paper

we focus on opening and performing file operations in such

way that an adversary will not be able to subvert security.

In particular we are assuming the adversary has local ac-

cess to the machine running the program, but not as a user

the program must trust, such as the root account. The ac-

cess to the untrusted account may be achieved by numerous

means, including having a legitimate account, breaking into

the account, or by exploiting a service with a network inter-

face. We assume the adversary has the capability to create,

remove and otherwise manipulate files and directories any-

where the permissions of an untrusted account allows.

Specific types of attacks that can occur when precaution

are not taken include (1) race conditions when the idiom

uses a file name multiple times such as between checking

for the existence of a file and creating it [5, pages 528–530],

(2) race condition between opening or creating the file and

checking the ownership and permissions of the file to pre-

vent confidential data from being disclosed as in Globus’s

gt4 [7], (3) inadvertently following symbolic links allowing

the creation or modification of files in unexpected locations

as in IBM’s DB2 [4] and Xsession [3], and (4) weak file

permissions resulting from incorrect use of the API.

These types of problems are especially problematic

when the target application is running with elevated priv-

ileges such as root, and the file used in the attack is in a

directory that is writable by the adversary. If the target ap-

plication is running with elevated privilege, it can modify

files or disclose file contents that the adversary would not

normally be able to access and compromise the entire sys-

tem. If the target application is running as an ordinary user,

attacks are still possible on data owned by the user running

the application. The problem of accessing files in a direc-

tory that is writable can be prevented by the application de-

tecting that this situation is occurring and refusing to pro-

cess files in such locations. If the application must access

files where an adversary could modify them, the file needs

to be operated on using safe techniques.

This paper is organized into two main parts. The first

part (Section 2) shows how to detect if a file name is safe

from adversarial attacks; we encapsulate this detection in

an algorithm that checks if a file name is a trusted path.

We describe how attacks can be performed on such a path

and what are the requirements of a trusted path. We present

two prior algorithms for determining if a path is trusted and

discuss their limitations. We then present a new algorithm

that does not have those limitations.

The second part (Section 3) describes functions that are

replacements for the standard library functions for opening

and creating files. These functions should be used when an

application opens a file that is not reached by a trusted path.

These replacement functions provide a simple API similar

to the original functions, and eliminate the problems of race

conditions and symbolic links; they also make the initial

permissions when a file is created explicit by making it a

required parameter to any of the functions that can create

files. We also provide alternative functions for opening and

creating a file; these functions give a knowledgeable devel-

oper additional features such as atomically replacing a file

if it exists, and allowing an fopen-style function to open a

1

file for appending and fail if it does not already exist.

These functions also provide a mechanism for an appli-

cation to detect if file names used with these functions are

being manipulated to refer to different file system objects as

might occur during an active attack on the file name.

The use of these new routines alone does not guarantee

correct security behavior as it is still possible for a design

flaw or coding errors in the use of these functions to cause

a vulnerability in the program. However the use of our new

routines should significantly reduce the risk of many com-

mon security exploits.

2. Trusted Paths

A path is a string used to refer to files to perform op-

erations such as opening a file. An example of a path is

/home/user/report.pdf. A more technical description

of a path is a function that maps a string to a traversal of

the file system, which produces an object in the file system

such as a file or directory. In the above example, the traver-

sal would be / → home → user → report.pdf. This

traversal is done each time that a path is used in a system

call. If an attacker can manipulate this traversal by mak-

ing changes to directory entries, the same path can refer to

different file system objects and can be used to exploit a

program by making it think that it is acting on one file when

it is really acting on a different one.

This section describes how to assess if a path traversal

or contents of a file can be manipulated by a malicious user

in a POSIX [10] environment as found in operating systems

such as UNIX and Linux. In such an environment, user and

group ids are used to control access to resources. Processes

have one owner user id and multiple group ids that are used

to check access to file system objects. File system objects

have one owning user and group id, plus three sets of ca-

pabilities (the set chosen is based on the file’s owning user

id, group id, or neither matching that of the process). Of

the capabilities in each set, the paper is concerned with the

write flag as that is the flag that allows modifications to the

object (other flags allow reading and execution/access).

To meet security requirements, programs often need as-

surances that the contents of a file could have only been

modified by processes that were run with a user id and group

ids from a set that the program trusts not to be malicious.

The set of ids that the program trusts not to be malicious

will be referred to as trusted ids. A process that has at least

one trusted id for its user or groups will be referred to as

a trusted process, while a process where none of its user

or groups are trusted ids will be referred to as an untrusted

process. The set of trusted ids depends upon the security re-

quirements of the program and how the user and groups are

used in the file system. The root user id is trusted, since

file access for a process running with the root user id is

always granted. The trusted ids may also vary in an ap-

plication from file to file. For instance, if the security re-

quirement is that the configuration file of the program must

not be modifiable by the user running the program, then the

set of trusted user ids might be (root, prog-admin), and the

trusted group ids might be (root, wheel, admin). The same

program may have the requirement that data files should be

modifiable by the user and group of the process, so for these

types of files the trusted user ids might be (root, user), and

the trusted group ids might be (root, admin, user-group).

A trusted path is one where the permissions are such that

only a trusted set of user and group ids can manipulate the

traversal to the file system object or contents of the object

referred to by the path. Only trusted processes can modify

the meaning of a trusted path, and they should not modify

the path in a way that violates the security requirements of

the program. These properties allow a trusted path to be

used in ways that would create security problems if the path

were not trusted, such as assuming the contents of a file

do not change, or multiple uses of a path always access the

same file. A function to determine if a path is trusted is not a

standard operating system or library service, and published

algorithms are deficient in some respect.

The rest of this section presents definitions and details

about trusted paths, the types of exploits possible if a path is

not trusted, and a list of properties that an algorithm should

have to determine the trust of a path. We then describe two

previous algorithms for determining if a path is trusted, and

evaluate how well they meet the properties given. Finally

we present a new algorithm that meets all the desired prop-

erties.

2.1. Definitions

This section provides definitions used in the rest of the

discussion on trusted paths. We describe different types of

paths and file system objects along with their properties.

File system object - an object that is accessible within the

file system, such as a file, directory, or symbolic link. The

file system object is identified by a unique device and inode

number pair.

Path - a textual representation of a file system object. The

path consists of a series of names separated by slashes,

where all but the last directory entry are directory or sym-

bolic link objects.

A path is usually limited in length to the constant PATH MAX,

and if an attempt is made to use a longer one, the operating

system returns the error ENAMETOOLONG. It is possible to cre-

ate a series of deeply nested directories where the absolute

path length exceeds PATH MAX. In this case the file system

objects may be accessed by setting the current working di-

rectory of the process to a directory that is a prefix of the

2

absolute path and then using a relative path that is shorter

than PATH MAX to reach the directory entry desired.

Absolute path - a path that begins with a slash, where the

initial directory for the traversal begins at the process’s root

directory.

Relative path - a path that does not begin with a slash,

where the initial directory for the traversal begins at the pro-

cess’s current working directory.

Symbolic link - a file system object that contains a path.

This is a pointer to another location in the file system that

is evaluated when the operating system encounters the sym-

bolic link while processing a path. If the symbolic link is an

absolute path, the current directory of the traversal is reset

to the root directory; otherwise, the current directory of the

traversal is left as is (the referent of the symbolic link is rel-

ative to the directory containing the symbolic link). Once

the symbolic link referent is completely processed, the re-

mainder of the path is then processed. Note that the referent

of a symbolic link may contain a symbolic link that must

be processed recursively. The symbolic link path may form

a loop that can only be easily detected at path processing

time. To detect this, operating systems limit the depth of

the recursion to some small number such as 10 or 16, and if

the depth exceeds this, they return the error ELOOP regard-

less of whether there is an actual loop.

Most system calls completely resolve all symbolic links en-

countered in a path. Some system calls such as readlink

and lstat operate on the symbolic link itself instead of the

referent, but even these only operate on the symbolic link

if the symbolic link is the last component of the path. For

example, using lstat on the path /dir/symlink stats the

symbolic link itself, but using the path /dir/symlink/.

stats the directory to which /dir/symlink refers.

Static path - an absolute path to a file system object, where

no component in the path is a symbolic link. All the infor-

mation to determine the directory entries needed to process

this path are contained in the path itself.

Dynamic path - any path that contains a symbolic link. If

a component in the path contains a symbolic link, the ac-

tual file system object referred to can only be determined

by knowing the path, plus the referents of all symbolic link

directory entries in the path.

Canonical path - a static path, where no components refer

to the current directory (represented by ‘.’ or the empty

value), or to a parent directory (represented by ‘..’). The

canonical path forms a unique representation for the direc-

tory entry referred to by the path (this is not necessarily a

unique name for the file system object as there may be mul-

tiple directory entries hard linked to the same file system

object).

A static path can be transformed into a canonical path us-

ing only textual manipulations of the path, since without

symbolic links, all the directory entries are known and se-

mantics of the unwanted components are also known.

1. current directory components imply that the traversal

stays in the same directory, so they can be deleted. For

example, //home//./user/. =⇒ /home/user.

2. parent directory components imply that the traver-

sal should be in the parent directory of the prior di-

rectory to the “..”, so the parent directory and the

“..” can be deleted (prefix/dir/../remainder =⇒
prefix/remainder). The parent directory, repre-

sented by dir above, must not be one of the un-

wanted components (they must be eliminated first).

In this process the parent directory of the root direc-

tory, /, is itself, so a parent directory component im-

mediately after the root directory becomes the root

directory, so /../home =⇒ /home. For example,

/../var/./../home =⇒ /home.

On the other hand, dynamic paths cannot be turned into a

canonical path using the same algorithm because after pro-

cessing a symbolic link, the parent of the current directory

in the traversal can be anywhere.

Sticky bit directory - a directory file system object that has

the sticky or saved text bit set in its mode flags. A direc-

tory of this type has different permission semantics when

operations are called that remove directory entries such as

unlink, rmdir, or rename. The /tmp directory is com-

monly created as a sticky bit directory, because it designates

a world writable directory where only the owner of the file

system object in the directory can remove the file. The se-

mantics of removing a directory entry in a sticky bit direc-

tory are such that it will fail unless one of the following is

true:

1. the uid of the process is root (0)

2. the uid of the process owns the directory

3. the uid of the process owns the entry

In most current operating systems, only the root user can

change the ownership of files and directories, but in some

old environments, if POSIX CHOWN RESTRICTED is not de-

fined, any user can change ownership of files they own to

any other user. In this case a sticky bit directory must be

treated as an ordinary directory, because a directory created

by an untrusted process can appear to have been created by

a trusted process. This happens when an untrusted process

creates a directory and then changes ownership of the cre-

ated directory to a trusted user. In an environment where

POSIX CHOWN RESTRICTED is not defined, the only secure

use a sticky bit directory is to create a file and never use the

path name again, except to remove the file.

3

Figure 1. TrustEntry algorithm. Returns the

trust of a directory entry given the trust of the
parent and stat buffer of the entry.

function TrustEntry(pTrust, curStat, u, g)

— u is the trusted user list

— g is the trusted group list

if pTrust is UNTRUSTED

or (pTrust is STICKYTRUST

and curStat type is not directory) then

return UNTRUSTED

if curStat type is symbolic link then

return TRUSTED

if curStat owner is not in trustUsers

or (curStat group is not in trustGroups

and curStat group perms allows writing)

or curStat other perms allows writing then

if curStat type is sticky bit dir then

return STICKYTRUST

else

return UNTRUSTED

return TRUSTED

2.2. Checking the trust of a path

This section explains how to determine if a path is

trusted. First, we show how to assess if a directory entry

is trusted. Then, we show how to use a directory entry be-

ing trusted to assess if a whole path is trusted. Finally, we

discuss how to tell if a file system object is trusted, which

means that there is a path to the file system object that is a

trusted path. There are three possible outcomes for trust:

trusted, sticky dir trusted and untrusted. Trusted means

that an untrusted process cannot modify the contents of the

file system object or to which file system object the path

refers. Untrusted means that an untrusted process can do

those things. Finally, sticky dir trusted meets some of the

properties of a trusted directory but not all, as explained be-

low.

2.2.1. Checking the trust of a directory entry. The trust of

a directory entry can be determined by knowing the trust of

the parent directory and by the properties of the file system

object to which the directory entry refers; these properties

are obtained by using the lstat system call. The relevant

properties consist of the type of the object, its owning user

and group ids, its permissions and the sticky bit. Figure 1

shows an algorithm, TrustEntry, to compute the trust of

an entry. The trust of a directory entry is determined by one

of the three cases described below:

1. If the directory entry is a symbolic link, then it is

trusted if the parent directory is trusted (not just sticky

dir trusted).

Since the permissions of a symbolic link are not used,

checking for writability by untrusted user and group

ids is not required. Besides normal directory entry ma-

nipulations such as delete, rename, stat, and create a

hard link, there are only two operations that can be

performed on a symbolic link: create a symbolic link

with a given referent (path name) and get the referent.

Because of these restrictions, a symbolic link object is

immutable and the only attacks possible are by manip-

ulating the containing directory.

If the directory is a sticky bit directory, there are two

cases to consider based on the owning user id of the

symbolic link. If the owning user id is not a trusted

user id, then the owner can delete and recreate the sym-

bolic link, and therefore this symbolic link is untrusted.

If the owning user id of the symbolic link in the sticky

bit directory is a trusted user id, then an attack is still

possible; by using a hard link an untrusted process can

create a directory entry in the sticky bit directory that

is owned by a trusted user. Strictly speaking, POSIX

forbids creating hard links to symbolic links, so a sym-

bolic link with a trusted owner could be considered

safe. In pactice many implementations allow creating

hard links to symbolic links, so the conservative ap-

proach is to treat them as untrusted.

A hard link is a directory entry to an existing file

system object, and is created using the link system

call. The new directory entry is indistinguishable from

the original file system object as both directory en-

tries point to the exact same file system object, and

therefore share all the attributes including the contents,

owning user, owning group and permissions.

POSIX places few restrictions on the use link sys-

tem call: the source must not be a directory, the call-

ing process must be able to create a file system ob-

ject at the destination path (the same as open with

O CREAT|O EXCL), the calling process must be able to

access the source path’s metadata (have search path

permissions for all the directories in the source path),

and the source and destination must be within the same

physical file system. The process calling link is not

required to have the same user and group ids as the

owner of the source file, nor does it need to have read

access to the contents of the source file.

2. For all other types of directory entries, the entry is

trusted if all the following are true of the file system

object to which the directory entry refers:

(a) the object’s user id is a trusted user id;

(b) the permissions allow writing only by the ob-

ject’s group if the group is a trusted group id;

(c) the permissions do not allow writing by others;

and

4

(d) if the parent directory is a sticky bit directory,

then the type of the object is a directory.

The owner of the file system object needs to be trusted

because the owner of the object can always change

the permissions to an arbitrary value. So even if the

permissions are currently such that they prevent an

untrusted process from modifying the object, the un-

trusted process could later change permissions to allow

modifications. Obviously, if the permissions allow un-

trusted group members or others to modify the object,

then the object is also untrusted. For the same reasons

given in item 1 above, any directory entry that can be

the source of a hard link (everything except directories)

is untrusted if the parent directory is sticky dir trusted.

3. If the above two cases do not make the directory en-

try trusted, the directory entry is a sticky bit directory,

and the directory’s owning user id is a trusted user id,

then it is sticky dir trusted. This is a weaker form of

trust, in that an untrusted process can create directory

entries in the directory, but they cannot delete directory

entries owned by other users including all trusted users

(which is prevented by the owning user id of the sticky

bit directory being a trusted user id).

The sticky dir trusted concept is worth considering be-

cause of the wide use of the /tmp directory, which has

this property. This type of directory can be used in a

safe and trusted manner in two cases:

(a) Create a temporary file, so the file is trusted as de-

scribed in item 2 above, using mkstemp or some-

thing similar, and only access the file through the

returned file descriptor. The path to the file must

never be used again to open the file, as the path

is not trusted. It is not trusted as there is no guar-

antee that a trusted process, such a temporary file

cleaner process, did not remove the file. An un-

trusted process could then create a directory en-

try with the same name that is a hard link to a file

that looks like it was created by a trusted process

as discussed previously. Even if the directory en-

try is removed, the file descriptor will still refer

to the file system object returned by open. In

fact unlink should be called immediately after

opening a temporary file so the storage is freed

on closing the file descriptor (which happens au-

tomatically on process exit), and access through

the path is prevented.

(b) Create a directory with trusted permissions, and

use this as a trusted directory for all temporary

directory needs. The created directory is safe to

use as a path, because without the sticky bit set

this directory is trusted. The created directory is

trusted because a hard link to a directory is not

allowed (or can only be created by the root user

in older operating system versions).

2.2.2. Checking the trust of a complete path. A trusted

path is a path where all the components of the path and

components of symbolic link referents are comprised solely

of trusted directory entries.

The directory entries of the path are checked left to right.

If a directory entry is found that is untrusted, processing

stops and untrusted is returned. If a symbolic link is found

then the referent of it must be assessed recursively before

the remainder of the current path is checked.

If the path is relative, then it is also a requirement that

all the directories from the process’s current working direc-

tory to the root directory are also trusted. This requirement

is necessary because the process or its parent used a path

or several in succession to set the current working direc-

tory. If the canonical path is not trusted, then no path to the

current working directory can be trusted, and rerunning the

executable could result in a different current working direc-

tory, therefore the current working directory should not be

trusted. This does not mean that all the paths used to get to

the current working directory are trusted, but it is assumed

that the path(s) used to set the current working directory are

trusted if you wish to trust relative paths.

A trusted file system object is a file system object where

there exists a trusted canonical path to the file system object

(there can be more than one due to hard links).

If there is a trusted path to a file system object, this im-

plies that the file system object itself is trusted. This can

be seen because the canonical path is the path that starts at

the root directory and proceeds to the directory entry of the

leaf. Since the only allowed traversals from one directory to

another is either up to the parent or down to a direct child,

each directory entry in the canonical path must be visited at

least once in any path to the file system object. Since the

definition of a trusted path is one where all the components

of the path and of the symbolic link referents are trusted,

all the components of the canonical path must be trusted,

therefore the canonical path is a trusted path.

The converse of this property is not true and is

easily seen through the counter example where the

file system object /trusted is trusted, but the path

/untrusted/dir/../../trusted is not.

2.3. Possible Attacks

These are different types of exploits that an untrusted

process could accomplish if a path is untrusted and would

be prevented if the path is trusted.

Modify contents of a file - this requires that the permis-

sions on the file are untrusted, or that they were untrusted

5

sometime during the lifetime of the file.

Denial of service - if one of the directories in the path

traversal is an untrusted directory, then the directory en-

tries contained in the untrusted directory can be modified

through renaming or deletion such that the ultimate desired

file system object will become unaccessible through this

path.

Replace directory entry - after deleting or renaming a di-

rectory entry, a new one can be inserted in its place to make

the program use the attacker’s directory or file.

Hard link attack - is an attack where it will appear that a

trusted process created a file with a particular path, when it

did not. The attack is possible in any directory in which an

untrusted process can create a file, such as a sticky bit direc-

tory like /tmp. The attack is based on the fact that any pro-

cess can create a hard link to any file, regardless of the file’s

ownership and permissions. This link can be created any-

where the untrusted process could create an ordinary file.

The newly created hard link will be indistinguishable from

the original file and any changes made to one will be seen

by the other including ownership, permissions and contents.

If an application uses /tmp directly for storing files and in-

correctly assumes any file with the correct ownership and

permissions are trusted files, then an attacker can create ad-

ditional files with these properties at a given path by using a

hard link to an existing file. The source of the hard link can

even be a file that the trusted process has removed if the at-

tacker made a hard link before the source was removed and

then uses this link as the source when needed for an attack.

If the trusted process ever created a file with permissions

allowing the attacker to write to the file, or if the attacker

can get the trusted process to write the desired contents to a

file, then they can also control the contents of the file.

For this reason, any file system object that allows a hard link

(everything except directories) should never be trusted in a

sticky bit directory.

This type of attack is analogous to a protocol replay attack

[6] in cryptography. A protocol replay attack is where a

protocol has messages that are cryptographically protected

from forgery, but an attacker can capture the protected mes-

sage and replay messages at a later time, even though the

attacker cannot create a new valid message. The named file

corresponds to the message and the attacker cannot directly

create a valid file, but they can provide a previously seen

file to the trusted process.

Symbolic link manipulation - if an attacker can write to

some directory that the path traverses, then the attacker can

control the file system object to which the path resolves.

This attack can cause the program to open and possible cre-

ate files in arbitrary locations.

Race conditions - if the program uses the same path with

multiple system calls, combinations of the previously de-

scribed attacks can be used to make the program access one

file system object in one call and a different file system ob-

ject in a subsequent call. If information from the first sys-

tem call, conditionally determines the use of a subsequent

call using the same path, this is known as a time of check,

time of use (TOCTOU) attack.

2.4. Trusted path algorithm properties

An algorithm to check if a path is trusted should have the

following properties:

1. Supports multiple trusted user and groups ids instead

of just one trusted user and group id; modern practices

use many trusted user and groups ids to compartmen-

talize programs and services.

2. Works on all file system object types, including files

and directories.

3. Only fails to produce a result if the operating system

would also fail when presented with the path, so con-

structing paths and calls such as getcwd cannot be

used because they can fail in deeply nested directories.

4. Properly checks symbolic link referents.

5. Properly detects symbolic link loops.

6. Works properly with sticky bit directories.

7. Is efficient in the number of system calls, directory

scans, and inode accesses. Operations on file descrip-

tors should be preferred over those using a path.

8. Is concurrent execution safe. Multiple instances of

the algorithm should be able to be called concurrently

from threads and signal handlers, and it should not

change shared state in the process, such as the pro-

cess’s current working directory.

9. If the algorithm returns the path is trusted, an untrusted

process cannot

(a) modify the object referred to by the path; multi-

ple uses of the path should refer to the same file

system object,

(b) modify the object’s contents,

(c) create, rename or delete a directory entry owned

by a trusted user and group id.

6

Figure 2. Viega and McGraw’s safe dir algo-
rithm.

function safe dir(dir, owner id)

savedDir← open(“.”, O RDONLY)

lstat(dir, lstatBuf)

repeat

chdir(dir)

curDirFd← open(“.”, O RDONLY)

fstat(curDirFd, statBuf)

close(curDirFd);

if statBuf ’s and lstatBuf ’s mode, inode

and device do not match then

return UNTRUSTED

if statBuf ’s mode allows writing by group

or other or statBuf ’s owner

is not in {owner id, root} then

return UNTRUSTED

dir← “..”

lstat(dir, lstatBuf)

getcwd(newDirPath)

while newDirPath is not “/”

fchdir(savedDir)

close(savedDir)

return TRUSTED

2.5. Prior Work

This section describes two prior algorithms for checking

if a directory or a path is trusted. We describe the algo-

rithms, the properties they satisfy, and the complexity of

the algorithms.

2.5.1. safe dir algorithm. In the book Building Secure

Software [11, pages 222–225], John Viega and Gary Mc-

Graw present an algorithm, shown in Figure 2, to check if a

directory is trusted.

This algorithm requires the path to resolve to a direc-

tory, and only allows a single trusted user id (all group ids

are considered untrusted). The algorithm works by chang-

ing the process’s current working directory to the path argu-

ment, and checking if the directory is trusted (the directory

is owned by the root user or the owner id user id, and the

group and other are not allowed to write to the directory).

Next, the algorithm works its way up the directory chain

by changing directory to the parent directory, “..”, and re-

peats this loop until the root directory is found by checking

if getcwd returns the root directory, “/”.

Other than the initial change directory to the path, this

algorithm does not use the path. safe dir ends up checking

that the canonical path or the directory given is trusted. An

attempt is made to detect symbolic links by matching the

result of lstat with fstat after changing directories, but

this check ignores symbolic links that are not at the terminal

part of the path.

There is a race condition in this function, not in the al-

gorithm itself but in the interface provided. A TOCTOU

attack is possible since the design of the interface and the

authors’ stated use for this algorithm is to call this function

with a path to check if it is trusted, and if so, use the path a

second time to change directories to the checked path. The

race condition occurs because the algorithm does not check

the path, but instead checks the trust of all the directories

from the argument to the root directory. This is equivalent

to the directories of the canonical path. A trusted canonical

path does not imply that all paths to the same directory are

trusted, as the path given could traverse untrusted directo-

ries or symbolic links. Since the argument is not verified

to be a canonical path, the two uses of the path can result in

different directories (the first being a directory with a trusted

canonical path, and the second an untrusted directory after

an entry in an untrusted directory along the path being mod-

ified). This could be fixed by having the current working

directory set to the path checked on exit, or to eliminate the

path argument and to check the current working directory.

Given these problems, this algorithm is only safe to use

if the path given contains no symbolic links and no parent

directory components. There is one useful case where this

is true and that is in checking the current working directory,

“.”, which is guaranteed not to be a symbolic link.

The run time complexity of this algorithm is O(n2),
where n is the depth of the directory (it would be O(n) if

getcwd were not used). The space complexity of this algo-

rithm is a small constant.

The limitations of this algorithm include (1) not check-

ing the path, but the canonical path to the directory, (2) only

supporting a single trusted user, owner id, or root (3) not

handling the unique properties of sticky bit directories, (4)

failing if the canonical path gets too long, and (5) not being

concurrent-execution safe as it changes the current working

directory.

In summary, if the path is not a canonical path, this algo-

rithm satisfies none of the desired properties of Section 2.4.

If the path is a canonical path, then it satisfies property 9,

i.e. untrusted processes will not be able to change the direc-

tory referred to by the path, or create any directory entries

in the path.

2.5.2. trustfile algorithm. Matt Bishop [2, pages 300–

307] presented an algorithm, shown in Figure 3, that will

check if a path is trusted.

This algorithm works on paths to arbitrary file system

objects, and takes a list of trusted and untrusted user ids.

The trust of the group id is computed from the list of trusted

user ids (a group is trusted only if its membership consists

solely of trusted user ids). While the approach of computing

the trusted group ids is correct, it increases the administra-

tive overhead. If a new user id is added as a member to

a trusted group, the administrator needs to reconfigure the

7

Figure 3. Bishop’s trustfile algorithm.

function trustfile(path, okUsers, badUsers)

if path is a relative path then

getcwd(curWorkingDir)

path← “curWorkingDir/path”

change path to eliminate “”, “.”, “..” comp-

onents using the textual manipulation

algorithm to convert a static path to

a canonical path (see the definition

of a canonical path in Section 2.1).

curPath← “/”

remove leading “/” from path

loop forever

if curPath is a symbolic link then

readlink(referent)

if referent is absolute then

p← referent

else

p← “curPath/../referent”

linkTrust← trustpath(p, okUsers, badUsers)

if linkTrust is not trusted then

return UNTRUSTED

else

isEntryTrusted← compute trust of curPath

as in TrustEntry of Figure 1,

except always trust sticky bit

directories as a trusted directory

if isEntryTrusted is not TRUSTED then

return UNTRUSTED

if path is empty then

return TRUSTED

nextComp← remove next component of path

path← “path/nextComp”

program to include the new user id as a trusted user id. This

change is required because a group is trusted only if all of its

members are trusted, so without the user id being trusted the

group is not trusted. Also the computation of a group being

trusted is inefficient as it entails scanning all or part of the

password and group files for each directory entry visited.

Bishop’s algorithm works by converting the path into

a canonical path using the textual manipulation algorithm

described in the canonical path definition of Section 2.1.

There are two major problems with this approach. First, the

textual manipulation algorithm can only be used on static

paths, but the path could be a dynamic path and therefore

produce the wrong results by checking a path different than

what the operating system would check. Second, if the

transformation were correct, the algorithm is then checking

if the canonical path is trusted, but the canonical path being

a trusted path has no implications on other paths to the same

file system object, and therefore the algorithm might not be

verifying the correct path.

The algorithm then pulls components off the path one-

by-one, appends the component to the path string being cre-

ated, and examines each path formed to check if it is trusted.

Trust is determined as in the TrustEntry algorithm of Fig-

ure 1, except non-directory entries in a sticky bit directory

are trusted.

If a symbolic link type is found while processing the

path, a new path is formed based on the referent and

trustfile is recursively called. There is no check to limit

the amount of recursion in the event of a symbolic link loop

and the algorithm goes into an infinite loop. In the case

of a relative path referent, the new path is formed by con-

catenation of the path to the symbolic link, “/../”, and the

referent (the symbolic link name and .. are removed with

the textual manipulation performed in trustfile). An ab-

solute path referent is used as-is for the new path. This

technique could result in a path that exceeds the maximum

length allowed for a path.

The best case run time complexity of this algorithm is

O(mn2s), where m is the number of components processed

in the traversal, n is the average number of components of

the path in the traversal, and s is the maximum number of

symbolic links directly in the path or symbolic link refer-

ents encountered. The space complexity of this algorithm

is O(dl), where d is the maximum depth of recursive sym-

bolic links encountered, and l is the maximum length of a

symbolic link referent. l is limited in size to PATH MAX.

The limitations of this algorithm include (1) creating

and checking the canonical path instead of the actual path,

which can test the wrong file system object if given a dy-

namic path, or can miss untrusted directories given a static

path, (2) trusting paths that resolve to a non-directory file

system object in a sticky bit directory, (3) not detecting sym-

bolic link loops, and (4) possibly creating a path that is too

large from an initial path of appropriate size.

This algorithm correctly processes the components one-

by-one, but its use of textual manipulation causes it to be

insecure.

In summary, if the path is not canonical, then this algo-

rithm only satisfies only properties 1, 2 and 8 of Section 2.4,

i.e. supports multiple trusted user and group ids, works on

all types of file system objects, and is concurrent safe. If

the path is canonical, then the textual manipulations have

no effect and there are no symbolic links, then the algorithm

additionally satisfies properties 9, 10 and 11, i.e. untrusted

processes will not be able to change the directory referred

to by the path, or create any directory entries in the path.

2.6. safe is path trusted r algorithm

Figure 4 presents our algorithm for checking if a path is

trusted. It satisfies all the properties of Section 2.4 for all

paths.

If the path argument is a relative path, the algorithm uses

the concept from safe dir of checking the trust of the cur-

rent working directory by traversing from the current work-

8

Figure 4. safe is path trusted r algo-

rithm.

function safe is path trusted r(path, u, g)

— u is the trusted user list

— g is the trusted group list

if path is relative then

curPath← “.”

curStat← lstat(curPath)

curTrust← TrustEntry(TRUSTED, curStat, u, g)

repeat

dirTrust← TrustEntry(TRUSTED, curStat, u, g)

if dirTrust is UNTRUSTED then

return UNTRUSTED

append(curPath, “/..”)

if length(curPath) > PATH MAX then

return ENAMETOOLONG error

prevStat← curStat

curStat← lstat(curPath)

until curStat = prevStat — at root directory

else

curTrust← TRUSTED

p← path

s← empty stack

curPath← “”

while p is not empty

nextName← RemoveNextComponent(p)

if p is empty then

if not stack is empty(s) then

p← pop(s)

if nextName = “.” or nextName is empty then

restart loop

prevPath← curPath

curPath← PathRelativeTo(curPath, nextName)

if curPath > PATH MAX then

return ENAMETOOLONG error

curStat← lstat(curPath)

curTrust← TrustEntry(curTrust, curStat, u, g)

if curTrust is UNTRUSTED then

return UNTRUSTED

if curStat type is symbolic link then

if num elements(s) > SYMLOOP MAX then

return ELOOP error

if p is not empty then

push(s, p)

p← readlink(curPath)

curPath← prevPath -

else if p is not empty then

if curStat type is not a directory then

return ENOTDIR error

return curTrust

ing directory to the root directory (the canonical path). It

does this by checking the current directory “.”, and then

checks the paths“./..”, “./../..”, . . . until the root direc-

tory is reached. If an untrusted directory is encountered,

untrusted is immediately returned as the result. It does this

traversal safely by only traversing using non-symbolic link

directory entry names.

There are three operations that can be performed on a

path: (1) check if the path is empty, (2) remove and return

the next component (RemoveNextComponent), and (3) cre-

ate a new path from a name relative to a given static path

(PathRelativeTo). The RemoveNextComponent function

behaves as expected, removing the leftmost name from

the path (and the next directory separator if any), and re-

turns the directory name. If the path was absolute then

the root directory name “/”, is removed and returned.

PathRelativeTo(baseDir, name) returns a new path. If

baseDir is empty or name is an absolute path, then the new

path is name. Otherwise, the new path is the concatenation

of baseDir, “/”, and name. Since baseDir is a static path,

some textual manipulations can be applied to simplify the

new path.

The rest of safe is path trusted r revolves around

four pieces of data: curTrust, the trust of the last directory

entry; p, a path containing unchecked components of the

path being processed; curPath, the path name to the current

object to check; and s, a stack of paths, used to store the

path being processed when a symbolic link is encountered.

Initially curTrust is set to the trust of the current working

directory if the path is relative, and to TRUSTED otherwise,

p is set to the path argument to the function, and the other

two are empty.

The algorithm then processes directory entries one-by-

one until p is entirely consumed. RemoveNextComponent

is used to remove the next name from p, and name is

then used to create the path of the next object to test us-

ing PathRelativeTo with curPath as the directory. If p is

now empty and the stack is not, then the top of the stack is

popped into p.

The lstat system call is used to get information about

the file system object pointed to by curPath such as the type,

owner, group, sticky bit and permissions of the file system

object. This information then is used to determine the trust

of the file system object using the TrustEntry algorithm.

If it is not trusted, UNTRUSTED is immediately returned.

If the object is a symbolic link, then the referent must be

processed before the rest of the path in p. If p is not empty,

it is pushed on the stack to processed after the referent is

read. The referent is assigned to p. If the depth of the stack

exceeds some constant, then ELOOP is returned to indicate a

symbolic link loop as would the operating system.

If an error is encountered, -1 is returned and errno is set

to the type of the error.

Figure 5 shows the internal data structures of the algo-

rithm in the act of processing a path.

The run time complexity of this algorithm is O(mn),
where m is the number of components processed in the

traversal and n is the average number of components of the

path in the traversal. The n arises because the kernel per-

forms a path traversal of each path passed to lstat. This

cost is O(n), where n is the number of components in the

9

Figure 5. File system traversal and algorithm

operation while processing /link1/file in
the directory structure shown. The numbers
show the order of the traversal.

/ ➀➄

link1 ➁
→ dir1/link2/..

dir1 ➂ dir2 ➅➇

link2 ➃
→ /dir2/dir3

dir3 ➆ file ➈

(a) Example file system structure showing directory entries vis-

ited while verifying the trust of /link1/file. /link1 and

/dir1/link2 are symbolic links with referents of dir/link2/..

and /dir2/dir3 respectively.

/ ➀ link1 ➁ file ➈

dir1 ➂ link2 ➃ .. ➇

/ ➄ dir2 ➅ dir3 ➆

/dir1
curPath

p

top of

stack

(b) The state of the variables of the algorithm in Figure 4 immedi-

ately after processing link2. The grayed names 1–4 on the stack

have already been been removed from the path, and show what each

path was originally.

path.

The space complexity of this algorithm is O(dl), where d

is the maximum depth of recursive symbolic links encoun-

tered, and l is the maximum length of a symbolic link ref-

erent. Both of these values are bounded by constant values

SYMLOOP MAX and PATH MAX.

In summary, this algorithm satisfies all the properties of

Section 2.4 except 3, i.e. failure due to path length limita-

tions. This is caused by the algorithm creating paths that

may become too large due to the current working directory

being too deep, or the contents of symbolic links causing

the path to become too large. Both of these cases result in

the ENAMETOOLONG error being returned. Without changing

directories, it is not possible to satisfy property 3, but if the

directory is changed then the concurrency property (8) can-

not be satisfied. The next section will show how to perform

these mutually exclusive properties so all the properties are

met.

2.6.1. Overcoming path length limit. This section de-

scribes an algorithm that satisfies all the desired properties

except 8, and how to combine this new algorithm with the

above to satisfies all the properties desired.

This new algorithm, safe is path trusted, is sim-

ilar to the previous version, except it changes di-

rectories during processing, so the name returned by

RemoveNextComponent is always in the current working

directory (or is the root directory).

The check of the current working directory ancestry is

done by calling open on “..”, and then using fstat and

fchdir to get the properties and change to the parent direc-

tory respectively.

In the main loop curPath is eliminated and name is used

in the lstat and to change directory, which is done at the

end of the loop replacing the test of curStat not being a

directory (chdir will fail if it is not).

This algorithm satisfies all the properties except the con-

currency property (8) as it changes the current working di-

rectory and depends on the current working directory of the

process not changing during its execution. It does have bet-

ter run time complexity of O(m), where m is the number

components processed in the traversal. Each component

processed is done in constant time since all paths passed

to lstat are either directly in the current working directory

or are the root directory.

To satisfy all the properties, a third function was created,

safe is path trusted fork. This algorithm forks a copy

of the process (so the current working directory is no longer

shared), calls safe is path trusted, and returns the re-

sult back to the calling process. This algorithm satisfies all

the requirements, but it does incur a time penalty to create

the new process.

A solution that has better typical run

time, but still satisfies all the properties is

to modify safe is path trusted r to call

safe is path trusted fork only if the error

ENAMETOOLONG is generated. Since most paths are

typically short, the cost of the fork will only be incurred

when the path becomes too long.

2.6.2. Other access control schemes. The

safe is path trusted family of functions is designed to

check the trust of a path in a POSIX system; it does not

support systems that have an alternate permission seman-

tics. These system can allow untrusted access even though

from the POSIX mode, owner, and group permissions the

file is trusted. Examples of such systems include AFS

ACLs [1] and POSIX draft ACLs [9]. If these alternative

access control schemes are used, the only likely change to

code would be the definition of TrustEntry.

POSIX draft ACLs allow additional users and groups,

each with their own set of permissions, but these additional

10

users and groups permissions are only allowed to be as per-

missive as the standard group mode allows. In this case,

if no trusted group ids are passed to the algorithm, the ad-

ditional users and group ACLs will be effectively ignored,

and the algorithm will return the correct result.

3. Safe Open

Opening and creating files in a POSIX environment is a

common cause of security problems. This is caused by in-

terfaces that are easy to use incorrectly, and in some cases

have semantics that are impossible to use securely when

opening files that are not a trusted path. Security problems

arise because of the way these functions handle symbolic

links and the way that permissions of newly created files

are determined.

The rest of this section describes common types of prob-

lems when using the standard system calls to open and cre-

ate files: open, fopen, and creat. We then present a set of

replacement functions for these standard system calls that

do not have the problems. We also describe a facility pro-

vided by these functions that notifies an application when

the paths to files they are trying to open are being manipu-

lated by a potential attacker.

Files are created in a POSIX environment using the open

system call. This call takes a file name, a set of flags that

controls the semantics, and an optional permissions value

used when a file is created. Multiple flags can be combined

by or-ing then together potentially allowing thousands of

unique semantics through this one interface. The POSIX

system call creat is equivalent to a call to open with a fixed

set of flags consisting of O CREAT|O WRONLY|O TRUNC, and

exists for historical reasons. The use of creat should be

replaced by open, and is not discussed further. The stan-

dard C [8] function fopen is also implemented using the

open function, but is discussed separately as fopen cannot

directly be replaced by open.

3.1. Problems with open and fopen

Some applications need to use an untrusted path to open

existing files or to create files. The application may have

to open or create files in the /tmp directory due to a need

to inter-operate with other programs, or the application may

be running with elevated privilege that needs to process files

at a user specified path such as those files in the untrusted

user’s home directory. Without precautions, an untrusted

process can manipulate components of the file name’s path

to get the application to create or open a file at an arbitrary

location.

The untrusted process can attack the application by mov-

ing directories and changing symbolic links. Symbolic links

in the directory portion of the file name can be avoided by

changing the current working directory (the directory that

relative paths are based) to the directory portion of the file

name, and verifying that the current working directory is as

expected using a function such as getcwd. The last com-

ponent can then be used in the open call, but unfortunately

detecting a symbolic link in the last component of the file

name’s path is more difficult.

The result of the lstat function is commonly used to de-

termine if the application can safely proceed with the open

by verifying properties of the file such as the existence, type

(including regular file or symbolic link), owner and permis-

sions. This is not safe because there can be a TOCTOU race

condition between the lstat and the open.

A common approach to avoid this race condition is to

open the file and use the fstat system call on the file de-

scriptor to assure that a file with expected properties was

opened. Unfortunately, using fstat cannot detect if the last

component of the file name was a symbolic link as the open

will always follow the symbolic link and open the referent

of the symbolic link. Another problem is that the actions of

the open call alone can cause security problems before the

properties can be checked. The problem is caused by inse-

cure use of two of flags to open: O CREAT (create the file

if it does not exist), and O TRUNC (truncate the file to zero

length).

We show how to combine these two techniques to cor-

rectly inspect the last component being a symbolic link

while avoiding the race condition in the next section

A call of open with the O CREAT flag and without

O EXCL, causes a file to be atomically created if the file does

not exist or opened if the file does exist. If any of the path

components are symbolic links, they are all followed in-

cluding the final component of the path. If the file does not

exist, and the final component is a symbolic link, the file is

created at the path specified by the link. The manipulation

of the symbolic link can then easily be used as an attack

vector, if the process is running with elevated privilege, to

create files anywhere the privilege allows.

The use of O CREAT with O EXCL changes the semantics

of open to create a file if it does not exist, and to fail if

the file already exists or if the final file name component

is a symbolic link. When used together, the file is always

created in the directory that is the file name with the final

component removed. O CREAT should always be used with

O EXCL as this combination guarantees that an attacker can-

not use a symbolic link in the last component of the file

name as an attack vector.

A call of open with the O TRUNC flag truncates an exist-

ing file as part of opening the file. If the file name is an

untrusted path, an untrusted process can modify the path to

point to an arbitrary file and cause any file that the applica-

tion’s privilege allows to be truncated.

Another problem with open is that the function is a vari-

11

Table 1. Semantics of the two direct replacement functions for open based on the flags passed and
the existence of the file name.

flags include file existence

function O CREAT O EXCL exists absent

int safe open wrapper(filename, flags, perms) no - open (fail if link) fail

yes no open (fail if link) create

yes yes fail create

int safe open wrapper follow(filename, flags, perms) no - open (follow link) fail

yes no open (follow link) create

yes yes fail create

adic function; only the file name and the flags are required,

and the third parameter is optional and only required if a

file is created. Compilers do not produce a warning if this

value is missing when the flags contain O CREAT. When a

file is created in such a case, the initial permissions of the

file are whatever happened to be next on the stack after the

flags. This omission may result in too lenient permissions,

exposing the contents to an attacker.

fopen uses a set of characters in a mode string instead

of a set of flags. fopen internally calls open, but O CREAT

is always used without O EXCL, so fopen is vulnerable to

the symbolic link attacks described above when creating a

file. The permissions of a newly created file are implicitly

derived from the process’s umask value (all the read and

write permissions are enabled except those permissions that

are included in the process’s umask value). If different per-

missions are needed for different files, then the process’s

global umask needs to be changed. Modifying this global

value can lead to a race condition if the process has multiple

threads of control.

Viega and McGraw [11] present symbolic link attacks

and show how to detect if the final component of file name

is a symbolic link. They also show a safe replacement

function, safe open wplus, for fopen with flags of “wb+”.

Their function provides only a direct replacement for two

out of the twelve possible mode flags (“w” and “wb+”) of

fopen. This function is also susceptible to a cryogenic

sleep attack (described in the next section), and can return

an anomalous error if the file exists and is deleted during

the execution of their function.

3.2. Desired Properties

Below is a set of properties that safe replacement func-

tions for open and fopen should possess to make their use

both secure and an easy replacement for the original func-

tion:

1. O CREAT should never be used without O EXCL, so a file

is never created in an unexpected directory due to the

last component being a symbolic link. The semantics

of O CREAT without O EXCL is rarely the desired behav-

ior and easily leads to attacks.

2. When an existing file is opened, the call should by

default fail if the last component is a symbolic link.

This behavior is the safe default, so files outside the

expected directory are not opened. In some cases an

application may be required to follow symbolic links

so this option must also exist in the interface.

3. If the function can create a file, then a valid initial per-

mission parameter is required. The initial permission

is then explicit so the developer is more likely to use

an appropriate value.

4. The replacement functions easily should be substi-

tuted for existing calls to open and fopen: the types

and meaning of parameters, results and errors should

match the original where possible, and all the original

modes and flags should be supported.

5. The replacement functions should act as an atomic op-

eration, just like original function. Since most of the

replacement functions use the file name multiple times,

each use can refer to a different file if the file system

changes between uses. The function must detect if the

results of multiple system calls in its implementation

represent different file system objects. When inconsis-

tent results are detected, the operations must be retried.

Verifying and retrying inconsistent results of system

calls prevents anomalous errors that would never hap-

pen with open, such as a EEXIST (file exists) or ENOENT

(no such file) error when the flags are O CREAT and

O RDWR.

3.3. Direct safe open replacements

We provide two direct replacement functions for

open. These functions are safe open wrapper and

safe open wrapper follow, with their interface and char-

acteristics shown in Table 1. Both of these functions differ

from open in that both functions require the initial permis-

sions of a newly created file, and fail if the last component

12

Table 2. Semantics of the six replacement functions for open based on the existence of the file name.

file existence

function exists absent

int safe open no create(filename, flags) open (fail if link) fail

int safe create fail if exists(filename, flags, perms) fail create

int safe create keep if exists(filename, flags, perms) open (fail if link) create

int safe create replace if exists(filename, flags, perms) remove, then create create

int safe open no create follow(filename, flags) open (follow link) fail

int safe create keep if exists follow(filename, flags, perms) open (follow link) create

is a symbolic link when creating a file (the error EEXIST is

returned instead). safe open wrapper also fails with the

same error if the last component of the file name is a sym-

bolic link.

Selecting between these two functions is application spe-

cific. safe open wrapper follow changes the seman-

tics the least and should be used in the general case.

safe open wrapper should be used when the directory en-

try referred to by the file name should never be a sym-

bolic link, i.e. the last component of the filename is not

a symbolic link. safe open wrapper provides the prop-

erty that the file system object referred to by the file name

/d1/.../dn/f is contained in the directory /d1/.../dn if

the open succeeds.

Modifying a program to make use of these functions re-

quires a search for all the calls to open and replacing each of

with a call to safe open wrapper. The only other change

necessary would be to add the initial file permissions where

missing. Making use of these functions eliminates the sym-

bolic link security problems and missing initial file permis-

sions of open.

These functions are implemented in terms of the ad-

vanced safe open replacement functions described in Sec-

tion 3.5. safe open wrapper is simply implemented by

calling the proper advanced replacement function based

on the O CREAT and O EXCL flags as shown in Figure 6.

safe open wrapper follow is similarly written using the

follow version of the advanced replacement functions.

3.4. Path Manipulation Warning Facility

safe open wrapper, safe open wrapper follow, the

advanced safe open replacement functions (Section 3.5) and

the safe fopen replacement functions (Section 3.6) all sup-

port an optional facility to notify the application in the event

that any of the functions detect the file system object to

which the file name refers has changed during the course

of its operation.

This facility allows the application to reg-

ister a function callback using the function,

safe open register path warning callback. The

callback function is called with the file name once each

Figure 6. safe open wrapper algorithm.

function safe open wrapper(fn, flags, perms)

if O CREAT is in flags then

if O EXCL is in flags then

f ← safe create fail if exists(fn, flags, perms)

else

f ← safe create keep if exists(fn, flags, perms)

else

f ← safe open no create(fn, flags)

return f

time a manipulation of the path is detected. Under normal

operations these events should be nonexistent because

applications should be using unique file names and no other

application should be manipulating the path of the file

name. In a multiprocess application manipulating a com-

mon set of file names, this event may legitimately occur,

although rarely. If the event occurs often, it is probably a

sign of an active attack or a misbehaving application.

This facility is implemented in the advanced safe open

functions. These form the basis for all other functions, so

all the other functions inherit this facility. If any of the ad-

vanced safe open functions described in Section 3.5 have

to retry their operation, then this is an indication of a path

manipulation and the callback is called if registered.

3.5. Advanced safe open replacements

A set of six advanced safe replacement functions for

open are shown in Table 2. The behavior of these

functions varies depending on the existence of the file,

and the last component being a symbolic link. All the

functions fail if the last component of the file name is

a symbolic link and the referent of the symbolic link

does not exist. The functions safe open no create and

safe create keep if exists also fail if the last compo-

nent is a symbolic link to an existing file. In this case errno

is set to EEXIST. This error was chosen to match what open

with flags of O CREAT and O EXCL returns when a symbolic

link is the last component. A more logical error value would

be ESYMLINK, but that error does not exist.

The implementation of the first four functions is pre-

13

Figure 7. Safe open replacement functions.

function safe open no create(fn, flags)

if flags contains O CREAT or O EXCL then

return error EINVAL

want trunc← O TRUNC is in flags

if want trunc then

remove O TRUNC from flags

label TRY AGAIN:

f ← open(fn, flags)

entryStat← lstat(fn)

if lstat failed and open failed then

return error from lstat

if lstat failed and open succeeded then

close(f)

goto TRY AGAIN

if entryStat type is a symbolic link then

if f 6= -1 then

close(f)

return error EEXIST

if open failed with ENOENT then

goto TRY AGAIN

if open failed then

return error from open

fdStat← fstat(f)

if entryStat and fdStat refer to different files then

close(f)

goto TRY AGAIN

if want trunc and fdStat.size 6= 0

and f is not a tty and f is not a fifo then

ftruncate(f, 0)

return f

function safe create fail if exists(fn, flags, perms)

add O CREAT and O EXCL to flags

return open(fn, flags, perms)

function safe create keep if exists(fn, flags, perms)

remove O CREAT and O EXCL from flags

loop forever

f ← safe create fail if exists(fn, flags, perms)

if f 6= -1 or errno is not EEXIST then

return f

f ← safe open no create(fn, flags)

if f 6= -1 or errno is not ENOENT then

return f

function safe create replace if exists(fn, flags, perms)

loop forever

unlink(fn)

if unlink failed and errno is not ENOENT then

return -1

f ← safe create fail if exists(fn, flags, perms)

if f 6= -1 or errno is not EEXIST then

return f

sented in Figure 7. Some error handling and the path ma-

nipulation detection (detected on retries) in these functions

has been removed to simplify the presentation.

safe open no create opens an existing file and fails if the

file does not exist. An error occurs if O CREAT is included in

the flags. There are a few items of note in the implementa-

tion. First, if O TRUNC is present in the flags, then O TRUNC

is removed and handled after the file is safely opened. The

special handling of O TRUNC is done so the file is not irre-

versibly truncated before the file name is verified to not be

a symbolic link. Second, the use of O TRUNC on a file type

that is not a regular file is undefined except if the type is a

tty or fifo, where POSIX says to ignore O TRUNC. The un-

defined behavior matters in at least one important case: the

use of /dev/null as the file name to our fopen replace-

ment with a mode of “w”. On some platforms if the flags

are O CREAT|O WRONLY|O TRUNC, /dev/null opens as ex-

pected, but if the flags are O WRONLY|O TRUNC open fails.

We compensate for this problem by not performing the trun-

cation unless the current size of the file is non-zero.

Another item of note is how safe open no create

checks for a symbolic link as the last component of the file

name. A symbolic link can only be detected by using lstat

function. If the lstat succeeds and the type of file system

object is a symbolic link, then an error indicating the sym-

bolic link, EEXIST, can be returned without using the results

of the open.

The race condition between the open and the lstat is

prevented by verifying that both system calls refer to the

same file system object. safe open no create checks if

file system object of the open is the same as that referred to

by the lstat by (1) opening the file, (2) obtaining the file

properties for the file name using lstat (returns the file’s

properties without following a terminal symbolic link com-

ponent), (3) obtaining the file properties for the opened file

using fstat, and (4) comparing the immutable properties

(the device, inode and type are fixed at file creation). If the

immutable properties of the opened file and the file in the

file system match, then the files are the same because the

device and inode are unique in the file system and cannot

be reused while a file is open, even if the file is removed.

The typical idiom for checking if the lstat and open

refer to the same file is to perform the lstat first, then the

open and finally the fstat. The purpose of checking the

lstat result against the fstat result is to make sure the file

opened was at one point in time at the location opened and

that the filename was not a symbolic link. This approach is

susceptible to what Kirch calls a cryogenic sleep attack [5].

The attack works by stopping the process after the lstat,

but before the open, removing the file and waiting for a file

to be created with the same device and inode, then creating

a symbolic link to point to the file to attack and letting the

process resume. The process does not detect that the file

opened was not at the file name given and that the last com-

ponent was a symbolic link. To prevent this attack the open

must be performed first, as the device and inode cannot be

reused until the file descriptor is closed, even if the direc-

tory entry is removed. The key to the solution is that the

order of the open and the lstat does not matter and that

reversing them from the typical order prevents the attack.

14

safe open no create detects if open and the lstat are ac-

cessing different file and, if so tries again until a consis-

tent view of file name is achieved. The function eventually

completes as the attacker would have to always be able to

replace file name between the open and the lstat for this

function to never complete.

If the open fails, an lstat still needs to be performed to

check if the file name is a symbolic link. If so, the value of

errno is changed to EEXIST instead of the error from open.

safe create fail if exists fails if the file exists, otherwise it

creates and opens the file. This is equivalent to calling open

adding both O CREAT and O EXCL to the flags.

safe create keep if exists creates the file if it does not

exist and safely opens the file if it does exist. The

function is implemented using safe open no create and

safe create fail if exists. The algorithm first tries to

create the file using safe create fail if exists, and re-

turns if this call succeeds or had an error other than EEXIST.

If the file exists, the function then tries to open the file us-

ing the function safe open no create, and returns if this

call succeeds or had an error other than ENOENT. These two

functions are alternately tried until one of the conditions is

met. The loop is required to prevent an anomalous error

as an attacker could be actively creating and delete the file.

Unless the attack can keep perfectly synchronized, one of

the two functions should succeed.

safe create replace if exists always returns a freshly cre-

ated file. If the file exists, the file is deleted and then cre-

ated. This function also loops to prevent an attacker from

causing a spurious failure by continually recreating the file.

Unless the attacker can synchronize the file creation to al-

ways recreate the file between the unlink and the file cre-

ation call, the function eventually returns. This function is

useful when an application is required to create a file with

a particular file name in an untrusted directory such as the

/tmp directory. If an existing file is opened, an attacker

could potentially read and write to this existing file due to

current or past unsafe ownership or permissions. The only

way to guarantee strict permissions is to create the file in

a trusted directory or for the process always create the file

with proper permissions and to never open an existing file

in such a directory.

safe open no create follow is equivalent to

safe open no create except the last component of

the file name is allowed to be a symbolic link. The function

treats O TRUNC specially, but otherwise just calls open and

returns if open fails. lstat is not called. The behavior of

safe open no create follow is identical to open except

for its special treatment of O TRUNC, and that it will fail if

the flags contain O CREAT.

safe create keep if exists follow is equivalent to

safe create keep if exists except the last component

of the file name is allowed to be a symbolic link when

Table 3. fopen mode to open flags mapping.
fopen mode open flags

r O RDONLY

r+ O RDWR

a O WRONLY | O CREAT | O APPEND

a+ O RDWR | O CREAT | O APPEND

w O WRONLY | O CREAT | O TRUNC

w+ O RDWR | O CREAT | O TRUNC

opening an existing file. The function is written the same

way except the follow version of safe open no create

is used.

Modifying a program to make use of these functions, re-

quires a search for all the calls to open and replacing each

of with a call to the desired function. Using these advanced

replacement function eliminates the same security problems

as safe open wrapper, but allows the more knowledge-

able developer additional control over the semantics of the

open. The semantics required can be determined using the

algorithm of safe open wrapper as shown in Figure 6, or

any other function can chosen based on the desired seman-

tics.

If the incorrect function is selected, the program

could potentially fail due to the replacement func-

tion failing where open would not. The only po-

tentially dangerous replacement would be to use

open create replace if exists when this behav-

ior was not desired as the function deletes and recreates the

file, destroying the file’s contents in the process.

3.6. fopen replacements

The set of replacement functions for fopen is the same

as those functions shown in Table 2, except a “f” appears

before “open” and “create” in the name, the flag parame-

ter is replaced with the fopen mode string and a FILE* is

returned instead of a file descriptor.

These functions work by calling a function that maps the

fopen mode string into a set open of flags. The mapping for

the standard mode strings is shown in Table 3 (the “b” flags

is not shown and does not affect the mapping). Some plat-

forms define additional mode characters and corresponding

open flags. In this case, the mapping function can also map

the these mode characters to the correct open flags and no

other changes are required to support these platform specific

settings.. The corresponding open replacement function is

then called, and finally the file descriptor is converted to a

FILE* object using the fdopen with the file descriptor and

the original mode string. If an error occurs, then the file de-

scriptor is closed if open, and NULL is returned to indicate

an error. A safe fopen wrapper can also be created in a

similar fashion.

The functions have the same benefits as the open re-

15

placements. They also require the permissions be passed

on each call instead of being determined from the global

umask, and thus is more expressive. For instance, a file can

now be opened for writing without creating the file if the

file does not exist.

4. Conclusion

We presented working solutions that if used will improve

the security of software. The first problem solved is that of

determining if a path is vulnerable to attack from untrusted

processes. This function can test any path that the operating

system can process and supports multiple trusted user and

group ids.

The second problem solved is a general replacement for

the POSIX and Standard C functions open and fopen that

open and create files. The solution prevents common sym-

bolic link attacks using an almost identical interface, so re-

placement should be a simple matter of find and replace. An

alternative set of functions for the knowledgeable developer

is also provided that has a more expressive set of behaviors.

A working implementation of these functions in source

form is available at http://www.cs.wisc.edu/˜kupsch/

safefile.

5. Acknowledgment

This research funded in part by NATO grant CLG

983049, the National Science Foundation under contract

with San Diego Supercomputing Center, and National Sci-

ence Foundation grants CNS-0627501 and CNS-0716460.

References

[1] AFS Administration Guide. IBM, 2000. http://www.

openafs.org/doc/index.htm.

[2] M. Bishop. How attackers break programs, and how to write

programs more securely. http://nob.cs.ucdavis.edu/

bishop/secprog/sans2002.pdf, 2002.

[3] Cve-2006-5215. http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2006-5215, 2006. Xsession

/tmp Symbolic Link Race Condition.

[4] Cve-2007-4270. http://cve.mitre.org/cgi-bin/

cvename.cgi?name=CVE-2007-4270, 2007. DB2 /tmp

Symbolic Link Race Condition.

[5] M. Dowd, J. McDonald, and J. Schuh. The Art of Software

Security Assessment: Identifying and Preventing Software

Vulnerabilities. Addison-Wesley, 2007.

[6] N. Ferguson and B. Schneier. Practical Cryptography. Wi-

ley, 2003.

[7] Globus bugzilla bug 4648. http://bugzilla.globus.

org/globus/show_bug.cgi?id=4648, 2006.

[8] S. P. Harbison, III and G. L. Steele, Jr. C: A Reference Man-

ual, 5th edition. Prentice Hall, 2002.

[9] IEEE 1003.1e Draft 17: Draft Standard for Information

Technology - Portable Operating System Interface (POSIX)

- System Application Program Interface. 1997. http:

//xt.pilot.org/publications/posix.1e.

[10] The Single UNIX Specification Version 3. The Open

Group, 2004. http://www.opengroup.org/bookstore/

catalog/t041.html.

[11] J. Viega and G. McGraw. Building Secure Software.

Addison-Wesley, 2002.

16

