
First Principles Vulnerability Assessment

James A. Kupsch Barton P. Miller
Computer Sciences Department

University of Wisconsin
Madison, WI, USA

{kupsch,bart}@cs.wisc.edu

Elisa Heymann Eduardo César
Computer Arch and Operating Systems Dept

Universitat Autònoma de Barcelona
Bellaterra (Barcelona), SPAIN

{elisa.heymann,eduardo.cesar}@uab.es

ABSTRACT

Clouds and Grids offer significant challenges to providing
secure infrastructure software. As part of a our effort to
secure such middleware, we present First Principles Vulner-
ability Assessment (FPVA), a new analyst-centric (manual)
technique that aims to focus the analyst’s attention on the
parts of the software system and its resources that are most
likely to contain vulnerabilities that would provide access to
high-value assets. FPVA finds new threats to a system and
is not dependent on a list of known threats.

Manual assessment is labor-intensive, making the use of
automated assessment tools quite attractive. We compared
the results of FPVA to those of the top commercial tools,
providing the first significant evaluation of these tools against
a real-world known collection of serious vulnerabilities. While
these tools can find common problems in a program’s source
code, they miss a significant number of serious vulnerabil-
ities found by FPVA. We are now using the results of this
comparison study to guide our future research into improv-
ing automated software assessment.

Categories and Subject Descriptors

K.6.5 [Manage of Computing and Information Sys-
tems]: Security and Protection—invasive software

General Terms

Security

Keywords

auditing, tiger team

1. INTRODUCTION
Vulnerability assessment of critical software is repeatedly

described as one of the gaps in national and international
cyber-defense strategies [3]. Cloud and Grid computing, by
their distributed nature, dynamic allocation, and multiple

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCSW’10, October 8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0089-6/10/10 ...$10.00.

organizations, expose new attack surfaces and provide new
opportunities for attacks on both the service and client in-
frastructures. While automated analysis tools play a key
role in the assessment of such systems, the current state of
the art for such tools limits their effectiveness.

In this paper we discuss our approach to the assessment
of such systems. Our approach starts a new methodology
for manual (analyst centric) vulnerability assessment, called
First Principles Vulnerability Assessment (FPVA). FPVA
allows us to evaluate the security of a system in depth. While
FPVA is certainly a labor intensive approach to vulnerabil-
ity assessment, we have shown it to be effective in several
real systems, finding many serious vulnerabilities. Many of
these vulnerabilities reflect common serious mistakes made
in distributed services. These mistakes include erroneous
or changeable configuration files, injection attacks and race
conditions.

While our use of FPVA has uncovered significant vulner-
abilities in a wide variety of complex systems (along with
suggested remediations for these vulnerabilities), it is only
the starting point. The in-depth FPVA analysis of real sys-
tems has produced a body of significant vulnerabilities, and
this body of vulnerabilities can act as a reference set for
evaluating automated analysis tools. Our FPVA assessment
results act as an approximation of a ground truth, allowing
us to compare the results from our FPVA study to those
obtained from running widely used (and highly regarded)
commercial source code analysis tools.

Our new assessment methodology and its careful compar-
ison to automated tools are guiding us in two new research
directions: reducing the cost of performing a manual assess-
ment, and improving the ability of automated tools to find
the most serious vulnerabilities.

FPVA assumes access to the source code, documentation,
and, when available, the developers. Rather than working
from known vulnerabilities, the starting point for FPVA is
to identify high value assets in a system, i.e., those com-
ponents (for example, processes or parts of processes that
run with high privilege) and resources (for example, con-
figuration files, databases, connections, and devices) whose
exploitation offers the greatest potential for damage by an
intruder. From these components and resources, we work
outward to discover execution paths through the code that
might exploit them. This approach has a couple of advan-
tages. First, it allows us to find new vulnerabilities, not just
exploits based on those that were previously discovered. Sec-
ond, when a vulnerability is discovered, it is likely to be a
serious one whose remediation is of high priority.

FPVA starts with an architectural analysis of the system,
identifying the key components in a distributed system, as
well as the interactions among the different components and
the interfaces available to users for providing input (attack
surface). It then goes on to identify the resources associated
with each component, the privilege level of each component,
the value of each resource, how the components interact,
and how trust is delegated. The results of these steps are
documented in clear diagrams that provide a roadmap for
the last stage of the analysis, the manual code inspection.
In addition, the results of this step can also form the basis
for a risk assessment of the system, identifying which parts
of the system are most immediately in need of evaluation.

After these steps, we then use code inspection techniques
on the critical parts of the code. Our analysis strategy tar-
gets the high value assets in a system and focuses attention
on the parts of the system that are vulnerable to not only
unauthorized entry, but unauthorized entry that can be ex-
ploited. Note that we consider a vulnerability to be verified
only after we produce actual exploit code for it.

We have applied FPVA to seven major systems, including
the Condor high-throughput scheduling system [13, 16]. In
these analyses, significant vulnerabilities were found, soft-
ware development teams were educated to the key issues,
and the resulting software was made more resistant to at-
tack.

A major question when evaluating a technique such as
FPVA is: why not use an automated code analysis tool?
To address this question, we surveyed security practitioners
in academia, industry, and government laboratories to iden-
tify which tools were consider “best of breed” in automated
vulnerability assessment. Repeatedly, two commercials soft-
ware packages were named, Coverity Prevent [4] and Fortify
Source Code Analyzer (SCA) [7]. To evaluate the power
of these tools (and several others) and better understand
our new FPVA, we compared the results of our largest as-
sessment activity (on Condor) to the results gathered from
applying these automated tools. As a result of these studies,
we found that the automated tools found few of the vulnera-
bilities that we had identified in Condor (i.e., had significant
false negatives) and identified many problems that were ei-
ther not exploitable or led to minor vulnerabilities (i.e., had
many false positives).

Our current work is just the start of a longer term effort to
develop more effective assessment techniques. We are using
our experiences with these techniques to help design tools
that will simplify the task of manual assessment. In addi-
tion, we are working to develop a formal characterization
of the vulnerabilities we have found in an attempt to de-
velop improved automated detection algorithms that would
include more of these vulnerabilities. We are also using our
experience with these techniques to develop new guidelines
for programming techniques that lead to more secure code.

2. FIRST PRINCIPLES VULNERABILITY

ASSESSMENT METHODOLOGY
A key benefit of our approach to vulnerability assessment

is that we do not make a priori assumptions about the nature
of threats or the techniques that will be used to exploit a
vulnerability. We can characterize the steps of architectural,
resource, privilege, and interaction analysis as a narrowing
processing that produces a focused code analysis. In addi-

tion, these analysis steps can help to identify more complex
vulnerabilities that are based on the interaction of multiple
system components and are not amenable to local code anal-
ysis. For example, we have seen several real vulnerabilities
that are caused because a component (process) is allowed to
write a file that will be later read by another component.
The read or write operation by itself does not appear harm-
ful, but how the data was created or used in another part of
the code could allow an exploit to occur. In the Condor sys-
tem, both configuration and checkpoint files were vulnerable
to such attacks. Without a more global view of the analy-
sis, such problems are difficult to find. Another example
involves creating an illegal event that is queued and later
processed by another component. In Condor, this situa-
tion arose from creating a job-submission record with illegal
attributes. There was nothing to indicate that this was a
problem at the time the record was created, but it became
dangerous at the time (and place) it was used.

We rate security vulnerabilities on a four-level scale:

• Level 0: False alarm: The exploit for this vulnerability
does not actually allow any unauthorized access.

• Level 1: Zero-value vulnerability: The exploit allows
unauthorized access to the system, but no assets of any
value can be accessed.

• Level 2: Low-value asset access: The exploit allows
unauthorized access, provides access to an asset (or
prevents access to an asset), but is considered a lesser
threat. An example of such a vulnerability might be
allowing read access to a log file.

• Level 3: High value asset access: The exploit allows
unauthorized access, provides access to an asset, and
the asset is of a critical nature. An example of such a
vulnerability might be allowing unauthorized log-in to
a server or revealing critical data.

While there can be a subjective nature to the labeling of
the value of assets, in operational practice, there is usually
little ambiguity. Our goal is to spend the majority of our
time finding and correcting Level 3 vulnerabilities, and to
some extent, those at Level 2.

First Principles Vulnerability Assessment is composed of
5 main steps:

Architectural analysis:

The first step is to identify the major structural compo-
nents of the system, including modules, threads, processes,
and hosts. For each of these components, we then identify
the way in which they interact, both with each other and
with users. Interactions are particularly important as they
can provide a basis for understanding how trust is delegated
through the system. In this step we also identify the attack
surface, that is the interfaces available to users for providing
input to the system. This is a key aspect as all attacks will
come from user supplied data. The artifact produced at this
stage is a document that diagrams the structure of the sys-
tem and the interactions amongst the different components,
and with the end users. Figure 1 shows an example of such
a diagram.

Resource identification:

The second step is to identify the key resources accessed
by each component, and the operations supported on those

Condor Process Architecture

condor & root

 OS privileges

user

master

Condor submit host

schedd

shadow

submit

1. fork

3. submit job

ClassAd

8. fork

master

Condor execute host

startd

starter

job

1. fork

8. fork

10. start job

master

Condor checkpoint server host

ckpt_server ckpt_server

1. fork

master

Stork server host

stork_server stork_server

1. fork

Condor central manager host

master

negotiator collector

1. fork 1. fork

5. Negotiator

cycle

2. machine

ClassAd

4. job

ClassAd

5. Negotiator

cycle

6. Report
match

6. Report

match

7. claim host

9. establish

channel

Figure 1: Example Architecture Diagram from Con-
dor. Presents hosts, processes, and the steps re-
quired to execute a job when Condor is installed as
root.

resources. Resources include data elements such as files,
databases, logs, and devices; and physical entities such as
CPU cycles and network bandwidth. These resources are
often the target of an exploit. For each resource, we de-
scribe its value as an end target (such as a database with
personnel or proprietary information) or as an intermediate
target (such as a file that stores access-permissions). The
artifact produced at this stage is an annotation of the archi-
tectural diagrams with resource descriptions.

Trust and privilege analysis:

The third step identifies the trust assumptions about each
component, answering such questions as how are they pro-
tected and who can access them? For example, a code com-
ponent running on a client’s computer is completely open to
modification, while a component running in a locked com-
puter room has a higher degree of trust. Trust evaluation
is also based on the hardware and software security sur-
rounding the component. Associated with trust is describ-
ing the privilege level at which each executable component
runs. The privilege levels control the extent of access for
each component and, in the case of exploitation, the extent
of damage that it can accomplish directly. A complex but
crucial part of trust and privilege analysis is evaluating trust
delegation. By combining the information from the first two
steps, we determine what operations a component will exe-
cute on behalf of another component. The artifact produced
at this stage is a further labeling of the basic diagrams with
trust levels and labeling of interactions with delegation in-
formation. The coloring of nodes in Figure 1 is an example
of the results of this step.

Component evaluation:

The fourth step is to examine each component in depth. For
large systems, a line-by-line manual examination of the code
is infeasible, even for a well-funded effort. A key aspect of
our technique is that this step is guided by information ob-
tained in the first three steps, helping to prioritize the work
so that high-value targets are evaluated first. The work in

this step can be accelerated by automated scanning tools.
While these tools can provide valuable information, they are
subject to false positives, and even when they indicate real
flaws, they often cannot tell whether the flaw is exploitable
and, even if it is, whether it will allow serious damage. In
addition, these tools typically work most effectively on a lo-
cal basis, so flaws based on inappropriate trust boundaries
or delegation of authority are not likely to be found. There-
fore, these tools work best in the context of a vulnerability
analysis process. We describe our experience with such tools
in more detail in Section 4. The artifacts produced by this
step are vulnerability reports, perhaps with suggested fixes,
to be provided to the software developers.

A key question in the component analysis is when to stop?
In other words, how much analysis is enough? Exhaustive
formal analysis of the code is typically not affordable, let
alone feasible, so the amount of time spent on an assess-
ment becomes a cost-benefit trade-off. At some point in
the analysis, a careful examination will be completed on the
code involving the high-value assets that are reachable via
the attack surface. When this point is reached, then subse-
quent vulnerabilities that are found are likely to be of lesser
significance.

Dissemination of results:

Once vulnerabilities are reported, the obvious next step is
for the developers to fix them. However, once fixed, they
are confronted with some questions that can be difficult to
answer in a collaborative and often open-source world. Some
of these include: How do we integrate the update into our
release stream? (Do we put out a special release or part of
an upcoming one?) When do we announce the existence of
the vulnerability? How much detail do we provide initially?
If the project is open source, how do we deal with groups
that are slow to update? Should there be some community-
wide mechanism to time announcements and releases? Due
to a lack of space we do not answer these questions in this
paper, but we refer to the FPVA whitepaper [12] where we
address the issue of integrating vulnerability assessment into
the software development cycle.

3. SUMMARY OF RESULTS
The FPVA methodology was developed in response to a

need for an effective in-depth assessment methodology. As
we studied our first systems, we codified what worked and
continued to refine these techniques as we assessed addi-
tional systems. As a result, we believe that we have a reason-
ably mature approach that has resulted in several benefits.
First, as described in this section, we have made concrete
contributions to improving the security of several critical
middleware systems. Second, as described in Section 4, our
results have provided the foundation for a careful study of
the effectiveness of automated analysis tools. Third, our
techniques and results have laid the foundation for our on-
going research agenda based on developing formal charac-
terizations (and detection algorithms) for the more complex
vulnerabilities that we have found and for automating key
parts of the FPVA methodology.

One area of our success has been to apply FPVA to a va-
riety of Grid middleware. Cloud computing environments
share many of the same features and goals as Grid comput-
ing, and we are starting new assessments in this area. Here
we report on our application of FPVA to seven different

Table 1: Worst-case impact of defects discovered by project. Impacts allowed access to accounts on the
system or allowed a denial of service (DOS).

Project Root Acct Admin Acct Other Acct DOS Total
Condor 1 13 1 15
SRB 5 5
MyProxy 1 1 3 5
gLExec 3 1 1 5
Gratia Condor Probe 2 1 3
Condor Quill 6 6
CrossBroker 2 1 3
Total 6 20 5 11 42

systems written by different authors, and the assessments
carried out by a variety of analysts. Other assessments are
currently in progress. We describe the systems studied and
then summarize the kind of problems found.

3.1 Systems Studied
Condor is a widely-used batch workload management sys-

tem for high throughput computing. It provides a job queu-
ing mechanism, scheduling policy, resource matching, data
placement and staging, resource monitoring, resource man-
agement, and checkpointing. Its flexibility makes it the
system-of-choice in a variety of situations, from being used
to harness the CPU power of idle desktop or cluster nodes,
to building Grid-style computing environments.

We have also applied FPVA to:
Storage Resource Broker (SRB) [2], a storage management

system for Grid computing environments that can be in-
crementally deployed and provisioned. As is common with
storage servers, SRB has a metadata service for naming,
authentication, data location, and other attributes.

MyProxy [14], an X.509 public key infrastructure (PKI)
credential management system developed at the National
Center for Supercomputing Applications (NCSA). MyProxy
combines an on-line credential repository with a certificate
authority to allow users to store and manage, usually short
lived, X.509 proxy certificates.

GLExec [8], an identity switching service that allows a
Grid system to execute a remote user’s job so that the job
is isolated from the Grid middleware and from the jobs of
other users. This isolation is accomplished by running the
job with a user and group ID distinct from the middleware
and other jobs. GLExec functionality is similar to Apache
suEXEC [1] and was derived originally from that code.

Gratia Condor Probe [5], an Open Science Grid facility for
robust, scalable, secure and dependable grid accounting ser-
vices. The system consists of probes for acquiring account-
ing information about data transfers, storage allocation, site
availability, and job accounting from remote locations in a
network of one or more collector-reporting systems.

Condor Quill [9], an add-on to Condor developed at the
University of Wisconsin that expands and improves the effi-
ciency of data managing for the condor_q and condor_history

query utilities by storing the required information in a cen-
tral relational database.

CrossBroker [6], a resource management system for schedul-
ing parallel and interactive applications.

3.2 Vulnerabilities Discovered
The systems studied and vulnerabilities discovered are

summarized in Table 1. For each of the seven systems stud-
ied, we characterize the vulnerabilities by their impact. Most
of the vulnerabilities are of a serious nature in that they al-
low an attacker to gain access to resources such as data
or running code that should only be accessible to another
account in the system or the underlying operating system.
The impact is classified by the type of account that can be
compromised in the order of lessening severity: root account
(control everything on the host), admin account (control the
system under study), and other account (access data of other
unprivileged users). In cases where account privileges could
not be elevated, the vulnerabilities all resulted in a denial of
service (DOS) of the system.

The complete descriptions of the disclosed vulnerabilities
can be found in the Vulnerability Assessment section of the
MIST project web site [17].

The rest of this section presents a few types of vulnerabili-
ties that were repeatedly found while assessing the projects.

The first type of vulnerability is a frequently-found struc-
tural flaw, namely failure to properly check the properties
of a file name path, when the security of the application de-
pends on the properties being true. An example of this can
be found in CONDOR-2005-0004. In this vulnerability Con-
dor reads the contents of a file that is writable by the Condor
administrative user, and uses the contents of the file to de-
termine executables that are started as root, but there is no
check to make sure that only root could have created this
file. This allows the Condor administrative user to elevate
their privileges to the root account. This type of vulnerabil-
ity can be discovered by looking at the file accessed by the
system, how the contents are used, permissions and what
types of constraints exist on the files properties.

A second type of vulnerability that we found repeatedly
is the injection attack. Injections come in various forms and
occur where multiple strings are combined, and processed by
another component, but the next component does not parse
the text as intended. It is easy to locate the site where some
of these injections occur because common APIs are used to
cause the text to be processed. In other cases, the site is
not obvious. For instance, the system library function is a
common cause of command injections. Determining if the
call is actually exploitable can still be a difficult process as
it involves determining if user controlled data of the right
form can reach text passed to these APIs.

While scripting and SQL injections are well-known, we
found a more exotic case where a Condor log file containing
user supplied data was read by a Perl program that con-
structed a Python program that was then executed as root.
In this example, there is a high level flow of data from the

user to the Python script that is executed as root. The
Gratia Condor Probe, written in Perl, parses this Condor
log file, and uses the user supplied data directly to create
a Python string literal. A carefully crafted value can cause
Python to parse the string as a string plus additional Python
statements that are then executed. There is no facility in
existing tools to track this complex flow of data though files
and processes. Such a facility would likely improve the fi-
delity of the tool results.

These vulnerabilities are representative of the problems
discovered. They include vulnerabilities that are implemen-
tation bugs that are localized in a small section of the code,
and structural flaws that are not localized and require knowl-
edge that cannot be deduced directly from the code alone.
It should be possible for tools to discover many of the im-
plementation bugs, but it is unlikely a tool will be able to
discover structural flaws. The next section explores this fur-
ther.

4. COMPARISON WITH AUTOMATIC

TOOLS
Automated source code analysis tools are becoming in-

creasingly important as a means to reduce the incidence
of vulnerabilities in critical code. While these tools have
a strong record in finding problems, our experience with
in-depth analysis of middleware left us with two concerns.
First, were the automated tools able to find the more com-
plex and serious types of vulnerabilities? And, second, for
mature software systems, would they be able to distinguish
serious and exploitable problems from those that were less
significant?

We studied the effectiveness of automated source code vul-
nerability assessment tools by comparing such tools to the
results of applying our FPVA methodology to the Condor
system. This study differs from previous ones in that it is
not a comparison between automated tools; instead it com-
pares the automated tools to a thorough FPVA study of a
software system. The Condor vulnerabilities from the FPVA
assessment provided a confirmed reference set of serious vul-
nerabilities. Such a study is important for understanding the
limitations of the automated tools.

We found that while the automated tools are good at find-
ing certain types of problems, they have some significant lim-
itations. These limitations include reporting a large number
of errors, most of which do not have security implications or
are not exploitable (the false positive problem), and missing
many vulnerabilities with serious security implications (the
false negative problem).

A summary of the results of this study are presented in
this section, while the full details of this study appear in
[11].

We performed this study by applying two highly-regarded
commercial tools, Coverity Prevent and Fortify Source Code
Analyzer (SCA), to the Condor source code.

The most significant findings from our comparative study
were: 1) of the 15 serious vulnerabilities found in using
FPVA, Fortify found six and Coverity only one1. and all
the vulnerabilities discovered by the tools were simple im-

1note that we also have similar results from the use of vera-
code, ounce labs, and the most recent version of Fortify. the
release of the full details of these results is awaiting govern-
ment clearance, which should be available shortly.

plementation type defects, 2) both tools had significant false
positive rates with Coverity having a lower false positive rate
(the volume of these false positives were significant enough
to have a serious impact on the effectiveness of the analyst),
and 3) in the Fortify and Coverity results, we found no sig-
nificant vulnerabilities beyond those identified by our FPVA
study.

False positives are the defects that the tool reports, but
are not actually defects. Many of these reported defects
are items that should be repaired as they often are caused
by poor programming practices. Given the finite resources
in any assessment activity, these types of defects are rarely
fixed. Ideally, a tool is run regularly during the develop-
ment cycle, allowing the programmers to fix such defects as
they appear (resulting in a lower false positive rate). In re-
ality, these tools are usually applied late in the lifetime of a
system.

This comparison demonstrates the need for manual vul-
nerability assessment performed by a skilled human as the
tools did not have a deep enough understanding of the sys-
tem to discover all of the known vulnerabilities.

There were nine vulnerabilities that neither tools discov-
ered. Out of the remaining six vulnerabilities, Fortify did
find them all, and Coverity found one. We expected a tool
and even a simple tool to be able to discover these six vul-
nerabilities as they were simple implementation bugs.

The tools are not perfect, but they do provide value over
a human for certain implementation bugs or defects such as
resource leaks. They still require a skilled operator to deter-
mine the correctness of the results, how to fix the problem
and how to make the tool work better.

5. RELATED WORK
Vulnerability assessment of software is an active field in

both the research and commercial communities. In this sec-
tion, we review a related methodology, vulnerability archive
projects, and assessment tools.

5.1 Microsoft Methodology
The methodology that has the most in common with FPVA

is Microsoft’s threat modeling [10, 15]. It is aimed at iden-
tifying and rating the most likely threats affecting applica-
tions, based on understanding their architecture and imple-
mentation.

While Microsoft’s methodology is the closest to ours, there
is a key difference: after developing the architectural overview
of the application, the Microsoft methodology applies a list
of pre-defined and known possible threats, and tries to see
if the application is vulnerable to these threats. As a con-
sequence the effort is heavily biased towards finding known
vulnerabilities, and the vulnerabilities detected may not re-
fer to high value-assets. With FPVA, the component evalu-
ation is performed only on the critical parts of the system,
and we may be able to find vulnerabilities beyond a list,
such as those resulting from the interaction of two compo-
nents. In addition, under FPVA only threats that lead to
an exploit are considered as vulnerabilities.

There is also a philosophical difference. While we advo-
cated that FPVA should be performed by an assessment
team independent from the developers, Microsoft suggests
that the developers participate in threat identification. We
believe that these interactions can lead to a biased analysis
and may result in threats going undetected.

5.2 Automated Analysis Tools
Automated analysis tools are an important part of the

software development cycle. If they are applied to software
starting in the initial coding stages, they can help to prevent
many problems from appearing. Applying them later in the
development cycle can be helpful, but has more challenges.
These tools analyze the source code and report potential
defects such as problematic uses of the language or APIs,
programming style problems, potential buffer overflows, the
use of tainted data in an insecure fashion, null pointer deref-
erences, and improperly acquiring and releasing of memory.
As we discussed earlier, the best of these tools have signifi-
cant limitations. We advocate continued comparison studies
of these tools, especially with reference to their ability to
detect known significant vulnerabilities and avoiding over-
whelming the analyst with false positives.

6. CONCLUSION
Our work in vulnerability assessment has produced several

key accomplishments and laid the foundation for our future
efforts in securing Grid and Cloud computing environments.

Among our accomplishment are:

• Development of the analyst-centric First Principles Vul-
nerability Assessment methodology: FPVA has the im-
portant characteristic that it focuses on paths to the
high value assets in a software system, and is not de-
pendent on working from known vulnerabilities.

• Applied FPVA to several key middleware systems: These
assessments include Condor, Storage Resource Bro-
ker, MyProxy, gLExec, Gratia, Quill, and CrossBro-
ker, with ongoing studies of several more systems. These
assessment identified many critical vulnerabilities, re-
sulting in a direct improvement of the security of this
software.

• Increased the understanding of the effectiveness of au-
tomated code analysis tools: Previous studies of such
tools focuses on comparing such tools to each other,
while not referencing a known set of serious vulnera-
bilities. Our study showed a major gap between what
a trained analyst can do and what can be produced
by the automated tools. These results provide a con-
crete direction for improving the capabilities of future
automated tools.

Our ongoing work includes assessing additional Grid and
Cloud systems, increasing the effectiveness of the FPVA an-
alyst, and working to improve the automated assessment
tools technology.

Acknowledgments

This research funded in part by Department of Homeland
Security grant FA8750-10-2-0030 (funded through AFRL),
NATO grant CLG 983049, National Science Foundation grant
OCI-0844219, the National Science Foundation under con-
tract with San Diego Supercomputing Center, National Sci-
ence Foundation grants CNS-0627501 and CNS-0716460, and
MEC-MICINN Spain under contract TIN2007-64974.

Our special thanks to TASC Inc. for their help in validat-
ing and extending our study of automated analysis tools.

7. REFERENCES
[1] Apache Software Foundation. Apache suEXEC.

http://httpd.apache.org/docs/1.3/suexec.html.

[2] C. Baru, R. Moore, A. Rajasekar, and M. Wan. The
SDSC Storage Resource Broker. In Conference of the
Centre for Advanced Studies on Collaborative Research
(CASCON), Toronto, Ontario, Canada, Nov.–Dec.
1998.

[3] R. A. Clarke and R. K. Knake. Cyber War: The Next
Threat to National Security and What to Do About It.
Ecco, First edition, 2010.

[4] Coverity, Inc. http://www.coverity.com.

[5] Fermilab. GRATIA, a resource accounting system for
OSG, CD Document 2070-v1.

[6] E. Fernández, E. Heymann, and M. A. Senar.
Resource Management for Interactive Jobs in a Grid
Environment. In 2006 IEEE International Conference
on Cluster Computing, Barcelona, Spain, Sept. 2006.

[7] Fortify Software, Inc. http://www.fortify.com.

[8] D. Groep1, O. Koeroo1, and G. Venekamp. gLExec:
Gluing Grid Computing to the Unix World. In
International Conference on Computing in High
Energy and Nuclear Physics (CHEP), volume 119 of
Journal of Physics: Conference Series, Victoria,
British Columbia, Canada, Sept. 2007. IOP Publishing
Ltd.

[9] J. Huang, A. Kini, E. Paulson, C. Reilly, E. Robinson,
S. Shankar, L. Shrinivas, D. Dewitt, and J. Naughton.
An overview of Quill: A Passive Operational Data
Logging System For Condor. Computer Sciences
Technical Report, University of Wisconsin, May 2007.
http://www.cs.wisc.edu/condordb.

[10] L. Kohnfelder and P. Garg. The Threats to Our
Products. Microsoft Interface, Microsoft Corporation,
Apr. 1999.

[11] J. A. Kupsch and B. P. Miller. Manual vs. Automated
Vulnerability Assessment: A Case Study. In First
International Workshop on Managing Insider Security
Threats (MIST), West Lafayette, IN, USA, June 2009.

[12] J. A. Kupsch, B. P. Miller, E. César, and E. Heymann.
First Princples Vulnerability Assessment. MIST
Project Technical Report, University of Wisconsin,
Sept. 2009.
http://www.cs.wisc.edu/mist/papers/VA.pdf.

[13] M. Litzkow, M. Livny, and M. Mutka. Condor — A
Hunter of Idle Workstations. 8th Intl Conf. on
Distributed Computing Systems, pages 104–111, June
1988.

[14] J. Novotny, S. Tuecke, and V. Welch. An Online
Credential Repository for the Grid: MyProxy. In
Tenth International Symposium on High Performance
Distributed Computing (HPDC), Redondo Beach, CA,
USA, Aug. 2001.

[15] F. Swiderski and W. Snyder. Threat Modeling.
Microsoft Press, 2004.

[16] D. Thain, T. Tannenbaum, and M. Livny. Distributed
Computing in Practice: the Condor Experience.
Concurrency — Practice and Experience,
17(2-4):323–356, 2005.

[17] University of Wisconsin. MIST (Middleware Security
and Testing) project. http://www.cs.wisc.edu/mist.

