
Introduction to Software Security

Chapter 5.5:

FPVA Step 4

Component Analysis

Elisa Heymann
elisa@cs.wisc.edu

Barton P. Miller
bart@cs.wisc.edu

DRAFT — Revision 1.0, February 2024.

Objectives

● Learn to think like an analyst.
● Understand the fourth step of FPVA, the component evaluation.
● Start finding vulnerabilities in real software.

Motivation

In the previous modules you learned about FPVA steps 1–3. The goal was to get the big picture of the
system that you are assessing. That means understanding the architecture of the system, the different
resources the system uses, the privilege levels for the different components, and who owns and accesses
the system’s resources. Once you have completed these first steps, you are ready to start looking for
vulnerabilities. The motivation for these first steps was to focus your attention on the critical parts of the
system so that you will be looking for vulnerabilities affecting the high value assets. This approach can
help you to avoid wasting your time assessing parts of the system that are less likely to contain important
vulnerabilities. Ideally you would have the time and resources to assess the whole system, but we must be
realistic: that does not happen even in well funded efforts.

This chapter will guide you on how to start looking for vulnerabilities, keeping in mind that a
vulnerability is identified as such only if you can build an exploit for it. So we are talking about confirmed
vulnerabilities instead of potential vulnerabilities. Once you find a vulnerability (congratulations), you
will write a vulnerability report for the vulnerability you found, as explained in Module 5.6, FPVA Step 5.

To look for the vulnerabilities we describe in this chapter, you will have to experiment with the system
(messing around with it and hopefully breaking it) and inspect the source code. We suggest a variety of
approaches for each of the different categories of vulnerabilities we cover, and we illustrate some of the
results with vulnerabilities that we have found when applying FPVA to real systems. Note that the list of
issues we suggest is just a starting point. Every system is different. However, after finishing looking for
the problems discussed in this chapter, you will be ready to go beyond and look for vulnerabilities that are
specific to the system you are assessing. So let’s get started.

© 2024 Elisa Heymann, Barton P. Miller.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

https://creativecommons.org/licenses/by-nc-sa/4.0/


Roadmap of Vulnerabilities Discussed in this Chapter

The rest of this chapter covers a variety of vulnerabilities that we have found in some of our real world
software assessments. Each section is organized by the type of vulnerability found. In each section is a
brief description of the vulnerability then a subsection for each high level approach (technique) used to
find the vulnerability. Also included are example vulnerabilities that illustrate the vulnerability type and
approach to finding it. The table below serves as a roadmap to the material covered in this chapter.

High Level Approach

Authorization Issues X X X

Issues Found by Tools X X X
Cross Site Request
Forgery (CSRF) X X X

Abusing Authentication
Mechanism X X X

Denial of Service X

Too Much Information X X

Exposed traffic X

Injections: SQL, XSS,
Code, Command, XML,
Path name

X X X

Buffer Overflow X X X

© 2024 Elisa Heymann, Barton P. Miller. All rights reserved. 2



Authorization Issues

Authorization refers to what a user is allowed to do in a system. A system is vulnerable if resources (such
as files) have incorrect permissions. Privilege escalation allows a user to perform operations beyond their
intended privilege level, and that is another example of an authorization problem.

High level approach: Permissions inspection

Check permissions for log files and for configuration files. The permissions must match the authorized
user/group. No user should be able to read files they are not authorized to read, which is a violation of
confidentiality. In the same way, no user should be able to write files that they are not authorized to read,
which is a violation of integrity. Given that logs files may contain sensitive information such as
passwords, or session identifiers, reading such files could have serious consequences.

Example of a vulnerability from Open XDMoD: The XDMoD software logged the session
cookies for every request it received in the process of checking their validity. The log file was
globally readable and could allow an attacker to read the cookies and then hijack active sessions.

Check permissions for executable files (application binaries). You need to pay special attention to which
users are allowed to execute such files. Also check that the UID/GID for the running processes are the
intended ones. If a process is running as user root, it will be able to access any resources in the system.

Example of a bug from Open onDemand:When requesting Open onDemand to launch a new
program, the file that contained the script to launch the program did not have execute permission,
so the launch failed.

Example of a bug from Open XDMoD: Open XDMoD has a collection of utility scripts that are
used only by the system administrator. However, the files containing these scripts had incorrect
permissions that would allow any user to execute them.

High level approaches: Focused code inspection, Experiment with the system

Try to find where privilege escalation can happen. For example, check if you can tamper with the
parameters of a setuid call. Also check if you can tamper with files that contain passwords or other1

kinds of credentials. Also check if a user can attack other users running on the same system. This type of
attack includes a user accessing (for example removing) processes or container images that belong to
another user. The processes from the different users should be isolated. Even with virtual machines or
cgroups , it is important to make sure that there is sufficient isolation. File systems should be properly2

mapped and isolated.

Example of a vulnerability from Singularity: Gaining root access inside of a container allowed for
root access on the underlying host machine. A user executing as root inside the container can
mount the host root file system, allowing it to modify the /etc/passwd file and set the root
password on the host, allowing privilege escalation on the host machine.

2 https://en.wikipedia.org/wiki/Cgroups
1 https://man7.org/linux/man-pages/man2/setuid.2.html

© 2024 Elisa Heymann, Barton P. Miller. All rights reserved. 3



Example of a vulnerability from Custos: Any user with access to the Custos REST API can
change the password of any other user. This is a consequence of not having a mechanism in place
to verify the source of a password reset request.

Example of a vulnerability from Custos: In Custos, a tenant refers to an application that is
controlled by Custos. Such tenant applications have an administrator and regular users. Any valid
user could update the metadata of any tenant in Custos. This metadata includes the tenant
administrator information, thus any valid user can make themselves the administrator of any
tenant in Custos, or simply deny service to the valid administrator.

Example of a vulnerability from HTCondor: Different programs from different users running on
the same host belonged to the same user ID. Therefore any of those programs could kill the
programs belonging to other users.

Abuses to authorization can result from improper validations. Check that before executing any operation,
a server performs the necessary validations to ensure that the operation is executed on behalf of a user
who is authorized. Validations on the client side are important, but it is even more important that those
validations also happen on the server side. Software systems should have common code to do the
checking to prevent multiple implementations of the code performing the validation, which is more error
prone and difficult to maintain.

Example of a vulnerability from CATOS_WebIP: Improper validation allows users to view
information belonging to other users. The client interface restricts a user to viewing only items
belonging to that specific user, however the server does not perform that validation. Instead, the
server simply searches the database for matches without any sanitization.

Example of a vulnerability from CATOS_WebIP: Improper input validation in the server allows
attackers to illegally download, upload, overwrite, or delete files throughout the server's file
system. Operating System file permissions limit this vulnerability to affecting only files that are
accessible to the owner of the server process (e.g., if the server process is started by the SYSTEM
Windows user, then all files are vulnerable).

Issues Found by Tools

Both static analysis tools and dependency tools can provide useful information in finding vulnerabilities
in a program. In addition, dynamic techniques such as fuzz random testing can expose execution errors.
When using such tools, you will have to determine if the reported problems can lead to vulnerabilities.

Static analysis tools scan the source code or bytecode of a program and report on weaknesses found in the
code. While some of these reported weaknesses may be vulnerabilities, the tools can also generate many
false positives, so you will need to carefully analyze the output of such tools.

Dependency analysis tools will tell the analyst about security issues affecting the software supply chain.

Finally fuzz testing tools help debugging the system, and some of the bugs they find may be security
related.

© 2024 Elisa Heymann, Barton P. Miller. All rights reserved. 4



Note that running just one static analysis tool or one dependency analysis tool is not enough, and can give
a false sense of security. In Module 6, we elaborate on static analysis and dependency tools and in Module
7, we address fuzz testing.

High level approach: Run standard static analysis, dependency, and fuzz testing

tools

Modern software is not built from scratch but on top of usually complex software stacks. You need to find
outdated and vulnerable dependencies in the software supply chain, using dependency check tools. Also,
it is important to use automated assessment tools to find vulnerabilities in the code. Note that this is not a
silver bullet that will find all the vulnerabilities in your code, but it is a good starting point. Furthermore,
it is recommended to use Fuzz testing to make your system crash or hang, and then use a debugging tool
to identify the problem.

Example of a vulnerability from Custos: The code that implements Custos’ Core Services and
Integration Services have multiple dependencies with known vulnerabilities. Several of these
vulnerabilities are considered critical.

Cross Site Request Forgery (CSRF)

High level approach: Message interception/Communication monitoring, Experiment

with the system

Communications should be encrypted. A very first step is to check if HTTPS is used so messages are
encrypted. Instead, if HTTP is used, attackers can use tools to intercept and modify traffic, and therefore
be able to submit any requests they want.

Try to submit a request to the server without using the client attack surface (visible fields). This means
attacking the application using a REST client to access parts of the application that are not accessible
through the UI. Watch the browser traffic and try to replicate a request using curl.

Example of a vulnerability from Custos: Any user with access to the Custos REST API can
change the password of any other user. This is a consequence of not having a mechanism in place
to verify the source of a password reset request. The Custos web server, as with any web server,
receives requests, and those requests can come from the client user interface or from a command
line tool such as curl. The server needs to validate the requests it receives before serving them.

Example of a vulnerability from Custos: In Custos, a tenant refers to an application that is
controlled by Custos. Such tenant applications have an administrator and regular users. Any valid
user could update the metadata of any tenant in Custos. This metadata includes the tenant
administrator information, thus any valid user can make themselves the administrator of any
tenant in Custos, or simply deny service to the valid administrator. This vulnerability comes from
the fact that the service responsible for updating the metadata does not check that the session ID
corresponds to the administrator of the tenant.

© 2024 Elisa Heymann, Barton P. Miller. All rights reserved. 5



High level approach: Focused code inspection

You need to understand how sessions are managed in your system. Weak session management results in
attackers being able to generate fake requests. So you need to check how session identifiers are generated.
Nonces is a mechanism that prevents CSRF, therefore you need to check if nonces are used in the
requests/responses. In addition check if sessions time out.

Abusing the Authentication Mechanism

High level approach: Multiple attempts (stress attempts)

Perform a brute force attack to try to get another user’s credentials (password), and check if there is a
limit to the number of attempts for relevant operations, such as login attempts.

Example of a vulnerability from Custos: An unauthorized user can find valid user credentials
through a dictionary or brute force attack on the login endpoint of the Custos REST API. There is
no limit to the number of invalid login attempts that can be made by a user, thus any unauthorized
user can make unlimited login attempts until they find a set of valid credentials. Additionally, the
ability to execute unlimited login attempts creates the potential for a denial of service attack. Each
unsuccessful login attempt generates logs on the Custos server that, if not handled appropriately,
can fill the disk partition.

High level approaches: Focused code inspection, Stress input, Focused file

inspection

Check if a user can impersonate another user, for example by getting access to some other user’s token or
certificate that grants access. Furthermore, check if any information used to generate credentials is
unprotected, for example stored in environment variables.

Example of a vulnerability from CREAM: A malicious user can, under the right conditions,
replace another user’s proxy certificate with their certificate. This proxy certificate is used for the
user’s access to a program execution service running on another computer. New requests
submitted by the regular user to this execution service will use the malicious certificate and the
regular user’s programs will execute under the identity of the attacker giving the attacker full
control over the programs and the data used by those programs. This vulnerability was caused by
weak permissions on the directory storing proxy certificates.

Example of a vulnerability from Tapis: Example embargoed until July 1, 2024.

You need to understand what protocol is used for authentication. If it is not a well-known protocol, try to
dissect it to find flaws. Even if it is a well known protocol, you need to check that the implementation of
the protocol is also a well-known one. Otherwise there are chances to find vulnerabilities in the
implementation.

If tokens are used, check if the system implements token rotation. This allows us to detect token theft.
Also investigate if passwords and authorization codes are being hashed.

© 2024 Elisa Heymann, Barton P. Miller. All rights reserved. 6



Denial of Service (DoS)

High level approach: Stress load

An attacker causing a DoS will prevent the system from being available to valid users. To examine if the
system is vulnerable to a DoS, try to exhaust the available resources, such as filling up the free space on
the file system partition by continuously writing to a log file, or spawn processes continuously. As part of
this, conduct stress tests involving repeated requests and more demanding requests, and assess the use of
resources (memory, disk, CPU).

Check for “leftover” processes, such as zombie processes or a container running in the background. If3

those are found, try to generate many of them.

Example of a vulnerability from Singularity: Singularity allows users to run containers in the
background using the singularity run command and the shell “&” operator. A user can execute a
container that, when brought back into the foreground, can only be killed by the user or root from
another window.

Example of a vulnerability from Open XDMoD: Every time a request was made to Apache, an
entry was logged to a specific log file. By repeatedly sending requests to Apache (even invalid
ones), an attacker can fill up the free space on the file system partition causing a DoS.

Too Much Information (TMI)

High level approach: Focused code inspection, Experiment with the system

You need to inspect the code for exception handling and check if:

A. Exceptions are correctly used. The system must include exception handling for dealing with
abnormal conditions. Make sure that the error messages printed do not disclose information about
internals of the system. It is also important to check that messages intended for the debugging
stage of the software are removed from the production version of the product.

B. For SQL queries, check if too many tuples are returned for certain queries. For example, when
checking if there is a password match in a table, only one entry should be returned.

Example of a bug from Open XDMoD: When authenticating a request, either from the session
cookies or a provided user name and password, XDMoD performs a query to select all entries
from the database that match the given credentials. This operation returns a list of tuples (table
rows), not necessarily one. In both checking the session cookies and verifying the user’s
password, the only verification performed on the number of types is whether the list is empty or
has greater than zero tuples. If it has at least one tuple, then the first one is assumed to be the
intended one. If there was an error in the authentication database or if there was some other
related attack (such as a SQL injection), the query might incorrectly return more than one tuple.

3 A zombie process is one that has exited but its kernel state has not yet been cleaned up because no parent process
has checked its exit status. You can find more details at https://en.wikipedia.org/wiki/Zombie_process.

© 2024 Elisa Heymann, Barton P. Miller. All rights reserved. 7



In addition you will need to experiment with the system and see the error messages you get when after
the system executes a request that fails. Also pay attention in case some of the error messages were
intended for debugging purposes, but ended up in the released (and deployed) software.

Exposed Network Traffic

High level approach: Message interception/communication monitoring

Start by checking if the protocol used is HTTP instead of HTTPS. If it is HTTP, intercept the network
traffic between different components. For that you will need to use a tool to read the unencrypted traffic
(attack to confidentiality), to modify/inject traffic (attack to integrity), and to destroy traffic (attack to
availability).

Example of a vulnerability from Open XDMoD: The default configuration of Open XDMoD does
not encrypt HTTP traffic. This misconfiguration allows attackers to monitor all traffic between
the server and the client. As a result, passwords submitted on login are sent in plain text, and can
be stolen.

Example of a vulnerability from Open onDemand: It was possible to intercept the unencrypted
traffic between some of the processes that implement the functionality of Open onDemand.
Because the Open onDemand configuration at the time of the assessment had these connections
on internal networks, that was not an issue of immediate concern. However, if a future
configuration change moves one of the involved processes out of the same protection
environment then the associated connection would become vulnerable.

Injections: SQL, XSS, Code, Command, XML, Path Name

High level approach: Stress input, Focused code inspection, Experiment with the

system

● SQL injections: Try to abuse input fields (attack surface), and include SQL queries in an input
field. Also inspect the path from the attack surface to potential impact surfaces. To do that follow
the data flow in the code, starting at the attack surface.

● XSS: Try to abuse input fields (attack surface), and include Javascript code in the input fields.
● Code injections: Identify if any user supplied input ends up being executed. To find such cases,

inspect the path from the attack surface to potential impact surfaces, following the data flow in
the code, starting at the attack surface.

● Command injections: Try to abuse input fields (attack surface), and include metacharacters (such
as “;” or “&”) and commands in the input fields.

● XML injections: If the application receives XML input, try to modify that XML input to attack the
parser in different ways: XML bombs, XXE attacks (to cause DoS, or disclosing sensitive data).

● Path injections: If the application requests a path name, use “.” and “..” in the pathname you
provide to try to escape any sandbox, or safe directory, or fake root directory. In Windows
systems, provide as input a path name containing “/” as the separator. Inspect the code and find
the name of the safe directory used, and provide a file name with exactly that name. Inspect the

© 2024 Elisa Heymann, Barton P. Miller. All rights reserved. 8



path from the attack surface to potential impact surfaces. To do that follow the data flow in the
code, starting at the attack surface.

Example of a vulnerability from Tapis: Example embargoed until July 1, 2024

Example of a vulnerability from Tapis: Example embargoed until July 1, 2024.

Buffer Overflow (or Unexpected Behaviors Related to Strings)

High level approach: Stress input, Experiment with the system, Focused code

inspection

Through an input field, provide unexpected input, such as code, a very long input, input with
metacharacters, long integers, and negative numbers.

Example of a bug from Open onDemand: There were multiple issues associated with handling
unusual inputs, causing unintended changes to the webpage being displayed. As a first example, a
long job name resulted in a misalignment of different elements (text, buttons, and links) on the
webpage, and as a consequence some elements are then inaccessible. A second example is when
asking Open onDemand to create a new directory, entering invalid characters could cause
unintended and bizarre directory names, such as the following name (including all metacharacters
such as the quotation marks).

” title=”script>” draggable=”true”>script>

Check if the received input is sanitized. In case of server/client applications, check if inputs are only
sanitized/validated on the client side. To do that inspect the code on the server side and see if it includes
validations. Check in the code for any input that is not sanitized/validated.

Example of a bug from Open XDMoD: Open XDMoD allows a user to update several fields of the
portal user database, including first name, last name, email, and password. While client side
validation of the database fields occurs before the requests are sent, there is no server-side
validation of the first name, last name, or email fields. Since the database schema restricts the
length of these fields, the lack of server-side validation forces the database to truncate the values.
This truncation can lead to malformed email addresses.

Summary

FPVA is a methodology that allows an analyst to find vulnerabilities affecting the high value assets in a
software system. It is a human-centric methodology consisting of five steps. This chapter covered FPVA
Step 4, Component Analysis. The goal is, after understanding the big picture of the system in steps 1–3,
to find and exploit concrete vulnerabilities.

● Learn to think like an analyst.
● Understand the fourth step of FPVA, the component evaluation.
● Get a starting point for finding vulnerabilities in your system.

© 2024 Elisa Heymann, Barton P. Miller. All rights reserved. 9



Exercises

1. When performing an in-depth vulnerability assessment, why should we not just start with FPVA
Step 4 (why are Steps 1-3 necessary)?

2. (a) We consider a vulnerability only when we have been able to build an exploit for it. Why
should we not report on a vulnerability we can believe is there, but for which we did not manage
to construct an exploit?
(b) Why might we report on a vulnerability for which we have not (could not) construct an
exploit?

3. Think about a software system with which you have experience. List what kind of specific issues,
different from the ones described in his chapter, you would look for in your assessment.

© 2024 Elisa Heymann, Barton P. Miller. All rights reserved. 10


