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Abstract

Although neural networks have been used to develop highly accurate classifiers in numerous
real-world problem domains, the models they learn are notoriously difficult to understand.
This thesis investigates the task of extracting comprehensible models from trained neural
networks, thereby alleviating this limitation.

The primary contribution of the thesis is an algorithm that overcomes the significant
limitations of previous methods by taking a novel approach to the task of extracting com-
prehensible models from trained networks. This algorithm, called Trepan, views the task
as an inductive learning problem. Given a trained network, or any other learned model,
Trepan uses queries to induce a decision tree that approximates the function represented
by the model. Unlike previous work in this area, Trepan is broadly applicable as well as
scalable to large networks and problems with high-dimensional input spaces. The thesis
presents experiments that evaluate Trepan by applying it to individual networks and to
ensembles of neural networks trained in classification, regression, and reinforcement-learning
domains. These experiments demonstrate that Trepan is able to extract decision trees that
are comprehensible, yet maintain high levels of fidelity to their respective networks. In prob-
lem domains in which neural networks provide superior predictive accuracy to conventional
decision tree algorithms, the trees extracted by Trepan also exhibit superior accuracy, but
are comparable in terms of complexity, to the trees learned directly from the training data.

A secondary contribution of this thesis is an algorithm, called BBP, that constructively
induces simple neural networks. The motivation underlying this algorithm is similar to
that for Trepan: to learn comprehensible models in problem domains in which neural
networks have an especially appropriate inductive bias. The BBP algorithm, which is based
on a hypothesis-boosting method, learns perceptrons that have relatively few connections.
This algorithm provides an appealing combination of strengths: it provides learnability
guarantees for a fairly natural class of target functions; it provides good predictive accuracy
in a variety of problem domains; and it constructs syntactically simple models, thereby
facilitating human comprehension of what it has learned.

These algorithms provide mechanisms for improving the understanding of what a trained
neural network has learned.
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Chapter 1

Introduction

The ability to learn from examples is an important facet of intelligence, and in the last

decade has been an especially fertile area of study for researchers in artificial intelligence,

statistics, cognitive science, and related fields. Algorithms that are able to learn inductively

from examples have been applied to numerous difficult, real-world problems of practical

interest (Widrow et al., 1994; Langley & Simon, 1995). The application of inductive learning

algorithms is usually driven by two underlying goals: performance and discovery. In the first

case, the goal is to use a learning method to induce a model that can be used to perform some

task of interest. For example, the ALVINN system (Pomerleau, 1993) has learned to steer

a motor vehicle, and the GRAIL system (Uberbacher et al., 1993) has learned to recognize

genes in uncharacterized DNA sequences. As illustrated by these cases, inductive learning

methods can often learn to perform tasks that we do not know how to program explicitly, or

that are too difficult and time-consuming to program explicitly. Another reason to make use

of inductive learning methods is for the purpose of gaining insight into a collection of data

by building a descriptive model of it. In many cases the models constructed by inductive

learning algorithms are humanly comprehensible and thus can lead to a better understanding

of the problem domain. Inductive learning with a focus on comprehensibility is a central

activity in the growing field of knowledge discovery in databases and data mining (Fayyad

et al., 1996). Of course, it is often the case that a learning method is applied in a given

domain for both of these purposes: to construct a system that can perform a useful task,

and to get a better understanding of the available data.

1



2

Given the goals of performance and discovery, two of the criteria that are most often

used to evaluate learning systems are the predictive accuracy and the comprehensibility of

their learned models. Predictive accuracy (also termed generalization), which is usually the

predominant criterion, refers to how well a given model accounts for examples that were

not used in inducing the model. Comprehensibility refers to how easily we can inspect and

understand a model constructed by the learning system. It is often the case, however, that

the learning method which constructs the model with the best predictive accuracy is not

the method that produces the most comprehensible model. Neural networks, for example,

provide good predictive accuracy in a wide variety of problem domains, but produce models

that are notoriously difficult to understand. In many of the problem domains for which neural

networks (and other similarly opaque systems) provide good predictive accuracy, however, it

is desirable to be able to understand the model induced by the learning system. This thesis

explores the following question: can we take an arbitrary, incomprehensible model produced

by a learning algorithm, and re-represent it (or closely approximate it) in a language that

better facilitates comprehensibility?

1.1 Inductive Learning

Generally speaking, there are three types of inductive learning settings:1 supervised learning,

unsupervised learning, and reinforcement learning. In supervised learning, the learner is given

a set of training examples of the form 〈~x, y〉, where y represents the variable that we want the

system to predict, and ~x is a vector of values that represent features thought to be relevant

to determining y.2 The goal in supervised learning is to induce a general mapping from ~x

vectors to y values. That is, the learner must build a model, ŷ = f(~x), of the unknown

function, f , that allows it to predict y values for previously unseen examples. An induced

model is often referred to as a hypothesis.

In unsupervised learning, the learner is given a set of training examples but each example

1In addition to inductive learning, there is also a field of study called analytical or speedup learning.
Unlike inductive learning, which is concerned with systems that learn fundamentally new things, analytical
learning concentrates on systems that learn to improve the efficiency of what they already know how to do.

2There are also supervised learning algorithms that induce relations (Quinlan, 1990; Muggleton &
DeRaedt, 1994), as opposed to functions, from examples.
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consists only of the ~x part; it does not include the y value. The goal in unsupervised learning

is to build a model that accounts for regularities in the training set. The nature of the models

constructed by unsupervised algorithms varies greatly from method to method. For example,

there are unsupervised methods that explain for their training data by estimating probability

distribution functions (e.g., Silverman, 1986), constructing hierarchical categorizations (e.g.,

Fisher, 1987), and reducing the data to a lower dimensional space that accounts for most of

its variance (e.g., Jolliffe, 1986).

Reinforcement learning involves a task that lies in between supervised and unsupervised

learning. A reinforcement learner operates in a dynamic environment, and it may take

actions that influence the environment. The learner may also measure its environment, and

thus it has access to a set of ~x vectors. The learner, however, is not given a y value for

each ~x, but instead is periodically given a scalar reinforcement signal that is indicative of

its performance. The goal is learn what action to take (a policy) for any given ~x in order to

maximize some long-run measure of reinforcement.

For the most part, the work presented in this thesis is concerned with supervised learning.

More specifically, the focus of this thesis is on supervised classification learning (or concept

learning). In classification learning, the task is to predict a discrete-valued ŷ for a given ~x.

In other words, each ~x is assigned to one of a specified set of classes. In regression learning,

in contrast, the task is to predict a continuous-valued ŷ for a given ~x. Although the primary

focus is on classification, the tasks of unsupervised learning, regression, and reinforcement

learning all make an appearance in this thesis. The algorithm presented in Chapter 3 has

a component that uses an unsupervised learning method, and the empirical evaluation of

this algorithm presented in Chapter 4 presents experiments in the context of regression and

reinforcement-learning tasks.

1.2 Evaluation Criteria for Learned Models

Typically the most important consideration in inductive learning is to induce a model that

has a high level of predictive accuracy. For supervised learning, this means that we want

a model that is able to accurately predict the y value for an ~x drawn from the underlying
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distribution of examples in the world. Of course, it is trivially easy to predict the correct

y value (or the Bayes-optimal y value in noisy problem domains) for examples that were in

the learner’s training set. Thus, we are usually concerned with how well the model does at

predicting y values for examples that were not in the training set.

Often the comprehensibility of learned models is also an important consideration. That

is, does the learning algorithm encode its model in such a way that it may be inspected and

understood by humans? The importance of this criterion is argued by Michalski (1983) in

his comprehensibility postulate:

The results of computer induction should be symbolic descriptions of given

entities, semantically and structurally similar to those a human expert

might produce observing the same entities. Components of these descrip-

tions should be comprehensible as single ‘chunks’ of information, directly

interpretable in natural language, and should relate quantitative and qual-

itative concepts in an integrated fashion. (pg. 122)

There are a number of reasons why comprehensibility is an important criterion.

• Validation. In order to gain confidence in the performance of a learning system,

its users often want to know how it arrives at its decisions. The ability to inspect a

learned hypothesis is important in such domains. It is an especially important criterion

in domains, such as medical diagnosis (e.g., Wolberg et al., 1994), in which the system

occupies a position of trust.

• Discovery. Learning systems may also play an important role in the process of scien-

tific discovery. A system may discover salient features and relationships in the training

data whose importance was not previously recognized. If the hypotheses formed by the

learner are comprehensible, then these discoveries can be made accessible to human

review (e.g., Hunter & Klein, 1993).

• Explanation. In some domains, it is not necessary to have a complete description of

the learning system’s induced model, but it is desirable to be able to explain classifica-

tions of individual examples (Gallant, 1993). If the learned hypothesis is understand-

able in such a domain, then it can be used to produce explanations of classifications



5

made for particular cases.

• Improving predictive accuracy. The feature representation used for a learning task

can have a significant impact on how well an algorithm is able to learn and generalize

(Flann & Dietterich, 1986; Craven & Shavlik, 1993c). Learned models that can be

understood and analyzed may provide insight into devising better feature representa-

tions.

• Refinement. Learning algorithms have been used to refine approximately-correct

domain theories (Pazzani & Kibler, 1992; Ourston & Mooney, 1994; Towell & Shavlik,

1994). An approximate domain theory is a incomplete description of how to solve the

problem at hand. In order to complete the theory-refinement process, it is important to

be able to express, in a comprehensible manner, the changes that have been imparted

to the theory during learning.

Another consideration that is sometimes important when selecting a learning method is

the flexibility of the language used by the algorithm to represent its hypotheses. Specifically,

it is desirable for learning methods to represent their models using declarative representations

in which the model is not restricted to being used by a particular procedure for a particular

task, but instead can be used by different procedures in different contexts. There are several

reasons why the flexibility of learned hypotheses is sometimes an important consideration.

First, one might want to transfer some part of the solution learned for one task to the process

of learning a solution for a related task (Pratt et al., 1991; Caruana, 1996; Thrun, 1996).

Such a transfer can sometimes speed the rate of learning, or lead to better solutions in the

second task. The flexibility of a representation is important in the context of transfer because

it can determine the selectivity with which learned knowledge can be transferred.

A second reason to prefer learning algorithms which produce flexible representations is

that one might want to selectively edit and use parts of a learned hypothesis. For example,

the calendar-management system developed by Mitchell et al. (1994) operates in an envi-

ronment in which the target concepts vary with time. For this reason, the authors chose to

use learning methods that produce hypotheses that can be decomposed into distinct rules

representing predictions for specific contexts. Such a representation enables them to evaluate
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the performance of learned hypotheses at a fine level of granularity, and to selectively replace

parts of learned hypotheses as time passes and the target concepts evolve.

A third reason to be concerned with representational flexibility is that one might want to

integrate learned knowledge with existing software systems. For example, in order to apply

a learned model to a large body of data, one might want to translate a learned hypothesis

(or part of one) into a standard query language so that it can be used to query a database

(Fayyad et al., 1996; Pazzani et al., 1996).

In addition to predictive accuracy, comprehensibility, and representational flexibility,

there are other criteria that are often important considerations when evaluating a learning

algorithm or the hypotheses it produces. These criteria include the efficiency of the learning

algorithm in inducing hypotheses, the efficiency of the algorithm in classifying new examples,

and the ease with which the algorithm can adapt a current hypothesis to newly acquired

training examples (i.e., is the algorithm incremental). For the most part, I am not concerned

about these criteria when evaluating learning algorithms in this thesis, and instead focus

primarily on predictive accuracy and comprehensibility.

1.3 Inductive Bias and Hypothesis Representations

Given a fixed set of training examples, there are infinitely many models that could account for

the data. Every learning algorithm has an inductive bias that determines the models that it is

likely to return (Mitchell, 1980). There are two aspects of the inductive bias of an algorithm:

its restricted hypothesis space bias and its preference bias. The restricted hypothesis space

bias refers to the constraints that a learning algorithm places on the hypotheses that it

is able to construct. For example, the hypothesis space of a perceptron is limited to linear

discriminant functions (Minsky & Papert, 1969). The preference bias of a learning algorithm

refers to the preference ordering it places on the models that are within its hypothesis space.

For example, most learning algorithms initially try to fit a simple hypothesis to a given

training set and then explore progressively more complex hypotheses until they find an

acceptable fit.

There is no universally “best” learning algorithm (Wolpert, 1995). That is, there is no
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learning method that provides superior predictive accuracy for all problems. Therefore, often

one of the tasks involved in tackling a learning problem is to try to select the algorithm with

the most suitable inductive bias for the problem. This is typically done by estimating the

predictive accuracy of induced classifiers using a method such as cross validation (more on

this in Chapter 2).

As suggested by this discussion of inductive bias and the earlier discussion of rep-

resentational flexibility, learning algorithms differ considerably in how they represent in-

duced hypotheses. For example, there are learning algorithms that represent their hypothe-

ses as decision trees (Breiman et al., 1984; Quinlan, 1993), decision lists (Rivest, 1987;

Clark & Niblett, 1989), inference rules (Michalski, 1983; Quinlan, 1993), neural networks

(Rumelhart et al., 1986), hidden Markov models (Rabiner, 1989), Bayesian networks (Heck-

erman, 1995), and stored lists of examples (Stanfill & Waltz, 1986; Aha et al., 1991).

The various representations for expressing learned hypotheses differ greatly in how readily

they can be inspected and understood by humans. Hypothesis languages that have a logic-

like syntax (e.g., decision trees, inference rules, and decision lists), are often termed symbolic

representations (Michalski, 1986). One purported advantage of symbolic representations is

that they are usually easily understood. For example, in a decision tree it is easy to see

which features are incorporated into the hypothesis, and to see the important relationships

among features in the hypothesis. In contrast to symbolic learners, other learning methods

(e.g., neural networks, hidden Markov models, Bayesian networks) represent their hypotheses

using graph structures with real-valued parameters. Some of these hypotheses can also be

quite comprehensible. In Bayesian networks, for example, the nodes of the graph usually

correspond to specific features of the problem domain, and the edges correspond to known

dependencies among the features. In neural networks, on the other hand, many of the

nodes and edges do not have such crisp correspondences to the vocabulary of the problem

domain, and neural networks therefore rarely learn comprehensible hypotheses. It is often

not easy to tell by inspection which features make important contributions to a neural

network’s predictions, and it is often very difficult to ascertain how features interact within

the hypothesis.

As with comprehensibility, learning methods also differ greatly in the flexibility of their
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learned models. Typically, models learned by neural networks, as well as being incomprehen-

sible, afford little flexibility in how they can be applied. Most symbolic learning algorithms,

on the other hand, represent their hypotheses using representations which are declarative in

nature, and thus quite flexible.

1.4 Why Use Neural Networks?

Although learning systems other than neural networks may produce hypotheses that are

hard to understand, neural networks are the learning approach most notorious for producing

incomprehensible hypotheses. This and the following chapter will focus on the problem of

understanding hypotheses learned by neural networks. As discussed in Chapter 2, this is a

topic that has been addressed by quite a few different research groups. In Chapters 3 and 4,

however, I will broaden the scope of the discussion to other types of learned hypotheses that

are difficult to understand.

One may wonder, if comprehensibility is a concern in a given domain, then why apply

neural networks to this problem? Instead, why not use learning methods which produce

models that are more amenable to human understanding? The answer to this question is

that, for some problems, neural networks have a more suitable inductive bias than competing

algorithms.

In some cases, neural networks have a more appropriate restricted hypothesis space bias

than other learning algorithms. For example, the Q-learning method for reinforcement learn-

ing problems (Watkins, 1989) requires that the learner represent hypotheses as continuous-

valued functions, and it requires that these hypotheses be updated after each training ex-

ample. Few if any symbolic learning algorithms are able to meet both of these requirements.

Sequential and temporal prediction tasks provide another type of problem for which neural

networks often provide the most appropriate hypothesis space. Recurrent networks (Jordan,

1986; Pineda, 1987), which are often applied to these problems, are able to maintain state

information from one time step to the next. This means that recurrent networks can use

their hidden units to learn derived features relevant to the task at hand, and they can use the

state of these derived features at one instant to help make a prediction for the next instance.
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Again, this is a representational ability that few if any symbolic learning algorithms have.

In other cases, neural networks are the preferred learning method not because of the class

of hypotheses that they are able to represent, but simply because they induce hypotheses

that generalize better than those of competing algorithms. Several empirical studies have

pointed out that there are some problem domains in which neural networks provide superior

predictive accuracy to commonly used symbolic learning algorithms (Atlas et al., 1989;

Fisher & McKusick, 1989; Weiss & Kapouleas, 1989; Shavlik et al., 1991).

1.5 Rule Extraction

One approach to understanding a hypothesis represented by a trained neural network is to

try to translate the hypothesis into a more comprehensible language. Various approaches

using this strategy have been investigated under the rubric of rule extraction. The name rule

extraction reflects the fact that this body of work has largely concentrated on translating

neural-network hypotheses into inference-rule languages.

For the purposes of this thesis, I will define the rule-extraction task as follows:

Given a trained neural network and the data on which it was trained, pro-

duce a description of the network’s hypothesis that is comprehensible yet

closely approximates the network’s predictive behavior.

The goal of the work described in this thesis has been to develop extraction algorithms

that are effective and widely applicable. There are several desiderata that have guided

the development of the algorithms presented herein. I argue that algorithms for extracting

symbolic representations from neural networks should address the following concerns:

• Comprehensibility: They should generate symbolic representations that are com-

prehensible by experts in the domain.

• Fidelity: They should produce symbolic representations that accurately model the

networks from which they were extracted.

• Scalability: They should be scalable to networks that have large input spaces and

large numbers of units and weighted connections.
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• Generality: They should require neither special training regimes, nor restrictions

on network architecture. Specifically, they should apply to networks with arbitrary

topologies and activation functions.

The algorithms presented in later chapters will be evaluated with respect to these criteria.

Although the primary focus of this thesis is on rule extraction for the purpose of eliciting

comprehensible representations from neural networks, some of the algorithms developed in

this research are also well suited to the task of rule extraction for the purpose of obtaining

flexible, declarative representations of learned neural-network hypotheses.

1.6 Thesis Statement

In this thesis, I present and evaluate novel algorithms for the task of extracting compre-

hensible descriptions from hard-to-understand learning systems such as neural networks.

The hypothesis advanced by this thesis research is that it is possible to develop algorithms

for extracting symbolic descriptions from trained neural networks that: (i) produce com-

prehensible, high-fidelity descriptions of trained networks, (ii) scale to large networks, and

(iii) apply to a broad class of network types.

1.7 Thesis Overview

The remaining chapters of this thesis are organized as follows:

• Chapter 2 provides background material for the rest of the thesis. The first section

describes the statistical methods used in the thesis, and the next two sections give

a brief introduction to decision trees and neural networks. The latter section also

discusses why the hypotheses learned by neural networks are difficult to understand.

The final section in this chapter provides an in-depth review of related work in rule

extraction. This section provides context for understanding the contributions of the

novel work presented in subsequent chapters.
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• Chapter 3 presents the Trepan algorithm, which is the main contribution of this

thesis. Trepan is an algorithm for extracting decision trees from hard-to-understand

classifiers. Unlike previous approaches to rule extraction, it frames the task as an

inductive learning problem. This novel perspective alleviates many of the limitations

of previous approaches.

• Chapter 4 presents a detailed empirical evaluation of the Trepan approach. In the

reported experiments, Trepan is applied to neural networks that were trained to solve

classification, regression, and reinforcement-learning tasks.

• Chapter 5 provides an analytical evaluation of Trepan. This analysis presents a formal

discussion of the scalability of the algorithm, as well as a discussion of its generality.

The scalability of Trepan is considered in terms of computational complexity and in

the context of formal models of learnability.

• Chapter 6 describes and evaluates a rule-extraction method that I developed in the

early stages of this thesis research. Unlike Trepan, this algorithm does not approach

the rule-extraction task as an inductive learning problem. As a consequence, it is not

as widely applicable as Trepan.

• Chapter 7 describes and evaluates the Boosting-Based Perceptron (BBP) learning al-

gorithm which constructively builds simple, comprehensible neural networks. BBP is

not a rule-extraction method, but its underlying motivation is closely related to the

motivation for the rule-extraction task: to induce comprehensible models in domains

in which neural networks have a well-suited inductive bias.

• Chapter 8 describes related work not already discussed in Chapter 2.

• Finally, Chapter 9 discusses the contributions of this thesis, limitations of the work

presented, and proposed future work.



Chapter 2

Background

This chapter provides background material for the remainder of the thesis. The first section

describes the statistical methods used in the algorithms and experiments of this thesis.

The next section gives a brief overview of decision trees. This material is relevant since

the Trepan algorithm, presented in Chapter 3, induces decision trees to describe trained

neural networks. Moreover, the empirical evaluation of Trepan presented in Chapter 4

involves experimental comparisons to two standard decision-tree learning methods. The

third section in this chapter provides a brief introduction to neural networks, and discusses

why it is difficult to understand the hypotheses learned by them. The final section surveys

other work that has been done in the area of extracting rules from neural networks. The

purpose of this discussion is to provide enough context to appreciate the novel aspects of

the Trepan algorithm presented in the succeeding chapter; Chapter 7 provides a broader

discussion of related research.

2.1 Statistical Methodology

Statistical methods play a role in this thesis in two important ways. First, they are used

in various components of the algorithms described in Chapters 3, 6, and 7. Second, I use

statistical methods in the experimental evaluation of these algorithms. This section briefly

discusses two types of statistical methods that are important in later chapters: estimation

and hypothesis testing.

12
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2.1.1 Estimation

The task in an estimation problem is to determine the value of some parameter of interest.

The experiments in this thesis, in particular, are concerned with estimating the predictive

accuracy of various inductive learning algorithms, and with estimating the fidelity of repre-

sentations that have been extracted from trained neural networks.

The basic method for estimating the predictive accuracy of a learning algorithm is to

measure its accuracy on a set of examples that it is not allowed to access when constructing

its hypothesis. Such a set is called a test set or a holdout set. Unless the size of the

available data set is quite large, or unless the nature of the data somehow precludes it, a

preferred method for accuracy estimation is to use cross validation (Stone, 1974). In k-fold

cross validation, the available data is partitioned into k separate sets of approximately equal

size. The cross-validation procedure involves k iterations in which the learning method is

given k − 1 of the subsets to use as training data, and is tested on the set left out. Each

iteration leaves out a different subset so that each is used as the test set exactly once.

The cross-validation accuracy of the given algorithm is simply the average of the accuracy

measurements from the individual folds. In the experiments in this thesis, accuracy and

fidelity are measured using cross validation, as well as the single-test-set method.

In some cases, a learning algorithm has one or more parameters that affect how well

it solves a given task. A common method for setting such parameters is to estimate the

resulting accuracy (or whatever metric is of interest) for different values, and then to choose

the value that provides in the best accuracy. It is not fair for the learning algorithm to use

the test set for these estimates, but the learning algorithm can set aside part of its training

set for this purpose. A set of data that is used by the learning algorithm to estimate the

effect of such a decision, but not the overall accuracy of the algorithm, is called a validation

set or a tuning set. Similarly, the method of cross validation can be applied for this purpose.

When cross validation is used to set the parameter of a learning algorithm, however, it is

run using only the data in the training set. It is imperative that the learning algorithm does

not have access to the data in the test set. Otherwise, test-set estimates of the accuracy of

the learned hypotheses are sure to be biased.
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2.1.2 Hypothesis Testing

Hypothesis testing involves evaluating an assertion about the distribution of a random vari-

able. Such an assertion is termed a statistical hypothesis (not to be confused with the

hypothesis, or model, produced by a learning algorithm). Hypothesis-testing methods are

used in this thesis when evaluating the performance of learning algorithms, and in some

cases, when making decisions within the algorithms themselves.

One type of hypothesis test that is commonly used when evaluating inductive learning

algorithms is whether two or more algorithms have significantly different performance. For

example, in Chapters 4, 6, and 7, I will test the hypothesis that the models produced by

one algorithm in some domain are more accurate than those produced by another algorithm.

I use two types of statistical tests to compare the accuracy of one algorithm to another.

The first, which is used with cross-validation runs, is the paired-sample t-test (Sachs, 1984).

In the paired-sample t-test, we first calculate the average of the differences in accuracy

measurements for algorithms A and B for k folds:

diff =
1

k

k∑

i=0

(
accuracyi

A − accuracyi
B

)

and the standard deviation, s, of this value. Here, accuracyi
A is the measured accuracy for

algorithm A on the ith fold, and accuracyi
B is the accuracy of algorithm B on the same

fold. In order for this test to be valid, the two learning algorithms must have used the same

partition for cross validation. The test statistic is then:

t =
diff

s/
√

k
.

The null hypothesis (that the two algorithms have the same level of accuracy) is rejected

with 100(1− α)% confidence if:

|t| ≥ tα/2,k−1

where tα/2,k−1 defines the rejection region for the test.1 Note that this is a two-tailed test,

meaning that the null hypothesis can be rejected either if algorithm A is more accurate than

algorithm B, or vice versa. It is proper to use a two-tailed test in this situation since we

have no a priori reason to believe that one algorithm cannot be less accurate than the other.

1The denominator of the t-statistic tends to underestimate the true standard deviation because cross-
validation samples are correlated. Therefore the values of the t-statistic may be somewhat inflated.
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Figure 1: The table considered by the McNemar test. The table considers four possible outcomes
when each test-set example is classified by algorithm A and algorithm B: they both produced the correct
answer (ACBC); they both produced the incorrect answer (AIBI); only one algorithm made a correct
prediction (ACBI and AIBC). Each entry in the table indicates the number of test-set examples for one
possible outcome.

The other method used in this thesis to test hypotheses about the predictive accuracy of

learning algorithms is the McNemar χ2 test (Sachs, 1984). This test, which I use when there

is only a single test set, involves analyzing a four-entry table like that shown in Figure 1. The

rows of the table indicate the correct/incorrect predictions made by one algorithm, and the

columns indicate the correct/incorrect predictions made by another algorithm. Each entry

in the table holds the number of test-set examples that satisfy the case represented by the

entry. The null hypothesis in this test is that the entries ACBI (representing cases in which A

predicted the correct answer and B predicted the incorrect answer) and AIBC (representing

cases in which A predicted the incorrect answer and B predicted the correct one) have the

same expected value: (ACBI + AIBC)/2. The hypothesis is tested by considering the χ2

statistic with one degree of freedom:

χ2 =
(ACBI − AIBC)2

ACBI + AIBC + 1
.

The null hypothesis (that the two algorithms have the same level of accuracy) is rejected

with 100(1− α)% confidence if:

χ2 > χ2
α,1

where χ2
α,1 defines the rejection region for the test with significance level α. Note that this

is a one-tailed test.

So far the discussion has focused on testing hypotheses about the accuracy of learned
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models. Hypothesis testing is also used within the Trepan algorithm presented in Chapter 3

in order to make several decisions. The nature of these tests is to determine whether two sets

of data (for a single variable) come from different distributions or the same one. Two different

tests are used for this purpose depending on the type of the data being considered. For

discrete-valued variables, I use a χ2 test, and for real-valued variables I use the Kolmogorov-

Smirnov test.

For a discrete-valued variable with v possible values, the following χ2 statistic is computed

(Sachs, 1984; Press et al., 1992):

χ2 =
v∑

i=1

(√
mB/mA mi

A −
√

mA/mB mi
B

)2

mi
A + mi

B

where mA is the total number of elements in set A, mi
A is the number of elements in set A

that have the ith value for the variable, and likewise for set B. The null hypothesis (that the

two sets of data come from the same distribution) is rejected with 100(1−α)% confidence if:

χ2 > χ2
α,v

where χ2
α,v defines the rejection region for the test with v degrees of freedom.

The Kolmogorov-Smirnov test (Sachs, 1984; Press et al., 1992) compares two sets of

real-valued data by first sorting each set and then converting each list into an estimator

of the cumulative distribution function from which the set was drawn. Specifically, if we

have m points in set A with values xi, i = 1, ..., m, then SA(x) is the function giving the

fraction of points to the left of a given value x. For comparing two different data sets, the

Kolmogorov-Smirnov test statistic is simply:

D = max
−∞ < x < ∞

| SA(x)− SB(x) |.

The null hypothesis (that the two sets of data came from the same distribution) is rejected

with 100(1− α)% confidence if:

QKS

( [
√

me + 0.12 +
0.11√

me

]
D

)
> α

where me is the effective number of data points:

me =
mA mB

mA + mB
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and the function approximating the significance level is (Press et al., 1992):

QKS(λ) = 2
∞∑

j=1

(−1)j−1e−2j2λ2

.

2.2 Decision Trees

Decision-tree induction algorithms are among the most widely used methods in machine

learning. Whereas neural networks are perhaps the most popular representative of the non-

symbolic class of learning algorithms, decision-tree methods are the most widely used sym-

bolic algorithms. In this section, I first describe how decision trees classify examples, and

then discuss how they can be induced from training examples.

2.2.1 Decision-Tree Classification

Figure 2 depicts an example decision tree for the problem domain of heart-disease diagnosis

which is explored as a testbed in Chapter 4.2 As shown in the figure, a decision tree is a

rooted, directed acyclic graph consisting of a set of internal nodes (depicted as rectangles)

and a set of leaves (depicted as ovals). Each internal node in a decision tree has an associated

logical test based on the features in the domain. When classifying an example, the role of

an internal node is to send the example down one of the outgoing branches of the node. The

decision as to which branch an example is sent down is determined by the logical expression

at the node. In the simplest case, this expression considers one feature, and thus the outcome

of the test is determined by the value of that feature in the given example. In some decision

trees, the test may be a function of several features. In Figure 2, each internal node tests

a single feature, and the outgoing branches are labeled with the possible outcomes for a

given test. For example, the root of the tree looks at the feature rest ECG, which has three

possible values: abnormal, normal, and hypertrophy. Similarly, the leftmost child of the

root node tests the real-valued feature cholesterol against a threshold of 200.

The classification procedure involves starting at the root of the tree, and then traversing

a path through the tree that is determined by the outcomes of the tests at the internal

2This tree was not produced by any decision-tree learning algorithm, but is simply made-up for pedagog-
ical purposes.
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hypertrophynormalabnormal

male female yes no

rest ECG

sex cholesterol > 200

okay

okay

diseasedisease okay

Figure 2: A decision tree. Internal nodes, depicted by rectangles, represent single-feature tests. Each
outgoing branch of an internal node represents a possible outcome for its associated test. Leaves, depicted
by ovals, correspond to class predictions.

nodes encountered along the path. The leaves of a decision tree do not have logical tests,

but instead have associated class labels; in the figure, leaves are labeled either with the class

disease or with okay. When an example reaches a leaf, the class associated with the leaf is

the prediction made by the decision tree for that example.

2.2.2 Decision-Tree Learning

The two most widely used decision-tree induction algorithms are C4.5 (Quinlan, 1993),

which arose in the artificial intelligence community, and CART (Breiman et al., 1984)

which was developed in the statistics community. C4.5 is the successor to the ID3 algorithm

(Quinlan, 1986). These two algorithms, and numerous variants of them, are similar in their

overall structure, but differ somewhat in details. Here I focus mainly on C4.5, since it used

extensively in the experiments reported in later chapters.

Decision-tree learning involves constructing a tree by recursively partitioning the training

examples. Each time a node is added to the tree, some subset of the training examples are

used to pick the logical test at that node. All of the training examples are used to determine

the test for the root of the tree. After this test has been picked, it is used to partition

the examples, and the process is continued recursively. That is, from the subset of training

examples that reach a given internal node, only the examples that have the ith outcome for
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the test at that node are used to determine the test for the ith child of the node.

One of the key aspects of any decision-tree algorithm is selecting the test for partitioning

the subset of training examples, S, that reaches a given node. C4.5 uses tests that are based

on a single feature. For a discrete-valued feature with v values, C4.5 considers partitioning

based on a test with v outcomes – one for possible each value. For a real-valued feature, C4.5

considers binary tests that compare the feature against various thresholds. The outcomes in

this case are either that (1) the value is less than or equal to the threshold, or (2) the value

is greater than the threshold. The thresholds considered by C4.5 for a real-valued split at a

node are determined by the values that occur in the training examples that reach that node.

In order to pick a splitting test from a set of candidates, C4.5 uses an evaluation measure

called information gain.3 The information-gain criterion picks the test, T , that maximizes

the information gained about the class labels of the examples in S:

gain(T ) = info(S)− infoT (S).

Here info(S) is the amount of information needed to identify the class of an example in

S, and infoT (S) is the corresponding measurement after S has been partitioned according

to T . Specifically:

info(S) = −
k∑

j=1

freq(Cj, S)

|S| log2

(
freq(Cj, S)

|S|

)

where j ranges over the classes and freq(Cj, S) is the number of examples in S that belong to

class Cj. The information needed to identify the class of an example, given the partition T ,

is defined as the expected value of the information over the subsets induced by T :

infoT (S) =
n∑

i=1

|Si|
|S| info(Si)

Here i ranges over the outcomes of T and Si is the subset of examples in S that have the

ith outcome.

Another key aspect of a decision-tree algorithm is determining when to stop growing a

tree. C4.5 uses several stopping criteria to decide when to make a node into a leaf. First, if

3Actually by default, C4.5 employs a minor variation of the information gain criterion called the gain

ratio. For pedagogical purposes, however, I simply describe the information-gain measure.



20

the subset of examples that reaches a node are all members of the same class then C4.5 will

not split the subset any further. Second, if C4.5 cannot find a test that results in at least

two outcomes having a minimum number of examples in them, then it will stop splitting

at this node. Finally, if the list of candidate tests available to use at a node is empty, then

C4.5 will not partition this node further.

After C4.5 has grown a tree, it then tries to simplify it by pruning away various subtrees

and replacing them with leaves. This strategy is a method for avoiding over-fitting. Over-

fitting is the term used to describe the situation in which a learned model has been fit too

closely to the training data. It is a concern because it can lead to poor predictive accuracy if

the training data is noisy or if the training sample is small (which is almost always the case).

C4.5’s pruning method considers replacing each internal node by either a leaf or one of the

node’s branches. In order to decide if a change should be made, C4.5 computes a confidence

interval around the resubstitution error rate4 of the node. A change is made to a subtree

if the resulting resubstitution error rate for the modified subtree is within a C% confidence

interval of the unmodified subtree’s error rate, where C is a parameter of the algorithm that

determines how conservative the pruning process should be.

2.3 Neural Networks

There is a wide variety of neural-network architectures and learning methods for both un-

supervised and supervised inductive learning tasks. The work in this thesis focuses on feed-

forward neural networks applied to classification tasks, and therefore the discussion below is

restricted to this particular type of neural-network approach.

2.3.1 Neural-Network Classification

As illustrated in Figure 3, a feed-forward neural network is composed of several layers of

simple processing units. The state of a unit at any given time is represented by its activation,

which is a real-valued number, typically in the range [0, 1] or in the range [-1, 1]. The input

layer of a network contains units whose activations represent values for the features of the

4Resubstitution error refers to resulting error rate when a model is used to classify its training data.
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output layer

hidden layer

input layer

Figure 3: A neural network. The units in the input layer represent features in the problem domain. The
unit in the output layer represents the network’s predictions. Units in the hidden layer enable the network
to learn and make use of “derived” features.

problem domain in which the network is being applied. Typically, a real-valued feature is

represented by a single input unit, and a discrete feature with n possible values is represented

by n input units. The units in the output layer of a network represent the decisions made

by the network. Interposed between the input units and the output units, there can be a

number of hidden layers of units. The units of a network are related by weighted connections.

A network for classification that has only input units and output units is capable of

representing only linear decision boundaries in its input space (Minsky & Papert, 1969). In

order to represent more complex boundaries, it necessary to add hidden units to the network.

The role of hidden units is to transform the input space into another space in which it is

more profitable for the output units to make linear discriminations.

Computation in a feed-forward network proceeds by setting the activation values of the

input units to represent a particular instance in the problem domain. The activation of the

inputs feeds forward through the weighted connections to the units at the hidden layers and

then to units at the output layer. The answer provided by the network is determined by the

resultant activations on the output units.

For a particular example, the net input to a unit in a hidden or output layer is given by:

neti =
∑

j

wijaj + θi (1)

where wij is the weight from unit j to unit i, aj is the activation of unit j in response to the
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Figure 4: Sigmoidal transfer functions. On the left is the logistic function, which squashes its net
input into the range [0, 1]. On the right is the hyperbolic-tangent function, which squashes its net input into
the range [-1, 1].

example, and θi is the bias for unit i. The bias of a unit, which is an adjustable parameter,

can be thought of as the unit’s predisposition to have a high (or low) activation before it

receives any activation signals from other units. The activation of a hidden or an output

unit is determined by passing its net input through a transfer function (sometimes called an

activation function). One commonly used transfer function is the logistic function:

ai =
1

1 + e−neti
.

This function “squashes” the unit’s net input to an activation value in the range [0, 1]. A

similar transfer function is the hyperbolic tangent function which squashes a unit’s net input

into an activation value in the range [-1, 1]:

ai =
eneti − e−neti

eneti + e−neti
.

Both the logistic function and the hyperbolic tangent function, illustrated in Figure 4, are

sigmoidal functions. As can be seen in the figure, they are continuous approximations of a

threshold function.

2.3.2 Neural-Network Learning

The most widely used neural-network learning method is the backpropagation algorithm

(Rumelhart et al., 1986). Learning in a neural network involves modifying the weights and
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biases of the network in order to minimize a cost function. The cost function always includes

an error term – a measure of how close the network’s predictions are to the class labels

for the examples in the training set. Additionally, it may include a complexity term that

reflects a prior distribution over the values that the parameters can take (Rumelhart et al.,

1995). An appropriate cost function for classification problems is the cross-entropy function

(Hinton, 1989):

C = −
∑

i

∑

j

[tj ln(aj) + (1− tj) ln(1− aj)]

Here i ranges the examples in the training set, j ranges over the output units of the network,

tj is the target value for the jth output unit for a given example, and aj is the activation of

the jth output unit in response to the example. The target value for an output unit is the

activation value that it should have for a given example.

In almost all neural-network methods, the function implemented by the network is con-

tinuous and differentiable. Therefore, the cost function can be minimized by calculating its

partial derivatives with respect to each of the network’s parameters, and making changes to

the parameters as follows:

∆~w ∝ −∇~wC

where ~w represents the vector of weights and biases in the network.

For a particular weight from unit j to unit i, the partial derivative is given by:

∂C

∂wij
=

∂C

∂neti

∂neti
∂wij

=
∂C

∂ai

∂ai

∂neti

∂neti
∂wij

.

Since hidden and output units use differentiable transfer functions, ∂ai/∂neti is easy

to calculate. From Equation 1, we can see that the derivative ∂neti/∂wij is simply aj.

For the output units, the term ∂C/∂ai can be calculated directly from the cost function.

For hidden units, however, it must be calculated by “backpropagating” error through the

network. Specifically, to determine ∂C/∂ai for the hidden unit i, we compute the sum:

∂C

∂ai
=
∑

k

[
∂C

∂ak

∂ak

∂netk
wki

]

where k ranges over the units to which unit i is connected. The process of backpropagating

errors is one of “blame” assignment. The activations of the output units are determined by

the activations of hidden units, which are in turn determined by the activations of the input
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units (or a lower level of hidden units). Thus, error at the output units may be due, not

only to the weights directly connected to the outputs, but also to weights farther down in

the network (the weights impinging on the hidden units).

Various optimization algorithms can be used to minimize the cost function, the most

popular one being on-line backpropagation. This method can be thought of as a stochastic

form of gradient descent in that weight changes do not follow the gradient of the cost function

for the entire training set, but instead they follow the gradient for a single training example

(White, 1989a; 1989b). The method also has a deterministic interpretation (Mangasarian &

Solodov, 1993; 1994) in which the cost function does not decrease monotonically. In order

to avoid large oscillations, these weight changes usually also incorporate a momentum term

(Rumelhart et al., 1986), which is a time-decaying average of previous weight changes. Other

optimization methods can be used to minimize the cost function. Standard gradient descent

augmented with a momentum term is sometimes used, as is the conjugate-gradient method

(Kramer & Sangiovanni-Vincentelli, 1989), and even second-order methods (Becker & Le

Cun, 1988).

Often, network training is stopped before a local minimum in the cost function is reached.

The motivation underlying this technique of early stopping is that over-fitting may occur if

the network is trained to fit the training data too closely. One method for estimating a good

stopping point is to use a validation set to monitor the predictive accuracy of the network as

it is being trained. Instead of saving the network weights corresponding to the cost-function

minimum, this procedure saves the weights from the iteration of the optimization method

that results in the highest validation-set accuracy.

2.3.3 Neural Networks and Comprehensibility

A hypothesis learned by a neural network is defined by (a) the topology of the network,

(b) the transfer functions used for the hidden and output units, and (c) the real-valued

parameters associated with the network connections (i.e., the weights) and units (i.e., the

biases of sigmoid units).

Hypotheses learned by neural networks are difficult to comprehend for several reasons.
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First, typical networks have hundreds or thousands of real-valued parameters. These pa-

rameters encode the relationships between the input features, ~x, and the target value, y.

Although single-parameter encodings of this type are usually not hard to understand, the

sheer number of parameters in a typical network can make the task of understanding them

quite difficult. Moreover, in multi-layer networks, these parameters may represent nonlinear,

nonmonotonic relationships between the input features and the target values. Thus it is usu-

ally not possible to determine, in isolation, the effect of a given feature on the target value,

because this effect may be mediated by the values of other features. These nonlinear, non-

monotonic relationships are represented by the hidden units in a network which combine the

inputs of multiple features thus allowing the model to take advantage of dependencies among

the features. Understanding the hidden units themselves is often difficult because these units

often learn distributed representations (Hinton, 1986). Hidden units can be thought of as

representing higher-level, “derived features.” In a distributed representation, however, these

derived features may not correspond to well understood features in the problem domain. In-

stead, features which are meaningful in the context of the problem domain are often encoded

by patterns of activation across many hidden units. Similarly each hidden unit may play a

part in representing numerous derived features.

2.4 Related Work in Rule Extraction

In this section, I review previous and contemporaneous work in the area of rule extraction

from neural networks. The purpose of this discussion is to provide suitable background and

context for the novel work introduced in succeeding chapters. Chapter 8 discusses additional

related research that is not covered here. This chapter begins by first further defining the

task of rule extraction.

2.4.1 The Rule-Extraction Task

Figure 5 illustrates the task of rule extraction with a very simple network. This one-layer

network (i.e., perceptron) has five Boolean inputs and one Boolean output. Any network,

such as this one, which has discrete output classes and discrete-valued input features, can
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x 1 x 2 x 3 x 4 x 5

6 4 4 −4

θ = −9

0

extracted rules: y ← x1 ∧ x2 ∧ x3

y ← x1 ∧ x2 ∧ ¬x5

y ← x1 ∧ x3 ∧ ¬x5

Figure 5: A network and extracted rules. The network has five input units representing five Boolean
features. The rules describe the settings of the input features that result in the output unit having an
activation of 1.

be exactly described by a finite set of symbolic if-then rules since there is a finite number

of possible input vectors. The symbolic rules specify conditions on the input features that,

when satisfied, guarantee a given output state. In the example, I assume that the value

false for a Boolean input feature is represented by an activation of 0, and the value true is

represented by an activation of 1. Also I assume that the output unit employs a threshold

function to compute its activation:

ay =





1 if
∑

i wiai + θ > 0

0 otherwise

where ay is the activation of the output unit, ai is the activation of the ith input unit, wi

is the weight from the ith input to the output unit, and θ is the threshold parameter of the

output unit. For the remainder of this chapter, I will use xi to refer to the value of the ith

feature, and ai to refer to the activation of the corresponding input unit. For example, if

xi = true then ai = 1.

Figure 5 shows three conjunctive rules5 which describe the most general conditions under

5A conjunctive rule is one in which the antecedent of the rule is a logical conjunction (i.e., an “and” of
literals).
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which the output unit has an activation of unity. Consider the rule:

y ← x1 ∧ x2 ∧ ¬x5.

This rule states that when x1 = true, x2 = true, and x5 = false, then the output unit

representing y will have an activation of 1 (i.e., the network predicts y = true). To see that

this is a valid rule, consider that for the cases covered by this rule that:

a1w1 + a2w2 + a5w5 + θ = 1.

Thus, the weighted sum of these input values causes the output unit’s threshold to be

exceeded. But what effect can the other features have on the output unit’s activation in

this case? It can be seen that:

0 ≤ a3w3 + a4w4 ≤ 6.

Therefore, no matter what values the features x3 and x4 have, the output unit will have an

activation of 1. Thus the rule is valid; it accurately describes the behavior of the network

for those instances that match its antecedent. To see that the rule is maximally general,

consider that if we drop any one of the literals from the rule’s antecedent, then the rule no

longer accurately describes the behavior of the network. For example, if we drop the literal

¬x5 from the rule, then for the examples covered by the rule:

−3 ≤
∑

aiwi + θ ≤ 5

and thus the network does not predict that y = true for all of the covered examples.

So far, I have defined an extracted rule in the context of a very simple neural network.

What does a “rule” mean in the context of networks that have continuous transfer func-

tions, hidden units, and multiple output units? Whenever a neural network is used for a

classification problem, there is always an implicit decision procedure that is used to decide

which class is predicted by the network for a given case. In the simple example above, the

decision procedure was simply to predict y = true when the activation of the output unit

was 1, and to predict y = false when it was 0. If we used a logistic transfer function instead

of a threshold function at the output unit, then the decision procedure might be to predict

y = true when the activation exceeds a specified value, say 0.5. If we were using one output
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x 2 x 3 x 4 x 5x 1

1h h 2 h 3

extracted rules: y ← h1 ∨ h2 ∨ h3

h1 ← x1 ∧ x2

h2 ← x2 ∧ x3 ∧ x4

h3 ← x5

Figure 6: The local approach to rule extraction. A multi-layer neural network is decomposed into a
set of single layer networks. Rules are extracted to describe each of the constituent networks, and the rule
sets are combined to describe the multi-layer network.

unit per class for a multi-class learning problem (i.e., a problem with more than two classes),

then our decision procedure might be to predict the class associated with the output unit

that has the greatest activation. In general, an extracted rule (approximately) describes a

set of conditions under which the network, coupled with its decision procedure, predicts a

given class.

Generally speaking, there are two types of approaches to extracting rules from multi-layer

networks. One approach is to extract a set of global rules that characterize the output classes

directly in terms of the inputs. The alternative is to extract local rules by decomposing the

multi-layer network into a collection of single-layer networks. A set of rules is extracted to

describe each individual hidden and output unit in terms of the units that have weighted

connections to it. The rules for the individual units are then combined into a set of rules

that describes the network as a whole. The local approach to rule extraction is illustrated in

Figure 6. Although local methods usually are less generally applicable than global methods,

they are usually less computationally expensive as well.
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Figure 7: A rule search space. Each node in the space represents a possible rule antecedent. Edges
between nodes indicate specialization relationships (in the downward direction). The thicker lines depict one
possible search tree for this space.

2.4.2 Global Methods

Many previous approaches to rule extraction have set up the task as a search problem.

This search problem involves exploring a space of candidate rules, and testing individual

candidates against the network to see if they are valid rules.

Several research groups have investigated rule-extraction methods which operate by con-

ducting a search through a space of possible conjunctive rules. Figure 7 shows a rule search

space for a problem with three Boolean features. Each node in the tree corresponds to

the antecedent of a possible rule, and the edges indicate specialization relationships (in the

downward direction) between nodes. The node at the top of the graph represents the most

general rule (i.e., all instances are members of the class y), and the nodes at the bottom of

the tree represent the most specific rules, which cover only one example each. Unlike most

search processes which continue until a goal node is found, a rule-extraction search continues

until all (or most) of the maximally-general rules have been found.

Notice that rules with more than two literals in their antecedent have multiple ancestors

in the graph. Obviously when exploring a rule space, it is inefficient for the search procedure

to visit a node multiple times. In order to avoid this inefficiency, we can impose an ordering

on the literals thereby transforming the search graph into a tree. The thicker lines in Figure 7

depict one possible search tree for the given rule space.
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One of the problematic issues that arises in search-based approaches to rule extraction is

that the size of the rule space can be very large. For a problem with n binary features, there

are 3n possible conjunctive rules (since each feature can be absent from a rule antecedent,

or it can occur as a positive or a negative literal in the antecedent). To address this issue, a

number of heuristics have been employed to limit the combinatorics of the rule-exploration

process. One of the first rule-extraction methods developed (Saito & Nakano, 1988) employs

a breadth-first search process to extract conjunctive rules in binary problem domains. To

deal with the combinatorics of the problem, Saito and Nakano use two heuristics. The first

heuristic limits the number of literals in the antecedents of extracted rules. Specifically, their

algorithm uses two parameters, kpos and kneg, that specify the maximum number of positive

and negative literals respectively that can be in an antecedent. By restricting the search to

a depth of k, the rule space considered is limited to a size given by the following expression:

k∑

i=0




n

k


 2k.

For fixed k, this expression is polynomial in n, but obviously, it is exponential in the depth k.

This means that exploring a space of rules might still be intractable since, for some networks,

it may be necessary to search deep in the tree in order to find valid rules.

The second heuristic employed by Saito and Nakano is to limit the search to combinations

of literals that occur in the training set. Thus, if the training set did not contain an example

for which x1 = true and x2 = true, then the rule search would not consider the rule

y ← x1 ∧ x2 or any of its specializations.

Given a candidate rule, Saito and Nakano use the following method to test the rule against

the network. The input units corresponding to the positive literals are set to an activation of

1, and all other input units are set to an activation of 0. Activations are forward-propagated

through the network and the decision procedure is used to classify the instance. Next, the

input units corresponding the negated literals are given an activation of 1, the other inputs

are not changed, and once again the instance is classified by the network. If in the first case

the network classified the instance as a member of the class of interest, and in the second

case it did not, then the rule is accepted. Because the depth of the search for negative literals

is limited, this procedure may accept rules that do not agree with the network. For example,
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if the search is limited to antecedents with two negated literals, and one of the valid rules

describing the network is y ← x1 ∧ ¬x2 ∧ ¬x3 ∧ ¬x4, then this procedure might accept the

overly general rule y ← x1 ∧ ¬x2 ∧ ¬x3.

Gallant (1993) developed a similar rule-extraction technique, which like the method of

Saito and Nakano, manages the combinatorics of searching for rules by limiting the search

depth. The principal difference between the two approaches is the procedure used to test rules

against the network. Unlike Saito and Nakano’s method, Gallant’s rule-testing procedure

is guaranteed to accept only rules that are valid. This method operates by propagating

activation intervals through the network. The first step in testing a rule using this method

is to set the activations of the input units that correspond to the literals in the candidate rule.

The next step is to propagate activations through the network. The key idea of this second

step, however, is that it is assumed that input units whose activations are not specified by

the rule could possibly take on any allowable value, and thus an interval of activations is

propagated to the units in the next layer. Effectively, the network is computing, for the

examples covered by the rule, the range of possible activations in the next layer. Activation

intervals are then further propagated from the hidden units to the output units. At this

point, given the conditions specified by the rule, the range of possible activations for the

output units can be determined, and thus the procedure can decide whether to accept the

rule or not. This algorithm is guaranteed to accept only rules that are valid. However, it

may fail to accept maximally general rules, and instead may return overly specific rules. The

reason for this deficiency is that in propagating activation intervals from the hidden units

onward, the procedure assumes that the activations of the hidden units are independent of

one another. In most networks this assumption is unlikely to hold.

Thrun (1995) developed a method called validity interval analysis (VIA) that is a gener-

alized and more powerful version of this technique. Like Gallant’s method, VIA tests rules

by propagating activation intervals through a network after constraining some of the input

and output units. The key difference is the Thrun frames the problem of determining va-

lidity intervals (i.e., valid activation ranges for each unit) as a linear programming problem.

This is an important insight because it allows activation intervals to be propagated back-

ward, as well as forward through the network, and it allows arbitrary linear constraints to
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be incorporated into the computation of validity intervals. Backward propagation of activa-

tion intervals enables the calculation of tighter validity intervals than forward propagation

alone. Thus, Thrun’s method will detect valid rules that Gallant’s algorithm is not able to

confirm. The ability to incorporate arbitrary linear constraints into the extraction process

means that the method can be used to test rules that specify very general conditions on the

output units. For example, it can extract rules that describe when one output unit has a

greater activation than all of the other output units. Linear constraints can also be applied

to the input units. For example, Thrun shows how VIA can be used to test m-of-n rules.

An m-of-n rule is a Boolean expression that is specified by an integer threshold, m, and a

set of n Boolean literals. An m-of-n expression is satisfied when at least m of its n literals

are satisfied. Although the VIA approach is better at detecting general rules than Gallant’s

algorithm, it may still fail to confirm maximally general rules, because it also assumes that

the hidden units in a layer act independently.

Thrun uses two methods to explore a space of rules. As with the previously discussed

techniques, he uses a breadth-first method to search for rules with discrete-valued features.

For tasks with real-valued features, he uses a method that starts with training examples

as seeds for rules. Each of these initial rules describes a point in the instance space. For

example, one initial rule might be the following:

y ← x1 = 0.5 ∧ ¬x2 = 0.2 ∧ ¬x3 = 0.8.

The rules are iteratively generalized by converting one of the rule’s literals into an interval,

or by increasing the bounds of an interval in an existing rule. For example, one possible

generalization of the rule above is:

y ← x1 ∈ [0.3, 0.5] ∧ ¬x2 = 0.2 ∧ ¬x3 = 0.8.

Each proposed generalization is tested against the network using VIA. Thrun has not de-

scribed a method for exploring a rule spaces in domains that involve both discrete and

real-valued features.

Another global rule-extraction method is the algorithm developed by Tchoumatchenko

and Ganascia (1994) for extracting majority-vote rules from trained networks. A majority-

vote rule is a list of literals that can be considered as either evidence for, or evidence against,
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a particular class. Each literal is a (possibly negated) value of a discrete-valued feature. An

example is classified by a set of majority-vote rules by determining the rule that has the

greatest number of its literals satisfied by the example. Tchoumatchenko and Ganascia’s

method, which extracts one majority-vote rule per class, uses a special cost function to

encourage the network weights to cluster around the values in the set {-1, 0, 1} during

training. The algorithm then determines the literals for each rule by estimating whether

each input unit, considered independently, tends to act as evidence for a particular class,

evidence against the class, or tends to be neutral with respect to the class. This determination

is made by considering the signs of the weights along each path in the network from the input

to the output unit representing the class.

The rules extracted by this method may provide only a rough approximation of a network,

because they do not take into account how the hidden units combine evidence from multiple

input units. That is, the method assumes that the relationship between each input unit and

each output unit is monotonic, which is not necessarily the case in networks with hidden

units.

2.4.3 Local Methods

The rule-extraction methods discussed in the previous section extract rules that describe

the behavior of the output units in terms of the input units. Another approach to the

rule-extraction problem is to decompose the network into a collection of networks, and

then to extract a set of rules describing each of the constituent networks. The nature of

these methods is quite different depending upon what type of transfer function the units in

the network employ. I shall first discuss methods for networks that use sigmoidal transfer

functions, and then cover methods for networks that employ local basis functions (Moody &

Darken, 1988; Poggio & Girosi, 1990) instead of sigmoids.

There are a number of local rule-extraction methods for networks that use sigmoidal

activation transfer for their hidden and output units. In these methods, the assumption is

made that the hidden and output units can be approximated by threshold functions, and thus

each unit can be described by a binary variable indicating whether it is “on” (activation ≈ 1)

or “off” (activation ≈ 0). Given this assumption, we can extract a set of rules to describe
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each individual hidden and output unit in terms of the units that have weighted connections

to it. The rules for each unit can then be combined into a single rule set that describes the

network as a whole. Since the local approach assumes that the network’s hidden and output

units can be approximated by a threshold function, it is applicable only if the hidden units

use either logistic or hyperbolic-tangent transfer functions.

If the activations of the input and hidden units in a network are limited to the inter-

val [0, 1], then the local approach can significantly simplify the rule search space. The key

fact that simplifies the search combinatorics in this case is that the relationship between

any input to a unit and its output is a monotonic one. That is, we can look at the sign of

the weight connecting the ith input to the unit of interest to determine how this variable

influences the activation of the unit. If the sign is positive, then we know that this input can

only push the unit’s activation towards 1, it cannot push it away from 1. Likewise, if the

sign of the weight is negative, then the input can only push the unit’s activation away from

1. Thus, if we are extracting rules to explain when the unit has an activation of 1, we need

to consider ¬xi literals only for those inputs xi that can push the activation of the output

unit away from 1. Similarly, we need consider non-negated xi literals only for those inputs

that can push the activation of output unit towards 1. When a search space is limited to

including either xi or ¬xi, but not both, the number of rules in the space is 2n for a task

with n binary features. Recall that when this monotonicity condition does not hold, the size

of the rule space is 3n.

Figure 8 shows a rule search space for the network in Figure 5. The shaded nodes in

the graph correspond to the extracted rules shown in Figure 5. Note that this tree exploits

the monotonicity condition, and thus does not show all possible conjunctive rules for the

network.

A number of research groups have developed local rule-extraction methods that search

for conjunctive rules (Fu, 1991; Gallant, 1993; Sethi & Yoo, 1994). Like the global methods

described in the previous section, the local methods of Fu and Gallant manage search com-

binatorics by limiting the depth of the rule search. When the monotonicity condition holds,
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x x¬4 5

x1x x x x¬2 3 4 5

x x x x¬2 3 4 5

x1 x2 x3 x4 x¬ 5

x x x¬3 4 5

Figure 8: A search tree for the network in Figure 5. Each node in the space represents a possible rule
antecedent. Edges between nodes indicate specialization relationships (in the downward direction). Shaded
nodes correspond to the extracted rules shown in Figure 5.

the number of rules considered in a search of depth k is bounded above by:

k∑

i=0




n

k


 .

There is another factor that simplifies the rule search when the monotonicity condition

is true. Because the relationship between each input and the output unit in a perceptron is

specified by a single parameter (i.e., the weight on the connection between the two), we know

not only the sign of the input’s contribution to the output, but we also know the possible

magnitude of the contribution. This information can be used to order the search tree in a

manner that can save effort. For example, when searching the rule space for the network in

Figure 5, after determining that y ← x1 is not a valid rule, we do not have to consider

other rules that have only one literal in their antecedents. Since the weight connecting x1 to

the output unit is larger than the weight connecting any other input unit, we can conclude

that if x1 alone cannot guarantee that the output unit will have an activation of 1, then no

other single input unit can do it either. Sethi and Yoo (1994) have shown that, when this
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heuristic is employed, the number of nodes explored in the search is:

O



√

2n

π

2n

n


 .

Notice that even with this heuristic, the number of nodes that might need to be visited in

the search is still exponential in the number of variables.

Hayashi (1991) has described a method for extracting fuzzy rules from a specialized

network designed for the task. Hayashi’s extraction method is quite similar to the local

search procedures described above. The principal difference is that the literals in the rules

can represent fuzzy conditions (Zadeh, 1965). A fuzzy condition is one which has graded, as

opposed to Boolean, degrees of satisfaction.

A local method developed by Towell and Shavlik (1993) searches not for conjunctive

rules, but instead for rules that include m-of-n expressions. Recall that an m-of-n expression

is a Boolean expression that is specified by an integer threshold, m, and a set of n Boolean

literals. Such an expression is satisfied when at least m of its n literals are satisfied. For

example, suppose we have three Boolean features, x1, x2, and x3; the m-of-n expression

2-of-{x1, ¬x2, x3} is logically equivalent to (x1 ∧ ¬x2) ∨ (x1 ∧ x3) ∨ (¬x2 ∧ x3).

There are two advantages to extracting m-of-n rules instead of conjunctive rules. The

first advantage is that m-of-n rule sets are often much more concise and comprehensible than

their conjunctive counterparts. The second advantage is that, when using a local approach,

the combinatorics of the rule search can be simplified. The approach developed by Towell

and Shavlik extracts m-of-n rules for a unit by first clustering weights and then treating

weight clusters as equivalence classes. This clustering reduces the search problem from one

defined by n weights to one defined by (c� n) clusters. This approach, which assumes that

the weights are fairly well clustered after training, was initially developed for knowledge-

based neural networks (Towell & Shavlik, 1994), in which the initial weights of the network

are specified by a set of symbolic inference rules. Since they correspond the symbolic rules,

the weights are initially well clustered, and empirical results indicate that the weights of

knowledge-based neural networks remain fairly clustered after training. The applicability of

this approach was later extended to ordinary neural networks by using a special cost function

for network training (Craven & Shavlik, 1993a); this work is described in detail in Chapter 6.
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Blasig (1994) also developed a method that uses a special cost function to encourage

hidden and output units to stay in rule-like states during training. The cost function used

by his method pushes weights toward the discrete values in the set {−6, 0, 6}, and pushes

biases toward values that are odd multiples of 3. When the network parameters are in such

a state after training, each unit can be directly translated into a single rule.

McMillan et al. (1992) devised a local rule-extraction method that simplifies the search

process using a template-matching scheme. The basic idea of this approach is to extract

rules by matching a unit’s weight vector against of a set of canonical weight templates.

Each one of these weight templates corresponds to a symbolic rule. The extraction process

involves finding the weight template, and hence symbolic rule, that best fits the weight

vector for a given unit. Alexander and Mozer (1995) extended this basic approach to be able

to extract m-of-n rules. Their method finds the best m-of-n expression to describe a unit

by considering only O(n2) templates. Moreover, it can find the best set of nested m-of-n

expressions to describe a unit by considering O(n3) templates.

Several of the methods described here modify the network-training process in order to

facilitate rule-extraction. For example, Craven and Shavlik use a special cost function, Fu

uses sigmoidal functions with a steep slope, and McMillan et al. periodically adjust weights

to match templates during training. Another rule-extraction method in this vein is that

of Setiono and Liu (1995). Their approach actively modifies the network-training process

in order to simplify the task of rule extraction. First, the approach tries to minimize the

number of weights in a network by iteratively pruning weights and by using a cost function

that encourages weights to “decay” towards 0. Next, the hidden units are discretized and

the network is re-trained to compensate for this discretization. The discrete states for each

hidden unit are determined by clustering the activation values that occur for the unit when

the network is used to classify the training data. Finally, a local method is used to extract

rules for the hidden and output units. Like the method of Saito and Nakano, the search for

rules is guided using training examples as seeds. Moreover, like the method of Saito and

Nakano, this method may not find all of the rules that describe a unit. Setiono and Liu have

demonstrated that their method is able to extract concise rule-sets from networks that have

a small number of hidden units. The primary limitation of their approach is that it lacks
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generality because it makes so many assumptions about the network and how it was trained.

The local rule-extraction methods discussed so far are designed for networks that use

sigmoidal transfer functions for their hidden and output units. Another class of local methods

has been developed for networks that use local basis functions (Moody & Darken, 1988;

Poggio & Girosi, 1990) for their hidden units. Local basis functions are so named because

they are designed to respond to localized patterns in their input space. Rule extraction

in these networks is greatly simplified because there is no need for a search process. Each

local-basis function can be directly translated into a conjunctive rule. Tresp and Hollatz

(1992) have investigated a method for networks that use the most common type of local

basis function: multivariate Gaussians. Andrews and Geva (1995) developed a method

for networks that employ what they term “local bumps.” These local-bump functions are

actually composed from sigmoid functions, but rules are extracted directly from the local

bumps, instead of the constituent sigmoids. As with the method of Tresp and Hollatz,

extracting rules from these networks involves a straightforward process of translating each

local function directly into a rule.

Finally, Tan (1994) has presented a rule extraction method for complex neural-network

architecture called the Fuzzy ARTMAP (Carpenter et al., 1992). As is the case for networks

with local basis functions, rule-extraction in this context involves directly translating parts of

the network architecture into rules. One novel aspect of this approach is that each extracted

rule has an associated certainty factor which is used in classifying test cases.

2.4.4 Limitations of Related Methods

Although quite a few researchers have invested effort in developing methods for extracting

symbolic representations from neural networks, the current arsenal of algorithms for this

task suffers from significant limitations. Broadly, the most significant of these limitations

are that current methods lack generality, scalability, or both.

As discussed in Section 1.5, the term generality refers to the breadth of the class of

networks to which an extraction method can be applied. Some methods have limited ap-

plicability in that they require that a special training procedure be used for the network

(e.g., Blasig, 1994; Craven & Shavlik, 1993a; McMillan et al., 1992; Setiono & Liu, 1995;
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Tchoumatchenko & Ganascia, 1994; Towell & Shavlik, 1993). Some methods are limited in

their applicability because they impose restrictions on the network architecture (e.g., An-

drews & Geva, 1995; Hayashi, 1991; Tan, 1994; Tresp et al., 1992), or because they require

that hidden units use sigmoidal transfer functions (e.g., Alexander & Mozer, 1995; Fu, 1991;

Gallant, 1993; Saito & Nakano, 1988; Sethi & Yoo, 1994). In fact, some of the abovemen-

tioned methods place restrictions on both the network’s architecture and training regime.

It is important to note that a neural network with a special architecture or training

procedure will likely have a different inductive bias than a network with a “standard” ar-

chitecture trained using backpropagation. Consider a situation in which such a “standard”

network has a more suitable inductive bias than a specialized method. Although we can

run the specialized method to get comprehensible hypotheses in the given problem domain,

we have really dodged the issue of how to get comprehensible hypotheses from the learning

method that has the best inductive bias in the domain.

Although the restrictions imposed by some of these rule-extraction methods are relatively

mild (e.g., the requirement that hidden units use sigmoids), many of the algorithms also make

assumptions about the behavior of the trained network. For example, all of the local methods

assume that the hidden and output units in the network behave like threshold functions, and

thus can be closely approximated by them. Hidden units in trained networks often do not

adhere to this assumption; they often make use of graded activation values. It is often the

case that this is a poor assumption even for output units, especially in the case of multi-

class problems in which the decision procedure does not threshold the output activations, but

simply predicts the class associated with the most active output unit. Some local methods

also assume that hidden units in the network are locally meaningful, and thus that rules

describing the behavior of individual hidden units will be comprehensible. This assumption

is also often not valid. In some cases, very large, complex networks provide the best predictive

accuracy (e.g., Opitz, 1995). In such networks, local descriptions of hidden units make for

very large, complicated rule sets. Another problem with local descriptions of hidden units

is that trained networks often employ a large set of hidden units to represent a smaller set

of “derived” features (Weigend, 1994). In such cases, local hidden-unit descriptions do not

correspond very well to the derived features that the network has learned.
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Another limitation of many rule-extraction methods is that they are designed for problems

that have only discrete-valued features. Many, if not most, inductive learning applications

involve both real-valued and discrete-valued features.

A final comment regarding generality: although this chapter has focused on the task of

extracting symbolic rules from neural networks, there are other types of classifiers that learn

hypotheses which are difficult to understand. For example, instance-based classifiers (which

represent hypotheses as lists of examples) and ensembles of classifiers (in which a collection of

classifiers represents the hypothesis) are often quite opaque. Unlike the approach presented

in the next chapter, none of the rule-extraction methods discussed in this chapter is able to

extract symbolic descriptions from an arbitrary classifier.

The other dimension along which many rule-extraction methods are lacking is scalability.

Specifically, there are two scalability issues that are of concern. The first issue is how does

the efficiency of the method change as a function of the size of the problem. The measures

of size that are relevant here are the dimensionality of the instance space for the problem,

and the number of units and weights in the network. As discussed throughout this chapter,

the size of a rule space grows exponentially with input dimensionality. Some methods are

able to efficiently explore large rule spaces, and some are not. I will return to this point

momentarily.

The second issue of scalability is how the complexity of extracted rule sets grows with

the size of the instance space and the complexity of the network’s hypothesis. Although

it is more difficult to evaluate rule-extraction algorithms along this dimension than along

the dimension of efficiency, we can make a few general observations. The first is that local

methods that extract rule sets for each hidden unit do not scale well with increasing network

size. The sizes of the rule sets extracted by these methods tends to increase with network size,

even though the hypotheses represented by larger networks may not be any more complex

than those represented by smaller networks. A second observation is that methods which

extract only conjunctive rules do not scale well to difficult problems. There is a fair amount

of empirical evidence that indicates that conjunctive-rule descriptions of network hypotheses

are often very large and incomprehensible (Saito & Nakano, 1988; Towell & Shavlik, 1993;

Craven & Shavlik, 1994; Thrun, 1995). Finally, most of the rule-extraction algorithms
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discussed in this chapter are not able control the trade-off between rule-set fidelity and

comprehensibility. In difficult problem domains, it may not be possible to describe a network

with a rule set that characterizes the network to a high degree of fidelity, yet is simple and

comprehensible. In such cases, it is desirable to have a rule-extraction method that is able

to trade off the complexity of the extracted rule set with its fidelity to the network. None of

the techniques described in this section enable this trade-off in a controlled manner.

It is interesting to note that the rule-extraction methods that measure up best along

the dimension of generality are the ones that suffer most along the dimension of scalability.

For example, Thrun’s VIA algorithm for testing candidate rules is perhaps the most general

of the described methods. It is suitable for problems with real-valued and discrete-valued

features, and the only restriction it places on networks is that they use transfer functions

that are continuous and monotonic. The method suffers with respect to scalability, however,

because it has not been coupled with an efficient search technique and because it often

extracts overly-specific rules. On the other hand, Alexander and Mozer’s algorithm for

extracting m-of-n rules is an exemplar of an algorithm that is efficiently able to explore large

rule spaces, but it is rather limited in generality. It requires that the network use sigmoidal

transfer functions, it assumes that the network has learned local representations, and it is

only applicable to problems with discrete-valued features.

In summary, although there is a wide array of algorithms for extracting symbolic de-

scriptions from neural networks, this body of algorithms suffers from serious limitations in

terms of generality and scalability. In the following chapter, I present a novel approach to

rule extraction that is aimed at addressing these limitations.



Chapter 3

The Trepan Algorithm

As discussed in the previous chapter, most rule-extraction algorithms suffer from a lack of

generality, lack of scalability, or both. In this chapter, I present a rule-extraction algorithm,

called Trepan1, that is designed to address these limitations. Trepan does not assume

that the networks given to it have any particular architecture, nor that they were trained in

any special way. In fact, Trepan is general enough that it can be applied to a wide variety

of learned models – not just to neural networks. Moreover, Trepan scales well to tasks with

large instance spaces and to large networks.

3.1 Overview of the Approach

Trepan is a novel approach to rule extraction in that it views the problem of extracting

a comprehensible hypothesis from a trained network as an inductive learning task. In this

learning task, the target concept is the function represented by the network, and the hypoth-

esis produced by the learning algorithm is a decision tree that approximates the network.

However, unlike most inductive learning problems, in this task we have access to an oracle

that can be used to answer queries during the learning process. Specifically, since the target

function is simply the concept represented by the network, the network itself (or whatever

model we have) can be used as the oracle. The advantage of learning with an oracle is that

1Although the name Trepan was really inspired by its metaphorical connotation, it also stands for Trees
parroting networks.

42
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Trepan

Input: Oracle(), training set S, feature set F , min sample parameter, stopping criteria
1. for each example x ∈ S
2. class label for x := Oracle(x)
3. initialize the root of the tree, R, as a leaf node
4. construct a model M of the distribution of instances covered by node R
5. query instancesR := DrawSample( {}, min sample− |S| , M )
6. use S and query instancesR to determine class label for R
7. initialize Queue with tuple 〈 R, S, query instancesR, {} 〉
8. while Queue not empty and global stopping criteria not satisfied
9. remove 〈 node N , SN , query instancesN , constraintsN〉 from head of Queue

10. T := ConstructTest(F , SN ∪ query instancesN)
11. make N an internal node with test T
12. for each outcome, t, of test T
13. make C, a new child node of N
14. constraintsC := constraintsN ∪ {T = t}
15. SC := members of SN with outcome t on test T
16. construct a model M of the distribution of instances covered by node C
17. query instancesC := DrawSample(constraintsC,

min sample− |SC |, M)
18. use SC and query instancesC to determine class label for C
19. if local stopping criteria not satisfied then
20. put 〈C, SC , query instancesC , constraintsC〉 in Queue

Return: tree with root R

Figure 9: The Trepan algorithm. Extract a tree that approximates a given learned model.

the learner can make as many queries as desired, and it can make queries for those instances

that provide the most information about the target function.

3.2 The Algorithm

The Trepan algorithm is shown in Figure 9. Like conventional decision-tree induction

algorithms, such as CART (Breiman et al., 1984), and C4.5 (Quinlan, 1993), Trepan

builds a decision tree by recursively partitioning the instance space. Unlike these algorithms,

however, Trepan constructs a decision tree in a best-first manner (the notion of “best” is

described shortly). It maintains a queue of leaves which are expanded into subtrees as they

are removed from the queue. With each node in the queue, Trepan stores (i) a subset of
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the training examples, (ii) another set of instances which I shall refer to as query instances,

and (iii) a set of constraints. The stored subset of training examples consists simply of

those examples that reach the node. The query instances are used, along with the training

examples, to select the splitting test if the node is an internal node or to determine the class

label if it is a leaf. The constraint set describes the conditions that instances must satisfy in

order to reach the node; this information is used when drawing a set of query instances for

a newly created node.

The process of expanding a node in Trepan is much like it is in conventional decision-

tree algorithms: a splitting test is selected for the node, and a child is created for each

outcome of the test. Each child is either made a leaf of the tree or put into the queue for

future expansion.

Although Trepan has many similarities to conventional decision-tree algorithms, it is

substantially different in a number of respects. The key aspects of Trepan are described in

detail below.

3.2.1 Membership Queries and the Oracle

The generality of Trepan derives from the fact that its interaction with the network consists

solely of membership queries (Angluin, 1988). A membership query is a question to an oracle

that consists of an instance from the learner’s instance space. Given a membership query,

the oracle returns the class label for the instance. Recall that, in this context, the target

concept we are trying to learn is the function represented by the network. Hence, the network

serves as the oracle, and answering a membership query simply involves using the network

to classify an instance.

Membership queries are used in two different ways in Trepan. Initially, they are used

to get class labels for the network’s training examples. Note that these class labels are

not necessarily the “true” class labels, but instead they are determined by the network’s

classification of the instances. Since we are interested in inducing a description of the trained

network, we treat the network’s classifications as ground truth. Trepan is not limited to

using only the network’s training data, however, it makes membership queries for other

instances as well.
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DrawSample

Input: constraints, sample size m′, model M

1. sample := {}
2. if m′ > 0 then for m′ iterations do
3. x := DrawInstance(constraints, M)
4. class label for x := Oracle(x)
5. sample := sample ∪ {x}

Return: sample

Figure 10: The DrawSample function. Use model of a data distribution to draw a sample of instances
satisfying the given constraints.

A major limitation of conventional tree-induction algorithms is that the amount of train-

ing data used to select splitting tests and to label leaves decreases with the depth of the

tree. Thus tests and class labels near the bottom of a tree are often poorly chosen because

such decisions are based on little data. In contrast, because Trepan uses query instances

in addition to training examples, it always makes these decisions based on large samples.

Specifically, Trepan ensures that it has at least min sample instances at a node before giv-

ing a class label to the node or choosing a splitting test for it. Thus, if m training examples

reach a node and m < min sample, then Trepan will draw and make membership queries

for another (min sample−m) instances before making any decisions at the node.

As can be seen in Figure 9, Trepan calls the DrawSample routine to get a set of query

instances to use for membership queries. DrawSample is shown in Figure 10. In order to

make a membership query for an instance that is not in the training set, Trepan must first

select an instance to use as the query. Usually when Trepan is selecting such an instance,

it is subject to a set of constraints that are determined by the location of the node in the

tree. Specifically, the constraints state that instances must have outcomes for the tests at

nodes higher in the tree that cause the instance to follow the path from the root of the

tree to the given node. Figure 11 illustrates this point. Suppose that we want to draw a

sample of instances that would reach the shaded node in the figure. The instances in such a

sample must satisfy the constraints that (x1 = true) and (x2 = true or x3 = true). The first

constraint is attributable to the test at the root node in the tree, and the second constraint is
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321−of−{x  , x  }

sampling constraints for shaded node: (x1 = true) ∧ (x2 = true ∨ x3 = true)

Figure 11: Sampling constraints determined by tree structure. When drawing a sample of query
instances at a node in the tree, the tests between the root and the given node impose constraints that the
instances in the sample must satisfy. Shown here are the constraints that must be satisfied by instances
selected at the shaded node.

due to the m-of-n test at the root node’s left child (refer to Chapter 2 or to Section 3.2.4 for

a description of m-of-n tests). The process of converting a set of constraints into an instance

is handled by the DrawInstance routine which is discussed in the following section.

3.2.2 Drawing Query Instances

A key issue for Trepan is how to convert a set of constraints into an instance that can be

used as a membership query. One approach would be to sample the instance space uniformly

given a set of constraints. In other words, such an approach would randomly draw instances

from a uniform distribution over the part of the instance space that satisfies the constraints.

This is a reasonable approach if the goal of the rule-extraction task is to get a description

of the network that has a uniformly high level of fidelity across the entire instance space.

Another approach to drawing query instances is to take into account the actual distri-

bution of instances in the problem domain. The underlying motivation for this approach is

that there are many domains in which it may not be possible to find a concise decision tree

(or rule set) that describes the network to a high level of fidelity. Therefore, the extraction

algorithm should focus on constructing a tree that has an especially high level of fidelity in
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those parts of the instance space where examples are most likely to be found. This is the

approach Trepan takes.

There are two ways in which the underlying distribution of data may be used in the

querying process. The first method is to use known unlabeled examples as membership

queries. In some domains, although there may be few labeled examples that can be used for

inducing a classifier, there are plenty of unlabeled examples – that is, examples for which the

class labels are not known. For example, in the field of molecular biology, although there is

an abundance of DNA sequence data, much of this data has not yet been characterized. The

data that is poorly understood usually cannot be used for supervised learning tasks because

examples from it cannot be given class labels reliably. However, such data sets could be drawn

upon in order to get instances for membership queries. Likewise, in many reinforcement

learning tasks it is easy to collect large sets of realistic instances (for example, by saving

the sensor measurements of a robot). Although this data cannot be used for reinforcement

learning unless the reward signal is collected as well, such a signal is not needed in order

to use the data for query instances. Similarly, for some reinforcement learning tasks there

exists a good computational model of the problem domain that could be used to generate

instances (e.g., Crites & Barto, 1996). This situation is discussed further in Chapter 5.

The second distribution-based method to querying – which is investigated in depth in

the following chapter – is to construct a model of the underlying distribution of data, and to

use this model in a generative manner to draw instances. Although Trepan could employ

sophisticated domain-specific models for this purpose, by default it uses a fairly simple

approach based on modeling the marginal distributions2 of individual features.

Trepan uses empirical distributions to model discrete-valued features, and kernel density

estimates (Silverman, 1986) to model continuous features. The empirical distribution of a

feature is simply the distribution of values that occurs in a given sample of the feature.

Thus, the empirical distribution for a discrete-valued feature is represented by a parameter

for each possible value of the feature indicating the frequency of that value in the training

set. The kernel density estimation method used by Trepan models the probability density

2The marginal distribution of a random variable is its distribution independent of any other variables.
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function for real-valued feature x as:

f(x) =
1
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where m is the number of training examples used in the estimate, µj is the value of the

feature for the jth example, and σ is the width of the Gaussian kernel. Trepan sets σ set to

1/
√

m. This kernel density estimation procedure has the property of consistency, meaning

that as the size of training set tends to infinity, the estimate of the density function converges

to the true function (Devroye, 1983; John & Langley, 1995). Since the value of σ is inversely

proportional to the available data, however, the method produces smooth, near-Gaussian

estimates when training data is scarce.

This method of modeling the underlying data distribution suffers from one significant

limitation: since it estimates only marginal distributions, it does not take into account

dependencies among features. Trepan partially overcomes this limitation by estimating the

marginal distributions locally as it grows a decision tree. That is, instead of just estimating

the marginal distributions once using all of the training data, Trepan constructs these

estimates specific to certain nodes in the tree using only the training examples that reach

those nodes. This scheme is illustrated in Figure 12. The advantage of constructing these

estimates locally is that some of the conditional dependencies are captured, and thus a more

accurate model of the true distribution is formed. A local estimate of a feature’s distribution

represents some feature dependencies because it is conditionally dependent on the outcomes

of the tests that lie between the root of the tree and the node of interest.

Although local models may provide more accurate estimates than a global model by

taking into account feature dependencies, in some cases they may instead provide worse

estimates because they are based on less data. To handle this trade-off, Trepan uses a sta-

tistical test to decide whether or not to use the local model for a node. In this test, Trepan

compares the distribution of training examples at the node of interest to the distributions

at the next highest ancestor in the tree at which a local model was used. If the distributions

are significantly different, then Trepan uses the newly computed distributions as a local

model, otherwise it uses the ancestor’s model.

To decide if the distributions are significantly different, Trepan compares the marginal
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Figure 12: Local instance models. The figure shows local instance models for a problem with a three-
valued feature and a real-valued feature. The distributions are significantly different at the top two nodes
shown. The lowest node uses the local model of its parent because its distribution (not shown) is not
significantly different than its parent’s.

distributions for each unconstrained feature separately using a χ2 test for discrete-valued

features and the Kolmogorov-Smirnov test for real-valued features (see Chapter 2 for de-

scriptions of these tests). An unconstrained feature is one whose value is not constrained by

tests at internal nodes that are ancestors in the tree. Trepan rejects the null hypothesis

(that the distributions at the two nodes are the same) if the marginal distributions for any

feature are significantly different. Since each feature presents an opportunity to spuriously

reject the null hypothesis, Trepan uses the Bonferroni correction3 (Rice, 1995) to adjust

the significance level of the overall test downward for the individual tests. Note that if a

node has very little data on which to base its model, then it is unlikely that the null hypoth-

esis will be rejected. Similarly, if two distributions are statistically indistinguishable, then

Trepan will not reject the null hypothesis, and instead will prefer the distribution that is

based on more data.

Figure 13 shows the DrawInstance routine which uses a model to draw instances. The

algorithm takes as input a model of the marginal distribution f(xi) for each feature xi along

with the set of constraints that define allowable instances. Recall that these constraints are

3Suppose that we are testing n hypotheses at significance level α, and the null hypotheses are true for
all of them, then the probability that one of the null hypotheses is falsely rejected is as high as nα. The
Bonferroni correction involves testing each hypothesis at the level n/α to ensure that the overall significance
level is less than or equal to α.
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DrawInstance

Input: constraints, model which specifies probability function f(xi) for each feature xi

1. for each feature xi

2. hard constraintsi := non-disjunctive constraints on feature xi

3. g(xi) := f(xi | hard constraintsi)
4. for each disjunctive constraint (i.e., m-of-n test), T
5. while T not satisfied /* satisfy another constraint */

6. for each literal lij on feature xi in T

7. Pr(selecting lij) :=
Prg(xi)(lij)∑
ij Prg(xi)(lij)

8. sij := literal randomly selected according to Pr(selecting sij)
9. hard constraintsi := hard constraintsi ∪ sij

10. g(xi) := f(xi | hard constraintsi)
11. for each feature xi /* pick a value for each feature */

12. xi := value randomly selected from distribution g(xi)

Return: instance x

Figure 13: The DrawInstance function. Use a model of a data distribution to draw an instance
satisfying the given constraints.

determined by the location of the node in the tree where the instances are being drawn.

When there are no disjunctive constraints (i.e., when there are no disjunctive m-of-n tests),

the process of drawing an instance is very simple. Trepan determines the distribution of

each feature g(xi) conditioned on the constraints for that feature, and then randomly samples

each of these conditional distributions. When there are disjunctive constraints, however,

Trepan must ensure that each of these constraints is also satisfied. To do this, Trepan

enters a loop in which it randomly selects literals of the disjunctive constraint to satisfy,

until the constraint itself is satisfied. In other words, to ensure that an m-of-n expression

is satisfied, Trepan needs to ensure that m of the literals in the expression are satisfied.

Similarly, in cases where Trepan wants to draw an instance that does not satisfy a given

m-of-n expression, it needs to ensure that negations of (n−m+1) of the literals are satisfied.

Each iteration of this loop involves first calculating the probability, Prg(xi)(lij), that each

literal, lij, in the constraint will be satisfied. Trepan then randomly selects a literal to

be satisfied, based upon the relative probabilities of the literals being true. The selected

literal sij becomes a new constraint on its associated feature xi and Trepan updates the
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conditional distribution of the feature g(xi), given this constraint. This procedure ensures

that instances are drawn from a distribution that is defined to be the joint distribution of

the features given that the constraints are satisfied. The final step of the procedure is to

draw a random value from the conditional distribution of each feature. This step is trivial for

discrete-valued features. For real-valued features, Trepan adapts a standard algorithm for

generating values from kernel density estimates (Silverman, 1986, pg. 143). The adaptation

of this algorithm ensures that the values it generates fall within the range specified by the

conditional distribution of the feature.

When constructing m-of-n tests in its trees, Trepan enforces a constraint that the same

feature cannot be used in more than one m-of-n test lying on any path between the root

and a leaf of the tree. The primary purpose of this restriction is that it prevents DrawIn-

stance from having to solve a difficult satisfiability problem to ensure that all of the m-of-n

constraints were satisfied. Trepan avoids this situation for the sake of efficiency since the

general satisfiability problem is NP-hard (Garey & Johnson, 1979).

Figure 14 illustrates the DrawInstance procedure with an example. Suppose that

Trepan is drawing a sample for the shaded node in the figure, where x1 is a real-valued

feature in the range [0, 1], and x2 is a Boolean feature. Moreover, to make things simple, sup-

pose that Trepan models both x1 and x2 with uniform distributions, where f(x1) indicates

the probability density function for x1, and f(x2) indicates the probability distribution of x2.

The first step of the algorithm is to determine the hard (i.e., the non-disjunctive) constraints

on the features; in this case, only x1 has a hard constraint. After calculating the conditional

distribution, g(xi), of each feature given its constraints, DrawInstance enters the loop in

which it selects literals to satisfy until the m-of-n test itself is satisfied. In this example,

only one literal needs to be selected. The procedure first determines the probability that

each literal would be satisfied given that values were drawn randomly from the conditional

distributions. Then, since DrawInstance must select one of these literals to satisfy, it

calculates the probability that each will be selected based on its likelihood relative to the

other literals. In the example, we assume that the more likely literal (x2 = true) is selected.

DrawInstance adds this literal to the constraints for x2, and updates the conditional dis-

tribution of the feature. Finally, since the m-of-n test is satisfied, DrawInstance uses the
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true

true

x 1 > 0.4

x 2= true  }1−of−{ x 1 < 0.6,

Input: f(x1) =

{
1

1−0
, 0 ≤ x1 ≤ 1

0, otherwise
f(x2) =

{
1
2
, x2 = true

1
2
, x2 = false

2. hard constraints1 = {(x1 > 0.4)} hard constraints2 = {}

3. g(x1) =

{
1

1−0.4
, 0.4 < x1 ≤ 1

0, otherwise
g(x2) =

{
1
2
, x2 = true

1
2
, x2 = false

7. Prg(x1)(x1 < 0.6) = 1
3

Prg(x2)(x2 = true) = 1
2

Pr(selecting (x1 < 0.6)) = 2
5

Pr(selecting (x2 = true)) = 3
5

8. assume (x2 = true) randomly selected

9. hard constraints1 = {(x1 > 0.4)} hard constraints2 = {(x2 = true)}

10. g(x1) =

{
1

1−0.4
, 0.4 < x1 ≤ 1

0, otherwise
g(x2) =

{
1, x2 = true
0, x2 = false

12. randomly draw x1 = 0.65 x2 = true

Figure 14: Example run of DrawInstance. The task is to draw an instance that will reach the shaded
node in the tree. The leftmost column indicates the corresponding step in the algorithm shown in Figure 13.
The middle column shows information maintained about x1, and the rightmost column shows information
maintained about x2.
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conditional distributions to randomly draw a value for each feature. In the example, the

value 0.65 is drawn for x1, and the value true is drawn for x2 (although the latter feature

was constrained such that there was no choice to make).

3.2.3 Tree Expansion

Unlike most decision-tree algorithms, which grow trees in a depth-first manner, Trepan

grows trees using a best-first expansion. In the conventional decision-tree learning setting, the

order in which the tree is expanded does not make much difference. The learning algorithm

is given a fixed set of training data and grows a tree until either the training examples are

sufficiently separated by class, or until some other locally evaluated stopping criteria are met.

By locally evaluated stopping criteria, I mean criteria that can be decided by considering

only the node that is currently being expanded (as opposed to the current state of the entire

tree). Such criteria are invariant to the order in which the tree is expanded.

The rule-extraction setting differs in several respects, however. First, there is not a fixed

set of data, since in addition to the training examples, we have the ability to draw query

instances. Second, we assume that decision trees that provide complete models of their

counterpart networks are often too complex to be comprehensible, or even impossible to

attain (in cases where the networks have learned decision boundaries that are not parallel

to the axes of an instance space with real-valued features). For these reasons, Trepan uses

a best-first expansion so that as it adds each node it tries to maximize the gain in fidelity of

the tree to the network that it is trying to model.

The notion of the best node is the one at which there is the greatest potential to increase

the fidelity of the extracted tree to the network. The function used to evaluate node N is:

f(N) = reach(N) (1− fidelity(N))

where reach(N) is the estimated fraction of training examples and query instances that

reach N when passed through the tree, and fidelity(N) is the estimated fidelity of the tree

to the network for those instances. As the tree is being constructed, for each internal node

Trepan keeps track of the fraction of instances that are sent down each branch leaving the

node. The value for reach(N) is then calculated as the product of these branch frequencies



54

for all of the branches that lie on the path between the root of the tree and node N . The

value for fidelity(N) – where fidelity refers to the fraction of instances for which the tree

and the network agree in their predictions – is calculated using the training examples and

query instances that reach node N .

3.2.4 Splitting Tests

Selecting a test for an internal node in a decision tree involves deciding how to partition

the part of the instance space covered by the internal node. Figure 15 shows the Con-

structTest function which Trepan uses to determines the splitting test for a node.

Whereas C4.5 and CART use single-feature tests for their splitting criteria, Trepan uses

m-of-n expressions for its tests. An m-of-n expression is a Boolean expression that is specified

by an integer threshold, m, and a set of n Boolean literals. An m-of-n expression is satisfied

when at least m of its n literals are satisfied. For example, suppose we have three Boolean

features, x1, x2, and x3; the m-of-n expression 2-of-{x1, ¬x2, x3} is logically equivalent to

(x1 ∧ ¬x2) ∨ (x1 ∧ x3) ∨ (¬x2 ∧ x3). Murphy and Pazzani (1991) introduced the

idea of using m-of-n expressions as splitting criteria in decision trees, and Trepan’s method

for constructing such tests is patterned after their ID2-of-3 algorithm. The function that

Trepan uses to construct m-of-n tests, ConstructMofNTest, is shown in Figure 16.

Like the ID2-of-3 algorithm, Trepan uses a heuristic search process to construct its

m-of-n tests. The search process begins by first selecting the best binary test at the current

node measured using the information gain criterion (Quinlan, 1993)4 to evaluate candidate

tests. For two-valued features, a binary test separates examples according to their values for

the feature. For discrete features with more than two values, Trepan considers binary tests

based on each allowable value of the feature (e.g., color=red?, color=blue?, ...). For real-

valued features, Trepan considers binary tests on thresholds (e.g., x1 < 0.75, x1 ≥ 0.75).

Like the C4.5 algorithm, the thresholds considered by Trepan for tests on a real-valued

feature are determined by the values of the feature that occur in the training set. Specifically,

4C4.5, on the other hand, uses a variant of information gain called the gain ratio criterion. This modified
version of the information-gain measure is designed to control for information gain’s bias toward many-valued
tests. Because Trepan forms only binary tests, it does not use the gain-ratio measure.
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ConstructTest

Input: features, instances

1. C := MakeCandidateTests(features, instances)
2. best test := true
3. for each c ∈ C
4. if gain(c, instances) > gain(best test, instances) then
5. best test := c
6. best m-of-n test := ConstructMofNTest(best test, C, instances)

Return: best m-of-n test

Figure 15: The ConstructTest function. Determine a splitting test for an internal node in a
Trepan tree.

ConstructMofNTest

Input: best test, C, instances

1. initialize Beam to contain only best test
2. repeat
3. beam changed := false
4. for each t ∈ Beam
5. for each c ∈ C
6. for each operator ∈ { m–of–n+1, m+1–of–n+1 }
7. t′ := operator(t, c)
8. if t′ and t are significantly different then
9. if gain(t′) > gain(t̃) where t̃ is worst test in Beam then

10. replace t̃ by t′ in Beam
11. beam changed := true
12. until beam changed = false

Return: best test in Beam

Figure 16: The ConstructMofNTest function. Construct an m-of-n test for an internal node in a
Trepan tree.
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the set of candidate thresholds for a node is determined by sorting the values that occur in the

training examples that reach the node, and then making candidates for midpoints between

adjacent values. Trepan does not admit a candidate for every one of these midpoints,

however, but only for those midpoints that are between examples with different class labels.

Fayyad and Irani (1992) proved that information gain is always maximized on a cut-point

that falls between examples of different classes, and therefore only these cut-points need to

be considered as candidates.

The selected binary test serves as a seed for Trepan’s m-of-n search process. This

search uses information gain as its heuristic evaluation function, and uses the following two

operators (Murphy & Pazzani, 1991):

• m–of–n+1 : This operator adds a new literal to the set, holding m constant.

Here are some examples of this operator being applied:

2-of-{x1, x2} =⇒ 2-of-{x1, x2, x3},
2-of-{x1, x2} =⇒ 2-of-{x1, x2, x4 > 0.5},
2-of-{x1, x6 = blue} =⇒ 2-of-{x1, x6 = blue, x6 = red}.

• m+1–of–n+1: This operator adds a new literal to the set, and increments m.

Here are some examples of this operator being applied:

2-of-{x1, x2} =⇒ 3-of-{x1, x2, ¬x3},
2-of-{x1, x4 > 0.5} =⇒ 3-of-{x1, x4 > 0.5, x4 ≤ 0.9}.

Trepan’s search permits a limited form of backtracking in that it allows these operators

to add all possible values of a feature to a test. For example, the m–of–n+1 operator might

modify a test in the following way:

2-of-{x1, x2, x3} =⇒ 2-of-{x1, x2, x3,¬x3}.

In such a case, Trepan detects that the x3 and ¬x3 literals are superfluous, and it performs

the following truth-preserving modification to the test:

2-of-{x1, x2, x3,¬ x3} =⇒ 1-of-{x1, x2}.

Similarly, Trepan allows a test with real-valued literals to be modified so that a pair of

literals are complementary. For example, the m–of–n+1 operator might modify a test in the

following way:
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2-of-{x1, x2, x3 ≤ 0.8} =⇒ 2-of-{x1, x2, x3 ≤ 0.8, x3 > 0.8}.

As with the analogous discrete-valued situation, Trepan performs the following truth-

preserving modification in this case:

2-of-{x1, x2, x3 ≤ 0.8, x3 > 0.8} =⇒ 1-of-{x1, x2}.

One restriction that Trepan places on real-valued feature literals in m-of-n tests is that it

does not allow a literal that is implied by another literal. Thus, Trepan never constructs a

test such as:

2-of-{x1, x3 > 0.5, x3 > 0.8}.

Trepan’s heuristic search uses a beam-search method with a beam width of two. The

ID2-of-3 algorithm, on the other hand, uses a simple hill-climbing search, but there are po-

tential pitfalls to this approach. For example, suppose that we were addressing an induction

task where the target concept was 2-of-{¬x1,¬x2,¬x3} where the three features are Boolean

variables. Suppose also that we are using a decision-tree algorithm that uses a hill-climbing

method to construct m-of-n tests and that we have sufficient training data to learn this con-

cept. Since this target concept can be concisely expressed as an m-of-n expression, we would

hope that our decision-tree learner would solve the task by inducing a tree with one internal

node that represented exactly this expression. Furthermore, suppose that the feature x1 is

the single feature that results in the greatest information gain. The question then is do we

start the hill-climbing search using x1 or ¬x1 as the seed? If we pick the former, then we

will miss finding the target concept with a single m-of-n expression. Since Trepan uses a

beam width of two, it is not forced to make an arbitrary choice in this situation, but instead

can further consider both alternatives.

Another difference between ID2-of-3 and Trepan is that Trepan constrains m-of-n tests

so that the same feature is not used in more than one m-of-n test that lies on the same path

between the root and a leaf of the tree. As discussed in Section 3.2.2, the primary purpose

of this restriction is that it prevents Trepan from having to solve difficult satisfiability

problems when drawing instances for membership queries. An additional reason to disallow

features occurring in multiple m-of-n tests along the same path is that it enhances tree
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comprehensibility. This restriction obviates the need to understand complex interactions

among tests in order to understand a tree.

Using a heuristic search to find m-of-n tests, it can be easy to over-fit a given set of

instances. Over-fitting can occur if either the set of instances is large, or if there are many

possible operator applications (because there is a large set of candidate tests), since these

conditions provide many opportunities for very small increases in the information gain of

an m-of-n test. To avoid this pitfall, Trepan places an additional restriction on operator

applications. Namely, to decide whether or not a given operator application is admissible, a

χ2 test is used to determine if the proposed change to the m-of-n test results in a significantly

different partitioning of the instances than the partition induced by the test before the

proposed change. If not, then the particular operator application is disallowed.

Finally, after Trepan has constructed an m-of-n test, it uses a simple literal-pruning

procedure to try to simplify the test. This procedure involves making one pass through the

literals in the m-of-n test to see if any of them can be deleted without the information gain

of the test being reduced. The literals are considered in the order that they were added to

the m-of-n test, and for each literal, Trepan considers two modifications to the test. The

first candidate modification is to drop the literal from the test while holding m constant,

and the second is to decrement m and drop the literal from the test.

3.2.5 Stopping Criteria

Most decision-tree induction algorithms use what I refer to as local stopping criteria. That

is, when deciding whether to expand a node into a subtree or to make it a leaf, the decision is

local in that it is based only characteristics of that node, such as the distribution of training

examples that reach it. Trepan, on the other hand, uses both local and global stopping

criteria. A global stopping criterion is one that considers the state of the entire tree, not

just the state of the node currently being expanded.

The local criterion that Trepan uses is based on the “purity” of the set of examples

covered by the node. The node becomes a leaf in the tree if, with high probability, it covers

only instances of a single class. To make this decision, Trepan first estimates the proportion

of instances, propc, covered by the node that fall into the most common class, c, at the node.
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If ̂propc = 1, then Trepan calculates the number of instances it needs to consider, mL,

in order to ensure that Pr(propc < 1 − ε) < α. In other words, mL specifies how many

instances are needed to get a sufficiently tight confidence interval around ̂propc. Here, α is

the significance level for the test, and ε specifies how tight the confidence interval around

̂propc must be. The value for mL is calculated by considering that a confidence interval

around a proportion, p̂, specifies:

p ≥
p̂ + z2

α/2n− zα

√
p̂(1− p̂)/n + z2

α/4n2

1 + z2
α/n

with 100(1−α)% confidence (Hogg & Tanis, 1983)5. Here, zα represents the value such that

the integral of the standard normal density from zα to∞ equals α. Since we want to ensure

that Pr(propc < 1− ε) < α, we set:

1− ε =
p̂ + z2

α/2n− zα

√
p̂(1− p̂)/n + z2

α/4n2

1 + z2
α/n

Substituting ( ̂propc = 1) for p̂, mL for n, and solving for mL, we see that:

mL =
z2

α(1− ε)

ε
.

If mL instances have already reached the node of interest, then Trepan makes it a leaf.

Otherwise, Trepan draws instances and makes membership queries until either ̂propc < 1,

or mL instances have been seen and ̂propc = 1. The node is made a leaf only if the latter

condition is met.

Trepan also employs global stopping criteria. The first is simply a limit on the size of

the tree that Trepan returns. This parameter, which is specified in terms of internal nodes,

gives the user some control over the comprehensibility of the trees produced by enabling a

user to specify the largest tree that would be acceptable for Trepan to return.

Trepan is able to use a validation set, in conjunction with the size-limit parameter, to

decide on the tree to be returned. Since Trepan grows trees in a best-first manner, it can

be thought of as producing a nested sequence of trees in which each tree in the sequence

differs from its predecessor only by the subtree that corresponds to the node expanded at

5Commonly, this confidence interval is calculated using zα/2 instead of zα. However, in the situation
described here, ̂propc = 1, and thus we need calculate only a one-sided confidence interval instead of the
usual two-sided interval.
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the last step. When given a validation set, Trepan uses it to measure the fidelity of each

tree in this sequence, and then returns the tree that has the highest level of fidelity to the

target network.

Unlike Trepan, the CART and C4.5 algorithms do not rely primarily on stopping

criteria to control the size of induced trees. Instead, the philosophy of these algorithms is

to grow oversized trees and then to use a pruning method to find “right-sized” trees. The

argument for using a pruning strategy instead of early stopping to control tree size is that

early stopping methods are too sensitive to plateaus in the function used to decide when to

stop growing the tree. For example, when growing a tree we may add a node that itself does

not result in a significant increase in information gain, but that when extended by a few

nodes into a subtree does result in a significant increase. Suppose also that the larger tree

provides a better description of the problem at hand. In this kind of situation where patience

pays off, an early-stopping method would have been likely to prematurely stop growing the

tree after the initial node failed to exhibit a gain.

Despite this argument against an early stopping policy, Trepan uses one for several

reasons. A primary motivation underlying Trepan is to produce comprehensible (and pre-

sumably small) decision trees. Therefore, its notion of how large a tree can be considered a

“right-sized tree” is bounded by the user’s limit on acceptable tree size. The other reason

that Trepan uses an early-stopping method is that, empirically, it does not seem to exhibit

the short-horizon problem described above. One explanation for this fact is that m-of-n tests

are not as susceptible to this problem as are single-feature tests.

3.2.6 Pruning

After the stopping criteria are met, Trepan employs a very simple form of pruning before

returning the final tree. The purpose of this pruning step is to detect subtrees that predict

the same class at all of their leaves, and to collapse each such a subtree into a single leaf.

This pruning procedure is done using a recursive, post-order traversal of the tree, so that

the tree is simplified as much as possible. Note that the modifications made to a tree by this

process do not change the predictive behavior of the tree at all, they simply delete extraneous

internal nodes from the tree.
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3.3 Discussion

Unlike most rule-extraction approaches, the symbolic descriptions produced by Trepan are

decision trees instead of sets of inference rules. This distinction may not seem important,

since a decision tree can easily be converted into a set of inference rules (Quinlan, 1993).

There are, however, a couple of advantages to using decision trees as the extracted rep-

resentation, instead of inference rules. First, the decision-tree representation provides the

extraction algorithm with some degree of control over the extracted representation’s com-

plexity and fidelity. Trepan first extracts a very simple (i.e., one-node) description of a

trained network, and then successively refines this description to improve its fidelity to the

network. In this way, Trepan explores increasingly more complex, but higher fidelity, de-

scriptions of the given network. Note, however, that this property is a function not only of

Trepan’s decision-tree representation, but also of its best-first strategy.

A second advantage of a decision-tree representation is that a decision tree provides

a complete covering of the instance space. That is, a decision tree predicts a class for

every point in the space of possible instances. This is a desirable property for an extraction

algorithm because it avoids the problem of identifying which parts of the instance space have

not yet been covered. For example, two of rule-extraction methods for real-valued problem

domains discussed in the previous chapter (Saito & Nakano, 1988; Thrun, 1995) try to

cover the instance space with extracted rules by successively generalizing training examples

and testing these generalizations against the network. A problem that these approaches

encounter is that as more and more rules are extracted, it becomes increasingly difficult to

identify the parts of the instance that have not yet been covered by rules. In contrast, a

method such as Trepan, which uses decision trees as its representation, always maintains

a complete cover of the instance space. It trades off the problem of identifying uncovered

parts of the instance space with the much simpler problem of identifying the parts of its

representation that do not provide adequate fidelity.

Another key aspect of the Trepan algorithm is that it uses the training set and carefully

selected query instances to induce a decision tree. One might wonder why not use the

following approach: classify every instance in the instance space using the network and then
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run an ordinary decision-tree algorithm on this exhaustive set of instances. In effect, this

approach would use a decision-tree method to summarize the given set of data. In fact,

such an approach might be effective for rule extraction in problem domains with small,

finite instance spaces. However, there are few real-world problems in which it is possible to

exhaustively enumerate all of the instances. The instance spaces for most real-world problems

are either not small (because they involve many features) or not finite (because they have

real-valued features). Thus, Trepan does not assume that it is given an exhaustive set of

instances, but instead selectively draws instances and makes membership queries as needed.

In earlier work (Craven & Shavlik, 1994), I developed a precursor to Trepan that also

treated the rule-extraction task as an inductive learning problem. This algorithm, however,

extracted inference rules instead of decision trees, and therefore suffered from the limitations

of using rules discussed above. My experience with this algorithm led to the adoption of

decision trees as the representation language for Trepan.

Another notable aspect of this earlier algorithm is that it used subset queries (Angluin,

1988) instead of membership queries. A subset query specifies a region of the instance space,

and asks an oracle if all of the instances in the region are members of a given class. In other

words, a subset query is equivalent to testing a hypothesized rule to see if it agrees with a

network. It is easy to implement an oracle that answers subset queries for perceptrons, but

more difficult to do so for multi-layer networks. Since answering a subset query, however,

is equivalent to testing a rule, one could use an algorithm such as Thrun’s (1995) validity

interval analysis (described in Chapter 2) to implement a subset-query oracle. Trepan opts

to use membership queries instead of subset queries for three reasons. First, membership

queries are simpler and less expensive to handle. Second, they can be applied to almost any

type of learned model. And finally, as mentioned in Chapter 2, the available methods for

answering subset queries (such as validity interval analysis) may be able to verify only overly

specific rules.
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3.4 Chapter Summary

This chapter presented the Trepan algorithm which extracts decision trees from neural

networks and other learned models that are hard to understand. Trepan is novel in that,

unlike previous approaches, it treats the rule-extraction problem as an inductive learning

task. In this learning task, the target concept is simply the function represented by the

given learned model. Trepan makes use of membership queries to the model in order to

induce a decision tree that describes it. The primary advantages of this approach are that

it is general in its applicability, and it is scalable to large networks and problem domains.

The design of Trepan is predicated on the conjecture that, in many problem domains,

it is not possible to extract concise representations that have perfect fidelity to their target

models. Trepan therefore tries to extract trees that maximize the tradeoff between fidelity

and concision. It does this in two ways. First, it uses a network’s training set to construct

models of the data distribution in the problem domain, and uses these models to generate

instances for membership queries. In this way, Trepan is able to focus its description of

the given model on the parts of the instance space where data is likely to occur. Secondly,

Trepan grows decision trees in a best-first manner, attempting the maximize the gain in

fidelity each time it expands a node in the tree.

Another key aspect of Trepan is that it uses m-of-n expressions as splitting tests in the

trees it induces. These expressions often result in more concise and comprehensible trees.

The idea of viewing rule extraction as an inductive learning task was introduced in an

earlier publication (Craven & Shavlik, 1994). A description of the Trepan algorithm and

some of experiments reported in the following chapter were also previously published (Craven

& Shavlik, 1996).



Chapter 4

Empirical Evaluation of Trepan

This chapter provides an empirical evaluation of the Trepan approach. The experiments

presented here illustrate the application of Trepan to neural networks trained to solve both

supervised and reinforcement learning tasks. The chapter begins by first describing the

evaluation criteria considered in these experiments.

4.1 Evaluation Criteria

Chapter 1 introduced the dimensions along which rule-extraction methods should be evalu-

ated:

• Comprehensibility: They should generate symbolic representations that are hu-

manly comprehensible.

• Fidelity: They should produce symbolic representations that accurately model the

networks from which they were extracted.

• Scalability: They should be scalable to networks with large input spaces and large

numbers of units and weighted connections.

• Generality: They should require neither special training regimes, nor restrictions on

network architecture.

64
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The experiments presented in this chapter test the Trepan algorithm with respect to these

desiderata. Additionally, the experiments evaluate the predictive accuracy of the trees ex-

tracted by Trepan. I now discuss each of these evaluation measures in more detail.

Measuring the comprehensibility of learned hypotheses is a problematic issue. An un-

derlying premise of the experiments in this chapter is that syntactic complexity is a good

indicator of comprehensibility. For a given representation language, I contend that, other

things being equal, simpler descriptions are better than complex descriptions. Not surpris-

ingly, the psychological literature supports the notion that humans prefer simple concepts

(Neisser & Weene, 1962; Pinker, 1979; Medin et al., 1987). The specific measures of syntactic

complexity that I use to assess the comprehensibility of decision trees are: (i) the number

of internal (i.e., non-leaf) nodes in the tree, and (ii) the number of feature references used

in the splitting tests in the tree. An ordinary, single-feature splitting test is counted as one

feature reference. An m-of-n test is counted as n feature references, since such a split lists n

feature values.

Another key metric is the fidelity of extracted decision trees. In the experiments reported

in this chapter, both accuracy and fidelity are measured using test-set examples. Whereas

accuracy is defined as the percentage of test-set examples that are correctly classified, fidelity

is defined as the percentage of test-set examples for which the classification made by a

tree agrees with its neural-network counterpart. Using held-aside test sets is the standard

methodology for measuring the predictive accuracy of a learning method. It is used here

to measure fidelity as well since it ensures that fidelity is measured using examples that (i)

are held aside from Trepan during the extraction process, and (ii) come from the true,

underlying distribution of data in the domain. The former condition is important because it

means that the estimates of fidelity are unbiased. The latter condition is important because

it means that fidelity is being measured with respect to the frequency that instances actually

occur in the domain.

The experiments in this chapter do not directly measure the scalability of Trepan.

Instead, scalability is evaluated indirectly by applying the algorithm in a variety of domains,

some of which have large instance spaces. Moreover, in many of the domains, the neural

networks to which Trepan is applied are quite large, and in one domain Trepan is used
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to extract decision trees from ensembles of large neural networks.

The generality of the Trepan approach is also assessed indirectly. The experiments

in this chapter illustrate the application of Trepan in both supervised and reinforcement

learning problems. Within the supervised learning setting, Trepan is applied to extract

rules in several classification domains, and in one regression domain. These problem domains

involve both discrete and real-valued features. Moreover, the experiments in this chapter

illustrate the application of Trepan to networks with logistic, hyperbolic-tangent, and linear

activation functions. And finally, as mentioned above, Trepan is used to extract rules from

neural-network ensembles in one domain.

4.2 Trepan Applied in Classification Domains

This section evaluates Trepan in the context of six problem domains that involve supervised

classification learning. Two conventional decision-tree algorithms are also applied in these

problem domains. Unlike Trepan, which extracts decision trees from trained networks,

these algorithms induce trees directly from the given training data. These two algorithms

provide a baseline for (i) evaluating the predictive accuracy of the neural networks and the

trees extracted from them by Trepan, and (ii) evaluating the syntactic complexity (and

hence comprehensibility) of the trees produced by Trepan.

4.2.1 Problem Domains

The problem domains used in these experiments are summarized in Table 1. They include:

recognizing protein-coding regions in E. coli DNA sequences (Craven & Shavlik, 1993b),

diagnosing the presence of heart disease in patients (Detrano et al., 1989), mapping English

text into its pronunciation (Sejnowski & Rosenberg, 1987), recognizing promoters in E. coli

DNA sequences (Towell et al., 1990), diagnosing faults in local telephone loops (Provost

& Danyluk, 1995), and predicting the party affiliation of members of the U.S. House of

Representatives given their voting records (Schlimmer & Fisher, 1986). I shall refer to these

as the coding, heart, NETtalk, promoter, telephone, and voting domains, respectively.

A few notes about the data sets used here are in order. The NETtalk task in these
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Table 1: Characteristics of the classification domains.

domain # examples # features # classes
discrete continuous

protein-coding regions 20,000 64 0 2
Cleveland heart disease 303 8 5 2
NETtalk stresses 5,438 7 0 5
promoters 468 57 0 2
telephone loop diagnosis 2,686 10 13 3
Congressional voting 435 15 0 2

experiments is a simplified version of the one addressed by Sejnowski and Rosenberg. The

scaled-down version used here involves learning only the stresses (but not the phonemes1)

from a corpus of the 1,000 most common English words. The promoter data set used here is

a larger and more complex set than the original one (Towell et al., 1990). Following Buntine

and Niblett (1992), the physician-fee-freeze feature is not used in the voting domain

in order to make the problem more difficult.

For the heart, NETtalk, telephone, promoter, and voting domains, experiments are

conducted using a 10-fold cross validation methodology. Because of certain domain-specific

characteristics of the coding data set,2 four-fold cross-validation is used for the experiments

with it. Appendix A includes additional information about these data sets.

4.2.2 Algorithms

For the coding, heart, NETtalk, promoter, and voting domains, I train neural networks

with a single layer of hidden units (or no hidden units at all). The hidden and the output

units use logistic transfer functions, and the number of hidden units used for each network

(0, 5, 10, 20 or 40) is chosen using cross validation within each network’s training set. The

networks are trained using a conjugate-gradient learning method (Kramer & Sangiovanni-

Vincentelli, 1989), and training continues until either (i) all of the training-set examples are

correctly classified, (ii) a local minimum in the error surface is reached, or (iii) 50 search

1The task of learning stresses is of comparable predictive difficulty to the task of learning phonemes.
The standard approach to the phoneme task, however, is to predict 21 output bits encoding the 54 possible
classes. This representation is unwieldy to work with in experiments involving decision-tree (or rule-based)
classifiers.

2This data set is partitioned so that DNA sequences from the same, and similar, genes are in the same fold.
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directions have been tried.

For the telephone domain, Trepan is not applied to individual networks, but instead

to neural-network ensembles. An ensemble is a set of separately trained classifiers whose

predictions are combined through some weighting scheme. Here, the ensembles are induced

using the Addemup algorithm (Opitz & Shavlik, 1996). The Addemup algorithm uses a

domain theory and genetic search techniques to generate an ensemble of knowledge-based

neural networks (Towell & Shavlik, 1994). As mentioned in Chapter 2, a domain theory is

a set of symbolic inference rules that represents an approximately correct solution to the

task at hand. A knowledge-based network is a neural network in which the topology and

initial weights are specified by a domain theory. The domain theory used in the telephone

experiments was derived from the inference rules of an expert system that performs the

local-loop diagnosis task. The Addemup algorithm initially maps the rules of a domain

theory into a set of networks using the Kbann algorithm (Towell & Shavlik, 1994), and

then significantly alters the architecture of the networks by interleaving a genetic search

algorithm with training. In the experiments reported here, Addemup produced ensembles

consisting of twenty networks each. Although Addemup is often able to find solutions that

have a high level of predictive accuracy, it typically represents these solutions using large,

complex networks.

Table 2 summarizes the sizes of the networks used in the experiments reported here.

The table lists the average number of units and parameters (weights and biases) for the

networks used in each domain, and the standard deviations of these values. The figures for

the telephone domain indicate the sizes of the ensembles, as opposed to the 20 individual

networks, produced by Addemup.

Trepan is applied to each of the trained networks (or ensembles in the telephone

domain). Trepan employs three statistical tests: the χ2 test that is used when constructing

m-of-n splitting tests, the proportion test that is used for deciding whether a node covers

instances of only one class, and the test to decide whether a local model should be used

for drawing query instances. A significance level of 0.05 is used for the first test. For the

stopping test, the significance level is set to 0.01. A stringent significance level is used for

this test because it does not hurt to be conservative in making this decision. The philosophy
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Table 2: Network sizes for the classification domains.

domain # units # parameters

coding 105.0 ± 0.0 2,641.0 ± 0.0
heart 37.5 ± 8.8 267.2 ± 253.2
NETtalk 205.5 ± 7.8 2,342.0 ± 1,397.4
promoter 238.5 ± 12.6 2,277.2 ± 2,816.4
telephone 942.0 ± 214.3 10,839.0 ± 7,158.8
voting 52.0 ± 14.3 673.0 ± 457.5

of Trepan is to use other stopping criteria to control the size of the returned tree. For the

third test, the significance level is set to 0.10. This relatively high value is used because this

test actually involves a series of tests, and the Bonferroni correction (Rice, 1995) is used to

determine the significance level of each of these constituent tests. The Bonferroni correction

is conservative in nature (it makes a worst-case assumption about the outcomes of the tests),

and thus it is fairly common to use a somewhat relaxed significance level with it (Loh, 1996).

The other parameter of Trepan is min sample, which specifies how many instances must

be considered before giving a class label or choosing a splitting test for a node. For all

domains, the value of this parameter is set to 10,000. Trees are grown to a maximum size of

31 internal nodes, which is the size of a complete binary tree of depth five. Trepan holds

aside 10%and from the sequence of nested trees from a given run, returns the one that has

the highest level of training-set validation to the network.

As a baseline for evaluating the accuracy and comprehensibility of the trees extracted by

Trepan, I also run two conventional decision-tree algorithms: C4.5 (Quinlan, 1993) and

an enhanced version of ID2-of-3 (Murphy & Pazzani, 1991). C4.5 (the successor to ID3) is

one of the most widely used inductive learning algorithms, and is perhaps the most popular

inductive algorithm for learning “symbolic” hypotheses. ID2-of-3 is a variant of ID3 that

differs from C4.5 primarily in the nature of the splitting tests it uses. Whereas C4.5 uses

single-feature splitting tests, ID2-of-3 uses m-of-n expressions for tests at its internal nodes.

(Chapter 3 provides a detailed discussion of how ID2-of-3 and Trepan construct m-of-n

tests.)

The version of ID2-of-3 used in the experiments here, which I will refer to as ID2-of-3+,

includes a number of enhancements on the original algorithm:
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1. M-of-n tests can include literals on real-valued features.

2. The heuristic search process that constructs m-of-n tests uses a significance test to

decide when to stop the search.

3. The m-of-n search process uses a literal-pruning routine to simplify tests after they are

constructed.

4. The heuristic search process uses a beam search (with a beam width of two) instead

of a hill-climbing search.

5. After trees are grown, they are pruned using the same pruning process as C4.5.

The first four of these modifications are common to Trepan also, and are described in detail

in Chapter 3. The final enhancement is described in detail elsewhere (Chapter 4 of Quinlan,

1993).

The primary parameter of C4.5 that is varied in the experiments is the pruning level. As

discussed in Chapter 2, C4.5’s pruning method is parameterized by a confidence level that

specifies how liberally trees should be pruned. I evaluate unpruned trees and trees pruned

with confidence levels ranging from 5% (liberal) to 95% (conservative). In the same way

that the number of hidden units is selected for each neural network, cross-validation (within

the training set) is used to select the pruning level for each training set. For all domains

except coding, the default settings are used for other parameters of C4.5. In the coding

domain, C4.5’s minobjs parameter3 is set to ten instead of the default value of two, since

the training sets are so large.

I use the same experimental methodology for ID2-of-3+ as for C4.5. A minobjs pa-

rameter is used to determine when to stop growing a tree. The ID2-of-3+ experiments

use the same settings for this parameter as do the C4.5 runs. Similarly, in the ID2-of-3+

experiments, pruning levels are set using cross validation within each training set as is done

with C4.5. Recall that, like Trepan, ID2-of-3+ employs a χ2 test to decide when to stop

the search process that constructs m-of-n tests. The significance level of this test is set to

0.05 as it is for Trepan.
3When selecting a splitting test at a node, C4.5 requires that a split send at least minobjs examples

down two or more branches.
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Table 3: Test-set accuracy (%) for the classification domains. The symbol ‘∗’ marks results in cases
where the accuracy of an algorithm is inferior to the accuracy of the neural networks at the p ≤ 0.05 level
of significance. Similarly, the symbols ‘•’ and ‘�’ mark results that are inferior to Trepan and ID2-of-3+,
respectively, at p ≤ 0.05.

method coding heart NETtalk promoter telephone voting

networks 94.1 84.5 87.2 90.6 65.3 92.2
C4.5 ∗• 90.4 ∗• 74.6 ∗• 80.9 ∗ 85.0 ∗• 60.7 ∗ 89.7
ID2-of-3+ ∗• 91.9 ∗• 76.2 ∗ 85.3 ∗ 82.7 ∗• 60.4 90.8
Trepan ∗ 93.1 83.2 ∗� 83.9 87.4 ∗ 63.3 91.3

4.2.3 Results

Table 3 shows the test-set accuracy results for the experiments in the classification domains.

Each of these values represents the average of the test-set results for the cross-validation

run in each domain. It can be seen that, for every data set, neural networks provide better

predictive accuracy than the decision trees learned by C4.5 and ID2-of-3+. This result

indicates that these are domains for which neural networks have a more suitable inductive

bias than either C4.5 or ID2-of-3+. Indeed, these problem domains were selected for this

reason, since it is in cases where neural networks provide superior predictive accuracy to

symbolic learning approaches (such as these decision-tree algorithms) that it makes sense to

apply a rule-extraction method. I test the statistical significance of differences in accuracy

using a paired-sample, two-tailed t-test. In all of the domains, the pairwise differences in

accuracy between the neural networks and the C4.5 trees are statistically significant at

p ≤ 0.05. In five of the six domains, the pairwise differences in accuracy between the neural

networks and the ID2-of-3+ trees are significant at this level. These cases (for both C4.5

and ID2-of-3+) are indicated in the table by the symbol ‘∗’ next to the inferior accuracy

result.

The results in Table 3 show that the trees extracted by Trepan are more accurate than

the C4.5 and ID2-of-3+ trees in five of the domains (coding, heart, promoter, telephone,

and voting). I test the significance of the accuracy differences between Trepan and the

other algorithms using a paired-sample, two-tailed t-test. Cases in which the accuracy of

another algorithm is less than Trepan at p ≤ 0.05 are indicated in the table by the symbol ‘•’
next to the inferior result. In three out of the five cases mentioned above, the Trepan trees
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Table 4: Test-set fidelity (%) for the classification domains.

method coding heart NETtalk promoter telephone voting

Trepan 94.1 96.0 91.0 89.1 89.3 96.8

are significantly more accurate than both the C4.5 trees and the ID2-of-3+ trees at p ≤ 0.05.

In the NETtalk domain, the trees extracted by Trepan are more accurate than the C4.5

trees, but not as accurate as the ID2-of-3+ trees. In fact, the difference in accuracy between

ID2-of-3+ and Trepan in this domain is statistically significant; this result is marked by

the symbol ‘�’ in the table. As we shall see in Section 4.5, however, this result is largely due

to the fact that the NETtalk trees were not allowed to be grown large enough.

Table 4 shows the fidelity of the Trepan trees to their respective neural networks. As

with the accuracy measurements, these values represent averages for the cross-validation run

in each domain. In four of the domains, the fidelity level exceeds 90%. The results in this

table indicate that the trees extracted by Trepan provide good approximations to their

respective neural networks.

In summary, for a wide range of problem domains in which neural networks provide better

predictive accuracy than conventional decision-tree induction algorithms, Trepan is able to

extract decision trees that represent their learned hypotheses to a high degree of fidelity. In

many cases, because the trees extracted by Trepan provide a faithful representation of the

neural networks’ hypotheses, they provide superior predictive accuracy to the trees learned

by the conventional algorithms.

Tables 5 and 6 show tree-complexity measurements for C4.5, ID2-of-3+, and Trepan.

The measurements for the conventional decision-tree algorithms are taken for pruned trees.

Broad trends are hard to discern from these results. In two of the domains (heart and

voting), the trees learned by all three algorithms are comparable in size. In two other

domains (NETtalk and telephone), the Trepan trees are comparable in size to the C4.5

trees but significantly smaller than the ID2-of-3+ trees. And finally in the coding domain,

the Trepan trees are much smaller than those induced by the other two algorithms, while

in the promoter domain the situation is reversed. Based on these results, I argue that

the trees extracted by Trepan are generally as comprehensible as the trees learned by
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Table 5: Tree complexity (# internal nodes) for the classification domains.

method coding heart NETtalk promoter telephone voting

C4.5 153.3 15.5 87.8 7.0 35.0 11.2
ID2-of-3+ 63.3 13.0 137.0 13.2 215.0 7.1
Trepan 9.0 10.7 26.2 11.7 9.5 11.5

Table 6: Tree complexity (# feature references) for the classification domains.

method coding heart NETtalk promoter telephone voting

C4.5 153.3 15.5 87.8 7.0 35.0 11.2
ID2-of-3+ 344.3 37.2 258.0 41.3 109.9 14.5
Trepan 70.5 24.4 68.8 105.5 26.3 29.7

conventional decision-tree algorithms. With Trepan, however, there is often a trade-off

between the fidelity and the comprehensibility of extracted trees. That is, in some cases

the comprehensibility of the trees extracted by Trepan can be improved by requiring the

algorithm to return smaller trees. Similarly, the fidelity of extracted trees can sometimes be

improved by allowing Trepan to consider larger trees. This trade-off is illustrated in the

experiments reported in Section 4.5.

Representative trees extracted by Trepan for each problem domain are shown in Ap-

pendix A.

4.3 Trepan Applied in a Regression Domain

This section investigates using Trepan to describe a neural network that is trained to

perform a regression task. Specifically, the network is trained to predict the Dollar-Mark

exchange rate (Weigend et al., 1995). This network was trained by Weigend et al. without

any intention of later applying Trepan to it. The network and associated data were shared

with me by the authors, who were interested in gaining an understanding of their trained

network.
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4.3.1 Problem Domain

The data for this time-series problem consists of daily values from the period of Jan-

uary 15, 1985 through January 27, 1994. The last 216 days were set aside as a test set

before the neural network was trained. From the remaining data, every fourth day was held

aside to form a validation set (535 days), and the rest of the data (1607 days) was used as

a training set. Twelve of the 69 features for this domain represent information derived from

the time series itself (relative strength index, skewness, point and figure chart indicators,

etc.), and the other 57 inputs represent fundamental information beyond the series itself

(indicators dependent on exchange rates between different countries, interest rates, stock

indices, currency futures, etc.). Forty-eight of the features are real-valued and the remaining

21 are discrete-valued.

The network predicts three real-valued outputs. The first output unit predicts a normal-

ized version of the return: the logarithm of the ratio of tomorrow’s price to today’s price

is divided by the standard deviation of this ratio computed over the last 10 trading days.

The second output unit predicts the number of days to the next turning point: the point at

which the daily change in the exchange-rate will reverse direction. The third output unit

predicts the return between the current day and the next turning point.

Although the network was trained to predict three separate continuous quantities, Trepan

is applied here to extract a description of only the return output. Moreover, although the

return output of the network is a continuous variable, the extraction task here is framed as

one of predicting whether the current day’s price is going up or down. In other words, the

return output is trained to perform a regression task, but the extraction process is set up as

a classification task – to describe the qualitative behavior of the return output.

4.3.2 Algorithms

The network used in the experiments has 69 input units, a single layer of 15 hyperbolic-

tangent hidden units, and three output units with linear transfer functions. The network

was trained using the technique of clearning (Weigend et al., 1995). The clearning method

involves simultaneously cleaning the data and learning the underlying structure of the data.
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The idea behind cleaning is that the learned model can be used to adjust training instances

so that their values are more likely, given that the model represents the true structure of the

problem. Specifically, clearning uses a cost function that consists of two terms (shown here

for a single training example):

C =
1

2
η
(
y − yd

)2
+

1

2
κ
(
x− xd

)2
.

The first term, which corresponds to the learning aspect of clearning, is the squared error

between the network’s output y and the target value yd. The second term, which corresponds

to the cleaning aspect, is the squared deviation between the cleaned input x and the actual

input xd. The parameters η and κ are the learning rate and the cleaning rate respectively.

In addition to clearning, a pruning process is also applied to the network during training.

Clearning is run until the network starts over-fitting the training data (as indicated by

accuracy on the validation set), and then some of the weights from the input-to-hidden layer

are pruned. This process is iterated until overpruning is detected. At this point, the last set

of pruned weights is restored and the clearning step is run a final time. Out of the original

69 features, the clearned network used in these experiments retained connections to 15 of

the real-valued ones and 5 of the discrete-valued features.

As in the classification experiments earlier in this chapter, C4.5 and ID2-of-3+ serve as

baselines for comparison in the experiments presented in this section. The induction problem

for these algorithms is to learn the classification task of predicting whether the exchange

rate will go up or down on the next day. I run C4.5 and ID2-of-3+ using two different

feature sets. In the first run, both algorithms are given the entire set of 69 features. In the

second run, they are given only the 20 features that were incorporated into the hypothesis

of the clearned network. The latter configuration allows us to test the hypothesis that any

performance differences between the trees extracted by Trepan and the trees induced by

C4.5 and ID2-of-3+ are explained by the fact that Trepan is effectively working with a

reduced feature set (the one selected by the clearned network).

Pruning confidence levels ranging from 5% to 95% are applied to the trees produced by

C4.5 and ID2-of-3+, and accuracy measurements on the validation set are used to determine

which tree to return for each algorithm. The other parameters of these algorithms are set
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as in the previous experiments. In addition to C4.5 and ID2-of-3+, a naive prediction

algorithm is also considered as a baseline. This algorithm simply predicts that the exchange

rate will do the same thing it did yesterday (i.e., if it went up yesterday then predict that it

will go up today).

Unlike the classification experiments presented earlier in this chapter, six runs of Trepan

are made varying two parameters: the beam-width parameter for the m-of-n search, and the

min sample parameter which specifies how many instances Trepan considers at a node

before giving a class label to the node or choosing a splitting test for it. For the beam-width

parameter, values of 2, 5, and 10 are tried. For the min sample parameter, values of 1,000,

5,000, and 10,000 are tried. For each configuration of parameters, Trepan grows a tree until

it has 31 internal nodes (recall that this is the size of a complete binary tree of depth five).

After each node is added to the tree, the validation set is used to measure the fidelity of the

tree to the network. From this sequence of nested trees for a given run, Trepan returns

the one that has the highest validation-set fidelity. Finally, from the pool of trees extracted

with different parameter settings, the one with the best validation-set fidelity is retained.

4.3.3 Results

Using validation-set accuracy, the pruning levels selected for the various runs of C4.5 and

ID2-of-3+ were as follows: 15% for C4.5, 5% for C4.5 with the reduced feature set, 5% for

ID2-of-3+, and 25% for ID2-of-3+ with the reduced feature set.

Recall, that although the network was trained for a regression task (predicting the contin-

uous return value), we are interested in characterizing its behavior in terms of a classification

task (predicting whether the exchange rate will go up or down).

Table 7 shows test-set accuracy results for the neural network, the Trepan tree extracted

from the network, the decision trees induced by the two conventional algorithms, and the

naive prediction strategy. It can be seen that the clearned network provides the most accurate

predictions and the naive rule (predicting same as previous day) and C4.5 produce the worst

predictions. Although the ID2-of-3+ trees are more accurate than the C4.5 trees, they are

not as accurate as the tree extracted by Trepan, which makes predictions that are nearly

as accurate as the clearned network. These results suggest that, by exploiting the concept



77

Table 7: Test-set accuracy (%) for the exchange-rate domain.

method accuracy

naive rule 52.8
C4.5 52.8
C4.5 (reduced feature set) 54.6
ID2-of-3+ 59.3
ID2-of-3+ (reduced feature set) 57.4
Trepan 60.6
clearned network 61.6

representation learned by the neural network, Trepan is able to find a better decision

tree than either C4.5 and ID2-of-3+. I test the statistical significance of these accuracy

differences using the sign test known as the McNemar χ2 test (Sachs, 1984). Because the

test set for this problem is small, none of the differences are significant at p ≤ 0.05. I note,

however, that Trepan is more accurate than the naive algorithm at p = 0.10, than C4.5 at

p = 0.09, and than C4.5 with the reduced feature set at p = 0.11. The clearned network is

more accurate than the naive algorithm at p = 0.07, than C4.5 at p = 0.07, and than C4.5

with the reduced feature set at p = 0.09.

Figure 17 shows the test-set fidelity and accuracy of the intermediate trees produced by

Trepan as it add nodes to the tree being extracted. It can be seen in this figure that the

accuracy of the intermediate trees is fairly constant after the first node is added to the tree.

A disappointing result is that the fidelity of the tree is nearly constant as well. The first

node in the tree quickly attains fidelity near 80%, but successive nodes added to the tree do

not significantly improve this value. This result seems to suggest that Trepan is failing to

find a good decision-tree representation of the network. However, it is interesting to consider

the profit-and-loss curves produced by the clearned network and the Trepan tree extracted

from it.

Figure 18 shows the profit-and-loss curves that result from trading based on the pre-

dictions made by the network and the Trepan tree extracted from it.4 Also shown as a

4Following Weigend (1995), these curves are calculated by assuming that the full position is taken each
day, meaning that the trader’s daily gain/loss is equal to the percentage change in the exchange rate.
Additionally, a small transaction cost (0.001) is charged whenever the trader changes its position, meaning
that the direction of today’s prediction is the opposite of yesterday’s prediction.
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Figure 17: Trepan fidelity and accuracy for the exchange-rate domain. The x-axis indicates the
number of internal nodes the extracted tree, and the y-axis indicates test-set fidelity and accuracy.

reference point is the profit-and-loss curve for trading based on the naive strategy. This fig-

ure shows that, although the fidelity of the Trepan tree (when measured as the percentage

of discrete predictions in agreement) is not very high, the tree has captured much of the

underlying structure of the solution represented by the network. The profit-and-loss curve

for Trepan closely mirrors that of the neural network. An explanation for the seeming dis-

sonance between this result and the result shown in Figure 17 is that because the predictions

made by the network are clustered around zero, the regression surface represented by the

network has many crossings of the plane that divides up predictions from down predictions.

Although Trepan has a hard time fitting a decision tree to all of these fluctuations in the

decision surface, it does a good job of fitting the overall structure of the surface. That is, it

more accurately models the regions of the surface that correspond to way up or way down

than it does those regions that represent small values of up and down.

Figure 19 shows the profit-and-loss curves that result from trading based on the C4.5

and ID2-of-3+ trees. None of these trees performs as well as the network or Trepan. The

best tree in this group is the one induced by ID2-of-3+ using the full feature set. Its total

profit is about ten percentage points less than the profit earned by the neural network and

the Trepan tree extracted from it. Moreover, it obviously does not model the gross behavior
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Figure 18: Profit-and-loss curves for the exchange-rate domain. The x-axis indicates the trading
days in the test set, and the y-axis indicates the return on investment that would result from trading based
on the predictions made by each method.
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days in the test set, and the y-axis indicates the return on investment that would result from trading based
on the predictions made by each method.
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Table 8: Tree complexity for the exchange-rate domain. The middle column indicates the number
of internal nodes in the tree, and the rightmost column indicates the total number of feature references in
the splitting tests used in the tree.

method # internal nodes # feature references

C4.5 103 103
C4.5 (selected) 53 53
ID2-of-3+ 78 303
ID2-of-3+ (selected) 103 358
Trepan 5 14

of the network nearly as closely as the Trepan tree.

Table 8 shows tree-complexity measurements for the C4.5, ID2-of-3+, and Trepan

trees. For both complexity measures, the Trepan trees are considerably simpler than the

C4.5 and ID2-of-3+ trees, even though the latter trees were pruned. Based on these results,

I argue that the tree extracted by Trepan is more comprehensible than the trees learned

by the conventional decision-tree algorithms. The tree produced by Trepan is depicted in

Appendix A.

4.4 Trepan Applied in a Reinforcement-Learning

Domain

The experiments in this section investigate the application of Trepan in a reinforcement-

learning setting. Recall from Chapter 1 that in reinforcement learning, the task is to learn

what action an agent should take for any given observed state such that the agent maximizes

some long-run measure of reward. The reinforcement-learning agent that is used in these

experiments is one that controls elevator cars in a simulated, but realistic, environment.

This learning agent is especially interesting because it has demonstrated performance that

surpasses the best heuristic, elevator-control algorithms.
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4.4.1 Problem Domain

The reinforcement-learning system that is investigated here is a neural network that addresses

the real-world problem of elevator dispatching (Crites & Barto, 1996). As with the exchange-

rate network investigated in the previous section, this learning system was developed without

any intention of later applying a rule-extraction method to it.

The elevator-dispatching agent operates in a simulated 10-story building with four ele-

vator cars (Lewis, 1991; Bao et al., 1994). The state of the system that is presented to the

neural network includes information about:

• which hall buttons have been pushed (indicating waiting passengers) and the elapsed

time since each button was pushed,

• the location and direction of the elevator car being controlled,

• the locations and speeds of the other cars in the system,

• whether or not the car is at the highest floor with a waiting passenger,

• whether or not the car is at the floor with the passenger who has been waiting for the

longest amount of time.

This information is encoded using 19 real-valued and 12 discrete-valued features. Parts of

the system state are not observable by the reinforcement learner. For example, the learner

does not know the number of passengers waiting at each floor nor their desired destinations.

The elevator car has a default control policy which specifies constraints such as do not stop

at a floor unless a passenger wants to get off there, and given a choice between moving up

or down, prefer to move up. The task for the reinforcement learner is to decide, given the

current measurable state, whether a car should stop or continue on its current path.

Crites and Barto trained their elevator-dispatching network for 60,000 hours of simulated

elevator time. To evaluate the trained network’s performance, they used it to control elevator

cars under three different traffic profiles. For each profile, they measured the network’s

performance during 30 hours of simulated time. The first traffic profile, which was used

for training the network, involves only downward traffic in the building. The second profile
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involves both up and down traffic, and the third profile has twice as much up traffic as

the second one. Recall that in reinforcement learning, unlike supervised learning, there is

not a fixed set of training data. The learner is able to partially measure the state of the

world, thus garnering input vectors, but because its actions affect the world, its control

policy will influence which input vectors it encounters as it operates. Recall also, that unlike

the supervised learning setting, each input vector, ~x, is not associated with a target output

value, y. But instead, the learner periodically receives a scalar reinforcement signal, and its

goal is to learn a control policy that maximizes the long-term reward.

4.4.2 Algorithms

The reinforcement learner for the elevator control task is a neural network with 47 input units,

20 hidden units with logistic transfer functions, and two output units with linear transfer

functions. The network is trained using a method called Q-learning (Watkins, 1989). In Q-

learning, the learner estimates an evaluation function, Q(s, a), that specifies the discounted,

cumulative reinforcement that can be achieved starting from state s, applying a as the first

action, and assuming that optimal actions are followed thereafter. The optimal action is

specified by a policy, π∗, defined as follows:

π∗(s) = arg max
a

Q(s, a).

Through a process of iterative approximation, the learner refines its estimate of the Q func-

tion.

In the context of the elevator-control problem, the discounted cumulative reinforcement

is defined as:

−
∫ ∞

0
e−βτrτdτ,

where rτ is the instantaneous cost at time τ , and β is a parameter that specifies the rate

of exponential decay. The instantaneous cost, rτ , is defined to be the sum of squared wait

times for the passengers in the building.

Although Q-learning involves training the network in the context of a regression problem

(predicting continuous Q values), once the network is trained, it is used to predict discrete

values – which action to take in a given state. Thus, the extraction task for Trepan is a
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supervised learning problem: describe the conditions under which the trained network will

select each action. A training set for Trepan is acquired by running the elevator-control

network in its environment for 30 hours of simulated time, saving a set of 16,623 state-action

pairs. This run is performed employing the traffic profile that was used for training the

network – down traffic only. Three other sets of state-action pairs are collected by running

the network for 30 simulated hours under the three different traffic profiles used by Crites and

Barto to evaluate the performance of the network. I use these sets as test sets to get unbiased

estimates of the fidelity of the trees extracted by Trepan under various distributions of data.

I apply Trepan to the elevator-control network using the same parameter settings as in

Section 4.2. I set aside 10% of the training data as a validation set, and then allow Trepan

to grow a tree of up to 31 internal nodes. From this sequence of nested trees, Trepan

returns the one that has the highest level of fidelity, measured using the validation set.

4.4.3 Results

Table 9 shows the test-set fidelity measurements for the tree extracted by Trepan. Each

line in the table represents the fidelity of the tree to the network when measured under

different traffic conditions. Recall that the training set given to Trepan consisted of data

only from the first distribution – down traffic only. The results in this table indicate that

the action selected by the tree agrees with the network in approximately 90% of encountered

states, and furthermore this level of fidelity is fairly consistent across states that come from

different types of traffic conditions.

Table 10 summarizes the syntactic complexity of the tree extracted by Trepan. The

tree, which is shown in Appendix A, consists of only four internal nodes and a total of 14

feature references.

Figures 20 and 21 plot the network’s predicted Q values for a random sample of test-set

instances from the downward traffic profile. The x-axes in these figures represent predicted

Q values for the stop action, and the y-axes represent predicted Q values for the continue

action. Whereas Figure 20 shows Q values for states in which the network and the Trepan

tree agree in their selected actions, Figure 21 represents states in which the network and the

extracted tree disagree. It is interesting to note that the cases of disagreement are tightly
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Table 9: Trepan test-set fidelity (%) for the elevator-control domain.

traffic profile fidelity

down traffic only 89.4
down and up traffic 90.8
down and 2× up traffic 91.9

Table 10: Trepan tree complexity for the elevator-control domain.

method # internal nodes # feature references

Trepan 4 14

clustered around the line Q(continue) = Q(stop). That is, in most of the states in which

Trepan fails to accurately model the network, the expected utility of the two actions is

about the same. By comparing Figures 20 and 21, it can be seen that Trepan nearly

always agrees with the network in cases where one action is predicted to be clearly superior

to the other.

As in the case of the exchange-rate task, which also involves predicting continuous

values, this result suggests that the tree extracted by Trepan accurately represents the

gross structure of the network’s solution. The fidelity of Trepan’s solution is lowest in those

parts of the instance where the network does not make “strong” predictions. In problem

domains such as this, it might make sense to have Trepan describe the target network using

three (or perhaps more) classes (e.g., stop, continue, or either). By framing the extraction

task as a multi-class problem, the extracted trees would explicitly represent cases that do

not correspond to strong predictions.
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Figure 20: Q values for states in which the Trepan tree agrees with the network. The x-axis
represents predicted Q values for the stop action, and the y-axis represents predicted Q values for the continue

action.
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Figure 21: Q values for states in which the Trepan tree disagrees with the network. The
x-axis represents predicted Q values for the stop action, and the y-axis represents predicted Q values for the
continue action.
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4.5 Evaluating the Components of Trepan

This section presents experiments that are designed to elucidate the value of various compo-

nents of the Trepan algorithm. In particular, I investigate the value of (i) m-of-n splitting

tests in Trepan, (ii) Trepan’s instance-modeling method, and (iii) Trepan’s best-first

tree expansion strategy. The methodology used here is to conduct lesion experiments (Ki-

bler & Langley, 1988), in which some component of Trepan is left out or modified, and the

resulting performance is compared to that of the unmodified algorithm.

4.5.1 The Value of M-of-N Splitting Tests

The first experiment investigates the utility of m-of-n tests in trees grown by Trepan. Using

the six classification domains presented in Section 4.2, this experiment compares Trepan to

a modified version of Trepan that uses only single-feature tests at its internal nodes. The

latter version of the algorithm is identical to the first in every respect, except for its avoidance

of m-of-n splitting tests. The only stopping criterion employed in this experiment is a limit

on the maximum tree size. Trees are grown up to 31 internal nodes, and as each node is

added, the test-set fidelity of the current tree is measured. As in the experiments presented

in Section 4.2, all of the results here represent averaged values over a cross-validation run in

each domain.

Figure 22 shows the fidelity curves that result from this experiment. Each curve plots test-

set fidelity as a function of the number of internal nodes in a tree. There are two interesting

conclusions to be drawn from these plots. The first is that, in most domains, Trepan trees

with m-of-n tests are able to attain a higher level of fidelity than trees without m-of-n tests

for a fixed number of internal nodes. It is important to note, however, that since the splitting

tests of the m-of-n trees may be complex expressions, that the x-axes of the plots do not

control for overall tree complexity. In some cases though, an m-of-n expression or a small

set of m-of-n expressions may be able to concisely represent the same function as a very

large tree that uses single-feature tests. This effect is especially pronounced in the promoter

domain where Trepan trees with only a single node attain a higher level of fidelity than is

seen for much larger trees extracted by the variant of Trepan that uses only single-feature
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Figure 22: Fidelity curves for Trepan and Trepan without m-of-n splitting tests. The x-axis in
each figure indicates the number of internal nodes in extracted trees, and the y-axis indicates the test-set
fidelity of the extracted trees to the trained networks.
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tests. This effect can also be seen in the curves for the coding and NETtalk domains.

These plots also illustrate the fidelity-complexity trade-off that is often faced when ap-

plying Trepan. High fidelity often comes at the price of large, and presumably hard-

to-understand, trees. The trade-off is best illustrated by the experiments in the NETtalk

domain, where the fidelity of the trees extracted by Trepan is clearly proportional to their

size. When applying Trepan in practice, the user must decide what size of extracted tree

provides an acceptable compromise between desired fidelity and comprehensibility. One of

the primary advantages of Trepan’s strategy of growing trees in a best-first manner is that

it gives the user a fine level of control over the size of the tree that is returned.

4.5.2 The Value of an Instance Model

In this section, I evaluate the utility of the instance models that Trepan constructs and uses

to draw instances for membership queries. As in the previous experiment, fidelity curves are

plotted to show how the quality of the trees produced by various instantiations of Trepan

change as a function of tree size. As before, the results reported for each domain represent

averages across a cross-validation run. In this section’s experiments, Trepan is contrasted

to three modified versions of the algorithm.

In the first variant, Trepan uses global instance models instead of local ones. Recall

that a local instance model is one that is constructed at a particular node in a tree using

only the data that reaches that node. The purported advantage of local models is they can

potentially provide better estimates of the underlying distribution of data by capturing some

of the conditional dependencies that exist among features. Thus, the purpose of considering

this variant to see if local instance models enable Trepan to extract higher-fidelity trees by

more accurately representing the underlying distribution of data.

The second variant of Trepan considered in this experiment does not use an instance

model at all, but instead draws instances assuming a uniform distribution over the instance

space. The purpose of including this variant in the experiment is to test the hypothesis that

the use of instance models enables Trepan to extract higher-fidelity trees.

The third variant of Trepan used in this experiment does not use query instances at all;

it uses only the training data to induce a tree. Recall that the term query instances refers
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to randomly drawn instances used for membership queries. Although this variant does make

membership queries to get the class labels for examples in the training set, it does not make

any additional membership queries. This variant is included in the experiment to test the

hypothesis that Trepan’s ability to make queries for large numbers of instances leads to

higher-fidelity trees.

Figure 23 shows the fidelity curves for Trepan and the first two variants considered

in this experiment (Trepan without local models and Trepan with uniform sampling).

Somewhat surprisingly, in all of the problem domains, the fidelity curves for Trepan and

the version of Trepan without local instance models are nearly indistinguishable. This

result suggests that, in the domains considered here, either the local instance models are

not providing better estimates of the data distributions, or that better estimates are not

really of value in extracting decision trees. Note, however, that the use of local instance

models carries little cost. The computational expense of constructing the models is small,

and in none of the domains considered here did local models lead to worse results than global

models.

The fidelity-curve results for the other Trepan variant, however, illustrate the value of

using some model of the underlying data distribution. In three of the domains (heart,

NETtalk, and telephone), the fidelity curves are considerably worse for the version of

Trepan that samples the instance space uniformly. The degradation is especially dramatic

in the case of the telephone domain. Without an instance model in this domain, Trepan

fails to focus its effort in the parts of the instance space where data is likely to occur, but

instead refines the tree in sparsely populated regions of the instance space.

Figure 24 shows the fidelity curves for Trepan and the variant of Trepan that does

not use query instances. The curves for the variant do not extend through 32 nodes in

the heart and the promoter domains because smaller trees are able to completely cover

the training sets in these domains. In three of the problem domains (heart, NETtalk, and

promoter) Trepan without query instances clearly performs worse than Trepan. When

query instances are not used in the heart and promoter domains, the fidelity of the extracted

trees does not steadily improve with increasing tree size, but often gets worse. In the NETtalk

domain, the fidelity of the extracted trees for this variant does not decline with increasing
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Figure 23: Fidelity curves for Trepan and Trepan with simpler instance models. The x-axis in
each figure indicates the number of internal nodes in extracted trees, and the y-axis indicates the test-set
fidelity of the extracted trees to the trained networks.



91

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30

coding

TREPAN
TREPAN without query instances

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30

heart

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30

NETtalk

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30

promoter

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30

telephone

50%

60%

70%

80%

90%

100%

0 5 10 15 20 25 30

voting

Figure 24: Fidelity curves for Trepan and Trepan without using query instances. The x-axis
in each figure indicates the number of internal nodes in extracted trees, and the y-axis indicates the test-set
fidelity of the extracted trees to the trained networks.
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tree size, but the trees have consistently lower fidelity than their counterparts extracted

by the non-lesioned version of Trepan. In the coding and voting domains, there is little

difference between the trees extracted by Trepan and the variant. This result in the coding

domain is most likely explained by the fact that the training sets for this task are very large,

and thus query instances are of less value than in most domains.

The most surprising result occurs in the telephone domain. Here the lesioned variant of

Trepan actually performs considerably better than Trepan. This result can be explained

by the fact that there are numerous known dependencies among the features in this domain.

The simple instance model used by Trepan fails to adequately represent these dependencies,

thereby generating misleading samples of query instances.

From the experiments presented in this section we see that, for a learning-based approach

to rule extraction such as Trepan, it is often of significant value to use query instances, as

well as the training data, to induce descriptions of trained networks. Moreover, it is often

of significant value to employ models of the underlying data distribution for the purpose of

generating these query instances.

4.5.3 The Value of Best-First Tree Growing

The final experiment in this section investigates the effect of Trepan’s best-first tree growing

method on the fidelity of returned trees. In this experiment, Trepan is compared to a

variant that grows trees one level at a time. In other words, the first intermediate tree

produced by this variant consists of a single node, the second intermediate tree is a tree with

three nodes (a binary tree two levels deep), the third intermediate tree has seven nodes, etc.

Whereas Trepan produces a sequence of intermediate trees in one-internal-node increments,

the variant produces a sequence of intermediate trees in one-level increments.

Figure 25 shows fidelity curves in the six classification domains for Trepan and the

level-at-a-time variant. It can be seen that the two curves are close to each other in every

domain. This result indicates that, in the domains considered here, there is no significant

advantage to being able to return an unbalanced tree (i.e., one that has most of its structure

distributed to one side of the tree). For these six domains, the primary difference between

the performance of Trepan and the level-at-a-time variant is that Trepan offers a finer
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Figure 25: Fidelity curves for Trepan and Trepan without best-first tree expansion. The x-axis
in each figure indicates the number of internal nodes in extracted trees, and the y-axis indicates the test-set
fidelity of the extracted trees to the trained networks.
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degree of control over the size of the tree returned. With best-first Trepan, the user can

select a tree of arbitrary size (in terms of the number of internal nodes) to describe a given

network.

4.6 Evaluating the Enhancements to ID2-of-3+

One of the minor contributions of this thesis is an improved version of Murphy and Pazzani’s

ID2-of-3 algorithm. As detailed in Section 4.2.2, the version of ID2-of-3 I developed and

used in the experiments in this chapter, ID2-of-3+, incorporates five enhancements not

included in the original algorithm: the application of a χ2 test, literal pruning, and a beam

search when constructing m-of-n tests; the use of C4.5’s pruning method after tree induction;

and the generalization of m-of-n tests to real-valued features. In this section, I present a set

of lesion experiments designed to assess the value of the first four of these modifications.

These experiments involve running four variants of ID2-of-3+ in the six classification

domains used in Section 4.2. Each of these variants is identical to ID2-of-3+ except that

it leaves out one of the four enhancements. The methodology used for these experiments is

the same as that used in Section 4.2. The key parameter of the algorithm that is varied is

the pruning confidence level (except in the variant that leaves out pruning). As before, cross

validation within the training set is used to select the pruning level for that training set.

Table 11 reports test-set accuracy results for ID2-of-3+ and its four lesioned variants.

Tables 12 and 13 show tree complexity results for these trees in terms of numbers of internal

nodes and numbers of feature references, respectively. The top row in Tables 12 and 13

display the complexity results for ID2-of-3+, and the other rows show the changes from the

ID2-of-3+ numbers for each variant. I test the statistical significance of accuracy differences

using a two-tailed, paired-sample, t-test. The symbol ‘∗’ is used in the table to mark the

inferior result in cases where ID2-of-3+ is more accurate than a lesioned variant, and the

difference is statistically significant at p ≤ 0.05. The symbol ‘�’ marks the ID2-of-3+ result

for the only case in which a lesioned variant (the one with the beam width set to one) more

accurate, and the difference is statistically significant at this same level.

It can be seen from these results that the incorporation of C4.5’s pruning mechanism into
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Table 11: Tree accuracy (%) for ID2-of-3+ experiments. The symbol ‘∗’ marks the inferior results
in cases where ID2-of-3+ is more accurate than a lesioned variant at the p ≤ 0.05 level of significance. The
symbol ‘�’ indicates the inferior result in the case where a lesioned variant (w/ beam=1) is more accurate
than ID2-of-3+ at this same level.

method coding heart NETtalk promoter telephone voting

ID2-of-3+ 91.9 76.2 85.3 82.7 � 60.4 90.8
w/o pruning 91.6 75.6 ∗ 83.7 82.5 ∗ 58.9 91.0
w/o χ2 91.7 73.3 ∗ 83.9 84.8 60.9 ∗ 88.5
w/o literal pruning 92.0 75.2 85.6 82.5 60.6 90.3
w/ beam=1 91.7 74.3 85.1 82.5 62.4 89.2

Table 12: Tree complexity (# internal nodes) for ID2-of-3+ experiments. The top row shows the
number of internal nodes for ID2-of-3+, and subsequent rows report the change from this baseline.

method coding heart NETtalk promoter telephone voting

ID2-of-3+ 63.3 13.0 137.0 13.2 215.0 7.1

w/o pruning +19.2 +10.0 +116.8 +3.1 +152.6 +12.7
w/o χ2 +0.2 -4.0 -71.0 -5.9 -71.8 +2.4
w/o literal pruning -2.0 +0.7 +7.1 -0.4 -2.6 -0.3
w/ beam=1 +12.7 +2.8 +33.9 +2.9 -40.9 +1.1

Table 13: Tree complexity for (# feature references) ID2-of-3+ experiments. The top row shows
the number of feature references for ID2-of-3+, and subsequent rows report the change from this baseline.

method coding heart NETtalk promoter telephone voting

ID2-of-3+ 344.3 37.2 258.0 41.3 475.5 14.5

w/o pruning +55.5 +12.5 +147.4 +3.2 +199.6 +16.6
w/o χ2 +149.2 +19.1 +372.1 +1.2 +261.5 +32.4
w/o literal pruning -6.3 +0.7 +197.6 -0.7 +11.7 +0.2
w/ beam=1 -61.3 -3.4 -37.5 -7.7 -128.0 -0.9
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ID2-of-3+ is clearly beneficial. In five of the six domains, the ID2-of-3+ variant without

pruning is less accurate, and in two of these cases the accuracy difference is statistically

significant. Moreover, as expected, the unpruned trees are considerably more complex than

the pruned trees in all six domains.

Similarly, the use of a χ2 test to limit the complexity of m-of-n tests appears to be

of significant benefit. The trees induced by the ID2-of-3+ variant that leaves out this

mechanism sometimes have fewer nodes than the ID2-of-3+ trees, but the m-of-n tests at

the nodes of this variant are considerably more complex in all six domains. In four of the

six domains, these complex m-of-n tests lead to lower levels of accuracy, and in two of these

domains the differences are statistically significant.

The benefit of using a beam search in ID2-of-3+ as opposed to a hill-climbing search

is less clear. In five of the six domains, the variant of ID2-of-3+ that had its beam width

set to one (i.e., a hill-climbing variant) produced less accurate trees than ID2-of-3+, but in

none of these cases was the accuracy difference statistically significant. In the telephone

domain, on the other hand, the hill-climbing variant had significantly higher accuracy than

ID2-of-3+. In terms of tree complexity, the trees induced by the hill-climbing variant tend

to have more nodes than the ID2-of-3+ trees, but the m-of-n tests at these nodes are less

complex. Tests that result in high information-gain values are often complex, and because

beam search considers a greater number of candidate tests, it is more likely to find such a

test.

The benefit of using a literal-pruning procedure when searching for m-of-n tests is not

apparent in most of the domains. Accuracy values with and without the procedure are about

the same, and tree sizes are also similar, except in the NETtalk domain. In this domain,

however, the literal-pruning method is clearly beneficial. The ID2-of-3+ variant without

literal pruning produces m-of-n tests that are considerably more complex than the ID2-of-

3+ trees. Although one might expect that literal pruning would always result in simpler

trees, this is not always the case. The reason for this is that once a test is modified by

the literal-pruning routine, the tree structure induced from the corresponding node on down

may be different than it would have been if literal pruning had not been applied. Sometimes

this tree structure may be simpler, and sometimes it may not.
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4.7 Chapter Summary

This chapter presented a series of experiments that empirically evaluated Trepan in the

context of classification, regression, and reinforcement learning tasks. The purpose of the

experiments was to evaluate Trepan along the dimensions of comprehensibility, fidelity,

scalability, and generality. I discuss the experimental results with respect to each of these

criteria in turn:

• Comprehensibility: In order to assess the comprehensibility of the trees extracted by

Trepan, I compared their syntactic complexity to the complexity of trees induced by

two conventional decision-tree algorithms run in the same problem domains. Overall,

the trees extracted from trained networks by Trepan were of comparable complexity

to the trees learned directly from the data by the ordinary decision-tree methods, and

in some cases, the Trepan trees were much simpler. Moreover, the experiments in

Section 4.5.1 showed that in many problem domains, Trepan can extract trees that

provide good approximations to their target networks, but use only a few internal

nodes.

• Fidelity: In the six classification domains considered in this chapter, the trees ex-

tracted by Trepan had fidelity levels ranging from 89.1% (promoter domain) to 97.7%

(voting domain). As indicated by the experiments in Section 4.5, in some of these

domains (e.g., heart and NETtalk) there is a trade-off between fidelity and tree com-

plexity, and the level of fidelity can be increased by extracting larger trees. In other

domains (e.g., promoter and telephone), the fidelity does not increase appreciably

with larger trees. This somewhat disappointing result points to several directions for

future research. As indicated in the experiments presented in Section 4.5.2, the level of

fidelity in the telephone domain can be improved from 89.3% to over 95% by not using

query instances. The reason for this anomalous behavior is that Trepan’s simple in-

stance model fails to adequately represent known feature dependencies in the domain,

and thus misleading samples are formed from the instances generated by these models.

Fidelity in domains such as this might be improved by exploiting more sophisticated

instance models that are able to explicitly represent known dependencies.
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Another explanation for the disappointing levels of fidelity in some domains is that the

hypothesis language of decision trees is not well suited to concisely representing the

functions learned by some networks. For example, in the promoter domain, the trained

networks give significant weight to a large number of the 57 features. In such cases, a

reasonably large decision tree is required to represent the target model. Thus, another

line of future research that might improve the fidelity of extracted representations is to

develop versions of Trepan that use different languages to represent their hypotheses.

Although the exchange-rate problem explored in Section 4.3 is a regression task,

Trepan was applied to extract a tree describing the discretized behavior of the trained

network. The fidelity of this tree to the network’s discretized behavior was about 80%.

However, although Trepan has a hard time fitting a decision tree to the small fluc-

tuations in the regression network’s decision surface, it does a good job of fitting the

overall structure of the surface. This is evidenced by the profit-and-loss behavior of

the extracted tree which closely modeled that of the network.

In the reinforcement learning task considered in Section 4.4, the fidelity of the extracted

tree ranged from 89% to 92%, depending on the traffic distribution in the simulated

system.

• Scalability: This chapter indirectly evaluated the scalability of Trepan by applying

it in a variety of problem domains, some of which involve large feature sets and large

networks. In one domain (telephone), Trepan was applied to ensembles of networks

that, on average, involved more than 10,000 parameters per ensemble.

• Generality: The generality of Trepan was evaluated by applying it in classification,

regression, and reinforcement-learning domains that involved both discrete and real-

valued features. Moreover, the networks varied in their topologies, transfer functions,

and training methods. Finally, as mentioned above, in one problem domain, decision

trees were extracted to describe ensembles of classifiers, as opposed to individual neural

networks.

This chapter also evaluated some of the key components of the Trepan algorithm by

conducting a series of lesion experiments. The first lesion experiment measured the fidelity
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of trees extracted by Trepan to those extracted by a variant of Trepan that did not use

m-of-n tests at its internal nodes. This experiment showed that, in general, trees that use

m-of-n tests require fewer nodes to achieve a given level of fidelity.

The second set of lesion experiments compared the fidelity of trees extracted by Trepan

to three variants that involved modifications to Trepan’s mechanism for drawing query

instances and using them for membership queries. First, Trepan was compared to a variant

that did not use local instance models. This experiment showed that, although local instance

models have the potential to more accurately represent underlying distributions than do

global models, this capability did not result in trees with higher levels of fidelity. The

second experiment compared Trepan to a variant that did not construct instance models,

but instead selected samples assuming a uniform distribution over the instance space. This

experiment illustrated the value of using instance models by showing that, in some domains,

drawing samples uniformly leads to trees with poor levels of fidelity. The third experiment

compared trees extracted by Trepan to those extracted by a variant of Trepan that did not

use any query instances. In several of the problem domains, Trepan without query instances

produced trees that were clearly inferior to those extracted by Trepan. In the telephone

domain, however, the variant of Trepan that did not use query instances extracted trees

with noticeably better fidelity. This result, which is most likely due to the fact that Trepan’s

instance models are failing to represent the numerous, significant feature dependencies in this

domain, points out the importance of using more sophisticated, domain-specific instance

models for some tasks.

The final lesion experiment compared the fidelity of trees extracted by Trepan to those

extracted by a variant of Trepan that expanded trees one level at time. The results of the

experiment indicated that, in the domains considered, there was not a noticeable advantage

to being able to return an unbalanced tree. The primary value of Trepan’s method of best-

first expansion is that it offers a finer degree of control over the size of tree to be returned

by Trepan.

Finally, this chapter also described and evaluated a variant of the ID2-of-3 decision-tree

algorithm, which was used as a baseline for comparison in some of this chapter’s experiments.

This variant of ID2-of-3, which I developed, incorporates five enhancements over the original
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algorithm. The final set of experiments in this chapter used a set of lesion experiments to

evaluate these enhancements, and showed that, in the six domains considered, they generally

improved the predictive accuracy and syntactic complexity of induced trees.



Chapter 5

Analytical Evaluation of Trepan

Chapter 1 argued that rule-extraction algorithms should be evaluated with respect to the

criteria of comprehensibility, fidelity, scalability, and generality. The experiments presented

in the previous chapter directly measured the fidelity and comprehensibility of extracted

representations. Additionally, by applying Trepan to a wide variety of learned models,

the experiments provided indirect evaluation of Trepan along the dimensions of scalabil-

ity and generality. In this chapter, however, I provide a formal discussion of scalability,

as well as a more detailed discussion of the generality of Trepan. The first section in

this chapter addresses the issue of scalability by analyzing the computational complexity of

the Trepan algorithm. The second section frames the discussion of scalability in various

learning-theoretic models, and the final section provides a discussion of the generality of the

Trepan algorithm.

5.1 Computational Complexity of Trepan

This section considers the computational complexity of the Trepan algorithm. Following

conventions used in the machine-learning literature, throughout this chapter I use m to refer

to the size of a set of instances, and n to refer to the number of features in a domain. To avoid

confusion about what m and n indicate, I refer to m-of-n tests as r-of-k tests throughout this

chapter.

To begin this discussion, assume that we are expanding a node in the tree, that we have

101
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a sample (of training examples and query instances) of size m, and that there are n features

in the problem domain. Furthermore, assume that the node being expanded is at depth d

in the tree. I will begin the analysis by considering the complexity of the DrawSample

and ConstructTest subroutines used by Trepan. Recall that DrawSample randomly

selects a sample of instances from the part of instance space covered by a given node, and

ConstructTest selects a splitting test to be used at an internal node in the tree.

5.1.1 Computational Complexity of DrawSample

The DrawSample routine (previously shown in Figure 10) involves calling DrawInstance

(Figure 13) at most m times, and using the oracle to label each instance returned by Draw-

Instance. The complexity of the DrawInstance routine is dominated by the potential

cost of satisfying the r-of-k constraints along the path from the root of the tree to the given

node.

Consider the cost of satisfying one r-of-k test. Let v be the maximum number of values

for a discrete-valued feature; in domains with only real-valued features, let v = 2. This is

an upper bound on the number of references to a particular feature that may occur in an

r-of-k test. Since there are n features, there are O(nv) literals in an r-of-k test that need to

be satisfied. On each iteration of the loop that selects literals to satisfy, Trepan needs to

keep track of the probability that each literal will be selected; the complexity of this task is

O(nv). Additionally, Trepan needs to randomly select one of these literals and to update

the conditional distribution for the corresponding feature. The complexity of this task is

O(m) in the more expensive case of selecting a literal on a real-valued feature. Therefore,

the complexity of satisfying an r-of-k test is O(mnv + n2v2).

The number of r-of-k tests that need to be satisfied is at most d (the depth of the tree).

Hence, the complexity of DrawInstance is O(dmnv + dn2v2). Since DrawSample must

call DrawInstance up to m times, its complexity is O(dm2nv + dmn2v2), assuming it

takes constant time to classify an instance (this assumption will be reconsidered shortly).
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5.1.2 Computational Complexity of ConstructMofNTest

The time complexity of the ConstructTest routine (Figure 15) is dominated by the

complexity of the search for an r-of-k test, and thus the discussion here focuses on the

complexity of the ConstructMofNTest function (Figure 16).

The cost of evaluating an r-of-k test (by measuring its information gain) is O(mnv)

because the test is used to classify m instances, and the cost of classifying one instance with

the test is O(nv), since this bounds the number of literals it may have.

Each iteration of the beam search considers O(mn) modifications to the tests in the

beam: there are n features, and in the more expensive case of a real-valued feature, there are

O(m) possible thresholds to consider on the feature. Since the search can possibly continue

until the test includes nearly all of the features, and as many as v references per feature,

there are O(nv) possible iterations in the search. Therefore, assuming that the beam width

is a constant, the complexity of constructing an r-of-k test is O(m2n3v2).

5.1.3 Putting It All Together

The two previous sections analyzed the functions that dominate the cost of expanding a

node in Trepan: the complexity of drawing a sample of instances is O(dm2nv + dmn2v2),

and the complexity of constructing a test at an internal node is O(m2n3v2). Making the

reasonable assumption that d ≤ n (i.e., the depth of our tree is less than the number of

features in the domain), the complexity of expanding a node is dominated by the complexity

of constructing an r-of-k test at the node. Thus the overall complexity of expanding a node

is O(m2n3v2). The significant conclusion of this discussion is that the computational com-

plexity of expanding a node in Trepan is polynomial in the sample size, the dimensionality

of the instance space, and the maximum number of values for a discrete feature. Therefore,

in terms of computational complexity, Trepan measures up well along the dimension of

scalability.

Note that this discussion has analyzed the cost of expanding one node in a tree, not the

cost of growing an entire tree. The size of the tree to be returned by Trepan, however, is

a parameter of the algorithm, and thus can be viewed as a constant.
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One assumption made earlier in this analysis was that the cost of classifying an instance

with the oracle is constant. This may not be a reasonable assumption, depending on the

type of learned hypothesis that Trepan is trying to describe. For example, if Trepan is

extracting a decision tree to describe a nearest-neighbor classifier, then the cost of classifying

an instance is O(m̃), where m̃ is the size of the training set. Since nearest-neighbor classifiers

have an especially high cost of classifying examples, let us consider how the complexity of

Trepan changes if we assume O(m̃) instead of constant complexity to classify an instance.

Assuming that the sample size we are drawing for each node, m, is approximately equal to

the size of the training set for the task, m̃, then the complexity of classifying the examples in

the drawn sample is O(m2). Note that this is dominated by the complexity of drawing the

instances in the first place, and thus the overall complexity of the DrawSample routine is

still O(dm2nv + dmn2v2).

If Trepan is not allowed to use r-of-k tests when extracting a tree, then the complexity

of expanding a node is only O(dm2n). The complexity of DrawInstance in this case

is O(dmn) since there are n features, as many as d conjunctive constraints for each one,

and the cost of updating the conditional distribution for (the more expensive case of) a

real-valued feature is O(m). The cost of DrawSample, which must be called m times,

is therefore O(dm2n). The complexity of ConstructTest when r-of-k tests are not used

is O(m2n), since there are O(mn) tests to evaluate, and the cost of evaluating each one is

O(m). Thus, the complexity of Trepan in this situation is determined by the complexity

of DrawSample, not by ConstructTest as when r-of-k tests are allowed. The reader is

referred back to Section 4.5.1 for an empirical view of Trepan without r-of-k tests.

5.2 Trepan and Learnability

The previous section analyzed scalability in terms of the computational effort required to

extract a decision tree of a given size. In this section I consider a different view of scalability:

how computational effort scales with the fidelity of the extracted tree. We expect that it

would be computationally inexpensive to produce a decision tree (or whatever extracted

representation) that has a low level of fidelity to a given network, but that it would be
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reasonably expensive to extract a tree that has a high level of fidelity. The question addressed

in this section is the following: can we formally characterize how the fidelity of a tree

extracted by Trepan scales as a function of computational effort? This is a more difficult

issue to analyze than computational complexity, but it is one that is quite pertinent to the

task of rule extraction. Since Trepan treats the rule-extraction task as a learning problem,

this section discusses Trepan in the context of analytical frameworks that have developed

in the field of computational learning theory (Kearns & Vazirani, 1994). Specifically, I discuss

results for learning decision trees that have been proven for the PAC-learning, weak-learning,

and agnostic PAC-learning models.

5.2.1 PAC Learning

The notion of probably approximately correct (PAC) learning was pioneered by Valiant (1984),

and since has served as the dominant formal model of learning, as well as the foundation

for numerous variants. In the PAC model, it is assumed that there is an unknown target

function f and an arbitrary probability distribution D over the instance space, and the goal

of a learning algorithm is to infer a hypothesis h that closely approximates f . The learner is

given access to examples of the target function through an oracle, EX(f, D), that randomly

draws instances from distribution D and labels them using the target function f . The error

of a hypothesis is defined as:

error(h) = PrD [f(x) 6= h(x)]

where PrD represents the probability with respect to the distribution D. A class of functions

F is said to be PAC learnable if there is an algorithm A, such that for any f ∈ F , any

distribution D, any 0 < ε < 1/2, and any 0 < δ < 1/2, then with probability at least 1− δ,

A produces a hypothesis h such that error(h) ≤ ε. The probability in this definition is taken

over the random choices made by the EX oracle as well as any random choices made by the

learning algorithm. The algorithm is said to be efficiently PAC learnable if it runs in time

polynomial in the number of features n, the size of f , 1/ε, and 1/δ.

The two parameters, ε (sometimes called the error parameter) and δ (sometimes called

the confidence parameter), represent two types of failure that are unavoidable in induction.
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The error parameter reflects the fact that, without having complete knowledge of the data

distribution, the learner is likely to produce a hypothesis that is only approximately correct.

The confidence parameter reflects the fact that there is a small chance that the learner

will draw an unrepresentative sample, and thus its hypothesis will not be as approximately

correct as expected.

This formal model of learning has a number of properties that make it an appealing

analog to the usual empirical-learning setting. The goal is to learn an unknown target

function, and the learner is given randomly drawn training examples from some underlying

distribution. The learned hypothesis is evaluated with respect to the same distribution from

which the training data was selected, and we are concerned with being able to efficiently

infer a hypothesis.

The key question addressed in this section, however, is what applicability does the PAC

model have to the task of rule extraction? The answer is that, since Trepan views the

extraction task as one of learning, the PAC model may provide an appropriate model for

characterizing the scalability of Trepan in terms of fidelity. If we can show efficient PAC

learnability for a rule-extraction algorithm, then we have a reasonable bound on how hard

it is extract a representation of a given level of fidelity with a specified level of confidence.

In this context, the rule-extraction algorithm is the learner, and the target function is the

concept represented by the trained network. The goal in this task is to infer a representation

of the target function that closely approximates it. It is important to note that in this

discussion we are concerned with how accurately the extracted representation approximates

the network; that is, the notion of accuracy in this discussion is what I have referred to as

fidelity throughout this thesis.

A number of researchers have analyzed the learnability of decision trees in the PAC model

(e.g., Rivest, 1987; Ehrenfeucht & Haussler, 1989; Hancock, 1990; Kushilevitz & Mansour,

1991; Bshouty, 1993). The upshot of these analyses is that, in general, decision trees are

not known to be efficiently PAC learnable. There are a number of special cases in which

decision trees are efficiently learnable, however. I discuss two of them, and their implications

for Trepan, below.
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Ehrenfeucht and Haussler

Ehrenfeucht and Haussler (1989) showed that in Boolean domains (i.e., domains in which

all of the features are Boolean), decision trees of fixed rank 1 are efficiently PAC learnable.

What does this result say about the rule-extraction task, and specifically the scalability

of Trepan? Unfortunately, the applicability of this result to the rule-extraction problem is

somewhat limited. First, note the restriction on the target class; it applies only to trees of

fixed rank. The complexity of Ehrenfeucht and Haussler’s algorithm is exponential in the

rank of the target tree, so it is really only practical for trees of small rank.2 In practice,

however, we do not know a priori how complex of a decision tree is required to describe the

function represented by some trained network. The result is also limited in that it applies

to problems with discrete-valued features only.

Another limitation on the applicability of this result is that we may not be able to get

a large enough training set to satisfy specified ε and δ values. In order to ensure that a

hypothesis satisfies the PAC criterion for specified values of ε and δ, we need to provide the

decision-tree algorithm with a large enough training sample from the underlying distribution.

In the rule-extraction setting, however, although we can use a network to label as many

examples as necessary, we may not have access to a sufficient number of examples from

the true distribution. Trepan addresses this problem by constructing estimates of the

underlying distribution and sampling from these estimates. Although this is a reasonable

heuristic, the PAC guarantees do not hold unless training data is drawn from the actual

distribution over the instance space. Note, however, that to meet this requirement we need

only to have a sufficient set of unlabeled data since the network (the target function) is used

to label examples. In many problem domains there is plenty of unlabeled data, even though

labeled examples may be scarce.

1The rank of a decision tree is defined recursively as follows. The rank of a leaf is 0. First, let rL denote
the rank of a tree’s left subtree, and let rR denote the rank of its right subtree. If rL = rR for some tree T ,
then the rank of T is rL + 1, otherwise T ’s rank is max(rL, rR). The rank of a tree is a function of its depth
and the extent to which it is unbalanced.

2However, the rank is only logarithmic in the size of a tree. The algorithm may be practical, therefore,
as long as the target tree is not very deep.
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Bshouty

A second result pertaining to decision trees and PAC learnability is due to Bshouty (1993).

He proved that decision trees in Boolean domains are exactly learnable when the learner

is allowed to make membership and equivalence queries (Angluin, 1988). Recall that a

membership query is a question to an oracle that consists of an instance from the learner’s

instance space. Given a membership query, the oracle returns the class label for the instance.

An equivalence query, on the other hand, involves giving the oracle a hypothesis, and asking

if the hypothesis is equivalent to the target function. If it is equivalent, the oracle returns

true, otherwise the oracle returns a counterexample – that is, an instance for which the

supplied hypothesis and the target function disagree in their classifications.

Note that the learning model considered here is different from the standard PAC model

in two ways. The first difference is that the goal of the learning task is exact identification

of the target function. The second difference is that the learner is able to make membership

and equivalence queries, whereas the standard PAC model assumes only that the learner has

access to a source of randomly drawn examples.

Bshouty’s result is interesting in the context of rule extraction, however, because it implies

that decision trees in Boolean domains are efficiently PAC learnable using only membership

queries. This fact is a corollary of a result by Angluin (1988) showing that if a function class

is exactly learnable by equivalence queries, then it is PAC learnable by membership queries

alone.

Although Bshouty’s algorithm is able to efficiently learn the class of decision trees, it does

not actually represent its hypotheses as decision trees. Instead, it represents them as depth-

three AND/OR circuits. These hypotheses, however, may be reasonably comprehensible.

The important distinction, in the context of rule extraction, between this algorithm and

that of Ehrenfeucht and Haussler, is that the Bshouty algorithm is able to efficiently learn

a broad target class. The requirement that the learner make membership queries is not a

realistic one for most learning problems, but in the context of rule extraction, it is quite

appropriate – as illustrated by the Trepan algorithm.

The applicability of the Bshouty algorithm to the task of rule-extraction is still rather
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limited, however. First, as with the Ehrenfeucht-Haussler result, it applies only to discrete-

valued problem domains. Second, the algorithm might not find a small hypothesis in cases

where the target concept can be closely approximated by a small decision tree. That is, the

running time of the algorithm is guaranteed to be polynomial in the size of smallest tree

that exactly represents the target function – but such a tree may be extremely large in some

cases.

5.2.2 Weak Learning

Recently, decision-tree learning has been analyzed in the context of the weak learning frame-

work (Schapire, 1990; Freund & Schapire, 1995). The concept of a weak learner is one that

is able to predict just slightly more accurately than random guessing. It is known that if we

have a weak-learning method for some problem, then we can construct an algorithm that

combines hypotheses produced the weak learner into a hypothesis that achieves arbitrary

accuracy for the problem (Schapire, 1990). An algorithm that combines weak hypotheses in

such a way is called a hypothesis-boosting algorithm.

More formally, let F be a any class of Boolean functions over the instance space of

some problem domain. Then we say that a target function, f , satisfies the weak-hypothesis

assumption with respect to F if, for any distribution D over the instance space, there is

an h ∈ F such that PrD [h(x) 6= f(x)] ≤ 1/2 − γ, where γ ∈ (0, 1/2] and depends on the

particular distribution.

Kearns and Mansour (1996) showed that slightly modified versions of standard decision-

tree algorithms (including C4.5 and CART) are boosting algorithms when the target func-

tion satisfies the weak-hypothesis assumption with respect to the class of functions used

as splitting tests. In other words, if for any distribution over the instance space, there is a

splitting test (in the class of tests considered by the decision-tree algorithm) that has a slight

predictive advantage over random guessing, then the algorithm can construct a decision tree

that has arbitrarily high accuracy in the domain.

This result of Kearns and Mansour has some appealing aspects with respect to rule-

extraction task. First, unlike the PAC-learning results discussed in the previous section,

it applies to problem domains with both real-valued and discrete features, and it does not
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assume that the target function is a member of some predefined class. The only assumption

made in this model is that the decision-tree learner will be able to find a weak hypothesis

for any distribution.

It is important to point out that, although this analysis shows that common decision-tree

algorithms are boosting methods, decision trees are not known to be efficiently learnable in

the weak-learning model. Thus, although the analysis of Kearns and Mansour can be applied

to show that Trepan is a boosting algorithm, it fails to establish that Trepan will efficiently

learn the concept represented by a trained network (assuming the concept can be expressed

as a finite decision tree).

5.2.3 Agnostic PAC Learning

The PAC-learning and the weak-learning models do not fully address the issues that are

important in rule extraction. These frameworks are concerned with efficiently inducing an

arbitrarily accurate model with arbitrarily high confidence. In the rule-extraction task, on

the other hand, we are also concerned with the comprehensibility of the learned model.

Thus, having a guarantee that we can efficiently extract a decision-tree of arbitrarily good

fidelity may not be especially interesting if such a tree might be too complex to understand.

In this section, I consider the model of agnostic PAC learning (Haussler, 1992; Kearns et al.,

1992). In several respects the agnostic PAC model is more appropriate to analyzing the

rule-extraction task than are the ordinary PAC and the weak-learning models.

Agnostic PAC learning differs from standard PAC learning in two important ways. First,

in ordinary PAC learning it is assumed that training examples are drawn from a fixed

distribution over the instance space and classified according to a target concept from a known

concept class. In agnostic PAC learning, on the other hand, there is no notion of the target

concept or class; it is simply assumed that instances are drawn from a fixed distribution over

the instance space and then given class labels by some process. Thus, instead of learning

a target function from a fixed class, the task in agnostic PAC learning is to learn from an

arbitrary target distribution over the product of the instance space and the set of possible

classes.

The second key difference between the two models is the notion of successful learning.
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Recall that in the PAC model, the success of the learner is defined as follows: with probability

at least 1 − δ, algorithm A outputs a hypothesis satisfying error(h) ≤ ε. In the agnostic

PAC model, on the other hand, success means that with probability at least 1−δ, A outputs

a hypothesis satisfying | error(h)− infg∈H error(g) | ≤ ε, where H is the class of hypotheses

considered by A, and infg∈H error(g) indicates the greatest lower bound on the error of any

hypothesis g ∈ H. Informally, this success criterion means that algorithm A produces a

hypothesis that approximates the target function nearly as closely as possible, given the

algorithm’s hypothesis class.

As in the weak-leaning model, the lack of an assumption about the target function coming

from a known class is an appealing aspect of the agnostic model. In the rule-extraction task,

we do not usually have a priori knowledge that the function represented by a given network

can be expressed as a small decision tree.

The second key aspect of the agnostic PAC model – the notion of learning success –

closely parallels what I argue is the right measure of success for rule extraction. Namely,

given a class of hypotheses, the learner should return the member of the class that provides

the best description of the given network. This concept of success enables comprehensibility

considerations to be incorporated into the formal model of extraction. For example, we

might want our rule-extraction method to return the decision tree with no more than five

nodes that has greatest level of fidelity to the given network.

The key question then, is what bearing do learnability results in the agnostic PAC model

have on the rule extraction task? There are relatively few positive results for the agnostic

model, but there is one that is of interest with regard to rule extraction. There is an

algorithm called T2 (Auer et al., 1995) that is an agnostic PAC-learning algorithm for the

class of decision trees that have two levels of internal nodes.

Could T2 be profitably used for rule extraction? The answer is a qualified yes. If run

on a set of examples labeled by a target network, T2 would produce the two-level decision

tree that minimizes error on the training set. Thus in order to ensure a hypothesis that

satisfies the agnostic PAC criterion for specified values of ε and δ, we simply would need to

give T2 a large enough training sample from the underlying distribution. As discussed in

Section 5.2.1, however, in practice we might not be able to draw a large enough sample from
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the true distribution of data in the domain.

Another limitation of using T2 as a rule-extraction algorithm is that its hypothesis space

– two-level trees – is rather limited. Auer et al. compared the predictive accuracy of T2

to C4.5 using 15 problem domains. T2 provided superior accuracy in only five of the

domains, and in several others its accuracy was much worse than that of C4.5. Thus,

the theoretical guarantees of T2 did not manifest themselves in especially good results in

practice. Auer et al. showed that in several of the domains in which T2 performed poorly

its performance is explained by its inability to form a hypothesis capable of representing the

target concept. Although Trepan and ID2-of-3 often provide good solutions with decision

trees that are only a few levels deep, they do so by using m-of-n tests at their internal nodes,

as opposed to the single-feature tests that T2 uses.

Although the hypothesis space of two-level trees is quite limited, Auer et al. show that

versions of T2 that consider deeper trees can be constructed, and that these versions are also

agnostic PAC-learning algorithms. The complexity of finding a hypothesis for algorithm Td,

which considers trees with d levels of internal nodes, is O(ndmd−1 log m). The complexity

increases exponentially in the depth considered, and thus such an approach is practical only

for fairly shallow depths.

5.2.4 Discussion

In this section, I have argued that formal models of learning provide an appropriate frame-

work for evaluating the scalability of rule-extraction algorithms. These models are especially

relevant to Trepan since it views rule extraction as a learning task. The goal of con-

sidering the rule-extraction task in terms of formal learnability models is twofold: (i) to

establish bounds on the computational expense of extracting a hypothesis with a speci-

fied level of fidelity to its target model, and (ii) to use insight gained from such anal-

ysis to improve rule-extraction algorithms such as Trepan. As evidence that the lat-

ter goal is reasonable, consider that a recently proposed improvement to C4.5 was based

on analysis of the algorithm within the weak-learning model (Kearns & Mansour, 1996;

Dietterich et al., 1996).
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This section discussed learnability results for decision trees in three formal learning mod-

els. In the standard PAC model, decision trees are known to be efficiently learnable in

Boolean domains only if the target class is restricted to trees of a fixed rank. Bshouty

showed that if the learner is allowed to make membership queries, then arbitrary decision

trees are efficiently learnable in Boolean domains. This algorithm, however, may not find

a small hypothesis in cases where a small tree closely approximates the target concept. In

the weak-learning model, decision trees are learnable when the weak-hypothesis assumption

is met, but they are not known to be efficiently learnable. And finally, in the agnostic PAC

model, decision trees of fixed depth are efficiently learnable. The complexity of Auer et al.’s

algorithm for this task, however, increases exponentially in the depth considered. Empirical

evidence indicates that some problem domains require a hypothesis class that includes trees

of such a depth that this algorithm may not be practical.

This discussion might seem to suggest that decision trees are not an appropriate rep-

resentation language for the rule-extraction task, given the dearth of poignant learnability

results for them. However, learnability results for other “realistic” hypothesis languages are

noticeably scarce as well.

In summary, it is still an open research issue as to which model of learnability provides

the most appropriate context for evaluating rule-extraction algorithms such as Trepan.

Another open question is under what minimally restrictive set of assumptions can Trepan,

or some suitably-modified version of it, be shown to be efficiently learnable.

5.3 Generality of Trepan

As discussed in Chapter 2, many rule-extraction approaches suffer from a lack of generality.

Some require a special training regime for networks, some place restrictions on the network

architectures to which they can be applied, and others restrict both the training method and

the architecture. Trepan, on the other hand, can be applied to a wide range of classifiers.

In this section, I discuss in more detail the generality of the Trepan algorithm.

The assumptions made by Trepan about a given learned model are that (i) the input

representation used for instances is a vector of feature values, and (ii) the model predicts
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discrete output categories. In fact, as illustrated by experiments in the previous chapter,

it is not necessary that the model actually predict discrete values, as long as Trepan can

characterize its predictions in terms of discrete values. In comparison to most rule-extraction

methods, these restrictions are very weak. Since Trepan’s interface to a learned model is

solely through membership queries, it does not place any restrictions on the architecture

(beyond the two mentioned above) of the model or the training method used for it. Trepan

does not even require that the model be a neural network. Trepan can be applied to a

wide variety of hard-to-understand models including instance-based learners and ensembles

of classifiers, as illustrated by Chapter 4’s experiments in the telephone domain.

The discussion of Trepan so far, and the experiments evaluating the algorithm, have

assumed that the rule-extraction task is to produce a description of the complete function

represented by a learned model. Note, however, that Trepan can also be applied to extract

a description of a learned model in just part of its instance space. For example, if we wanted

to extract a description of what a model predicts in a specific context, then we could simply

hold constant certain feature values to represent the context, and generate query instances

by varying values for the remaining features. This type of approach might be useful in cases

where complete descriptions of learned models are too complex to comprehend. Alternatively,

this approach might be useful for knowledge-transfer tasks (recall the discussion of this issue

in Chapter 1) in which the entire model was not relevant to the target task in the transfer

process.

In addition to extracting descriptions for specific contexts, Trepan could also be applied

to extract descriptions for specific components of a learned model. For example, Trepan

could be used to extract local descriptions for each individual unit in a neural network.

Similarly, Trepan could be applied to describe the discretized behavior of a group of units

in a network (e.g., describe the conditions under which all the members of a set of hidden

units had high activations). This capability might be useful in one were especially interested

in how a hypothesis was represented, instead of what the hypothesis represented.
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5.4 Chapter Summary

This chapter provided a discussion of the scalability and generality of the Trepan algorithm.

The first part of the chapter analyzed Trepan in terms of computational complexity, and

showed that Trepan scales well along this dimension. The computational complexity of

expanding a decision-tree node in Trepan is O(m2n3v2), where m is the sample size, n is

the number of features, and v is the maximum number of values for a discrete feature. When

Trepan is not allowed to use r-of-k tests, then the complexity of expanding a node is only

O(dm2n), where d is the depth of the tree.

The second part of the chapter argued that formal models of learning provide an appro-

priate setting for evaluating the scalability of rule-extraction algorithms. In this context,

scalability refers to the computational expense of extracting a hypothesis with a specified

level of fidelity to its target model. The conclusion of this section was twofold. First, it

is still an open question as to which model of learnability provides the best framework for

analyzing rule-extraction algorithms like Trepan. Second, another open issue is under what

minimally restrictive set of assumptions can Trepan, or a modified version of it, be shown

to be efficiently learnable.

The final section in this chapter discussed the generality of Trepan, arguing that the

algorithm can be applied to a wide range of learned models that use feature-value input

representations. In addition to extracting descriptions of entire learned concepts, it can be

used to extract descriptions of learned models in localized regions of their instance spaces,

and it can be applied to extract descriptions of specific components of learned models.



Chapter 6

The MofN-sws Algorithm: A Local

Method for Extracting M-of-N Rules

This chapter presents an algorithm that belongs to the family of local methods for rule

extraction. Recall from Chapter 2 that a local rule-extraction method is one that extracts

a set of rules to describe each hidden and output unit in a network. The method I present

here is based on the MofN algorithm which was developed by Towell and Shavlik (1993) for

extracting m-of-n rules from knowledge-based neural networks. As discussed in Chapter 2,

Towell and Shavlik’s method is interesting because it simplifies the combinatorics involved in

extracting local rules, and because it tends to produce relatively concise rule sets. Since the

MofN algorithm was designed to be applied to knowledge-based neural networks (Towell &

Shavlik, 1994), however, it makes certain assumptions about the distribution of weights in

trained networks. The method I present in this chapter, called MofN-sws, is designed to

extend the applicability of the MofN algorithm to ordinary neural networks.

I evaluate the accuracy and complexity of rules extracted by the MofN-sws method

by comparing them to rules induced by the C4.5 system (Quinlan, 1993). Additionally, I

compare MofN-sws, which was developed in the early stages of this thesis, to the more

recent Trepan algorithm.

116
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6.1 The MofN Algorithm

Towell and Shavlik’s MofN algorithm comprises six steps:

1. Clustering. The weights impinging on each hidden and output unit of the trained

network are grouped into clusters. Initially, each weight is treated as a cluster. The

two nearest clusters are successively merged until no pair of clusters is closer than a

pre-selected distance. The distance metric used for clustering is the difference in the

means of the weight magnitudes for two clusters.

2. Averaging. The magnitude of each weight is set to the average value of the weights

in its cluster.

3. Elimination. Each unit’s logistic transfer function is approximated by a threshold

function, and weight clusters that do not have an effect on the threshold unit’s activa-

tion are eliminated. Two elimination procedures are applied: one algorithmic and one

heuristic. The algorithmic elimination procedure identifies clusters that cannot affect

the activation of the unit. The heuristic elimination step eliminates clusters that do

not have such an effect for any of the training examples.

4. Optimization. The unit biases are retrained to adapt the network to the changes

that been imparted by the previous steps.

5. Extraction. Each hidden and output unit is translated into a rule with a threshold

and weighted literals in its antecedent such that the consequent is true if the sum of

the weighted literals causes the threshold to be exceeded.

6. Simplification. Weights and thresholds are eliminated and rules are expressed in the

m-of-n format.

Figure 26 provides a simple example of the MofN method. The weights in this one-layer

network are grouped into two clusters, resulting in two m-of-n rules. The elimination and

optimization steps are not depicted in this example.
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2.57.1 7.1 2.5 2.5

y

x 1 x 2 x 3 x 4 x 5

θ = −4.5

extracted rules: y ← 1-of-{x1, x2}
y ← 2-of-{x3, x4, x5}

Figure 26: Extracting rules using the MofN method. The dotted ovals illustrate how the weights
have been grouped into clusters. Each weight has been set to the average value of its cluster. The first
extracted rule states that the output unit representing y will have an activation of 1 (i.e., the network
predicts y = true), if either x1 is true or x2 is true. The second rule states that the output unit will have an
activation of 1 if any two of x3, x4, or x5 has a value of true.

6.2 Extending MofN with Soft Weight-Sharing

An underlying assumption of the MofN method is that the distribution of weights in the

network will be conducive to forming a small number of clusters for each hidden and output

unit. For knowledge-based neural networks, this is a reasonable assumption since the weights

are clustered before training. For example, using the Kbann algorithm (Towell & Shavlik,

1994) to map a set of symbolic rules into a knowledge-based network, the weights that are

specified by the domain theory have values of approximately 4 and -4, whereas the rest of

the weights in the network have values near 0. Experimental evidence indicates that the

weights tend to be fairly well clustered after training as well (Towell, 1991).

The applicability of the MofN method might seem to be limited to knowledge-based

networks, since in conventional neural networks there is usually not an inductive bias leading

weight values to be clustered after training. In fact, Towell (1991) reported that MofN did

not extract small sets of accurate rules from conventional networks. My extension to the

MofN algorithm, however, does not rely on the network weights initially being clustered,

but instead encourages clustering during network training. In my MofN-sws approach, a

method developed by Nowlan and Hinton (1992), termed soft weight-sharing (SWS), is used
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to encourage weights to form clusters during the training process. Although soft weight-

sharing was motivated by the desire for better predictive accuracy, it is explored here as a

means for facilitating rule extraction.

In the spirit of the minimum-description-length principle (Rissanen, 1978), soft weight-

sharing uses a cost function that penalizes network complexity. Thus, during training the

network tries to find an optimal trade-off between data-misfit (i.e., the error rate on the

training examples) and complexity. The complexity term models the distribution of weights

in the network as a mixture of multiple Gaussians. A set of weights is considered to be

simple if the weights have high likelihood values under the mixture model. Specifically, the

cost function in soft weight sharing is the following:

C = λE −
∑

i∈wgts

log


 ∑

j∈Gauss

πj pj(wi)




where E is the usual error expression, λ is a parameter used to balance the trade-off between

data misfit and complexity, wi is a weight in the network, pj(wi) is the density value of

wi under the jth Gaussian, and πj is the mixing proportion of the jth Gaussian. The

mixing proportions, which are parameters determining the influence of each Gaussian, are

constrained to sum to one.

The partial derivative of this cost function with respect to each weight is the sum of the

usual error derivative plus a term due to the complexity cost of the weight:

∂C

∂wi

= λ
∂E

∂wi

−
∑

j∈Gauss

rj(wi)
(µj − wi)

σ2
j

.

Here µj and σ2
j are the mean and variance, respectively, of the jth Gaussian, and rj(wi) is

the conditional probability that wi is explained by the jth Gaussian:

rj(wi) =
πj pj(wi)∑

k∈Gauss

πk pk(wi)
.

Thus, the effect of each Gaussian is to pull each weight toward its mean with a force

proportional to the density of the Gaussian at the value of the weight. When weights are

pulled tightly around the means of the Gaussians, the network is similar to one that has fewer

free parameters than connections (i.e., the situation in ordinary weight sharing, Rumelhart
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et al., 1986). The parameters of each Gaussian – the mean µj, standard deviation σj, and

mixing proportion πj – are learned simultaneously with the weights during training.

My MofN-sws method involves training networks using a variant of soft weight-sharing

and then applying the MofN algorithm to the trained networks. Although the MofN

method was designed for knowledge-based neural networks, my hypothesis was that it could

be successfully applied to conventional networks, provided that the weights of the networks

were grouped into clusters during training.

Whereas the MofN algorithm works best when the weights impinging on each unit

form clusters, standard soft weight-sharing tends to globally cluster network weights. Hence,

MofN-sws instead assigns a local set of Gaussians to each unit. The complexity cost of

a given weight is calculated with respect to only the Gaussians associated with the unit to

which the weight connects.

6.3 Empirical Evaluation

In this section, I present experiments that address the hypothesis that the MofN-sws

approach is able to extract small sets of accurate rules. I evaluate the method by comparing

the predictive accuracy and comprehensibility of rules extracted from neural networks by

MofN-sws to rules learned directly from the training data using C4.5 (Quinlan, 1993).

Additionally, I compare the MofN-sws method to Trepan by applying Trepan to the

same networks.

Following the experimental design used in Chapter 4, I measure the syntactic complexity

of the rule sets and use this as a proxy for comprehensibility. In the next section I discuss

the specific aspects of syntactic complexity considered.

The experiments reported here use the NETtalk and promoter domains that were used

in Chapter 4. As in those experiments, I conduct 10-fold cross-validation runs for both data

sets.
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6.3.1 Algorithms

The neural networks used in the experiments have fully-connected hidden units in a single

layer. I use cross validation to select the number of hidden units to be used for the network

for each training set. That is, using just the data in the training set, a cross-validation run

is performed for networks with 20, 15, 10, 5, and no hidden units. The network architecture

that results in the highest cross-validation accuracy is selected and then trained on all of the

data in the training set. After the number of hidden units is selected for each network, I use

a similar cross-validation procedure to determine the λ parameter for soft weight-sharing.

I use a conjugate-gradient learning algorithm (Kramer & Sangiovanni-Vincentelli, 1989) to

train the weights and the Gaussian parameters of the networks. Each hidden and output

unit has five local Gaussians which act on the weights feeding into it.

I use the C4.5 system to induce decision trees and to convert the trees into rule sets.

C4.5 generates a rule set from a decision tree by creating a conjunctive rule for each leaf

in the tree. The literals in a rule’s antecedent are determined by the splitting tests that lie

on the path from the root to the leaf. C4.5 then simplifies the rule set by pruning literals

from rule antecedents, and by pruning entire rules from the set. This pruning procedure may

result in rules that are not mutually exclusive and exhaustive, meaning that a given example

might be covered by rules for more than one class, or that an example might not be covered

by any of the rules. C4.5 handles this problem in two ways: (1) rules are ordered by class,

and the first rule to match a given example determines the predicted class; (2) a default rule

is used to classify instances that are not covered by any other rule. C4.5’s rule-generation

algorithm is described in detail elsewhere (Chapter 5 of Quinlan, 1993).

The key parameter of C4.5’s rule-pruning method is a confidence level analogous to

the one used for decision-tree pruning (discussed in Chapter 2 of this thesis). I use cross-

validation within each training set to determine the confidence levels for both tree pruning

and rule pruning. The confidence level selected for tree pruning does not affect C4.5’s

tree-to-rule procedure since it operates on unpruned trees and performs its own pruning

independently. For each training set, I test confidence levels ranging from 5% to 95%, and

separately select tree-pruning and rule-pruning levels.



122

I apply the MofN algorithm to extract rules from the networks that are trained with

soft weight-sharing. In the promoter domain (which is a two-class problem), I extract rules

only for the positive (i.e., promoter) class, and employ the closed-world assumption (i.e.,

a default rule) to classify negative examples. Because local rule-extraction methods, such

as MofN-sws, consider each output unit independently, the extracted rules may not be

mutually exclusive and exhaustive when they are applied to networks trained for multi-

class problems. As mentioned above, this problem is also faced by C4.5’s rule-generation

algorithm. For the NETtalk domain, which is a multi-class problem, MofN-sws uses the

same strategy as C4.5 to handle this issue: it orders the rules by class, and uses a default

rule to classify examples not covered by other rules. MofN-sws sets its rule ordering so

that false-positive errors on the training set are minimized. Its default rule specifies the class

which has the most training examples not covered by any rule.

I also apply Trepan to the networks trained with soft weight-sharing. I use the same

parameter settings and methodology for Trepan as in Chapter 4’s experiments. In order

to compare the syntactic complexity of Trepan trees to the MofN-sws and C4.5 rule

sets, I convert extracted trees to rule sets in a straightforward manner: a rule is created for

each leaf in a tree, where the antecedent of the rule is the conjunction of splitting tests that

occur on the path from the root to the leaf. Following the procedure used for MofN-sws, I

retain rules only for the positive class in the promoter domain, and in the NETtalk domain,

I retain rules for four of the classes, and use a default rule for the fifth class. Note that,

unlike C4.5’s tree-to-rule algorithm, the rules produced by this method implement the same

function as their respective Trepan tree.

To compare the comprehensibility of the hypotheses produced by C4.5, MofN-sws, and

Trepan, I consider three measures of syntactic complexity. I compare the complexity of

rule sets by counting the number of rules and the total number of literals in rule antecedents

in the sets. I also compare Trepan’s trees to MofN-sws rule sets by counting the total

number of feature references in each representation. As in Chapter 4, an m-of-n test or an

m-of-n rule is counted as n feature references, since such an expression lists n feature values.

I use this feature-references metric, in addition to the number-of-literals measure, because

the latter is biased against Trepan. When a Trepan tree is converted to a rule set, much
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of the structure of the tree redundantly appears in numerous rules. For example, an m-of-n

expression at the root of a Trepan tree is replicated in every rule generated from the tree.

The feature-references metric enables a direct comparison of Trepan’s trees to the rule sets

extracted by MofN-sws.

6.3.2 Results

Table 14 shows test-set accuracy results for the various algorithms considered here. As in

the experiments reported in Chapter 4, neural networks perform significantly better on this

task than C4.5 trees (and the rules generated from them) in both domains. Additionally,

the predictive accuracy of the symbolic rules extracted by MofN-sws is fairly close to the

accuracy of the networks themselves, and better than the C4.5 rules and trees in both

domains. Similarly, the accuracy of the Trepan hypotheses is close to the networks and

better than both C4.5 rules and trees. I test the statistical significance of accuracy differences

using a paired-sample, two-tailed t-test. The symbol ‘∗’ marks results in cases where the

accuracy of an algorithm is inferior to the accuracy of the neural networks at the p ≤ 0.05

level of significance. Similarly, the symbols ‘•’ and ‘�’ mark results that are inferior to

MofN-sws and Trepan, respectively, at p ≤ 0.05.

Table 15 shows the average number of rules, the average number of literals in rule an-

tecedents, and the average number of feature references for the C4.5, MofN-sws, and

Trepan hypotheses. The rule sets extracted by MofN-sws and Trepan are comparable

in terms of number of rules, and both methods produce significantly fewer rules than C4.5.

The three methods differ a fair amount, however, in terms of the complexity of the individual

rules they extract. The rules produced by C4.5 are purely conjunctive rules that tend to

have few literals. The rule sets extracted by MofN-sws and Trepan, on the other hand,

contain far fewer rules, but have far more literals in their antecedents. In terms of literals,

Trepan produces the least complex rule sets in the NETtalk domain, and C4.5 produces

the simplest rule sets in the promoter domain.

The Trepan rules appear to be more complex than the MofN-sws rules in the promoter

domain. However, when the complexity of the hypotheses is measured in terms of feature

references, they are nearly identical. As argued in the previous section, the number-of-literals
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Table 14: Test-set accuracy (%) for the MofN-sws experiments. The symbol ‘∗’ marks results in
cases where the accuracy of an algorithm is inferior to the accuracy of the neural networks at the p ≤ 0.05
level of significance. Similarly, the symbols ‘•’ and ‘�’ mark results that are inferior to MofN-sws and
Trepan, respectively, at p ≤ 0.05.

method NETtalk promoter

neural networks 87.0 92.1
MofN-sws ∗ 83.0 88.9
Trepan ∗ 84.8 89.1
C4.5 trees ∗ • � 80.9 ∗ • � 83.1
C4.5 rules ∗ • � 79.9 ∗ • � 86.5

Table 15: Rule-set complexity for the MofN-sws experiments.

# rules # literals # feature references
method NETtalk promoter NETtalk promoter NETtalk promoter

MofN-sws 17.5 8.2 661.9 119.6 661.9 119.6
Trepan 15.2 6.7 337.0 217.7 71.7 119.7
C4.5 rules 233.5 23.2 466.5 47.3 466.5 47.3

metric is biased against Trepan because the complexity of Trepan’s hypotheses increases

when the trees are converted into rules.

In summary, Trepan clearly produces the least complex hypotheses in the NETtalk

domain. In the promoter domain, the results are not as definite. Whereas, C4.5 induces

rule sets that contain many simple rules, MofN-sws and Trepan produce rule sets that

contain fewer, more complex rules. I argue that the three methods are roughly comparable

in terms of the comprehensibility of their rule sets in this domain. However, it is worth

noting that whatever additional complexity the network-extracted rules exhibit, results in

significant gains in accuracy.

Table 16 shows test-set fidelity results for the MofN-sws rules and Trepan trees. As in

Chapter 4, I measure fidelity using examples in the test sets. Recall that fidelity is defined as

the percentage of test-set examples for which the classification made by an extracted model

agrees with its neural-network counterpart. The results in the table indicate that, in both

domains, the models extracted by Trepan provide better descriptions than MofN-sws of

their corresponding networks. In the promoter domain, the difference in fidelity between

the two algorithms is significant at p ≤ 0.05 using a paired-sample, two-tailed t-test.
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Table 16: Test-set fidelity (%) for MofN-sws and Trepan.

method NETtalk promoter

MofN-sws 91.5 89.3
Trepan 92.1 91.7

Table 17: The effect of soft weight-sharing in the NETtalk domain.

method accuracy # rules # literals

networks with soft weight-sharing 83.0 17.5 616.1
ordinary networks 83.1 16.0 724.5

In order to evaluate the contribution of soft weight-sharing to the MofN-sws results pre-

sented in this section, I apply MofN-sws to networks trained without soft weight-sharing.

Surprisingly, the results obtained for the promoter domain, in terms of rule accuracy and

comprehensibility, are essentially the same as in the first experiment. The results for the

NETtalk domain are presented in Table 17. Although soft weight-sharing does not seem to

affect the predictive accuracy ability of the extracted rules, it has a significant impact on

the concision of the rules. The rules extracted from the networks that employed soft weight-

sharing had, on average, 108 fewer literals in their antecedents. This difference is significant

at the 0.05 level using a paired-sample, two-tailed t-test.

6.4 Chapter Summary

The experiments in this section demonstrated that small sets of accurate, reasonably con-

cise symbolic rules can be extracted from ordinary artificial neural networks by a local

rule-extraction algorithm. The MofN-sws method presented here involves exploiting the

effectiveness of the MofN algorithm by encouraging weight clustering during training. For

two difficult problem domains, this approach was able to induce rules that resulted in better

predictive accuracy than rules learned using C4.5.

The primary limitations of this approach are twofold. First, the MofN-sws method is

limited in its applicability because it assumes that networks use logistic transfer functions,

and that these sigmoids can be closely approximated by threshold functions. Second, like
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all local methods, the algorithm extracts a set of rules for each hidden and output unit. It

thus implicitly assumes that individual units correspond to meaningful concepts. Moreover,

the complexity of extracted rule sets may grow as a function of network size instead of as a

function of the complexity of the concept represented by the network.

This chapter also compared the (more recent) Trepan algorithm to MofN-sws. In the

two domains considered here, the predictive accuracy of the trees extracted by Trepan was

slightly better than the accuracy of the MofN-sws rules. In the promoter domain, the

syntactic complexity of the hypotheses produced by the two algorithms was comparable, but

in the NETtalk domain, Trepan produced hypotheses that were considerably more concise.

Trepan’s extracted models also had higher levels of fidelity to their target networks than

did the rule sets extracted by MofN-sws. Additionally, unlike the MofN-sws method,

Trepan does not assume that a special training procedure is used for the networks. In

conclusion, although the experiments presented in this chapter demonstrated the value of

the MofN-sws rule extraction method, they also showed the superiority of the more recently

developed Trepan algorithm.

The MofN-sws algorithm, and portions of the experimental evaluation of the algorithm

reported in this chapter were previously published in a conference paper (Craven & Shavlik,

1993a).



Chapter 7

The Boosting-Based Perceptron

Learning Algorithm

Unlike the methods presented previously in this thesis, the algorithm introduced in this

section is not a method for extracting rules from neural networks. Rather, the Boosting-

Based Perceptron (BBP) learning algorithm is a method for learning sparse perceptrons. A

sparse perceptron is a linear discriminant function over relatively few terms, where the terms

are either individual features or conjunctions of features.

The underlying motivation for the BBP algorithm, however, is closely related to the

motivation for the rule-extraction task: to induce comprehensible models in domains in

which neural networks have a well-suited inductive bias. In contrast to the rule-extraction

approach, where one tries to extract a comprehensible representation from a trained network,

the BBP approach is to directly induce a network that itself is simple and comprehensible.

BBP tries to keep a learned hypothesis comprehensible by incorporating as few features as

possible into the hypothesis, and by ensuring that the relationship between each feature and

the target function is relatively simple.

The BBP algorithm is similar to C4.5 (Quinlan, 1993), and other decision-tree learning

algorithms, in that it incrementally adds features to its hypothesis during learning. On the

other hand, since BBP learns perceptrons, its inductive bias is more similar to that of multi-

layer neural networks. An important difference between BBP and ordinary neural-network

learning algorithms, however, is that BBP has a bias towards hypotheses that are easy to

127
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understand. The hypotheses learned by ordinary multi-layer networks are typically difficult

to understand because they involve hundreds or thousands of real-valued parameters that

represent nonlinear, nonmonotonic relationships between the input features and the output

categories. BBP, on the other hand, is a constructive algorithm and thus does not start

with a fixed number of parameters. Instead, it adds weighted links to its hypotheses only

as deemed necessary. Importantly, each parameter in a BBP-learned hypothesis describes a

simple (i.e., linear) relationship between an input feature and an output category.

Because it learns hypotheses that are linear discriminant functions with relatively few

parameters, the perceptrons produced by BBP are usually much more comprehensible than

multi-layer networks. As evidence for this position that sparse perceptrons are compre-

hensible, consider that linear discriminant functions are commonly used to express domain

knowledge in fields such as medicine (Spackman, 1988) and molecular biology (Stormo, 1987).

In short, BBP is in some sense a hybrid between the decision tree and multi-layer network

approaches to machine learning, combining some of the interpretability of one approach with

the powerful inductive bias of the other.

This chapter is based on joint work with Jeffrey Jackson. The BBP algorithm was co-

developed with Jackson, and he is responsible for the technical contributions presented in

Section 7.4. A description of the BBP algorithm and some of the experiments reported in

this chapter were previously published elsewhere (Jackson & Craven, 1996).

7.1 Hypothesis Boosting and the AdaBoost Algorithm

The BBP algorithm is based on a hypothesis-boosting method called AdaBoost (Freund &

Schapire, 1995). Recall from Chapter 5 that a hypothesis-boosting algorithm is one that

combines the hypotheses produced by a weak learning algorithm into a strong hypothesis.

Informally the notion of a weak learner or a weak hypothesis is one that predicts just slightly

better than random guessing, whereas a strong learner or a strong hypothesis is one that

achieves arbitrarily high accuracy.

More formally, let F be any class of Boolean functions over the instance space of some

problem domain, and assume that a learner is given access to an oracle, EX(f, D), that
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randomly draws instances from distribution D and labels them using the target function f .

A strong learning algorithm A for a class of functions F is one such that for any f ∈ F ,

any distribution D, any 0 < ε < 1/2, and any 0 < δ < 1/2, with probability at least

1 − δ, A is able to produce a hypothesis h such that PrD [f(x) 6= h(x)] ≤ ε. Here, PrD

represents the probability with respect to distribution D. Strong learning is synonymous

with PAC learning, and thus this definition is the same as the one used for PAC learning

in Chapter 5. An algorithm A is said to be a weak learning algorithm for F if, for any

target function f ∈ F and any distribution D, A is able to produce a hypothesis h such that

PrD [h(x) 6= f(x)] ≤ 1/2− 1/p(n, size(f)), where p is a fixed polynomial in the number of

features n, and a measure of the size of the target function.

Schapire (1990) first showed the following surprising result: any class F that is weakly

learnable is also strongly learnable. In particular, given a weak learning algorithm for a

class F , there are general mechanisms for boosting the weak learner into a strong learner

for F . Several such boosting algorithms have been developed (Schapire, 1990; Freund, 1990;

Freund, 1992), and one called AdaBoost (Freund & Schapire, 1995) is the basis of the BBP

algorithm.

Figure 27 shows the version of AdaBoost on which our BBP algorithm is based. We

assume here that the target function we are trying to learn, f , is a mapping from a set of

Boolean features to a Boolean output: {0, 1}n → {−1, +1}. AdaBoost is given a set S of m

training examples of the function f , and a weak-learning algorithm WeakLearn capable of

efficiently producing a hypothesis that has error ε ≤ ( 1
2
−γ) with respect to any distribution

D over the instance space of f . AdaBoost runs for T = ln(m)/(2γ2) stages, where at each

stage, it creates a probability distribution Di over S and invokes WeakLearn(S, Di) to

find a hypothesis hi that has εi ≤ (1
2
− γ) with respect to Di. Informally, the probability

distribution at each stage is calculated such that if hi correctly classifies an example, then

the weight on that example is reduced in the distribution Di+1 used at stage i+1. The effect

of this strategy is to focus the weak learner on those examples that the hypothesis from the

previous stage classified incorrectly.

At the end of the T stages, AdaBoost returns a hypothesis h which is a weighted threshold

over the hypotheses {hi | 1 ≤ i ≤ T}. If WeakLearn succeeds in producing a hypothesis
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AdaBoost

Input: training set S of m examples of function f : {0, 1}n → {−1,+1};
learning algorithm WeakLearn that produces classifier with ε ≤ ( 1

2 − γ) given S
and any distribution D over S

1. T := 1
2γ2 ln(m) /* determine number of stages */

2. for all x ∈ S, weight(x) := 1/m
3. for i := 1 to T do

4. for all x ∈ S, Di(x) :=
weight(x)∑m

j=1 weight(x)
/* set distribution for stage */

5. hi := WeakLearn(S, Di) /* learn weak hypothesis */

6. εi := 0
7. for all x ∈ S /* determine error of weak hypothesis */

8. if hi(x) 6= f(x) then εi := εi + Di(x)
9. βi := εi / (1− εi)

10. for all x ∈ S
11. if hi(x) = f(x) then weight(x) := βi weight(x)

Return: h(x) ≡ sign

(
T∑

i=1

− ln(βi) hi(x)

)

Figure 27: The AdaBoost algorithm. Given a weak learning algorithm, boost a set of weak hypotheses
into a strong hypothesis.
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that has εi ≤ (1
2
− γ) at each stage, then AdaBoost’s final hypothesis will be consistent with

the training set (Freund & Schapire, 1995).

The hypothesis returned by AdaBoost is a thresholded, weighted sum over the outputs

of the weak hypotheses. In other words, it is a perceptron over the weak hypotheses. The

summed outputs of the weak hypotheses are thresholded using the sign function defined as

follows:

sign(x) =





1 if x > 0

−1 if x ≤ 0.

7.2 The BBP Algorithm

AdaBoost is a general algorithm for boosting a weak learner into a strong learner. This

section describes the BBP algorithm which is an instantiation of AdaBoost intended to

be applied in practice. The key issues discussed in this section are how BBP: (i) finds a

weak hypotheses, (ii) determines the number of boosting stages, and (iii) handles multi-class

problems.

The basic version of the BBP algorithm that we describe is designed to work in Boolean

classification domains with Boolean features. It can easily be applied to problem domains

with nominal features by first replacing each v-valued nominal feature with a set of v Boolean

features, each one representing a possible value of the feature.

Recall that AdaBoost forms a hypothesis from a set of constituent hypotheses that are

produced by a weak learning algorithm, WeakLearn. The weak learning algorithm em-

ployed by BBP is shown in Figure 28. The basic idea of the WeakLearn algorithm is very

simple: it tries to find a small conjunction of features that correlates well with the target

function with respect to the given distribution. This algorithm begins by first generating the

set of all non-trivial1 conjunctions, Ck, of at most k of the given Boolean features. This set

includes the function that is identically one, which can be thought of as the conjunction of

zero features. WeakLearn treats these conjunctions as functions that map to {−1, +1},
corresponding to whether the conjunction is false or true in a given case, respectively. In

1We use the term non-trivial conjunctions to refer to those conjunctions that are not trivially false. For
example, the conjunction (x1 = true ∧ x1 = false) is a trivial conjunction.
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WeakLearn

Input: training set S of m examples of function f : {0, 1}n → {−1,+1}; distribution D over S

1. let Ck be the set of non-trivial conjunctions of at most k features
2. for each ci ∈ Ck

3. correlation(ci) := ED [f · ci] /* correlation of conjunction with target function */

4. value(ci) := | correlation(ci) |
size(ci)

Return: ci ∈ Ck with maximum value(ci)

Figure 28: The WeakLearn function used by BBP. Find a conjunction that is a weak hypothesis for
the target function with respect to the given distribution.

order to find a weak hypothesis, WeakLearn first calculates the correlation of each conjunc-

tion ci in Ck to the target function f with respect to the given distribution D. WeakLearn

then determines the value of each conjunction by taking its absolute value and dividing by

the size of the conjunction. The size of a conjunction is simply the number of features in it

(except that the identically one conjunction has a size of one).

The step of dividing |correlation(ci)| by size(ci) introduces a bias that is intended to

make BBP prefer simple features over higher-order conjunctive features. The motivation

underlying this heuristic is that higher-order conjunctive features make a hypothesis more

difficult to understand. This heuristic is related to Rissanen’s Minimum Description Length

principle (Rissanen, 1989) in that it involves trading off a possible gain in accuracy (at least

in the weak hypothesis) for reduction in the complexity of the final hypothesis.

Because the BBP algorithm uses exhaustive search over all conjunctions of size k, learning

time depends exponentially on the choice of k. In the experiments reported here, we chose

to use k ≤ 2 throughout, since this choice results in reasonable learning times and classifiers

with good predictive accuracy.

Another key aspect of the BBP algorithm is deciding when the boosting process should

terminate. The AdaBoost algorithm uses the size of the training set and the weak-hypothesis

advantage γ to determine the number of boosting stages. Since γ is not known a priori,

however, it is not practical to determine the number of stages before the boosting procedure

begins. One possible approach would be to continue the boosting process until either the
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overall hypothesis was consistent with all of the examples in the training set, or until a

weak hypothesis could not be found. Such an approach, however, would be likely to produce

an overly complex hypothesis and would be susceptible to over-fitting. The approach BBP

takes is to use 10-fold cross-validation, within the training set, to determine an appropriate

termination point. That is, before running BBP on the entire training set, it is run on each of

the training subsets induced by the cross-validation partition. At each stage of each of these

cross-validation runs, the predictive accuracy of the current hypothesis is measured using the

data in the validation fold. The stage that results in the best averaged predictive accuracy

during this cross-validation procedure is noted, and then BBP is run for this number of

stages on the entire training set. To facilitate comprehensibility, BBP is limited to run for

at most n stages, where n is the number of weights that would be in an ordinary perceptron

for the task (i.e., one weight for each value of each feature).

So far the discussion has focused on learning concepts that involve only two classes.

BBP handles multi-class problems by learning a sparse perceptron for each class. That

is, the ith perceptron is trained to distinguish examples that are members of the ith class

from those that are not. To classify a test example, BBP considers the value computed by

each perceptron before the sign operator is applied. That is, BBP identifies the perceptron

that computes the greatest weighted sum, and then predicts the class corresponding to this

perceptron. In neural-network terminology, this can be thought of as picking the output unit

with the greatest activation.

7.3 Empirical Evaluation

The underlying hypothesis of this research is that the BBP algorithm will provide a combi-

nation of good predictive accuracy and comprehensible models in a wide variety of real-world

domains. To test this hypothesis, we evaluate the algorithm by comparing it to four other

inductive learning methods in five problem domains. The models learned by BBP are com-

pared to those learned by the other algorithms in terms of both predictive accuracy and

syntactic complexity. As in previous experiments in this thesis, we use syntactic complexity

as a substitute for comprehensibility since the latter is problematic to measure objectively.
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The task of measuring comprehensibility in the experiments here is further complicated

by the fact that the algorithms we compare have different hypothesis languages. For this

reason, two different measures of syntactic complexity are used in the experiments. First,

for all algorithms, we count the number of features that are incorporated into learned hy-

potheses. Second, for algorithms, such as BBP, that form hypotheses composed of weighted

connections, we count the number of connections in the learned hypotheses.

7.3.1 Algorithms

The four other learning algorithms to which we compare BBP are:

1. multi-layer neural networks (Rumelhart et al., 1986) trained using a conjugate-gradient

method (Kramer & Sangiovanni-Vincentelli, 1989);

2. decision trees induced using C4.5 (Quinlan, 1993);

3. the Relief feature-selection algorithm (Kira & Rendell, 1992a; 1992b) used in conjunc-

tion with C4.5;

4. the Balanced version of the Winnow algorithm (Littlestone, 1989; 1995).

The reasons for selecting each of these algorithms are as follows. Multi-layer networks

and C4.5 are selected because they are two of the most commonly used inductive learning

algorithms, and they have provided good predictive performance in a number of real-world

domains. C4.5 is also interesting because it has a bias toward using features sparingly in

its hypotheses. We include Relief because it is an example of a feature-selection method;

it is designed to improve predictive accuracy and reduce hypothesis complexity by limiting

the number of features used by a learning algorithm. Relief itself is not a learning method,

but is used in tandem with one. In the experiments reported here, it is used with C4.5.

Finally, Winnow is selected because, like BBP, it learns hypotheses that are linear-threshold

functions, and because it has provably good performance when given irrelevant features.

Additionally, Winnow has recently shown its practical value by demonstrating excellent

predictive performance in an interesting, real-world application (Blum, 1995). We use the
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Balanced version of Winnow, rather than one of the other versions (Littlestone, 1989), largely

due to its empirical success.

We now describe these algorithms in more detail, and discuss how they are applied in

the experiments.

Multi-layer Neural Networks

The multi-layer neural networks used in the experiments have logistic output units and one

(or no) layer of logistic hidden units. For two-class problems, we use networks with one

output unit; for problems with more than two classes, we use one output unit per class. The

networks are fully connected between layers. For each training set, networks with 0, 5, 10,

20, and 40 hidden units are tried, and we use 10-fold cross validation within the training set

to select the topology to be used for that training set. The networks are trained using the

cross-entropy error function (Hinton, 1989) and a conjugate-gradient minimization algorithm

(Kramer & Sangiovanni-Vincentelli, 1989). They are trained for a maximum of 50 search

directions. During training, 10% of the training data is held aside as a validation set in

order to decide when the weights should be saved (i.e., when training should be effectively

stopped).

C4.5

We use C4.5 in the experiments to learn decision trees. Except for the pruning confidence

level, the default settings are used for C4.5’s parameters. To choose the pruning level for

each training set, 10-fold cross validation is used. For each training set, we perform cross-

validation runs using pruning levels of 5-95%, in 10% increments.

Relief

Although learning methods such as C4.5 and multi-layer neural networks are designed to

distinguish relevant from irrelevant features during learning, a number of empirical studies

have found that predictive accuracy can sometimes be improved by using an explicit feature-

selection method in conjunction with an ordinary learning algorithm (Almuallim & Dietterich,

1991; Kira & Rendell, 1992b; Caruana & Freitag, 1994; John et al., 1994; Moore & Lee, 1994;
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Skalak, 1994). In the experiments below, we use one such method – Relief (Kira & Rendell,

1992a; 1992b) – with C4.5 as the learning algorithm. Relief is a filter-type method for feature

selection. Filter approaches involve a two-stage process: first a feature-selection algorithm is

used to select a subset of candidate features, and then a learning algorithm is applied using

only the selected subset of features.

Wrapper-type methods are an alternative to filter-based methods for feature selection.

In a wrapper method, the learning algorithm is intrinsic to the feature-selection process. A

wrapper method conducts a search through a space of feature subsets, using the learning

algorithm in a cross-validation procedure to evaluate each subset. A purported advantage

of wrapper methods over filter methods is that they use the inductive bias of the learning

algorithm to evaluate feature subsets, whereas filter methods typically employ a different

inductive bias than the learning algorithm. Filter methods, however, are typically much less

computationally expensive than wrapper methods. Evaluating a single node in a wrapper-

method search space can be expensive since it involves running a cross-validation procedure.

Even if the search algorithm used in the wrapper approach is a greedy method, it can still

involve considering a large number of nodes in the search space. For example, the problem

domains used in these experiments have as many as 464 features; thus the branching factor

at each node in the search can be as high as 464. For this reason, we do not use a pure

wrapper-style method in the experiments, but instead use a hybrid filter-wrapper approach.

The Relief algorithm, which is shown in Figure 29, calculates a weight for each feature,

and then returns the subset of features whose weights (after a normalization step) exceed

a threshold τ . The main loop of Relief, which calculates the feature weights, involves com-

paring the feature values of a selected example, x, to randomly selected near-neighbors of

x. In the experiments here, we randomly select among the two nearest neighbors of a given

example x, and use the same function as Kira and Rendell to calculate the distance between

the values of discrete-valued features when comparing x to its neighbor:

Diff(xf , zf ) ≡





0 if xf and zf are the same

1 if xf and zf are different.

An issue that arises when applying Relief in practice is deciding how to select an appro-

priate value for τ . The Relief algorithm defines a total ordering over the feature set, and τ
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Relief
Input: training set S, number m′ of examples to randomly draw, feature set F , threshold τ

1. separate S into S+ (positive examples) and S− (negative examples)
2. for all f ∈ F , wf := 0
3. for m′ iterations do
4. x := example randomly selected from S
5. z+ := randomly selected example from S+ that is close to x
6. z− := randomly selected example from S− that is close to x
7. if x is a positive example then
8. near-hit := z+, near-miss := z−

9. else
10. near-hit := z−, near-miss := z+

11. for all f ∈ F , wf := wf− Diff(xf , near-hitf )2 + Diff(xf , near-missf)2

12. for all f ∈ F , Relevancef := wf/m′

Return: the set of relevant features F ′ ≡ {f | Relevancef ≥ τ}

Figure 29: The Relief algorithm. Select a subset of the given features to use for a learning task.

# features to retain
1 n

cross−validation
error

Figure 30: Using golden-section search to find a cut-point for Relief. An ordering is imposed
on the features by the Relief algorithm. The x-axis indicates the number of features to be selected, and
the y-axis indicates the corresponding cross-validation error. Golden-section search is used to find a local
minimum in this function.
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specifies where a cut-point should be made in this ordering to separate the features that will

be retained from those that will be discarded. For the experiments here, we developed an

adaptation of Relief that employs a simple search method to find this cut-point. As illus-

trated in Figure 30, this method views the task as a one-dimensional optimization problem,

where the x-axis represents the number of features to retain and the y-axis represents the

estimated predictive accuracy for the corresponding subset. In order to estimate accuracy

for a given feature subset (i.e., to evaluate the function at a given point), we use a 10-fold

cross-validation procedure. The optimization method we use is a modified version of golden-

section search (Press et al., 1992). Our modification to this method is simple: whereas

ordinary golden-section search assumes a continuous domain for the x-axis, this problem

involves a discrete-valued domain. Thus, whenever the search method wants to evaluate the

function (i.e., do a cross-validation run) at a given abscissa, the abscissa is first rounded

to correspond to one of the cut-points. Golden-section search is guaranteed to find a local

minimum in the function being optimized. For this application, this means that given an

ordering over the full feature set, golden-section search will find a cut-point that results in

a local minimum in cross-validation error; however, it may fail to find the cut-point that

provides the global minimum.

Our variant of Relief is actually a hybrid filter-wrapper method. Like a conventional

wrapper method, it conducts a search through a space of feature subsets and uses cross

validation to evaluate each subset. However, the search conducted by this method is very

limited. It is first constrained by using the Relief algorithm to specify a total ordering over

the features. It is then further constrained by using an optimization method to consider a

relatively small number of cut-points along this ordering.

Finally, this application of Relief requires one more twist. Whereas Relief is designed

to be used for problems with two classes, several of the data sets used here are multi-class

problems. For these problem domains, we run Relief once for each class, treating examples

of the selected class as positive examples and the remaining examples as negative examples.

This procedure produces a set of feature weights for each class. In order to obtain a combined

feature ranking, we rank according to its largest weight.

With this modified Relief method, the only parameter that needs to be set is m – the
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number of examples that are randomly drawn. We set m to the training-set size in all of the

experiments.

Winnow

The final algorithm used in the experiments is the Balanced version of Winnow (Littlestone,

1989; 1995). This algorithm learns a hypotheses that are like perceptrons, except that they

use two thresholds, θ+ and θ−, and pair of weights, w+
f and w−

f , for each feature f . The

version of Winnow used here, which is shown in Figure 31, involves two modifications to

the original algorithm. First, although Winnow is an on-line algorithm, we evaluate it in a

batch setting in the experiments. An on-line algorithm is one that may update its current

hypothesis after seeing each training example. Although Winnow is allowed to update its

hypotheses after each example in the experiments, the learned hypothesis is not applied to a

test set until the algorithm has made several passes through its training set. Thus, Winnow

is trained much like the Boosting-Based Perceptrons and the multi-layer networks. The

Winnow hypotheses are trained for a maximum of 50 passes through the training set, where

10-fold cross validation is used to select the number of training passes for each training set.

Winnow, like BBP, is designed to operate on Boolean features. Thus, before running

Winnow in domains that have nominal features, each nominal-valued feature is first trans-

formed to a set of Boolean features as is done with BBP.

We also adapt Winnow to handle problems involving more than two classes. As with the

Boosting-Based Perceptrons, a hypothesis is trained for each class, and then the one with

the highest “activation” is picked to classify a test example. For Winnow hypotheses, the

activation is measured as:

(θ+ +
n∑

f=1

w+
f xf )− (θ− +

n∑

f=1

w−
f xf ).

Finally, following Littlestone (1995), we set the parameter α to 1.2 for all of the experiments.
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Winnow

Input: training set S of m examples, set of n Boolean features F , learning rate α,
number of training passes P

1. θ+ := 1, θ− := 1 /* initialize weights and thresholds */

2. for all f ∈ F , w+
f := 1, w−

f := 1
3. for P iterations do
4. for each example x ∈ S do

5. h(x) := sign
((

θ+ +
∑n

f=1 w+
f xf

)
−
(
θ− +

∑n
f=1 w−

f xf

))
/* classify x */

6. if h(x) 6= f(x) then /* update weights & thresholds if x misclassified */

7. if f(x) = −1 then
8. θ+ := θ+/α, θ− := θ−α
9. for all f ∈ F , w+

f := w+
f α−xf , w−

f := w−
f αxf

10. else
11. θ+ := θ+α, θ− := θ−/α
12. for all f ∈ F , w+

f := w+
f αxf , w−

f := w−
f α−xf

Return: h(x) ≡ sign
((

θ+ +
∑n

f=1 w+
f xf

)
−
(
θ− +

∑n
f=1 w−

f xf

))

Figure 31: The Winnow algorithm. Learn a hypothesis that consists of a pair of linear threshold
functions.

7.3.2 Problem Domains

We use five problem domains to compare BBP and the other algorithms. The promoter

and voting domains are used here again, as well as a version of the coding data set that

has more features than the one used in Chapter 4. Recall that the coding data set involves

classifying DNA sequences as to whether they come from a protein-coding region (i.e., a

gene) or not. The coding data set used in Chapter 4 has 64 features representing the

possible three-character DNA “words”; each of these features indicates whether or not the

corresponding word occurs “in-frame” in the sequence. The coding data set used in the

experiments in this chapter includes another 400 features which represent each possible pair

of amino acids that are encoded by the sequence (each three-character word encodes an

amino acid). Each of these features indicates whether or not the corresponding amino acid

pair is found “in-frame” in the sequence. The experiments in this chapter use the larger

feature set because we are interested in testing the ability of the BBP algorithm to sparingly

incorporate features into its learned hypotheses.
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In addition to the coding, promoter, and voting data sets the experiments here also

use the splice-junction (Noordewier et al., 1991) and the lung-cancer (Hong & Yang,

1991) domains. The splice-junction data set is a three-class problem comprising 3,190

examples represented using 60 features. Like the promoter domain, each feature corresponds

to a position in a DNA sequence and thus can take on one of four values. The lung-cancer

data set is unusual in that it uses 56 four-valued features but includes only 32 examples. It

also is a three-class problem. Note that all five of the data sets are classification tasks that

involve only discrete-valued features.

7.3.3 Measuring Predictive Accuracy

The first hypothesis underlying these experiments is that the BBP algorithm is able to

induce accurate models in a variety of problem domains. In order to test this hypothesis,

we compare the test-set accuracy of BBP to the other algorithms in the study. For all five

problem domains, we use a cross-validation methodology to measure predictive accuracy. We

use ten-fold cross validation for the voting, promoter, splice-junction, and lung-cancer

domains. As in Chapter 4, only four training and test sets are used for the coding data

set because of certain domain-specific characteristics of the data. The experiments in this

domain use a modified four-fold cross-validation methodology. As would be the case in

ordinary cross validation, four independent test sets consisting of 5,000 examples each are

used. For reasons of computational time, however, each classifier is not trained on the entire

remaining set of 15,000 examples. Instead four training sets are formed by randomly selecting

5,000 examples from each set of 15,000.

Recall that the BBP algorithm considers incorporating into its hypotheses not just terms

that correspond to individual features, but also terms that represent conjunctions of input

features. Specifically, BBP considers all terms that represent non-trivial conjunctions up to

size k. In the experiments, k is set to two for the voting, promoter, splice-junction, and

lung-cancer domains. For the coding domain, where 400 of the features actually represent

interesting conjunctions (amino-acid pairs), k is set to one. For the voting, promoter,

splice-junction, and lung-cancer data sets, Winnow is run using two different feature

representations. In the first, the original set of features for each domain is used; in the
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Table 18: Test-set accuracy for the BBP experiments. The symbol ‘∗’ marks results in cases where
the accuracy of an algorithm is inferior to the accuracy of BBP at the p ≤ 0.05 level of significance. Similarly,
the symbol ‘�’ marks the result where the accuracy of BBP is inferior to the accuracy of Winnow-Conj at
this same level of significance.

method coding lung promoter splice voting

BBP 93.6 56.2 92.7 � 94.6 91.6
multi-layer networks 93.6 46.9 90.6 95.4 92.2
C4.5 ∗ 84.9 31.2 ∗ 85.0 94.5 ∗ 89.7
Relief-C4.5 ∗ 88.4 53.1 ∗ 83.5 94.2 ∗ 89.2
Winnow ∗ 86.7 53.1 90.8 ∗ 73.9 90.3
Winnow-Conj 43.7 92.1 95.0 90.3

second, the original feature set plus all non-trivial pairwise conjunctions are used. The

latter configuration, which we refer to as Winnow-Conj, allows Winnow to explore the same

hypothesis space as BBP. For the coding domain, we run Winnow only once using the

ordinary feature set since this methodology parallels the application of BBP in this domain.

Table 18 displays the average test-set accuracy results for this experiment. In three of

the domains (coding, lung-cancer, and promoter) BBP is as accurate, or more accurate,

than all of the other learning methods. Only two other algorithms, in two domains, produce

classifiers that are more accurate than those induced by BBP. Multi-layer networks are more

accurate in the voting and splice-junction domains, and Winnow-Conj is more accurate

in the splice-junction domain. We test the statistical significance of accuracy differences

using a paired-sample, two-tailed t-test with a 0.05 level of significance. Cases in which the

accuracy of another algorithm is less than BBP at p ≤ 0.05 are indicated in the table by the

symbol ‘∗’ next to the inferior result. There is one result in which the accuracy of BBP is

less than another algorithm (Winnow-Conj) at p ≤ 0.05. This case is indicated in the table

by the symbol ‘�’ next to the BBP result.

7.3.4 Measuring Hypothesis Complexity

The second hypothesis tested by this chapter’s experiments is that BBP learns models that

are reasonably comprehensible. As stated previously, we use syntactic complexity as a proxy

for comprehensibility. Specifically, we use two measures of hypothesis complexity. First,

for all of the learning algorithms used in the experiments, we count the number of features
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incorporated into learned hypotheses. This measure is straightforward to determine for

C4.5, which when building a decision tree, incrementally selects features to be added as

splitting tests in the tree. Similarly, the BBP algorithm incrementally incorporates features

into its hypotheses as it adds weighted connections to its hypotheses. However, for nominal

features in a BBP hypothesis, each weight corresponds to a particular value of a feature,

not to a feature itself. In counting the number of features used in a BBP hypothesis, we

consider a feature to be included if at least one of its values has a weighted connection. For

multi-layer networks, we consider all features to be incorporated into the learned model,

since all features are part of the connected structure of the networks.2 Like a multi-layer

network, a Winnow hypothesis retains weighted connections to all features. However, when

the positive weight for a given feature is the same as its negative weight in a Winnow

hypothesis, then effectively the feature is not being considered. Like the BBP algorithm,

Winnow expands nominal-valued features into a set of Boolean features, and thus each pair

of weights corresponds to a particular value of the feature. To determine the features used

in a Winnow hypothesis, we count the number of features for which at least one value has

unequal positive and negative weights. For BBP and Winnow hypotheses which involve

multiple perceptrons, we consider a feature to be used if any of the constituent perceptrons

uses the feature.

Table 19 shows the average number of features each algorithm uses for each data set.

In one domain (voting), BBP uses fewer features than all of the other algorithms. In the

other four domains, C4.5 and Relief-C4.5 use fewer features than BBP, but the multi-layer

networks and both versions of Winnow use more. Although C4.5 and Relief-C4.5 produce

simpler hypotheses than BBP in these four domains, recall that their predictive accuracy

was inferior to BBP in every domain.

The second measure of complexity considered is the number of weights used in learned

hypotheses. This measure is not applicable to C4.5 and Relief-C4.5 since the hypotheses

learned by these methods do not use weighted connections. However, it does enable a

2It would be possible to augment the neural-network training procedure with a pruning method that
trimmed extraneous weights from the network during training (e.g., Le Cun et al., 1989). Such a method
might produce networks that do not use all of the features. We do not consider this extension in the
experiments, however.
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Table 19: Hypothesis complexity (# features used) for the BBP experiments.

method coding lung promoter splice voting

BBP 171 7 30 56 8
multi-layer networks 464 56 57 60 15
C4.5 150 5 10 22 10
Relief-C4.5 115 4 7 14 10
Winnow 464 56 57 60 15
Winnow-Conj 56 57 60 15

Table 20: Hypothesis complexity (# weights used) for the BBP experiments.

method coding lung promoter splice voting

BBP 172 8 41 189 12
multi-layer networks 9,300 3,741 2,267 2,934 651
Winnow 464 308 215 718 28
Winnow-Conj 13,278 21,095 78,218 393

comparison of the complexity of the models learned by the BBP algorithm to the multi-layer

neural networks and to the Winnow hypotheses.

Obviously, the number of weights used in each hypothesis is at least as large as the

number of features used, and for most hypotheses, the number of weights is much larger.

One reason for this fact is that each nominal feature has several possible values, and learned

hypotheses often refer to several different values of the same feature. Moreover, the BBP

and Winnow hypotheses may reference many more weights than features because they can

have weights connected to conjunctive features. Similarly, although the multi-layer networks

are not given conjunctive features, they have weights which connect the input features to

hidden units, and the hidden units to output units.

Finally, recall that although cross validation is used to determine the number of boosting

stages for BBP on each training set, an upper bound of at most n stages was set, where n is

the number of weights that would be in an ordinary perceptron for the task. Thus, by design,

the BBP hypotheses can have no more weights than the ordinary Winnow hypotheses.

Table 20 reports the average number of weights used by each algorithm for each data set.

The results in this table show that, for all of the data sets considered, the BBP algorithm

produces hypotheses that are much less complex than those learned by multi-layer networks
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Table 21: Summary of BBP Hypotheses.

domain features used (%) weights used (%) conjunctive weights (#)

voting 53 40 2.4
promoter 53 18 1.2
splice-junction 93 26 43.4
lung-cancer 13 4 0.3
coding 37 35

and Winnow-Conj. The ordinary Winnow hypotheses are closer to the BBP hypotheses,

in terms of complexity, but the BBP hypotheses are still less complex for every problem

domain.

Table 21 summarizes some of the comprehensibility results for BBP and provides addi-

tional information about the hypotheses learned by the algorithm. The second column from

the left lists, for each domain, the percentage of the domain’s features that were used, on

average, in BBP hypotheses. The next column lists the percentage of the possible weights

that were used for each domain. Recall that BBP hypotheses were allowed to use up to n

weights per perceptron, where n is the number of weights that would be used in an ordinary

perceptron (or a Winnow hypothesis) for the domain. The final column lists the average

number of conjunctive weights in the BBP hypotheses.

7.3.5 Discussion

From the results of the experiments, it can be seen that the BBP algorithm is able to induce

classifiers that are accurate on a variety of interesting, real-world problems. Its predictive

accuracy in the experiments was, with one exception, comparable to (and in some cases,

better than) the other the algorithms evaluated.

The BBP algorithm is also strong in terms of comprehensibility. Unlike the multi-layer

networks and Winnow hypotheses, BBP used only a subset of features in its hypotheses. In

the voting domain, BBP even used fewer features than C4.5 and Relief-C4.5, although these

decision-tree algorithms used fewer features in the other four domains. However, BBP was

more accurate than C4.5 and Relief-C4.5 in every domain, and in three of the five domains

these differences were statistically significant. Thus, although C4.5 and Relief-C4.5 may
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have found the most comprehensible models, they did so at the expense of reduced accuracy

in several domains.

Besides incorporating fewer features into its hypotheses than the other perceptron-type

algorithms (multi-layer nets, Winnow, and Winnow-Conj), in all domains, BBP was also

superior in terms of the number of weights used. Winnow, without conjunctive features, was

the closest to BBP in this measure. However, this version of Winnow was not as accurate as

BBP in any domain, and in two domains, the differences in accuracy between Winnow and

BBP were statistically significant.

It is important to note that if we allow the BBP algorithm to add weighted connections to

all of its candidate terms, then its hypothesis space is the same as that of the Winnow-Conj

method (or ordinary Winnow for the coding task). One advantage of the BBP algorithm,

however, is that because it incrementally adds weights to its hypotheses, we can place a

limit on the acceptable complexity of a hypothesis returned by the algorithm. As stated

earlier, this restriction was in fact used in the experiments. An interesting result, however,

is that the BBP hypotheses usually incorporate significantly fewer weights than permitted.

As shown in Table 21, BBP usually used less than 40% of the possible weights. The Winnow

hypotheses, on the other hand, use nearly all of the allowable connections in their hypotheses.

The net result, we contend, is that the BBP hypotheses are much easier to understand than

those produced by Winnow. It might be possible, however, to obtain more comprehensible

Winnow hypotheses by pruning away some of the weights after training; this would be an

interesting experiment to conduct in future work. One of the appealing aspects of the BBP

algorithm in comparison to Winnow, however, is that its preference for simple hypotheses is

built into the algorithm and does not require a special post-processing procedure.

Although Table 20 uses the same basis for comparing multi-layer networks and the other

algorithms in this study, it should be emphasized that the weights in a multi-layer network are

typically much more difficult to interpret than the weights in a BBP or Winnow hypothesis.

Part of the reason that multi-layer networks are difficult to understand is that many weights

may act together to encode nonlinear, nonmonotonic relationships between each feature

and the problem classes. On the other hand, in a BBP or Winnow hypothesis that does

not use any conjunctive features, each weight encodes a simple, linear relationship between
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a feature value and an output category. Conjunctive features may complicate a BBP or

Winnow hypothesis because they describe feature interactions—and thus potential nonlinear

relationships—between inputs and outputs. However, these interactions are made explicit

in a BBP/Winnow hypothesis, unlike in a multi-layer network. Furthermore, we argue that

perceptrons with conjunctive features are nearly as comprehensible as ordinary perceptrons

if the use of conjunctive features is limited as it appears to be in BBP. The rightmost

column in Table 21 shows that, for most domains, BBP includes few conjunctive weights

in its perceptrons. The exception is the splice-junction domain, in which BBP uses 43

conjunctive weights on average. This result might explain why Winnow without conjunctive

features generalized poorly in this domain.

Finally, we discuss the issue of how the BBP algorithm compares to Trepan. In the

experiments reported in this chapter, the BBP hypotheses had comparable accuracy to the

trained multi-layer networks. Thus one might ask, why bother developing rule-extraction

algorithms when accurate and comprehensible hypotheses can be learned using a method

such as BBP? The first answer to this question is that, although it may not have been ex-

hibited in this chapter’s experiments, there are surely problem domains in which multi-layer

networks will have better predictive accuracy than the hypotheses learned by BBP. The two

algorithms have different inductive biases, and as stated in Chapter 1, no learning algorithm

has a universally superior bias (Wolpert, 1995). A related argument is that there are other

learning methods that produce hard-to-understand hypotheses. As argued elsewhere in this

thesis, Trepan is general enough that it can be used to understand a wide range of learned

models. The third argument for the utility of rule-extraction algorithms is that the BBP

algorithm is more limited in its range of applicability than are multi-layer neural networks.

The BBP algorithm currently handles only discrete-valued features, and it is not applicable

to regression or reinforcement learning tasks.

7.4 Analytical Evaluation

In addition to demonstrating good performance in practice, the BBP algorithm is interesting

in that a slightly modified version of it is able to efficiently PAC learn a fairly natural class
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of target concepts. This section provides a formal definition of the class of sparse perceptrons

and presents a proof that the (modified version of the) BBP algorithm is an efficient PAC

learning algorithm for the class of sparse perceptrons.

The key difference between the practical version of BBP presented in Section 7.2 and the

theoretical version considered here, is that the latter version continues the boosting process

until it has found a hypothesis consistent with its training set. Recall that the practical

version, on the other hand, may stop the boosting process before the induced perceptron

is completely consistent with the training set. This heuristic is employed in the practical

version for two reasons. First, it may not be possible to find a consistent hypothesis, and

second, even if a consistent hypothesis is found, it may over-fit the training data.

7.4.1 Sparse Perceptrons

We begin the formal analysis of the BBP algorithm by giving a precise definition of sparse

perceptrons. Consider the Boolean function f : {0, 1}n → {−1, +1}. Let Ck be the set of all

conjunctions over at most k of the n input features to f . For example, the Boolean function

that outputs 1 if and only if the first two features both have value 1 is in Ck for all k ≥ 2.

For all k, Ck includes the “conjunction” of zero inputs, which is taken as the identically

one function, and for k ≥ 1, Ck includes “conjunctions” of one input (i.e., individual input

features). As before, we assume that all of the functions in Ck map to {−1, +1}.
The function f is a k-perceptron if there is some integer s such that

f(x) = sign

(
s∑

i=1

ci(x)

)
(2)

where for all i, ci ∈ Ck, and the sign function is defined as before:

sign(x) =





1 if x > 0

−1 if x ≤ 0

Note that while this definition does not explicitly indicate any weights, it implicitly assumes

integer weights in that a particular ci ∈ Ck is allowed to appear more than once in the sum

defining f .

We refer to a given collection of s conjunctions ci ∈ Ck as a k-perceptron representation

of the corresponding function f , and we refer to s as the size of the representation. The
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size of a given k-perceptron function f is defined as the minimal size of any k-perceptron

representation of f . An s-sparse k-perceptron is defined to be a k-perceptron f such that

the size of f is at most s. Finally, we denote by Pn
k the set of Boolean functions over {0, 1}n

which can be represented as k-perceptrons, and we define Pk = ∪n Pn
k .

In the following section, we will also be interested in the class of Boolean functions Hr

defined as follows: a function f : {0, 1}n → {−1, +1} is in Hr if there is a linear function g

(with real-valued coefficients) defined over at most r of the n input features to f such that

sign(g(x)) = f(x) for all x ∈ {0, 1}n. In other words, Hr is the class of Boolean functions

over {0, 1}n that can be represented as the sign of a real-weighted sum of at most r features

(i.e., perceptrons with real-valued weights).

7.4.2 PAC Learning Sparse k-Perceptrons

We now show that the BBP algorithm is an efficient PAC algorithm for the class Pk using the

hypothesis class Hr. While there are already known algorithms for PAC learning the general

class of perceptrons (e.g., Blumer et al., 1989), an atypical aspect of the BBP algorithm is

that when learning target functions which are in the class of sparse perceptrons, it produces

hypotheses that are relatively sparse themselves. In particular, if the target function f is

an s-sparse k-perceptron then, with high probability, the learned hypothesis will be a real-

weighted perceptron over at most O(s2) features (ignoring logarithmic factors) drawn from

the set of conjunctions Ck. It should be noted that the proof that the BBP algorithm PAC

learns Pk is implicit in more general work by Freund (1993), although he did not identify

k-perceptrons as a class of particular interest, or present an algorithm for this class. The

analysis presented here of the sample size needed to ensure that a hypothesis has accuracy

of (1− ε) is also novel.

The first step in the proof that the BBP algorithm PAC learns the class Pkis to show

that the WeakLearn function can weakly learn Pk. Following Freund, we begin with the

following lemma (Goldmann et al., 1992).
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Lemma 1 (Goldmann Hastad Razborov) For f : {0, 1}n → {−1, +1} and H, any set

of functions with the same domain and range, if f can be represented as

f(x) = sign

(
s∑

i=1

hi(x)

)

where hi ∈ H, then for any probability distribution D over {0, 1}n, there is some hi such

that

Pr
D

[f(x) 6= hi(x)] ≤ 1

2
− 1

2s
.

If we specialize this lemma by taking H = Ck, then this implies that for any k-perceptron

function f of size s, and any probability distribution D over the input features of f , there

is some ci ∈ Ck that weakly approximates f with respect to D. Therefore, given a training

set S and distribution D that has non-zero weight only on instances in S, the weak learning

algorithm WeakLearn needs only to test each of the O(nk) possible conjunctions of at

most k features until it finds a conjunction that has ε ≤ ( 1
2
− 1

2s
) with respect to D. Any

such conjunction can be returned as the weak hypothesis. The above lemma proves that if

f is a k-perceptron then this exhaustive search will succeed at finding a weak hypothesis.

The next step in the analysis is to consider how many boosting stages are required to

find a hypothesis consistent with a training set of size m. In terms of the parameter γ of the

AdaBoost algorithm, the above result shows that the algorithm WeakLearn has γ ≥ 1/2s

when the target is an s-sparse k-perceptron. Recall that the AdaBoost algorithm, as shown

in Figure 27, runs for T = 1
2γ2 ln(m) stages. Therefore, given a training set with m examples

labeled by an s-sparse k-perceptron f , the BBP algorithm need only run for 2s2 ln(m) stages

before it will produce a classifier consistent with f over S. Because each stage adds one weak

hypothesis (conjunction) to the hypothesis, the final hypothesis will be a linear threshold

over at most 2s2 ln(m) conjunctions in Ck.

We have now shown that, given a training set of m examples from an s-sparse k-

perceptron, the BBP algorithm finds consistent hypothesis in the hypothesis class Hr, where

r = 2s2 ln(m). Often, finding a hypothesis consistent with a large enough set of examples

produced by an example oracle EX(f, D) is sufficient to guarantee PAC learnability. For ex-

ample, given a finite set of functions F , it is straightforward to show the following (Haussler,

1988).
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Lemma 2 (Haussler) Let F be a finite set of functions over a domain X. For any function

f over X, any probability distribution D over X, and any positive ε and δ, given a set S of

m examples drawn consecutively from EX(f, D), where

m ≥ 1

ε

(
ln

1

δ
+ ln |F|

)
,

then

Pr[∃h ∈ F | ∀x ∈ S f(x) = h(x) & Pr
D

[f(x) 6= h(x)] > ε] < δ,

where the outer probability is over the random choices made by EX(f, D).

In other words, given enough training data, any hypothesis h ∈ F that is completely consis-

tent on the training data with the target function f is likely to have its error be less than ε

with respect to D. Notice that the concept of “enough” training data is a sample size that

is polynomial in the parameters describing the difficulty of the learning problem.

Now let us instantiate this lemma for the hypothesis class used by the BBP algorithm,Hr.

Each function f ∈ Hr can be defined as a linear threshold over a set R of Boolean features,

where |R| ≤ r. For a given such R there are at most 2(r+1)2 distinct Boolean functions

defined by linear thresholds over R (e.g., Bruck, 1990). Since there are at most nr such

sets R:

ln |Hr| ≤ (r + 1)2 ln 2 + r ln n.

Finally, we consider how large m must be to ensure that if BBP learns a hypothesis

consistent with the training set, that the hypothesis will, with high probability, have accuracy

of (1 − ε) with respect to an arbitrary distribution D. If the training set is produced by

drawing m examples from EX(f, D), where f is an s-sparse k-perceptron and

m ≥ 1

ε

(
ln

1

δ
+ 2s2 ln((2n)k + m) + (2s2 ln m + 1)2 ln 2

)
,

then with probability at least 1 − δ the BBP algorithm produces a hypothesis that has

accuracy (1 − ε) with respect to D. The probability here is taken over the random draws

by EX(f, D). Note that m has only a logarithmic dependence on n, ignoring the small

dependence contributed by the log m terms on the right-hand side of the above inequality.

In summary, the following is an efficient PAC algorithm for Pk: calculate a sufficiently

large m, create a training set by drawing m examples from EX(f, D), and run BBP on this
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training set. The required sample size, m, is polynomial in the relevant parameters, as is

the number of stages required by the boosting algorithm.

7.5 Chapter Summary

This section presented a boosting-based algorithm for learning sparse perceptrons; that is,

perceptrons with relatively few non-zero weights. The BBP algorithm, which is based on

Freund and Schapire’s AdaBoost hypothesis-boosting method, is a constructive algorithm

that incrementally adds weighted connections to its hypothesis. The BBP algorithm was

evaluated in this chapter both theoretically and empirically. The theoretical results show

that the BBP algorithm is able to efficiently PAC learn target functions that belong to the

class of sparse perceptrons.

The empirical evaluation demonstrated that the algorithm works well in practice. In

terms of predictive accuracy, BBP was competitive with the best of the algorithms in the

study. Along the dimension of comprehensibility of learned models, BBP also compared

well with the other algorithms. By the measures used here, the only algorithms that were

potentially superior to BBP in terms of learning comprehensible hypotheses were C4.5 and

Relief-C4.5. However, for most domains these algorithms were clearly inferior to BBP in

terms of predictive accuracy.

We argue that the BBP algorithm provides an appealing combination of strengths. First,

it provides learnability guarantees for a fairly natural class of target functions. Second, it

has been shown to provide good predictive accuracy in a variety of real-world tasks. And

finally, it has been shown to produce syntactically simple hypotheses, thereby facilitating

human comprehension of what it has learned.



Chapter 8

Additional Related Work

Chapter 2 described related research in the area of rule extraction. This chapter discusses

other areas of research related to the work presented in this thesis. The first three sections

in this chapter describe approaches that are designed to help understand the hypotheses

represented by trained neural networks. The penultimate section in this chapter discusses

the topic of active learning, and the final section covers algorithms that are related to the

BBP method presented in Chapter 7.

8.1 Finite State Automata Extraction

A task closely related to rule extraction is the extraction of finite-state automata (FSA)

from recurrent neural networks. As mentioned in Chapter 1, a recurrent network has links

from a set of hidden or output units to a set of input units, and thus it is able to maintain

state information from one input instance to the next. Like a finite-state automaton, each

time a recurrent network is presented with an instance, it calculates a new state which is

a function of the previous state and the given instance. A “state” in a recurrent network

is not a predefined, discrete entity, but instead corresponds to a vector of activation values

across the units in the network that have outgoing recurrent connections – the so-called state

units. Another way to think of such a state is as a point in an s-dimensional, real-valued

space defined by the activations of the s state units.

Recurrent networks are often trained on simple grammatical tasks that involve either

153
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1

1

Figure 32: The correspondence between an FSA and a recurrent network. Depicted on the left
is a finite-state automaton that implements a simple grammar. The two shades of arcs represent the two
possible input symbols. Shown on the right is a two-dimensional, real-valued space defined by the activations
of the two hidden units in a recurrent neural network. The path traced in the space illustrates the state
changes of the hidden-unit activations as the network processes a sequence of inputs. The non-shaded regions
of the space correspond to the states of the FSA.

recognizing strings of a target language, or predicting the next symbol in given strings. As

a recurrent network processes such an input sequence, its hidden-unit activations trace a

path in the s-dimensional hidden-unit space. If similar input sequences produce similar

paths, then the continuous-state space can be closely approximated by a finite-state space in

which each state corresponds to a region, as opposed to a point, in the space. A number of

researchers have made this observation, and subsequently analyzed the behavior of trained

recurrent networks as finite-state automata (Cleeremans et al., 1989; Pollack, 1991). This

idea is illustrated in Figure 32, which shows a finite-state automaton and the two-dimensional

hidden-unit space of a recurrent network trained to accept the same strings as the FSA. The

path traced in the space illustrates the state changes of the hidden-unit activations as the

network processes a sequence of inputs. The non-shaded regions of the space correspond to

the states of the FSA.

Going a step further, several research groups have developed algorithms for extracting

finite-state automata from trained recurrent networks (Giles et al., 1992; Watrous & Kuhn,

1992; Zeng et al., 1993; Das & Mozer, 1994). The key issue in such algorithms, is deciding

how to partition the s-dimensional real-valued space into a set of discrete states. For example,

the algorithm of Giles et al. partitions each hidden unit’s activation range into q intervals of

equal width, thus dividing the s-dimensional space into qs partitions. Their method initially
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sets q = 2, but increases its value if it cannot extract an FSA that correctly describes the

network’s training set. Some FSA-extraction methods employ special training procedures

that encourage the network to form discrete states during learning (Zeng et al., 1993; Das

& Mozer, 1994). Although FSA-extraction algorithms have been able to extract accurate

finite-state automata from networks trained on simple languages, they have not yet shown

their usefulness for real-world applications.

8.2 Sensitivity and Hidden-Unit Analysis

Rule-extraction and FSA-extraction methods promote comprehensibility by translating the

hypotheses represented by trained neural networks into a different, more perspicuous lan-

guage. In contrast, there are several techniques for understanding neural-network hypotheses

that do not provide complete descriptions of learned models, but instead provide local de-

scriptions of some aspect of the neural models.

One such method that has been applied to neural networks is sensitivity analysis (Chat-

terjee & Hadi, 1988). The general idea of sensitivity analysis is to determine how the response

of a variable (e.g., an output-unit activation) changes as the value of an input variable is mod-

ified. It is simple enough to measure and plot this relationship in a one or two-dimensional

input space, but neural networks typically have high-dimensional input spaces. Thus, the key

issue that arises in applying sensitivity analysis to neural networks is deciding at what points

(i.e., instances) in a high-dimensional space to measure the variable of interest, and in what

directions to perturb these points. Goh (1993) applied sensitivity analysis to characterize

the influence of the features in neural networks trained for classification tasks. Goh describes

three sensitivity-analysis methods that involve modifying the value for each feature in each

training example while measuring the changes in output-unit activations. For example, one

method characterizes the sensitivity of an output with respect to a particular feature by

starting with a given training example, and varying the feature’s value across its allowable

range in fixed increments. For each tested value, the method records the absolute difference

of the change in the value of the output unit. Goh’s method runs this procedure on all of

the training examples, and then plots the averaged results which show the sensitivity of the
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output as a function of the feature’s value.

Pomerleau and Touretzky (1993) developed a method, called hidden unit sensitivity anal-

ysis that characterizes the role of individual hidden units in a network. Instead of describing

the response of a particular output unit in terms of input activations, their method describes

the response of the correct output unit as a function of a hidden unit’s activation. Pomerleau

and Touretzky investigated their technique using a network which takes images of roads as

input, and produces as output steering directions for an autonomous driving vehicle. Given

an image of a road, their sensitivity-analysis method systematically varies the position and

the orientation of the road in the image while measuring the hidden-unit activation for each

position-orientation pair. In order to understand the role of the hidden unit, they plot (i)

its activation and (ii) its contribution to the correct output unit as a function of the road

position-orientation. Although their network has a 960-dimensional input space (a 30× 32

pixel “retina”), they are able to display the contribution of a hidden unit in a fairly natural

and interpretable manner because their method uses only two degrees of freedom to vary an

input image.

Gorman and Sejnowski (1988) also developed an approach for analyzing individual hidden

units in a neural network. The first step in their method is to calculate, for each training

example, the vector of activation signals that is sent to a given hidden unit. Each element

in such a vector is simply the product of an input unit’s activation and the weight from the

input unit to the given hidden unit. Next, the method clusters these vectors and calculates

the centroid of each cluster. These centroids can be thought of as prototypical instances.

By displaying the prototypes and ordering them according to their resultant hidden-unit

activations, the method aims to illustrate the types of input patterns to which the hidden

unit responds. Like Pomerleau and Touretzky, Gorman and Sejnowski applied their method

in a domain – classification of sonar signals – in which it is easy to visualize instances. The

input features for an instance in this domain represent a time-slice of a sonar signal, and

thus prototypes can be graphed as one-dimensional signals.

In contrast to the two previously discussed methods, which describe individual hidden

units, several authors have investigated methods aimed at characterizing sets of hidden

units (Sanger, 1989; Hanson & Burr, 1990; Dennis & Phillips, 1991; Elman, 1991). These
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methods are similar in spirit to the FSA-extraction algorithms in that they examine the

space of hidden-unit activations, and try to identify regions in this space that are asso-

ciated with particular network predictions. Whereas FSA-extraction algorithms analyze

the s-dimensional activation space of the s state units, the methods considered here typi-

cally analyze the entire h-dimensional activation space of the h hidden units in a network.

The premise of these techniques is that, by considering the similarities of examples that

map to the same region of this space, the high-order features represented by the hidden

units will be made apparent. Unlike the methods described earlier in this section, which

analyze hidden units independently, these approaches recognize that the high-order fea-

tures learned by networks may be represented by patterns of activation across their hidden

units. The first step in these approaches is to classify the training data using the net-

work, recording the vector of hidden-unit activations for each example. The next step is

to apply a clustering method to these vectors in order to uncover structure in the patterns

of hidden-unit activations. Hanson (1990) used a hierarchical-clustering method to iden-

tify clusters, while others have used principal-components analysis (Jolliffe, 1986) (and the

related method of canonical-discriminant analysis) for this task (Dennis & Phillips, 1991;

Elman, 1991). Sanger (1989) describes a slightly different approach that uses principal com-

ponents analysis to identify patterns in hidden-unit contributions, which are the products of

hidden-unit activations and the weights to an output unit.

8.3 Visualization Methods

A number of researchers have employed scientific visualization techniques to assist in under-

standing neural networks. Scientific visualization methods use graphical attributes such as

color, size, and spatial organization to depict systems that are hard to understand because

they involve a large number of elements or numerical parameters, or because they have time-

varying behavior. Visualization techniques have been used to illustrate both the learning

process and the prediction process in neural networks. Specifically, the following aspects of

neural networks have been described using visualization methods:
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• the weights and magnitudes of a network’s connections (Hinton, 1986; Wejchert &

Tesauro, 1989; Craven & Shavlik, 1992; Pomerleau & Touretzky, 1993),

• the decision boundaries formed by units in a network (Lang & Witbrock, 1988; Munro,

1991; Pratt et al., 1991),

• unit activations and the forward propagation of activation signals through the network

(Craven & Shavlik, 1992),

• the sensitivity of hidden and output unit activations to smoothly varying inputs (Pomer-

leau & Touretzky, 1993),

• the backward propagation of error signals during learning (Craven & Shavlik, 1992),

• the trajectory of units in weight space during learning (Wejchert & Tesauro, 1989).

These visualization methods can sometimes provide insight into the learning and predic-

tion behavior of a network. They seem to be especially effective in tasks where the input to

the network is image data (e.g., Pomerleau & Touretzky, 1993). In such networks, various

functions characterizing the network, such as the response of a hidden unit, can be readily

visualized by projecting the function onto the network’s input “retina” (i.e., its input units

arranged into a planar image).

8.4 Active Learning

Another area of work related to the Trepan approach is the field of active learning. The

term active learning refers to the situation in which a learner has some control over the

training examples it receives. Trepan, for example, is an active learning algorithm in that

it selectively draws instances and makes membership queries for these instances.

Under the rubric “learning with queries,” active learning has been extensively investigated

in the computational learning theory community. Angluin (1988) provides a taxonomy of

queries, and elsewhere (Angluin, 1993) reviews learnability results for algorithms that use

queries. These results are compelling because they demonstrate that some learning problems

are efficiently learnable only if the learner is allowed to make queries. Hence, in some practical
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situations the ability to make queries should be a significant advantage. However, most of the

algorithms developed to date in this community do not address the requirements of the rule-

extraction task: specifically, learning comprehensible hypotheses in a language that applies

to a broad range of tasks As discussed in Chapter 5, however, Bshouty’s (1993) algorithm

for learning decision trees using membership queries may have some practical implications

for rule extraction.

Active learning has also been investigated in practical settings, where it potentially en-

ables a learner to induce better models with fewer training instances. Cohn et al. (1996)

provide a nice summary of the types of heuristics that have been used by practical active-

learning algorithms to select training examples. These heuristics include selecting data where

the learner:

• does not yet have any data,

• has low confidence in its model,

• expects to change its model,

• previously found data that resulted in changes to its model.

The heuristic used by Trepan is related to the first three of these: Trepan selects data in

the part of the instance space in which it is currently refining its model.

In practical settings, active learning has gained the most attention in reinforcement-

learning problems (e.g., Thrun & Moeller, 1992). Active learning is a natural aspect of rein-

forcement learning since, in these problems, the learner can influence its environment, thereby

exerting some control over the states (i.e., training examples) it experiences. Practical algo-

rithms for active learning have also been developed for regression tasks (e.g., MacKay, 1992;

Cohn et al., 1996), and classification tasks (e.g., Baum & Lang, 1991; Cohn et al., 1994).

The classification algorithms, however, are for learning in neural networks and thus they do

not produce comprehensible hypotheses like Trepan.

Catlett (1992) and others (Musick et al., 1993) have investigated an issue related to active

learning: selecting samples for decision-tree induction when there is a wealth of training data.

The primary motivation for this work is to speed up learning by processing only as much
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training data as is needed to make good decisions when inducing trees. For example, one

method developed in this line of work frames the question of when to select one splitting test

over another as a decision-theory problem (Musick et al., 1993). This method estimates how

much training data is needed to confidently decide that the information gain of one test is

greater than the information gain of other candidate tests, and uses such estimates to select

samples of appropriate size for making these decisions. Incorporating ideas such as this into

Trepan would be an interesting topic for future research.

8.5 Work Related to the BBP Algorithm

Chapter 7 presented the Boosting-Based Perceptron (BBP) algorithm which constructively

learns simple neural networks. As stated earlier, the BBP algorithm is similar to C4.5 and

other decision-tree algorithms which learn by iteratively selecting features and incorporating

them into their current hypotheses. The BBP algorithm has a much different inductive

bias, however, since its hypotheses are perceptrons instead of decision trees. BBP is also

similar to feature-selection algorithms (Almuallim & Dietterich, 1991; Kira & Rendell, 1992a;

Caruana & Freitag, 1994; John et al., 1994; Moore & Lee, 1994; Skalak, 1994; Cherkauer &

Shavlik, 1996) which attempt to find small feature subsets that are adequate for learning.

Feature-selection methods, however, are not able to form hypotheses themselves, but instead

must be used in conjunction with ordinary learning methods.

Several constructive neural-network approaches have been previously developed (Ash,

1989; Fahlman & Lebiere, 1989; Frean, 1990). Similarly, there are several algorithms that

simplify learned networks by removing weights or hidden units (Le Cun et al., 1989; Mozer

& Smolensky, 1988). Unlike BBP, however, these methods are not designed to learn com-

prehensible hypotheses, but instead are intended primarily to avoid over-fitting. Thus, the

networks produced by these methods may still embody hard-to-understand feature interac-

tions and nonlinear relationships between inputs and outputs.

The previous work most closely related to BBP is a constructive algorithm for learning

polynomial approximations (Sutton & Matheus, 1991; Sanger et al., 1992). Like BBP, Sut-

ton et al.’s algorithm incrementally builds one-layer networks. Unlike BBP, however, their
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algorithm is designed for regression problems instead of classification tasks. The terms in

their networks are real-valued input variables and products of input variables. The output

units in their networks do not perform a thresholding function, but instead output a linear

combination of the inputs. A final difference is that, unlike BBP, their algorithm is not based

on a hypothesis-boosting method.

Finally, other groups have used hypothesis-boosting methods to improve the performance

of classifiers in applied settings (Drucker et al., 1993; Drucker & Cortes, 1996; Freund &

Schapire, 1996; Quinlan, 1996). In most of these efforts, however, the “weak” learning

algorithms being boosted were fairly strong learners, such as C4.5 or multi-layer neural

networks, and therefore the hypotheses produced were quite complex. The exception to

this trend is the recent study by Freund and Schapire (1996), which used the AdaBoost

algorithm to boost a variety of weak-hypothesis types, including one-level decision trees and

conjunctive rules. Still, these hypotheses are generally not as simple as those induced by the

BBP algorithm, which is specifically designed to learn comprehensible hypotheses.

8.6 Chapter Summary

This chapter discussed three lines of research related to the work presented in this thesis:

methods designed to aid in understanding trained neural networks, algorithms for active

learning, and methods related to the BBP algorithm presented in Chapter 7.

The approaches to understanding neural-network hypotheses discussed in this chapter

include FSA-extraction, sensitivity and hidden-unit analysis, and visualization methods. The

task of extracting finite-state automata from recurrent neural networks is analogous to the

task of rule extraction from non-recurrent networks in that learned hypotheses are translated

into languages that are easier to understand. Although FSA-extraction algorithms have been

investigated in depth, they have not found successful application to real-world problems.

A variety of methods have been developed to describe how the activation of a particular

unit or set of units in a neural network responds to various types of input patterns. These

methods can provide insight into how a network represents its solution, or how sensitive its

predictions are to certain features. Unlike rule-extraction and FSA-extraction algorithms,
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however, these methods do not provide complete descriptions of learned models. They

provide only local descriptions of some aspect of a trained network.

Active learning refers to the situation in which a learner is able to select its own training

examples. Active learning has been investigated in both theoretical and practical contexts.

Unlike Trepan, however, the existing suite of active-learning algorithms do not address the

unique requirements of the rule-extraction task: learning comprehensible hypotheses in a

language that applies to a broad range of tasks.

There is a broad set of approaches related to the BBP algorithm, including methods for

feature selection, constructive neural-network learning, and practical hypothesis-boosting.

The BBP algorithm has a valuable niche among these techniques, however, in that produces

comprehensible hypotheses, has formal learnability guarantees for an interesting class of

concepts, and has demonstrated good predictive performance in a variety of classification

tasks.



Chapter 9

Conclusions

Neural networks are one of the most widely used approaches to inductive learning. They

have been applied to classification, regression, and reinforcement learning tasks, and they

have demonstrated good predictive performance in a wide variety of interesting problem do-

mains. They suffer from a significant limitation, however, in that their learned hypotheses

are usually incomprehensible. To address this limitation, a number of research groups have

developed techniques for rule extraction. Rule extraction involves approximating the func-

tion represented by a trained network in a language, such as symbolic inference rules, that

better facilitates comprehensibility. The primary focus of this thesis has been the develop-

ment of a rule-extraction method, called Trepan, that overcomes the significant limitations

of previous algorithms.

A secondary focus of this thesis has been the development of an algorithm, called BBP,

that constructively induces simple neural networks. The motivation underlying this al-

gorithm is similar to the motivation behind Trepan: to learn comprehensible models in

problem domains in which neural networks have an especially appropriate inductive bias.

In this concluding chapter, I discuss the contributions and limitations of the research

presented in this thesis, and propose several future research tasks aimed at addressing the

limitations.

163
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9.1 Contributions

This thesis has made several contributions to the state of the art in learning comprehensible

models via neural networks. The following sections discuss these contributions in some detail.

A New Approach to the Rule-Extraction Task

One significant contribution of this thesis is a novel approach to the task of rule extraction.

The approach pioneered in this research is to view the rule-extraction problem as an inductive

learning task. A significant advantage of this approach is that it is widely applicable. Unlike

many rule-extraction algorithms, which require special network architectures or training

methods, the learning-based approach to rule extraction naturally extends to a broad class

of learned models. A second significant advantage of this approach is that it is scalable to

large networks and to problem domains with large feature spaces.

The Trepan Algorithm

Another major contribution of the thesis is the Trepan algorithm, which is an instantiation

of the learning-based approach to rule extraction described above. Given a learned model,

such as a trained neural network, Trepan induces a decision tree that describes the func-

tion represented by the model. Since Trepan interacts with a given model only through

membership queries, it can be applied to a wide range of hard-to-understand models. More-

over, because Trepan represents its hypotheses as decision trees, and grows its trees in a

best-first manner, it offers the user a fine level of control over the complexity of extracted

trees. Trepan is also scalable to large networks and problem domains: the computational

complexity of expanding a node in Trepan is polynomial in the number of features in the

domain, and in the sample size used (i.e., the number of instances used to select tests and

determine class labels at tree nodes).
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Extensive Empirical Evaluation of a Rule-Extraction Method

In the experiments reported in Chapter 4, I applied Trepan to neural networks in eight

problem domains. These experiments were designed to evaluate Trepan along the dimen-

sions of comprehensibility, fidelity, generality, and scalability.

The experiments demonstrated the generality and scalability of Trepan by using the

algorithm to extract decision trees in a wide variety of problem domains, including classifi-

cation, regression, and reinforcement-learning tasks. These domains involved a wide range

of feature types, network architectures, network sizes, and training-set sizes.

The fidelity of the trees extracted by Trepan was measured by comparing the predictions

made by each tree to its counterpart network. In all of the domains, the extracted trees

exhibited a high level of fidelity to their corresponding networks.

The experiments evaluated the comprehensibility of extracted trees by measuring their

syntactic complexity. In the supervised-learning domains, the trees extracted by Trepan

were compared to trees induced directly from the training data by two conventional decision-

tree algorithms. In general, the trees extracted by Trepan were of comparable complexity

to the trees learned by the ordinary decision-tree methods, and in some cases they were

significantly less complex. Additionally, the Trepan trees had higher levels of predictive

accuracy than their counterparts induced directly from the training data by the ordinary

decision-tree algorithms.

This is the most extensive empirical evaluation of a rule-extraction method reported to

date. Importantly, in three of the problem domains (telephone loop diagnosis, exchange-rate

prediction, and elevator scheduling) the networks were not trained solely for the sake of

testing a rule-extraction method, and in the two latter domains, the networks were trained

by others without any forethought of later applying a rule-extraction method to them. To

the best of my knowledge, this is the first case of a rule-extraction method being applied to

independently developed neural networks.
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Application of a Rule-Extraction Method to Ensembles

Although the historical context of this thesis is in the task of extracting rules from neural

networks, the Trepan algorithm is general enough that it can be applied to nearly any

learned model that uses a feature-value input representation. In fact, in one of the classi-

fication domains considered in Chapter 4, Trepan was used to extract decision trees from

ensembles of neural networks. This is the first case of a rule-extraction method being applied

to a learned model that is not simply an individual neural network, and it is one of the few

cases of a learning method being used to induce a simple description of a more complicated

model.

The BBP Algorithm

A secondary focus of this thesis was the development of an algorithm that learns simple,

comprehensible neural networks. The Boosting-Based Perceptron (BBP) learning algorithm,

which is based on a hypothesis-boosting method, learns simple networks by constructively

adding weighted connections to a perceptron over individual features and high-order features.

The BBP algorithm provides an appealing combination of strengths. First, it provides

formal learnability guarantees for a fairly natural class of target functions. Specifically, it is

able to PAC-learn the class of sparse perceptrons. Second, it has demonstrated good predic-

tive accuracy in a variety of problem domains. Along this dimension, BBP was competitive

with the best of the algorithms in the empirical evaluation presented in Chapter 7. And

finally, it has been shown to produce syntactically simple hypothesis, thereby facilitating

human comprehension of what it has learned.

Enhancements to the ID2-of-3 Algorithm

A minor contribution of this thesis is that an improved version of the ID2-of-3 algorithm

(Murphy & Pazzani, 1991) was developed. ID2-of-3 is a decision-tree induction method

that uses m-of-n tests at internal nodes in the trees it learns. In course of investigating

Trepan, I developed a version of ID2-of-3 that incorporates five enhancements not included

in the original algorithm: the application of a χ2 test, literal pruning, and a beam search
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when constructing m-of-n tests, the use of C4.5’s pruning method (Quinlan, 1993) after

tree induction, and the generalization of m-of-n tests to real-valued features. The first four

enhancements were empirically evaluated in Chapter 4 and found to be of value in improving

the concision and predictive accuracy of induced trees. The fifth capability clearly enhances

the applicability of the algorithm.

A Fast Wrapper-Based Method for Feature Selection

Another minor contribution of this thesis is a fast wrapper-based method for feature selection.

Feature selection methods, used in concert with inductive learning algorithms, are often able

to improve the predictive accuracy of learned models. Broadly speaking, there are two types

of feature-selection algorithms: wrapper methods and filter methods. Whereas wrapper

methods exploit the inductive bias of the learning method when selecting features, they

often require a large, expensive search. Filter methods, on the other hand, are often fast but

do not take advantage of the learning method’s inductive bias when selecting feature subsets.

In Chapter 7, I presented a hybrid filter-wrapper method based on the Relief algorithm (Kira

& Rendell, 1992b). Relief is a filter method that determines a total ordering over the domain

features. My method employs a wrapper procedure to evaluate the possible subsets defined

by this ordering. The method is especially fast because it does not consider every allowable

subset, but instead uses a golden section search to quickly find a good one.

9.2 Limitations of Trepan and Future Work

The primary limitations of Trepan are threefold: (i) it cannot describe the real-valued

predictions of models trained to perform regression tasks; (ii) it sometimes fails to find trees

that are concise yet exhibit a high level of fidelity to their target models; (iii) it does not

have strong theoretical guarantees regarding the amount of computational effort required to

extract a tree with a specified level of fidelity. The proposed research tasks described below

are designed to address these limitations.
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Regression Trees

The rule-extraction work in this thesis has focused on understanding learned models in clas-

sification domains. Although Chapter 4 presented experiments illustrating that Trepan can

be profitably applied in regression and reinforcement-learning domains, Trepan’s approach

to these problems was to represent the networks’ hypotheses using decision (i.e., classifica-

tion) trees. For some regression tasks, however, it would be desirable to have the extracted

model represent the actual regression surface of the network. One way to do this would be

to extend Trepan so that it can learn regression trees in addition to classification trees.

A regression tree is a tree-structured model like a decision tree, except that its leaves are

characterized by real-valued functions as opposed to predicted classes. The CART algo-

rithm (Breiman et al., 1984), for example, learns regression trees in which a linear function

is associated with each leaf.

Beyond Trees

The general approach underlying the Trepan algorithm is to view rule extraction as a learn-

ing task. As I have argued, this approach provides a very general rule-extraction method that

scales well to large problems. This thesis investigated in detail the Trepan algorithm, which

is a particular instantiation of this approach designed to extract decision trees. Trepan,

like all other learning algorithms, has a particular inductive bias, and this bias might not

be well suited to expressing some concepts. Therefore, a natural extension of the approach

championed in this thesis is to develop extraction algorithms, similar in spirit to Trepan,

which use languages other than decision trees to represent their hypotheses. The motivation

here is to develop a suite of complementary extraction algorithms, each of which is well

suited to a particular class of problems. The key research tasks in this endeavor will be

to identify suitable hypothesis languages (which, importantly, promote comprehensibility)

and to adapt learning algorithms for such languages to the special requirements of the rule-

extraction task. One hypothesis representation that would be a good candidate to consider

is the language of decision lists (Rivest, 1987). Algorithms for inducing decision lists are
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interesting in that they employ a different type of learning strategy, and hence have a dif-

ferent inductive bias, than decision-tree learning methods. Whereas decision-tree learning

methods use a divide-and-conquer approach, decision-list algorithms employ a covering (i.e.,

separate-and-conquer) strategy.

Exploiting Other Sources of Inductive Bias

Often performance on a learning task can be improved by changing the inductive bias of the

algorithm in order to exploit available knowledge about the problem domain. The Trepan

algorithm has a fairly weak inductive bias in that it considers a rich hypothesis space and

uses training examples and membership queries as its only source of information about the

target concept. An interesting line of inquiry for future research would be to investigate what

sources of domain-specific bias can be exploited in order to improve the solutions produced

by Trepan.

Broadly, there are two types of information that Trepan could use to guide its inductive

process: background knowledge and model knowledge. I use the term model knowledge to

refer to information that can be acquired by inspecting the learned model that Trepan

is trying to describe. For example, the given model might be used to suggest additional,

higher-level features that Trepan could use in its description of the model. A number of

studies in the conventional learning setting have shown that the predictive performance of

a learner can often be improved by constructing new features (e.g., Matheus, 1990). Such

features might be discovered either by directly inspecting the structure of the model (i.e., the

parameters and topology of a neural network), or by using membership queries to uncover

feature interactions. For example, membership queries could be used to determine if a

network’s predictions were statistically dependent on particular feature expressions.

A related issue is how best to apply Trepan to knowledge-based neural networks (Towell

& Shavlik, 1994). Recall that a knowledge-based network has its topology and initial weights

specified by a formal specification of available background knowledge (i.e., a domain theory).

Trepan currently treats a given model as a black box, interacting with it only via member-

ship queries. In the case of a trained knowledge-based neural network, however, much of the

network’s structure may directly correspond to meaningful symbolic rules. In such cases,
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a rule-extraction algorithm might find better solutions using a local approach of extracting

rules to describe the behavior of specific units in the network. This was the approach taken

by Towell and Shavlik (1993) in their work on extracting rules from knowledge-based net-

works. In many cases, however, much of the structure of knowledge-based networks after

training is as opaque as ordinary networks (Opitz, 1995), and thus a hybrid local-global

approach might be most appropriate.

Domain-Specific Instance Models

A key aspect of Trepan is that it constructs models of the underlying data distribution in

order to generate instances for membership queries. The models used in the experiments

reported in the thesis were simple and domain independent. Although this approach works

well for many tasks, in some problem domains there is evidence that such simple models

do not adequately represent the underlying distribution (e.g., the telephone domain con-

sidered in Chapter 4). I hypothesize that, in some domains, Trepan could produce better

hypotheses by exploiting domain knowledge to construct more accurate models of the data

distribution. For example, in the telephone domain there are several known dependencies

among features that are not adequately captured by Trepan’s instance models. Such in-

formation about feature dependencies could be leveraged by using a Bayesian network, for

example, as the instance model. The general research topic I advocate here is to explore

the utility of more sophisticated instance models, and to extend the Trepan algorithm to

handle such models. For example, to make queries to a Bayesian-network instance model

Trepan would have to be integrated with an algorithm for inference in Bayesian networks

(Pearl, 1988) to ensure that it sampled properly from the distribution.

Better Theoretical Guarantees

Chapter 5 argued that the scalability of rule-extraction methods, and Trepan in particular,

should be analyzed in the context of formal models of learning. Such frameworks can be

used to determine how much computational effort is required to extract a hypothesis that

has a specified level of fidelity to its target model. As discussed in Chapter 5, it is still an

open research issue as to which model of learnability provides the most appropriate context
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for evaluating rule-extraction algorithms such as Trepan. Moreover, another open issue is

under what minimally restrictive set of assumptions can Trepan, or some suitably-modified

version of the algorithm, be shown to be efficiently learnable. In addition to establishing

learnability results for algorithms such as Trepan, another goal of this line of inquiry is to

use insight gained from such analyses to improve rule-extraction algorithms, as has happened

with a recent analysis of decision-tree induction algorithms (Kearns & Mansour, 1996).

Simplification of Extracted Models

Often the comprehensibility of a tree extracted by Trepan can be improved by a few truth-

preserving modifications. One area for future research is to develop an algorithm that auto-

matically simplifies extracted trees by performing such operations. One approach to this task

would be to frame it as a heuristic search problem in which operators are used to transform

given trees, and an evaluation function guides the transformations by measuring the syn-

tactic complexity of resulting trees. Such a method might include operators for reordering

tests in trees, expanding out m-of-n expressions, or even converting trees into rules. C4.5’s

rule-generation algorithm addresses this task to some extent. However, C4.5’s method is

not truth-preserving, and its task is simpler because C4.5 trees do not use m-of-n tests.

9.3 Limitations of BBP and Future Work

The BBP algorithm presented in Chapter 7 has several limitations that I plan to address in

future work. Perhaps foremost among these limitations is that, to include conjunctive terms

in its hypotheses, BBP exhaustively searches the set of conjunctions of up to k features.

This approach does not scale well in the size of conjunctions considered, since learning time

depends exponentially on k. I plan to investigate modifications to the algorithm that would

enable a more efficient exploration of higher-order terms. One approach I plan to investigate

is to use a heuristic-search strategy – like the one used to build m-of-n tests in Trepan– to

construct higher-order terms on the fly.

A second significant limitation of the BBP algorithm is that it currently handles only

discrete-valued features. An important task for future work is to generalize the algorithm
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to be applicable to problems with real-valued features. The AdaBoost algorithm (Freund

& Schapire, 1995) can be applied to domains with real-valued features, so the task would

involve generalizing the notion of high-ordered functions over the inputs, and the notion of

correlation of a hypothesis with the target function.

Another limitation of BBP, in comparison to Winnow (Littlestone, 1989), is that it is

a batch algorithm (i.e., it looks at all of its training data before updating its hypothesis).

Although the capability was not exploited in the experiments, one of the appealing aspects

of Winnow is that it is well suited for tasks that involve on-line learning. Thus, an interesting

task for future research would be to modify BBP for the on-line setting as well.

9.4 Final Remarks

Although the idea of rule extraction has been around for a number of years, it is receiving

increasing attention from researchers in machine learning, and from specialists applying neu-

ral networks and similarly opaque models in a wide variety of application domains. With

the rapid proliferation of data-mining projects and fielded learning systems, the comprehen-

sibility of learned models is increasingly a primary concern in the application of inductive

methods. I believe that the ideas presented in this thesis have demonstrated significant and

measurable advancement of the state of the art in gaining comprehensible models via neural-

network learning. There are still many difficult, open research issues in the field, however,

and I hope that this work will help point the way to solutions for many of them.



Appendix A

Representative Trees Extracted by

Trepan

This appendix depicts representative trees extracted by Trepan in seven of the eight do-

mains studied in this thesis. A tree for the telephone problem is not shown because the

domain is proprietary. In cases where multiple trees were extracted for a given domain, I

show trees that are typical, in terms of their syntactic complexity, of the trees extracted in

the reported experiments.
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A.1 The Coding Domain

The features in the coding domain (Craven & Shavlik, 1993b) represent the 64 codons

(three-letter words) that can be formed from the DNA bases: {a, c, g, t}. Each Boolean

feature indicates the presence or absence of a given codon “in-frame” in the sequence being

classified. In the figure, negated features are preceded by a minus sign. The class labels

indicate whether a given, fixed-length sequence is predicted to encode a protein or not.

     11 of {-ccc, -gga, tat, -tca, gag, -cgg, -tag,
                 -ata, -agg, -cga, -aga, -taa, -tga}

     14 of {-tta, cct, -tct, cac, -act, -cgt, ggg,
                 -gtg, -atc, cgc, ttg, tcg, -atg, -ggt,
                 tgt, -gac, cat, -gat, ctt, aca, ttt,
                 -aaa, agt, tgc, -ctg, cca, -att, -gaa}

T

noncoding

F

noncoding coding

Figure 33: A representative tree for the coding domain.
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A.2 The Heart Domain

The 13 features in the heart domain (Detrano et al., 1989) represent measured descriptions

of the patient under consideration. The table below lists the abbreviations used in the figure,

and provides a lengthier description of each feature. The possible values for each feature are

also listed. The class labels indicate whether or not a given patient is diagnosed as having

heart disease.

abbreviation description

ca number of major vessels colored by fluoroscopy
(0, 1, 2, 3)

cp chest pain type (typical angina,

atypical angina, non anginal, asymptomatic)

exang exercise-induced angina (yes, no)

fbs fasting blood sugar > 120mg/dl (yes, no)

restecg resting electrocardiographic results (normal,
wave abnormality, hypertrophy)

sex male or female

slope slope of the peak exercise ST segment (upsloping,
flat, downsloping)

thal exercise test (normal, fixed defect,

reversible defect)
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   4 of {cp=typical_angina, cp=non_anginal, slope=downsloping,
            slope=upsloping, exang=false, sex=female, fbs=true, 
            restecg=normal, ca=0, thal=normal}

okay

T

thal = normal

F

ca = 0 disease

restecg = hypertrophy disease

slope = upsloping okay

okay exang = true

cp = asymptomatic okay

disease okay

Figure 34: A representative tree for the heart domain.
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A.3 The NETtalk Domain

The seven features in the NETtalk domain (Sejnowski & Rosenberg, 1987) represent letters

in a seven-letter window of English text. The features are named p1, p2, p3, p4, p5,

p6 and p7, indicating their position in the window. Each feature can either take on one of

the 26 letters in the English alphabet, or it can have the value dash indicating the absence

of a letter in the given position. The class labels indicate the stress assigned to the letter

in position p4 (i.e., the middle letter). Consonants are generally assigned a stress of either

left or right, indicating whether the principal vowel in the syllable is to the left or right of

the consonant. Vowels are generally assigned a stress of pri, sec, or none, denoting whether

the vowel receives primary, secondary, or no stress, respectively.
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1 of {p3 in {a, e, i, o}, p5=dash}

p4 = y

T

p4 in {a, e, i, o, u}

F

p5 = dash p6 = dash

left none left 1 of {p2=b, p1=e, p7=i, p2=dash}

p4 = a left

none p4 = u

left p4 = o

none p4 = i

left p7 = i

right p5 = a

right left

1 of {p2=dash, p1=dash} p3 = u

p3 = dash p6 in {a, g, n, dash}

1 of {p6 in {c, d, l, m, t}, p7 in {o, n, dash}} pri

pri none

none p3 = u

left p2 = s

pri none

left p4 = y

pri 2 of {p2 in {a, i, dash}, p6 != q}

right p5 = y

right p6 = dash

p3 = dash right

right left

F
igu

re
35:

A
re

p
re

se
n
ta

tiv
e

tre
e

fo
r

th
e
N
E
T
t
a
l
k

d
o
m

a
in

.
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A.4 The Promoter Domain

The 57 features in the promoter domain (Towell et al., 1990) represent the DNA bases in a

57-base long sequence. Each feature is named pX, where X ranges from -50 to +7 (skipping

0) and indicates the position of the feature in the sequence. The value of each feature

indicates the base that occurs at that position. The allowable values are: { a, c, g, t}.
The class labels indicate whether a given sequence is predicted to be a promoter or not.

   4 of {p-14=T, p-10=T, p-33=A, p-12=A, p-12=T,
            p-8=T, p-31=A, p-10=A, p-36=T, p-35=T}

p-35 = T

T

nonpromoter

F

p-36 = T

   4 of {p-44=C, p-44=G, p-47=G, p-49=G, p-32=G,
            p-30=A, p-13=C, p-17=G, p-1=G, p3=G,
            p-34=T, p-34=A, p2=G, p-13=G, p-45=G,
            p-21=G, p-11=G}

promoter

   5 of {p-44=A, p3=A, p-45=A, p-21=A, p-42=T,
            p-7=A, p-17=A, p-11=A, p-11=T, p-46=T,
            p-28=T, p-13=T, p-21=T, p-34=G, p-49=T,
            p-40=A, p-7=T, p-32=C}

promoter p-11 = G

promoter p-21 = G

p-8 = T promoter

promoter nonpromoter

p-36 = T promoter

p-11 = G nonpromoter

promoter p-10 = A

promoter
   4 of {p-40=T, p-39=C, p-3=T, p-25=C, p-15=A,
            p-28=T, p-2=T, p-48=T, p-15=G, p-20=T,
            p-42=T, p-7=T, p-50=T, p-40=A, p-23=C}

promoter nonpromoter

Figure 36: A representative tree for the promoter domain.
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A.5 The Voting Domain

The features in the voting domain (Schlimmer & Fisher, 1986) represent votes made by

members of the U. S. House of Representatives in 1984. The value of each feature indicates

whether a given representative voted yes, no or did not vote. The table below lists the

abbreviations used in the figure, and provides a lengthier description of each feature. The

class labels indicate whether a representative is predicted to be a member of the Democratic

or Republican party.

abbreviation description

budget adoption of the budget resolution

contras aid to Nicaraguan Contras

crime crime

education education spending

el salvador El Salvador aid

exports duty free exports

immigration immigration

mx missile MX missile

synfuels Synfuels corporation cutback

religious religious groups in schools

satellite anti-satellite test ban



181

     3 of {exports=yes, mx_missile=yes,
               el_salvador=no, education=no,
               synfuels=yes, budget=yes}

democrat

T

synfuels = yes

F

education = yes budget = yes

budget = yes democrat

democrat republican

education = yes republican

mx_missile = yes
     3 of {religious=yes, crime=no,
               contras=no, satellite=no,
               immigration=no}

republican exports = yes

republican el_salvador = yes

republican democrat

democrat republican

Figure 37: A representative tree for the voting domain.
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A.6 The Exchange-Rate Domain

The following features from the exchange-rate domain (Weigend et al., 1995) are incorpo-

rated into the depicted tree. There are sets of features in this domain that involve multiple

functions computed on the same underlying indicator; these features are indicated by sub-

scripts in the table and the tree. For example, Dem USD ex[3] and Dem USD ex[8] represent

different functions of the Mark-Dollar exchange rate.

abbreviation description

Dem future[5] A function of Deutsche Mark futures.

Dem USD ex[3]

Dem USD ex[8]

Functions of the Mark-Dollar exchange rate.

interest rate[1] A comparison of the Mark-Dollar exchange rate to the
German interest rate.

ROI[13] A comparison of the return on investment (ROI) of in-
vesting Marks in the U.S. stock market versus investing
Marks in the French stock market.

vs Dem future[2]

vs Dem future[3]

Measures of the Mark-Dollar exchange rate versus Mark
futures.

vs SFr future A measure of the Swiss Franc-Dollar exchange rate versus
Swiss Franc futures.

vs Yen future A measure of the Yen-Dollar exchange rate versus Yen
futures.
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   5 of {ROI[13]  >  1.07,
            vs_Yen_future  <  0.39,
            interest_rate[1] = false,
            vs_Dem_future[2]  >  0.17,
            vs_Dem_future[3]  <  0.17,
            vs_SFr_future  <  0.39,
            Dem_USD_ex[8]  <  -1.02,
            Dem_future[5]  >  -1.38,
            Dem_USD_ex[3]  <  -0.10,
            vs_SFr_future  <  0.16}

vs_Dem_future[2]  <  -0.32

T

vs_SFr_future  <  0.06

F

vs_SFr_future  <  -0.21 up

up down

Dem_future[5]  <  0.37 down

down up

Figure 38: A representative tree for the exchange-rate domain.
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A.7 The Elevator-Control Domain

The following features from the elevator-control domain (Crites & Barto, 1996) are in-

corporated into the depicted tree. The class labels indicate whether the elevator car should

continue in its current direction or stop at the next floor.

abbreviation description

footprint X These features correspond to the ten floors where the
other elevator cars may be located. Each car has a “foot-
print” that depends on its direction and speed. For exam-
ple, the footprint of a stopped car is localized to one floor,
whereas the footprint of a moving car is spread across the
floors it is approaching. The feature footprint X rep-
resents the cumulative footprints of the other cars for
floor X.

floorX pushed time Time elapsed since the hall button at floor X was pushed.

highest queue Is the elevator at the highest floor with a waiting
passenger?

location direction Describes the position and the direction of the elevator.
For example 2u indicates that the elevator is headed for
the second floor going up.
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     1 of {location_direction in {2u, 3u, 4u, 5u, 6u, 7u},
               footprint_10 > 0.15, highest_queue=true}

continue

T

     1 of {footprint_2 > 0.59, floor9_pushed_time > 0.21,
               floor2_pushed_time > 0.171, footprint_9 < 0.07}

F

location_direction = 8u continue

continue location_direction = 9u

continue stop

Figure 39: A representative tree for the elevator-control domain.
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