
HTCondor Architecture and
Administration Basics

Todd Tannenbaum

Center for High Throughput Computing

› Jobs

› Machines

Two Big HTCondor Abstractions

3

execute

execute

execute

ClassAds: The lingua franca of
HTCondor

14

ClassAds is a language for objects (jobs and
machines) to
Express attributes about themselves
Express what they require/desire in a “match”

(similar to personal classified ads)
Structure : Set of attribute name/value pairs,
where the value can be a literal or an
expression. Semi-structured, no fixed
schema.

What are ClassAds?

15

16

Example

 Pet Ad
 Type = “Dog”
 Requirements =
 DogLover =?= True
 Color = “Brown”
 Price = 75
 Sex = "Male"
 AgeWeeks = 8
 Breed = "Saint Bernard"
 Size = "Very Large"
 Weight = 27

 Buyer Ad
 AcctBalance = 100
 DogLover = True
 Requirements =
 (Type == “Dog”) &&
 (TARGET.Price <=
 MY.AcctBalance) &&
 (Size == "Large" ||
 Size == "Very Large")
 Rank =
 100* (Breed == "Saint

Bernard") - Price
 . . .

› Literals
Strings (“RedHat6”), integers, floats, boolean

(true/false), …
› Expressions
Similar look to C/C++ or Java : operators, references,

functions
References: to other attributes in the same ad, or

attributes in an ad that is a candidate for a match
Operators: +, -, *, /, <, <=,>, >=, ==, !=, &&, and || all

work as expected
Built-in Functions: if/then/else, string manipulation,

regular expression pattern matching, list operations,
dates, randomization, math (ceil, floor, quantize,…),
time functions, eval, …

ClassAd Values

17 17

Four-valued logic
› ClassAd Boolean expressions can return four values:
 True
 False
 Undefined (a reference can’t be found)
 Error (Can’t be evaluated)

› Undefined enables explicit policy statements in the
absence of data (common across administrative
domains)

› Special meta-equals (=?=) and meta-not-equals (=!=)
will never return Undefined

[
 HasBeer = True
 GoodPub1 = HasBeer == True
 GoodPub2 = HasBeer =?= True
]

[
 GoodPub1 = HasBeer == True
 GoodPub2 = HasBeer =?= True
]

› HTCondor has many types of ClassAds
A "Job Ad" represents a job to Condor
A "Machine Ad" represents a computing

resource
Others types of ads represent other instances of

other services (daemons), users, accounting
records.

ClassAd Types

19

› Two ClassAds can be matched via special
attributes: Requirements and Rank

› Two ads match if both their Requirements
expressions evaluate to True

› Rank evaluates to a float where higher is
preferred; specifies the which match is desired if
several ads meet the Requirements.

› Scoping of attribute references when matching
• MY.name – Value for attribute “name” in local ClassAd
• TARGET.name – Value for attribute “name” in match candidate

ClassAd
• Name – Looks for “name” in the local ClassAd, then the

candidate ClassAd

The Magic of Matchmaking

20

21

Example

 Pet Ad
 Type = “Dog”
 Requirements =
 DogLover =?= True
 Color = “Brown”
 Price = 75
 Sex = "Male"
 AgeWeeks = 8
 Breed = "Saint Bernard"
 Size = "Very Large"
 Weight = 27

 Buyer Ad
 AcctBalance = 100
 DogLover = True
 Requirements =
 (Type == “Dog”) &&
 (TARGET.Price <=
 MY.AcctBalance) &&
 (Size == "Large" ||
 Size == "Very Large")
 Rank =
 100* (Breed == "Saint

Bernard") - Price
 . . .

Daemons &
Job Startup

“LUNAR Launch” by Steve Jurvertson (“jurvetson”) © 2006
 Licensed under the Creative Commons Attribution 2.0 license.
 http://www.flickr.com/photos/jurvetson/114406979/
 http://www.webcitation.org/5XIfTl6tX

› Every condor machine needs a master

› Like “systemd”, or “init”

› Starts daemons, restarts crashed daemons
› Tunes machine for condor

The condor_master

30

condor_master: runs on all machine, always
 plus a condor_procd, condor_shared_port
condor_schedd: runs on submit machine
 condor_shadow: one per job
condor_startd: runs on execute machine
 condor_starter: one per job
condor_negotiator/condor_collector

Quick Review of Daemons

31

Process View: Submit

32

condor_master
 (pid: 1740)

condor_schedd

condor_shadow condor_shadow condor_shadow

“Condor Kernel”

“Condor Userspace”

fork/exec

fork/exec

condor_procd

condor_q condor_submit “Tools”

Process View: Execute

33

condor_master
 (pid: 1740)

condor_startd

condor_starter condor_starter condor_starter

“Condor Kernel”

“Condor Userspace”

fork/exec condor_procd

condor_status -direct “Tools”

Job Job Job

Process View: Central Manager

34

condor_master
 (pid: 1740)

condor_collector

“Condor Kernel”

fork/exec
condor_procd

condor_userprio
“Tools”

condor_negotiator

35

Claiming Protocol

35

Execute Machine Submit Machine

Submit

Schedd Startd

Central Manager

Collector Negotiator

Q

J

S

Q

S

J

J S

J J S S CLAIM

36

Claim Activation

36

Execute Machine Submit Machine

Schedd Startd

Central Manager

Collector Negotiator

CLAIMED

Job

Shadow

Activate
Claim

Starter

37

Repeat until Claim released

37

Execute Machine Submit Machine

Schedd Startd

Central Manager

Collector Negotiator

CLAIMED

Job

Shadow

Activate
Claim

Starter

38

Repeat until Claim released

38

Execute Machine Submit Machine

Schedd Startd

Central Manager

Collector Negotiator

CLAIMED

Job

Shadow

Activate
Claim

Starter

› When relinquished by one of the following
lease on the claim is not renewed

• Why? Machine powered off, disappeared, etc
schedd

• Why? Out of jobs, shutting down, schedd didn’t “like” the
machine, etc

startd
• Why? Policy re claim lifetime, prefers a different match

(via Rank), non-dedicated desktop, etc
negotiator

• Why? User priority inversion policy
explicitly via a command-line tool

• E.g. condor_vacate

When is claim released?

39

› Machines (startds) or submitters (schedds) can
dynamically appear and disappear
A key for expanding a pool into clouds or grids

› Scheduling policy can be very flexible (custom
attributes) and very distributed

› Central manager just makes a match, then gets
out of the way
CM not consulted at job boundaries, only when moving

a slot from one user to another
› Lots of network arrows on previous slides
Reflects the P2P nature of HTCondor

Some items to notice

40

41

Layout of a Personal Condor
Pool

Central Manager

master

collector

negotiator
schedd

startd

= ClassAd
 Communication
 Pathway

= Process Spawned

42

Layout of a General Condor Pool
Central Manager

master

collector

negotiator
schedd

startd

= ClassAd
 Communication
 Pathway

= Process Spawned

Submit-Only
master
schedd

Execute-Only
master

startd

Regular Node

schedd
startd

master
Regular Node

schedd
startd

master

Execute-Only
master

startd

43

Layout of a General Condor Pool
Central Manager

master

collector

negotiator

= ClassAd
 Communication
 Pathway

= Process Spawned

Submit-Only
master
schedd

Execute-Only
master

startd

Regular Node

schedd
startd

master
Regular Node

schedd
startd

master

Execute-Only
master

startd

Policy

› “Don't even think
about it” by Kat

› Policy Expressions allow jobs and
machines to restrict access, handle errors
and retries, perform job steering, set limits,
when/where jobs can start, etc.

Policy Expressions

45

› Lets assume a pool with only one single
user (me!).
no user/group scheduling concerns, we’ll get to

that later…

Assume a simple setup

46

› Job submit file can specify Requirements
and Rank expressions to express
constraints and preferences on a match

› Another set of policy expressions control
job status

We learned earlier…

47

Requirements = OpSysAndVer==“RedHat6”
Rank = kflops
Executable = matlab
queue

› User can supply job policy expressions in
the job submit file. See condor_submit man
page.

› These expressions can reference any job
ad attribute.

 on_exit_remove = <expression>
 on_exit_hold = <expression>
 periodic_remove = <expression>
 periodic_hold = <expression>
 periodic_release = <expression>

Job Status Policy Expressions

48

Job Policy Expressions
●Do not remove if exits with a signal:

on_exit_remove = ExitBySignal == False

●Place on hold if exits with nonzero
status or ran for less than an hour:
on_exit_hold =
 (ExitCode =!= 0) ||
 ((time() - JobStartDate) < 3600)

●Place on hold if job has spent more
than 50% of its time suspended:
periodic_hold =
 (CumulativeSuspensionTime >
 (RemoteWallClockTime / 2.0))

50

› Admins can also provide supply periodic job
policy expressions in the condor_config file.

› These expressions impact all jobs submitted
to a specific schedd.

 system_periodic_remove = <expression>
 system_periodic_hold = <expression>
 system_periodic_release = <expression>
› What is the period? Frequency of
evaluation is configurable via a floor
(1 minute), max (20 minutes), and
schedd timeslice (1%).

Job Policies by the Admin

51

› How do you specify Requirements and
Rank for machine slots?

› Specified in condor_config
› Machine slot policy (or ‘startd policy’)

expressions can reference items in either
the machine or candidate job ClassAd (See
manual appendix for list)

Startd Policy Expressions

52

› Some Startd Expressions (when to
start/stop jobs)
START = <expr>
RANK = <expr>
SUSPEND = <expr>
CONTINUE = <expr>
PREEMPT = <expr> (really means evict)

• And the related WANT_VACATE = <expr>

Administrator Policy Expressions

53

› START is the primary policy
› When FALSE the machine enters the

Owner state and will not run jobs
› Acts as the Requirements expression for

the machine, the job must satisfy START
Can reference job ClassAd values including

Owner and ImageSize

Startd’s START

54

› Indicates which jobs a machine prefers
› Floating point number, just like job rank
Larger numbers are higher ranked
Typically evaluate attributes in the Job ClassAd
Typically use + instead of &&

› Often used to give priority to owner of a particular
group of machines

› Claimed machines still advertise looking for
higher ranked job to preempt the current job
LESSON: Startd Rank creates job preemption

Startd’s RANK

55

› Really means vacate (I prefer nothing vs this job!)
› When PREEMPT becomes true, the job will be

killed and go from Running to Idle
› Can “kill nicely”
WANT_VACATE = <expr>; if true then send a

SIGTERM and follow-up with SIGKILL after
MachineMaxVacateTime seconds.

Startd’s PREEMPT

56

Startd’s Suspend and Continue
› When True, send SIGSTOP or SIGCONT to all

processes in the job

Default Startd Settings
› Always run jobs to completion

START = True

RANK = 0

PREEMPT = False

SUSPEND = False

CONTINUE = True

57

OR
use policy: always_run_jobs

Policy Configuration
› I am adding special

new nodes, only for
simulation jobs from
Math. If none,
simulations from
Chemistry. If none,
simulations from
anyone.

58

START = KindOfJob =?= “Simulation”
RANK =
 10 * Department =?= “Math” +
 Department =?= “Chemistry”
SUSPEND = False
PREEMPT = False

Prefer Chemistry Jobs

59

60 60

› Don’t let any job run
longer than 24 hrs,
except Chemistry jobs
can run for 48 hrs.

Policy
Configuration

“I R BIZNESS CAT” by “VMOS” © 2007
Licensed under the Creative Commons Attribution 2.0 license
http://www.flickr.com/photos/vmos/2078227291/ http://www.webcitation.org/5XIff1deZ

61 61

Settings for showing runtime
limits

START = True
RANK = 0
PREEMPT = TotalJobRunTime >
ifThenElse(Department=?=“Chemistry”,

 48 * (60 * 60),
 24 * (60 * 60))

Note: this will result in the job going back to Idle in
the queue to be rescheduled.

62 62

Runtime limits with a chance to
checkpoint

START = True
RANK = 0
PREEMPT = TotalJobRunTime >
ifThenElse(Department=?=“Chemistry”,

 48 * (60 * 60),
 24 * (60 * 60))
WANT_VACATE = True
MachineMaxVacateTime = 300

Wonder if the user will have any idea why their jobs was
evicted….

63 63

Runtime limits with job hold
START = True
RANK = 0
TIME_EXCEEDED = TotalJobRunTime >
ifThenElse(Department=?=“Chemistry”,

 48 * (60 * 60),
 24 * (60 * 60))
PREEMPT = $(TIME_EXCEEDED)
WANT_HOLD = $(TIME_EXCEEDED)
WANT_HOLD_REASON =
 ifThenElse(Department=?=“Chemistry”,
 “Chem job failed to complete in 48 hrs”,
 “Job failed to complete in 24 hrs”)

64

C:\temp>condor_q

-- Submitter: ToddsThinkpad : <127.0.0.1:49748> : ToddsThinkpad
 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD
 1.0 tannenba 12/5 17:29 0+24:00:03 H 0 0.0 myjob.exe

1 jobs; 0 completed, 0 removed, 0 idle, 0 running, 1 held, 0 suspended

C:\temp>condor_q -hold

-- Submitter: ToddsThinkpad : <127.0.0.1:49748> : ToddsThinkpad
 ID OWNER HELD_SINCE HOLD_REASON
 1.0 tannenba 12/6 17:29 Job failed to complete in 24 hrs

1 jobs; 0 completed, 0 removed, 0 idle, 0 running, 1 held, 0 suspended

› Can add attributes to a slot’s ClassAd,
typically done in the local configuration file
INSTRUCTIONAL=TRUE
NETWORK_SPEED=1000
STARTD_EXPRS=INSTRUCTIONAL,
NETWORK_SPEED

Custom Slot Attributes

67

› Jobs can now specify Rank and
Requirements using new attributes:
Requirements = INSTRUCTIONAL=!=TRUE
Rank = NETWORK_SPEED

› Dynamic attributes are available; see
STARTD_CRON_* in the manual

Custom Slot Attributes

68

› For further information, see section 3.5
“Policy Configuration for the condor_startd”
in the HTCondor manual

› htcondor-users mailing list
http://research.cs.wisc.edu/htcondor/mail-lists/

Further Machine
Policy Information

69

Condor Installation Basics

70

› Either with tarball (good if non-root)
tar xvf htcondor-8.6.2-redhat6

› Or native packages (RPM, DEB) if root install

$ rpm --import https://research.cs.wisc.edu/htcondor/yum/RPM-GPG-KEY-HTCondor

$ yum-config-manager --add-repo
https://research.cs.wisc.edu/htcondor/yum/repo.d/htcondor-development-rhel7.repo

$ yum install -y condor-all

$ systemctl start condor

$ systemctl enable condor

Let’s Install HTCondor

71

http://htcondorproject.org

72

› Major.minor.release
If minor is even (a.b.c): Stable series

• Very stable, mostly bug fixes
• Current: 8.6.x
• Examples: 8.4.5, 8.6.3

If minor is odd (a.b.c): Developer series
• New features, may have some bugs
• Current: 8.7
• Examples: 8.7.1, 8.7.2

Version Number Scheme

73

› All minor releases in a stable series
interoperate
E.g. can have pool with 8.4.0, 8.4.1, etc.
But not WITHIN A MACHINE:

• Only across machines

› The Reality
We work really hard to do better

• 8.4 with 8.2 with 8.5, etc.
• Part of HTC ideal: can never upgrade in lock-step

The Guarantee

74

› First need to configure HTCondor

› 1100+ knobs and parameters!

› Don’t need to set all of them…

Let’s Make a Pool

75

BIN = /usr/bin

SBIN = /usr/sbin

LOG = /var/condor/log

SPOOL = /var/lib/condor/spool

EXECUTE = /var/lib/condor/execute

CONDOR_CONFIG =
/etc/condor/condor_config

Default file locations

76

›(Almost)all configure is in files, “root”
 CONDOR_CONFIG env var

 /etc/condor/condor_config
› This file points to others
› All daemons share same configuration
› Might want to share between all machines

(NFS, automated copies, puppet, etc)

Configuration File

77

I’m a comment!
CREATE_CORE_FILES=TRUE
MAX_JOBS_RUNNING = 50
HTCondor ignores case:
log=/var/log/condor
Long entries:
collector_host=condor.cs.wisc.edu,\
 secondary.cs.wisc.edu

Configuration File Syntax

78

›LOCAL_CONFIG_FILE
Comma separated, processed in order
LOCAL_CONFIG_FILE = \
 /var/condor/config.local,\

/shared/condor/config.$(OPSYS)

›LOCAL_CONFIG_DIR
Files processed IN LEXIGRAPHIC
ORDER

LOCAL_CONFIG_DIR = \
 /etc/condor/config.d

Other Configuration Files

79

› You reference other macros (settings) with:
A = $(B)
SCHEDD = $(SBIN)/condor_schedd

› Can create additional macros for
organizational purposes

Configuration File Macros

80

› Can append to macros:
A=abc
A=$(A),def

› Later macros in a file overwrite earlier ones
B will evaluate to 2:
A=1
B=$(A)
A=2

Configuration File Macros

81

› Can have "config templates"
 use feature: gpus
› Can have conditionals
 if $(IsMaster)
 …
 endif

› Can have includes
 include: /path/to/file

› Can come from stdout of a script
 include command: /path/to/script args
› Very enabling! E.g. config from git
http://htcondor.org/HTCondorWeek2016/presentations/Grasmick_GitConfig.pdf

Configuration File Macros

82

http://research.cs.wisc.edu/htcondor/HTCondorWeek2016/presentations/Grasmick_GitConfig.pdf

› CONDOR_CONFIG “root” config file:
/etc/condor/condor_config

› Local config file:
/etc/condor/condor_config.local

› Config directory
/etc/condor/config.d

Config file defaults

83

› For “system” condor, use default
Global config file read-only

• /etc/condor/condor_config
All changes in config.d small snippets

• /etc/condor/config.d/05some_example
All files begin with 2 digit numbers

› Personal condors elsewhere

Config file recommendations

84

› condor_config_val [-v] <KNOB_NAME>
Queries config files

› condor_config_val -set name value
› condor_config_val -dump

› Environment overrides:
› export _condor_KNOB_NAME=value
Trumps all others (so be careful)

condor_config_val

85

› Daemons long-lived
Only re-read config files condor_reconfig

command
Some knobs don’t obey re-config, require restart

• DAEMON_LIST, NETWORK_INTERFACE

› condor_restart

condor_reconfig

86

Got all that?

87

› “Personal Condor”
All on one machine:

• submit side IS execute side
Jobs always run

› Use defaults where ever possible
› Very handy for debugging and learning

Let’s make a pool!

88

Role
 What daemons run on this machine

CONDOR_HOST
Where the central manager is

Security settings
Who can do what to whom?

Minimum knob settings

89

LOG = /var/log/condor

 Where daemons write debugging info
SPOOL = /var/spool/condor

 Where the schedd stores jobs and data
EXECUTE = /var/condor/execute

 Where the startd runs jobs

Other interesting knobs

90

› In /etc/condor/config.d/50PC.config

All daemons local
Use ROLE : Personal

CONDOR_HOST = localhost
ALLOW_WRITE = localhost

Minimum knobs for personal
Condor

91

Does it Work?

92

$ condor_status

Error: communication error

CEDAR:6001:Failed to connect to <128.105.14.141:4210>

$ condor_submit

ERROR: Can't find address of local schedd

$ condor_q

Error:

Extra Info: You probably saw this error because the
condor_schedd is not running on the machine you are
trying to query…

Checking…

93

$ ps auxww | grep condor_

$

› condor_master
 or
› service start condor

Starting Condor

94

95

$ ps auxww | grep [Cc]ondor

$

Condor 19534 50380 Ss 11:19 0:00 condor_master

root 19535 21692 S 11:19 0:00 condor_procd -A …

condor 19557 69656 Ss 11:19 0:00 condor_collector -f

condor 19559 51272 Ss 11:19 0:00 condor_startd -f

condor 19560 71012 Ss 11:19 0:00 condor_schedd -f

condor 19561 50888 Ss 11:19 0:00 condor_negotiator -f

 Notice the UID of the daemons

Quick test to see it works

96

$ condor_status

Wait a few minutes…

$ condor_status

Name OpSys Arch State Activity LoadAv Mem

slot1@chevre.cs.wi LINUX X86_64 Unclaimed Idle 0.190 20480

slot2@chevre.cs.wi LINUX X86_64 Unclaimed Idle 0.000 20480

slot3@chevre.cs.wi LINUX X86_64 Unclaimed Idle 0.000 20480

slot4@chevre.cs.wi LINUX X86_64 Unclaimed Idle 0.000 20480

-bash-4.1$ condor_q

-- Submitter: gthain@chevre.cs.wisc.edu : <128.105.14.141:35019> :
chevre.cs.wisc.edu

 ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

$ condor_restart # just to be sure…

› Each daemon logs mysterious info to file
› $(LOG)/DaemonNameLog
› Default:
/var/log/condor/SchedLog
/var/log/condor/MatchLog
/var/log/condor/StarterLog.slotX

› Experts-only view of condor

Brief Diversion into daemon logs

97

› Distributed machines makes it hard
Different policies on each machines
Different owners
Scale

Let’s make a “real” pool

98

› Requirements:
No firewall
Full DNS everywhere (forward and backward)
We’ve got root on all machines

› HTCondor doesn’t require any of these
(but easier with them)

Most Simple Distributed Pool

99

› Three Options (all require root):
Nobody UID

• Safest from the machine’s perspective
The submitting User

• Most useful from the user’s perspective
• May be required if shared filesystem exists

A “Slot User”
• Bespoke UID per slot
• Good combination of isolation and utility

What UID should jobs run as?

100

UID_DOMAIN = \
same_string_on_submit

TRUST_UID_DOMAIN = true

SOFT_UID_DOMAIN = true

If UID_DOMAINs match, jobs run as user,
otherwise “nobody”

UID_DOMAIN SETTINGS

101

SLOT1_USER = slot1

SLOT2_USER = slot2

…

STARTER_ALOW_RUNAS_OWNER = false

EXECUTE_LOGIN_IS_DEDICATED=true

Job will run as slotX Unix user

Slot User

102

› HTCondor can work with NFS
But how does it know what nodes have it?

› WhenSubmitter & Execute nodes share
FILESYSTEM_DOMAIN values

– e.g FILESYSTEM_DOMAIN = domain.name

› Or, submit file can always transfer with
should_transfer_files = yes

› If jobs always idle, first thing to check

FILESYSTEM_DOMAIN

103

› Central Manager

› Execute Machine

› Submit Machine

3 Separate machines

104

Use ROLE : CentralManager

CONDOR_HOST = cm.cs.wisc.edu

ALLOW_WRITE = *.cs.wisc.edu

to use a non-default port

default is 9618

#COLLECTOR_HOST=$(CONDOR_HOST):1234

^- set this for ALL machines…

Central Manager

105

Use ROLE : submit

CONDOR_HOST = cm.cs.wisc.edu

ALLOW_WRITE = *.cs.wisc.edu

UID_DOMAIN = cs.wisc.edu

FILESYSTEM_DOMAIN = cs.wisc.edu

Submit Machine

106

Use ROLE : Execute

CONDOR_HOST = cm.cs.wisc.edu

ALLOW_WRITE = *.cs.wisc.edu

UID_DOMAIN = cs.wisc.edu

FILESYSTEM_DOMAIN = cs.wisc.edu

default is

#FILESYSTEM_DOMAIN=$(FULL_HOSTNAME)

Execute Machine

107

› Does order matter?
Somewhat: start CM first

› How to check:
› Every Daemon has classad in collector
condor_status -schedd
condor_status -negotiator
condor_status -any

Now Start them all up

108

condor_status -any

109

MyType TargetType Name

Collector None Test Pool@cm.cs.wisc.edu

Negotiator None cm.cs.wisc.edu

DaemonMaster None cm.cs.wisc.edu

Scheduler None submit.cs.wisc.edu

DaemonMaster None submit.cs.wisc.edu

DaemonMaster None wn.cs.wisc.edu

Machine Job slot1@wn.cs.wisc.edu

Machine Job slot2@wn.cs.wisc.edu

Machine Job slot3@wn.cs.wisc.edu

Machine Job slot4@wn.cs.wisc.edu

mailto:Pool@cm.cs.wisc.edu

› condor_q / condor_status

› condor_ping ALL –name machine

› Or
› condor_ping ALL –addr ‘<127.0.0.1:9618>’

Debugging the pool

110

› Check userlog – may be preempted often
› run condor_q -better-analyze job_id

What if a job is always idle?

111

Whew!

112

Tools for admins

113

› Three kinds for submit and execute
› -fast:
Kill all jobs immediate, and exit

› -gracefull
Give all jobs 10 minutes to leave, then kill

› -peaceful
Wait forever for all jobs to exit

condor_off

114

› Restarts all daemons on a given machine

› Can be run remotely – if admin priv allows

condor_restart

115

› -collector
› -submitter
› -negotiator
› -schedd
› -master

condor_status

116

› Condor_userprio –allusers
Whole talk on this,

condor_userprio

117

› Remotely pulls a log file from remote machine

› condor_fetchlog execute_machine STARTD

condor_fetchlog

118

Thank You and Additional
Resources

› Talk to us!
› http://htcondor.org
› Nice HTCondor FAQs, examples, and

documentation from our friends in Canary Islands:
https://is.gd/TjRvY8
› Email list:
http://htcondor.org/mail-lists/
› HTCondor HOWTO Recipes has FAQ on job

submission
http://wiki.htcondor.org/index.cgi/wiki?p=HowToAdminRecip
es

https://is.gd/TjRvY8
http://htcondor.org/mail-lists/
http://wiki.htcondor.org/index.cgi/wiki?p=HowToAdminRecipes
http://wiki.htcondor.org/index.cgi/wiki?p=HowToAdminRecipes

	HTCondor Architecture and�Administration Basics��Todd Tannenbaum�Center for High Throughput Computing
	Two Big HTCondor Abstractions
	ClassAds: The lingua franca of HTCondor
	What are ClassAds?
	Example
	ClassAd Values�
	Four-valued logic
	ClassAd Types
	The Magic of Matchmaking
	Example
	Daemons & �Job Startup
	The condor_master
	Quick Review of Daemons
	Process View: Submit
	Process View: Execute
	Process View: Central Manager
	Claiming Protocol
	Claim Activation
	Repeat until Claim released
	Repeat until Claim released
	When is claim released?
	Some items to notice
	Layout of a Personal Condor Pool
	Layout of a General Condor Pool
	Layout of a General Condor Pool
	Policy
	Policy Expressions
	Assume a simple setup
	We learned earlier…
	Job Status Policy Expressions
	Job Policy Expressions
	Job Policies by the Admin
	Startd Policy Expressions
	Administrator Policy Expressions
	Startd’s START
	Startd’s RANK
	Startd’s PREEMPT
	Default Startd Settings
	Policy Configuration
	Prefer Chemistry Jobs
	Policy Configuration
	Settings for showing runtime limits
	Runtime limits with a chance to checkpoint
	Runtime limits with job hold
	Slide Number 64
	Custom Slot Attributes
	Custom Slot Attributes
	Further Machine�Policy Information
	Condor Installation Basics
	Let’s Install HTCondor
	http://htcondorproject.org
	Version Number Scheme
	The Guarantee
	Let’s Make a Pool
	Default file locations
	Configuration File
	Configuration File Syntax
	Other Configuration Files
	Configuration File Macros
	Configuration File Macros
	Configuration File Macros
	Config file defaults
	Config file recommendations
	condor_config_val
	condor_reconfig
	Got all that?
	Let’s make a pool!
	Minimum knob settings
	Other interesting knobs
	Minimum knobs for personal Condor
	Does it Work?
	Checking…
	Starting Condor
	Slide Number 95
	Quick test to see it works
	Brief Diversion into daemon logs
	Let’s make a “real” pool
	Most Simple Distributed Pool
	What UID should jobs run as?
	UID_DOMAIN SETTINGS
	Slot User
	FILESYSTEM_DOMAIN
	3 Separate machines
	Central Manager
	Submit Machine
	Execute Machine
	Now Start them all up
	condor_status -any
	Debugging the pool
	What if a job is always idle?
	Whew!
	Tools for admins
	condor_off
	condor_restart
	condor_status
	condor_userprio
	condor_fetchlog
	Thank You and Additional Resources

