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› Jobs  
 
 
 

› Machines 
 

Two Big HTCondor Abstractions 
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execute 
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ClassAds: The lingua franca of 
HTCondor 
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ClassAds is a language for objects (jobs and 
machines) to 
Express attributes about themselves 
Express what they require/desire in a “match” 

(similar to personal classified ads) 
Structure : Set of attribute name/value pairs, 
where the value can be a literal or an 
expression.  Semi-structured, no fixed 
schema. 

What are ClassAds? 
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Example 

 Pet Ad 
 Type  = “Dog” 
 Requirements =  
    DogLover =?= True 
 Color = “Brown” 
 Price = 75 
 Sex = "Male" 
 AgeWeeks = 8 
 Breed = "Saint Bernard" 
 Size = "Very Large" 
 Weight = 27 

 Buyer Ad 
 AcctBalance  = 100 
 DogLover = True 
 Requirements = 
  (Type == “Dog”)  && 
  (TARGET.Price <=   
   MY.AcctBalance) && 
  ( Size == "Large" || 
    Size == "Very Large" ) 
 Rank = 
  100* (Breed == "Saint 

Bernard") - Price 
 . . . 



› Literals 
Strings ( “RedHat6” ), integers, floats, boolean 

(true/false), … 
› Expressions 
Similar look to C/C++ or Java : operators, references, 

functions 
References: to other attributes in the same ad, or 

attributes in an ad that is a candidate for a match 
Operators: +, -, *, /, <, <=,>, >=, ==, !=, &&, and || all 

work as expected 
Built-in Functions: if/then/else, string manipulation, 

regular expression pattern matching, list operations, 
dates, randomization, math (ceil, floor, quantize,…), 
time functions, eval, … 

ClassAd Values 
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Four-valued logic 
› ClassAd Boolean expressions can return four values: 
 True 
 False 
 Undefined (a reference can’t be found) 
 Error (Can’t be evaluated) 

› Undefined enables explicit policy statements in the 
absence of data (common across administrative 
domains)  

› Special meta-equals ( =?= ) and meta-not-equals (=!=) 
will never return Undefined 

[ 
  HasBeer = True 
  GoodPub1 = HasBeer == True  
  GoodPub2 = HasBeer =?= True 
] 

 

[ 
  GoodPub1 = HasBeer == True  
  GoodPub2 = HasBeer =?= True 
] 

 



› HTCondor has many types of ClassAds 
A "Job Ad" represents a job to Condor 
A "Machine Ad" represents a computing 

resource  
Others types of ads represent other instances of 

other services (daemons), users, accounting 
records. 

ClassAd Types 
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› Two ClassAds can be matched via special 
attributes: Requirements and Rank 

› Two ads match if both their Requirements 
expressions evaluate to True 

› Rank evaluates to a float where higher is 
preferred; specifies the which match is desired if 
several ads meet the Requirements. 

› Scoping of attribute references when matching 
• MY.name – Value for attribute “name” in local ClassAd 
• TARGET.name – Value for attribute “name” in match candidate 

ClassAd 
• Name – Looks for “name” in the local ClassAd, then the 

candidate ClassAd 

 

The Magic of Matchmaking 
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Example 

 Pet Ad 
 Type  = “Dog” 
 Requirements =  
    DogLover =?= True 
 Color = “Brown” 
 Price = 75 
 Sex = "Male" 
 AgeWeeks = 8 
 Breed = "Saint Bernard" 
 Size = "Very Large" 
 Weight = 27 

 Buyer Ad 
 AcctBalance  = 100 
 DogLover = True 
 Requirements = 
  (Type == “Dog”)  && 
  (TARGET.Price <=   
   MY.AcctBalance) && 
  ( Size == "Large" || 
    Size == "Very Large" ) 
 Rank = 
  100* (Breed == "Saint 

Bernard") - Price 
 . . . 



Daemons &  
Job Startup 

“LUNAR Launch” by Steve Jurvertson (“jurvetson”) © 2006 
 Licensed under the Creative Commons Attribution 2.0 license. 
 http://www.flickr.com/photos/jurvetson/114406979/ 
 http://www.webcitation.org/5XIfTl6tX  



› Every condor machine needs a master 
 

› Like “systemd”, or “init” 
 

› Starts daemons, restarts crashed daemons 
› Tunes machine for condor 

 
 

The condor_master 
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condor_master:  runs on all machine, always 
   plus a condor_procd, condor_shared_port 
condor_schedd: runs on submit machine 
  condor_shadow: one per job 
condor_startd:  runs on execute machine 
   condor_starter: one per job 
condor_negotiator/condor_collector 

Quick Review of Daemons 
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Process View: Submit 
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condor_master 
   (pid: 1740) 

condor_schedd 

condor_shadow condor_shadow condor_shadow 

“Condor Kernel” 

“Condor Userspace” 

fork/exec 

fork/exec 

condor_procd 

    

condor_q condor_submit “Tools” 



Process View: Execute 
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condor_master 
   (pid: 1740) 

condor_startd 

condor_starter condor_starter condor_starter 

“Condor Kernel” 

“Condor Userspace” 

fork/exec condor_procd 

    

condor_status -direct “Tools” 

Job Job Job 



Process View: Central Manager 
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condor_master 
   (pid: 1740) 

condor_collector 

“Condor Kernel” 

fork/exec 
condor_procd 

    

condor_userprio 
“Tools” 

condor_negotiator 
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Claiming Protocol 
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Claim Activation 
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Execute Machine Submit Machine 

Schedd Startd 
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Collector Negotiator 
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Repeat until Claim released 
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Execute Machine Submit Machine 

Schedd Startd 

Central Manager 
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Repeat until Claim released 
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Execute Machine Submit Machine 

Schedd Startd 

Central Manager 

Collector Negotiator 

CLAIMED 
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Activate 
Claim 
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› When relinquished by one of the following 
lease on the claim is not renewed 

• Why? Machine powered off, disappeared, etc 
schedd 

• Why? Out of jobs, shutting down, schedd didn’t “like” the 
machine, etc 

startd 
• Why? Policy re claim lifetime, prefers a different match 

(via Rank), non-dedicated desktop, etc  
negotiator 

• Why? User priority inversion policy 
explicitly via a command-line tool 

• E.g. condor_vacate 
 

When is claim released? 
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› Machines (startds) or submitters (schedds) can 
dynamically appear and disappear 
A key for expanding a pool into clouds or grids 

› Scheduling policy can be very flexible (custom 
attributes) and very distributed 

› Central manager just makes a match, then gets 
out of the way 
CM not consulted at job boundaries, only when moving 

a slot from one user to another 
› Lots of network arrows on previous slides 
Reflects the P2P nature of HTCondor 

Some items to notice 
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Layout of a Personal Condor 
Pool 

Central Manager 

master 

collector 

negotiator 
schedd 

startd 

= ClassAd 
   Communication 
   Pathway 

= Process Spawned 
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Layout of a General Condor Pool 
Central Manager 

master 

collector 

negotiator 
schedd 

startd 

= ClassAd 
   Communication 
   Pathway 

= Process Spawned 

Submit-Only 
master 
schedd 

Execute-Only 
master 

startd 

Regular Node 

schedd 
startd 

master 
Regular Node 

schedd 
startd 

master 

Execute-Only 
master 

startd 
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Layout of a General Condor Pool 
Central Manager 

master 

collector 

negotiator 

= ClassAd 
   Communication 
   Pathway 

= Process Spawned 

Submit-Only 
master 
schedd 

Execute-Only 
master 

startd 

Regular Node 

schedd 
startd 

master 
Regular Node 

schedd 
startd 

master 

Execute-Only 
master 

startd 



Policy 

› “Don't even think 
about it” by Kat 

   
   
  

   

 

 



› Policy Expressions allow jobs and 
machines to restrict access, handle errors 
and retries, perform job steering, set limits, 
when/where jobs can start, etc. 
 

Policy Expressions 

45 



› Lets assume a pool with only one single 
user (me!). 
no user/group scheduling concerns, we’ll get to 

that later… 
 

Assume a simple setup 
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› Job submit file can specify Requirements 
and Rank expressions to express 
constraints and preferences on a match 
 
 
 

› Another set of policy expressions control 
job status 
 
 
 
 

We learned earlier… 
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Requirements = OpSysAndVer==“RedHat6” 
Rank = kflops 
Executable = matlab 
queue 



› User can supply job policy expressions in 
the job submit file. See condor_submit man 
page. 

› These expressions can reference any job 
ad attribute. 

 on_exit_remove = <expression> 
 on_exit_hold = <expression> 
 periodic_remove = <expression> 
 periodic_hold = <expression> 
 periodic_release = <expression> 

 

Job Status Policy Expressions 
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Job Policy Expressions 
●Do not remove if exits with a signal: 

on_exit_remove = ExitBySignal == False 

●Place on hold if exits with nonzero 
status or ran for less than an hour: 
on_exit_hold = 
 ( ExitCode =!= 0 ) || 
 ( (time() - JobStartDate) < 3600) 

●Place on hold if job has spent more 
than 50% of its time suspended: 
periodic_hold =  
 ( CumulativeSuspensionTime > 
   (RemoteWallClockTime / 2.0) ) 

50 



› Admins can also provide supply periodic job 
policy expressions in the condor_config file. 

› These expressions impact all jobs submitted 
to a specific schedd. 

 system_periodic_remove = <expression> 
 system_periodic_hold = <expression> 
 system_periodic_release = <expression> 
› What is the period? Frequency of 
evaluation is configurable via a floor 
(1 minute), max (20 minutes), and 
schedd timeslice (1%).  

 

 

Job Policies by the Admin 
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› How do you specify Requirements and 
Rank for machine slots? 

› Specified in condor_config 
› Machine slot policy (or ‘startd policy’) 

expressions can reference items in either 
the machine or candidate job ClassAd (See 
manual appendix for list) 

Startd Policy Expressions 
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›  Some Startd Expressions (when to 
start/stop jobs) 
START = <expr> 
RANK = <expr> 
SUSPEND = <expr> 
CONTINUE = <expr> 
PREEMPT = <expr>   (really means evict) 

• And the related WANT_VACATE = <expr> 

Administrator Policy Expressions 

53 



› START is the primary policy 
› When FALSE the machine enters the 

Owner state and will not run jobs 
› Acts as the Requirements expression for 

the machine, the job must satisfy START 
Can reference job ClassAd values including 

Owner and ImageSize 

Startd’s START 
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› Indicates which jobs a machine prefers 
› Floating point number, just like job rank 
Larger numbers are higher ranked 
Typically evaluate attributes in the Job ClassAd 
Typically use + instead of && 

› Often used to give priority to owner of a particular 
group of machines 

› Claimed machines still advertise looking for 
higher ranked job to preempt the current job 
LESSON: Startd Rank creates job preemption 

 

Startd’s RANK 

55 



› Really means vacate (I prefer nothing vs this job!) 
› When PREEMPT becomes true, the job will be 

killed and go from Running to Idle  
› Can “kill nicely” 
WANT_VACATE = <expr>; if true then send a 

SIGTERM and follow-up with SIGKILL after 
MachineMaxVacateTime seconds. 

Startd’s PREEMPT  

56 

Startd’s Suspend and Continue 
› When True, send SIGSTOP or SIGCONT to all 

processes in the job 



Default Startd Settings 
› Always run jobs to completion 

START = True 

RANK  = 0 

PREEMPT = False 

SUSPEND  = False 

CONTINUE  = True 
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OR 
use policy: always_run_jobs 



Policy Configuration 
› I am adding special 

new nodes, only for 
simulation jobs from 
Math.  If none, 
simulations from 
Chemistry.  If none, 
simulations from 
anyone.   
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START = KindOfJob =?= “Simulation” 
RANK  =  
  10 * Department =?= “Math” + 
  Department =?= “Chemistry” 
SUSPEND = False 
PREEMPT = False 

Prefer Chemistry Jobs 
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› Don’t let any job run 
longer than 24 hrs, 
except Chemistry jobs 
can run for 48 hrs. 

Policy 
Configuration 

“I R BIZNESS CAT” by “VMOS” © 2007  
Licensed under the Creative Commons Attribution 2.0 license 
http://www.flickr.com/photos/vmos/2078227291/ http://www.webcitation.org/5XIff1deZ 
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Settings for showing runtime 
limits 

START = True 
RANK = 0 
PREEMPT = TotalJobRunTime > 
ifThenElse(Department=?=“Chemistry”,  

            48 * (60 * 60),           
            24 * (60 * 60) ) 
 

Note: this will result in the job going back to Idle in 
the queue to be rescheduled. 



62 62 

Runtime limits with a chance to 
checkpoint 

START = True 
RANK = 0 
PREEMPT = TotalJobRunTime > 
ifThenElse(Department=?=“Chemistry”,  

            48 * (60 * 60),           
            24 * (60 * 60) ) 
WANT_VACATE = True 
MachineMaxVacateTime = 300 
 
 

Wonder if the user will have any idea why their jobs was  
evicted…. 
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Runtime limits with job hold 
START = True 
RANK = 0 
TIME_EXCEEDED = TotalJobRunTime > 
ifThenElse(Department=?=“Chemistry”,  

            48 * (60 * 60),           
            24 * (60 * 60) ) 
PREEMPT = $(TIME_EXCEEDED) 
WANT_HOLD = $(TIME_EXCEEDED) 
WANT_HOLD_REASON =  
  ifThenElse( Department=?=“Chemistry”, 
  “Chem job failed to complete in 48 hrs”, 
  “Job failed to complete in 24 hrs” ) 
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C:\temp>condor_q 
 
 
-- Submitter: ToddsThinkpad : <127.0.0.1:49748> : ToddsThinkpad 
 ID      OWNER            SUBMITTED     RUN_TIME ST PRI SIZE CMD 
   1.0   tannenba       12/5  17:29   0+24:00:03 H  0   0.0  myjob.exe 
 
1 jobs; 0 completed, 0 removed, 0 idle, 0 running, 1 held, 0 suspended 
 
C:\temp>condor_q -hold 
 
 
-- Submitter: ToddsThinkpad : <127.0.0.1:49748> : ToddsThinkpad 
 ID      OWNER          HELD_SINCE  HOLD_REASON 
   1.0   tannenba       12/6  17:29 Job failed to complete in 24 hrs 
 
1 jobs; 0 completed, 0 removed, 0 idle, 0 running, 1 held, 0 suspended 
 



› Can add attributes to a slot’s ClassAd, 
typically done in the local configuration file 
INSTRUCTIONAL=TRUE 
NETWORK_SPEED=1000 
STARTD_EXPRS=INSTRUCTIONAL, 
NETWORK_SPEED 

Custom Slot Attributes 
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› Jobs can now specify Rank and 
Requirements using new attributes: 
Requirements = INSTRUCTIONAL=!=TRUE 
Rank = NETWORK_SPEED 

› Dynamic attributes are available; see 
STARTD_CRON_* in the manual 

Custom Slot Attributes 
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› For further information, see section 3.5 
“Policy Configuration for the condor_startd” 
in the HTCondor manual 

› htcondor-users mailing list 
http://research.cs.wisc.edu/htcondor/mail-lists/ 

Further Machine 
Policy Information 

69 



 

Condor Installation Basics 
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› Either with tarball (good if non-root) 
tar xvf htcondor-8.6.2-redhat6 

› Or native packages (RPM, DEB) if root install 
 

$ rpm --import https://research.cs.wisc.edu/htcondor/yum/RPM-GPG-KEY-HTCondor 

 

$ yum-config-manager --add-repo 
https://research.cs.wisc.edu/htcondor/yum/repo.d/htcondor-development-rhel7.repo 

 

$ yum install -y condor-all 

 

$ systemctl start condor 

 

$ systemctl enable condor 

 

 

 

Let’s Install HTCondor 
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http://htcondorproject.org 

72 



› Major.minor.release 
If minor is even (a.b.c): Stable series 

• Very stable, mostly bug fixes 
• Current: 8.6.x 
• Examples: 8.4.5, 8.6.3 

If minor is odd (a.b.c): Developer series 
• New features, may have some bugs 
• Current: 8.7 
• Examples: 8.7.1, 8.7.2 

 

Version Number Scheme 
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› All minor releases in a stable series 
interoperate 
E.g. can have pool with 8.4.0, 8.4.1, etc. 
But not WITHIN A MACHINE: 

• Only across machines 

› The Reality 
We work really hard to do better 

• 8.4 with 8.2 with 8.5, etc. 
• Part of HTC ideal: can never upgrade in lock-step 

The Guarantee  

74 



› First need to configure HTCondor 
 

› 1100+ knobs and parameters! 
 

› Don’t need to set all of them… 

Let’s Make a Pool 

75 



BIN = /usr/bin 

SBIN = /usr/sbin 

LOG = /var/condor/log 

SPOOL = /var/lib/condor/spool 

EXECUTE = /var/lib/condor/execute 

CONDOR_CONFIG = 
/etc/condor/condor_config 

 

Default file locations 
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›(Almost)all configure is in files, “root” 
 CONDOR_CONFIG env var 

  /etc/condor/condor_config 
› This file points to others 
› All daemons share same configuration 
› Might want to share between all machines 

(NFS, automated copies, puppet, etc) 

Configuration File 
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# I’m a comment! 
CREATE_CORE_FILES=TRUE 
MAX_JOBS_RUNNING = 50 
# HTCondor ignores case: 
log=/var/log/condor 
# Long entries: 
collector_host=condor.cs.wisc.edu,\ 
    secondary.cs.wisc.edu 

Configuration File Syntax 
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›LOCAL_CONFIG_FILE 
Comma separated, processed in order 
LOCAL_CONFIG_FILE = \ 
  /var/condor/config.local,\ 

/shared/condor/config.$(OPSYS) 

›LOCAL_CONFIG_DIR 
Files processed IN LEXIGRAPHIC 
ORDER 

LOCAL_CONFIG_DIR = \ 
  /etc/condor/config.d 

Other Configuration Files 
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› You reference other macros (settings) with: 
A = $(B) 
SCHEDD = $(SBIN)/condor_schedd 

› Can create additional macros for 
organizational purposes 

Configuration File Macros 
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› Can append to macros: 
A=abc 
A=$(A),def 

› Later macros in a file overwrite earlier ones 
B will evaluate to 2: 
A=1 
B=$(A) 
A=2 

Configuration File Macros 
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› Can have "config templates" 
  use feature: gpus 
› Can have conditionals 
  if $(IsMaster)  
    … 
  endif 

› Can have includes 
  include: /path/to/file 

› Can come from stdout of a script 
  include command: /path/to/script args 
› Very enabling! E.g. config from git 
http://htcondor.org/HTCondorWeek2016/presentations/Grasmick_GitConfig.pdf 

Configuration File Macros 
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http://research.cs.wisc.edu/htcondor/HTCondorWeek2016/presentations/Grasmick_GitConfig.pdf


› CONDOR_CONFIG “root” config file: 
/etc/condor/condor_config 

› Local config file: 
/etc/condor/condor_config.local 

› Config directory 
/etc/condor/config.d 

Config file defaults 
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› For “system” condor, use default 
Global config file read-only 

• /etc/condor/condor_config 
All changes in config.d small snippets 

• /etc/condor/config.d/05some_example 
All files begin with 2 digit numbers 

 
› Personal condors elsewhere 

 

Config file recommendations 

84 



› condor_config_val [-v] <KNOB_NAME> 
Queries config files  

› condor_config_val -set name value 
› condor_config_val -dump 

 
› Environment overrides: 
› export _condor_KNOB_NAME=value 
Trumps all others (so be careful) 

condor_config_val 
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› Daemons long-lived 
Only re-read config files condor_reconfig 

command 
Some knobs don’t obey re-config, require restart 

• DAEMON_LIST, NETWORK_INTERFACE 

› condor_restart 
 
 

condor_reconfig 
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Got all that? 
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› “Personal Condor” 
All on one machine:  

• submit side IS execute side 
Jobs always run 

› Use defaults where ever possible 
› Very handy for debugging and learning 

 
 

 

Let’s make a pool! 
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Role  
 What daemons run on this machine 

 
CONDOR_HOST 
Where the central manager is 

 
Security settings 
Who can do what to whom? 

Minimum knob settings 
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LOG = /var/log/condor 

 Where daemons write debugging info 
SPOOL = /var/spool/condor 

 Where the schedd stores jobs and data 
EXECUTE = /var/condor/execute 

 Where the startd runs jobs 

Other interesting knobs 
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› In /etc/condor/config.d/50PC.config 
 
# All daemons local 
Use ROLE : Personal 
 
CONDOR_HOST = localhost 
ALLOW_WRITE = localhost 

Minimum knobs for personal 
Condor 
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Does it Work? 
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$ condor_status 

Error: communication error 

CEDAR:6001:Failed to connect to <128.105.14.141:4210> 

 

$ condor_submit 

ERROR: Can't find address of local schedd 

 

$ condor_q 

Error:  

Extra Info: You probably saw this error because the 
condor_schedd is not running on the machine you are 
trying to query… 



Checking… 
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$ ps auxww | grep condor_ 

$ 

 

 

 



› condor_master  
   or 
› service start condor 
 

Starting Condor 
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$ ps auxww | grep [Cc]ondor 

$ 

Condor 19534  50380          Ss   11:19   0:00 condor_master 

root   19535  21692          S    11:19   0:00 condor_procd -A … 

condor   19557  69656        Ss   11:19   0:00 condor_collector -f 

condor   19559  51272        Ss   11:19   0:00 condor_startd -f 

condor   19560  71012        Ss   11:19   0:00 condor_schedd -f 

condor   19561  50888        Ss   11:19   0:00 condor_negotiator -f 

 

 

         Notice the UID of the daemons 



Quick test to see it works 
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$ condor_status 

# Wait a few minutes… 

$ condor_status 

Name               OpSys      Arch   State     Activity LoadAv Mem 

 

slot1@chevre.cs.wi LINUX      X86_64 Unclaimed Idle      0.190 20480 

slot2@chevre.cs.wi LINUX      X86_64 Unclaimed Idle      0.000 20480 

slot3@chevre.cs.wi LINUX      X86_64 Unclaimed Idle      0.000 20480 

slot4@chevre.cs.wi LINUX      X86_64 Unclaimed Idle      0.000 20480 

 

-bash-4.1$ condor_q 

-- Submitter: gthain@chevre.cs.wisc.edu : <128.105.14.141:35019> : 
chevre.cs.wisc.edu 

 ID      OWNER            SUBMITTED     RUN_TIME ST PRI SIZE CMD 

 

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended 

$ condor_restart # just to be sure… 



› Each daemon logs mysterious info to file 
› $(LOG)/DaemonNameLog 
› Default: 
/var/log/condor/SchedLog 
/var/log/condor/MatchLog 
/var/log/condor/StarterLog.slotX 

› Experts-only view of condor 
 

Brief Diversion into daemon logs 
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› Distributed machines makes it hard 
Different policies on each machines 
Different owners 
Scale 

Let’s make a “real” pool 
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› Requirements: 
No firewall 
Full DNS everywhere (forward and backward) 
We’ve got root on all machines 

 
› HTCondor doesn’t require any of these 
(but easier with them) 

Most Simple Distributed Pool 
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› Three Options (all require root): 
Nobody UID 

• Safest from the machine’s perspective 
The submitting User 

• Most useful from the user’s perspective 
• May be required if shared filesystem exists 

A “Slot User” 
• Bespoke UID per slot 
• Good combination of isolation and utility 

 
 
 
 

What UID should jobs run as? 
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UID_DOMAIN = \ 
same_string_on_submit 

TRUST_UID_DOMAIN = true 

SOFT_UID_DOMAIN = true 

 

If UID_DOMAINs match, jobs run as user, 
otherwise “nobody” 

UID_DOMAIN SETTINGS 
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SLOT1_USER = slot1 

SLOT2_USER = slot2 

… 

STARTER_ALOW_RUNAS_OWNER = false 

EXECUTE_LOGIN_IS_DEDICATED=true 

 

Job will run as slotX Unix user 
 

Slot User 
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› HTCondor can work with NFS 
But how does it know what nodes have it? 

› WhenSubmitter & Execute nodes share 
FILESYSTEM_DOMAIN values 

– e.g FILESYSTEM_DOMAIN = domain.name 

› Or, submit file can always transfer with 
should_transfer_files = yes 

› If jobs always idle, first thing to check 

FILESYSTEM_DOMAIN 
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› Central Manager 
 

› Execute Machine 
 

› Submit Machine 

3 Separate machines 
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Use ROLE : CentralManager 

CONDOR_HOST = cm.cs.wisc.edu 

ALLOW_WRITE = *.cs.wisc.edu 

# to use a non-default port 

# default is 9618 

#COLLECTOR_HOST=$(CONDOR_HOST):1234 

# ^- set this for ALL machines… 

Central Manager 
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Use ROLE : submit 

CONDOR_HOST = cm.cs.wisc.edu 

ALLOW_WRITE = *.cs.wisc.edu 

UID_DOMAIN = cs.wisc.edu 

FILESYSTEM_DOMAIN = cs.wisc.edu 

 

Submit Machine 
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Use ROLE : Execute 

CONDOR_HOST = cm.cs.wisc.edu 

ALLOW_WRITE = *.cs.wisc.edu 

UID_DOMAIN = cs.wisc.edu 

FILESYSTEM_DOMAIN = cs.wisc.edu 

# default is  

#FILESYSTEM_DOMAIN=$(FULL_HOSTNAME) 

 

 

 

Execute Machine 
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› Does order matter? 
Somewhat:  start CM first 

› How to check: 
› Every Daemon has classad in collector 
condor_status -schedd 
condor_status -negotiator 
condor_status -any 

Now Start them all up 
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condor_status -any 
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MyType             TargetType         Name 

 

Collector          None               Test Pool@cm.cs.wisc.edu 

Negotiator         None               cm.cs.wisc.edu 

DaemonMaster       None               cm.cs.wisc.edu 

Scheduler          None               submit.cs.wisc.edu 

DaemonMaster       None               submit.cs.wisc.edu 

DaemonMaster       None               wn.cs.wisc.edu 

Machine            Job                slot1@wn.cs.wisc.edu 

Machine            Job                slot2@wn.cs.wisc.edu 

Machine            Job                slot3@wn.cs.wisc.edu 

Machine            Job                slot4@wn.cs.wisc.edu 

mailto:Pool@cm.cs.wisc.edu


› condor_q / condor_status 
 

› condor_ping ALL –name machine 
 

› Or 
› condor_ping ALL –addr ‘<127.0.0.1:9618>’ 

Debugging the pool 
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› Check userlog – may be preempted often 
› run condor_q -better-analyze job_id 

What if a job is always idle? 
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Whew! 
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Tools for admins 
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› Three kinds for submit and execute 
› -fast: 
Kill all jobs immediate, and exit 

› -gracefull 
Give all jobs 10 minutes to leave, then kill 

› -peaceful 
Wait forever for all jobs to exit 

condor_off 
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› Restarts all daemons on a given machine 
 

› Can be run remotely – if admin priv allows 

condor_restart 
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› -collector 
› -submitter 
› -negotiator 
› -schedd 
› -master 

condor_status 
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› Condor_userprio –allusers 
Whole talk on this,  

condor_userprio 
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› Remotely pulls a log file from remote machine 
 

› condor_fetchlog execute_machine STARTD 

condor_fetchlog 
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Thank You and Additional 
Resources 

› Talk to us! 
› http://htcondor.org 
› Nice HTCondor FAQs, examples, and 

documentation from our friends in Canary Islands:  
https://is.gd/TjRvY8 
› Email list:  
http://htcondor.org/mail-lists/ 
› HTCondor HOWTO Recipes has FAQ on job 

submission 
http://wiki.htcondor.org/index.cgi/wiki?p=HowToAdminRecip
es 
 
 

https://is.gd/TjRvY8
http://htcondor.org/mail-lists/
http://wiki.htcondor.org/index.cgi/wiki?p=HowToAdminRecipes
http://wiki.htcondor.org/index.cgi/wiki?p=HowToAdminRecipes
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