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ABSTRACT
Collaborating users need to move terabytes of data among their
sites, often involving multiple protocols. This process is very frag-
ile and involves considerable human involvement to deal with fail-
ures. In this work, we propose data pipelines, an automated sys-
tem for transferring data among collaborating sites. It speaks mul-
tiple protocols, has sophisticated flow control and recovers auto-
matically from network, storage system, software and hardware
failures. We successfully used data pipelines to transfer three ter-
abytes of DPOSS data from SRB mass storage server at San Diego
Supercomputing Center to UniTree mass storage at NCSA. The
whole process did not require any human intervention and the data
pipeline recovered automatically from various network, storage sys-
tem, software and hardware failures.

Categories and Subject Descriptors
D.1.3 [Software]: Programming Techniques—Concurrent Program-
ming

General Terms
Performance, Design, Reliability, Experimentation

Keywords
Data Pipelines, distributed systems, grid, replication, bulk data trans-
fers, fault-tolerance, mass storage systems

1. INTRODUCTION
Grid computing [8] has enabled researchers to collaborate more

effectively by sharing computing resources. Many fields includ-
ing astronomy, genetics, biomedicine and geology have to transfer
large amounts of data among their collaborating organization. Each
organization either developed or decided to use one particular stor-
age system. For example, NCSA uses UniTree [3], SDSC uses
SRB [2], LBNL uses HPSS [14] and Fermi uses Enstore [7] mass
storage systems.
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Collaborating researchers spanning across the different organi-
zations need to transfer data among different storage systems and
most of the time have to speak multiple protocols. While reliably
transferring large amounts of data over the wide-area is in itself
difficult, the additional complexity of speaking multiple protocols
makes the process more fragile. The current approach has been to
use an operator at each site to monitor the transfers.

We propose data pipelines, a system to automate data transfer
among multiple sites. Similar to water pipelines that automatically
regulate water flow depending on the consumption at end-points,
the data flow is regulated by the consumption rate/bandwidth at
end-points. It speaks multiple protocols, is highly resilient and can
recover from network, storage-server, software and hardware fail-
ures.

In this work, we show the design of data pipelines, discuss the
implementation and highlight the functionality that it provides. We
successfully used it to replicate the three terabytes DPOSS [5] dataset
from SRB mass storage system at SDSC to UniTree mass storage
system at NCSA.

2. MOTIVATION
Researchers wanting to share terabytes datasets with their col-

laborators are finding it difficult to manage the process. While the
underlying network capacity has grown enough to make this possi-
ble, the management part of the process has not matured.

Different organizations use different data access protocols. This
makes it a challenge to move data between these organizations.
While one approach may be to force all of them to agree on one pro-
tocol, we believe that it may not be always possible. Further, sup-
porting a new protocol in a storage server incurs considerable de-
velopment cost and may take time to reach the stability of existing
protocol. For instance, SRB server had a GridFTP interface close
to working and later dropped it because of stability issues [21].

Large data transfers have a higher likelihood of noticing wide-
area network outages because they span a longer time span. Even
though most wide-area network outages are of short duration, most
data transfer protocols cannot recover automatically from these fail-
ures. Short-duration failures do not affect interactive web users
much because in most cases, pressing the reload browser button a
couple of times may be sufficient to recover from the outage.

Hardware and software failures may occur on the storage server,
client machine and intermediate nodes used for staging and proto-
col translation. Periodic maintenance and emergency maintenance
to fix vulnerabilities may appear as failures from the end-to-end
transfer point of view, as a large-scale data transfer may span across
multiple maintenance periods. These system failures result in user
visible failures and require user intervention to restart the failed
transfers. This may require considerable work on the user’s part if
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Figure 1: Shows Stork protocol translation using memory and
disk caches

the transfer involves a dataset with several thousands of files. Most
users just want the system to recover from the failures.

Paxson [19] found that TCP checksum is not sufficient when
moving large amounts of data. By the end-to-end argument [20],
the only option is to compute end-to-end checksum and verify that
they match. Since some storage servers do not allow computa-
tion, calculating the checksum may involve transfer to a local node
and calculating the checksum there. While doing this, the system
should ensure that this local node is not corrupting the data. Users
want a flexible system that can accomplish this without requiring
much effort on their part.

Many data access protocols that organizations use internally do
not work well over wide area. For instance, SRB protocol has is-
sues with certain wide area transfers, as it does not allow tuning
of TCP window size. Similarly, many mass storage protocols are
optimized for local access and they have difficulty coping with the
variety of wide-area failures. Some of them just hang complicating
the life of the user/operator, as he now has to find out transfers that
have hung.

Many operators have scripts that attempt to automate the data
transfer. While scripts work to a certain extent in the presence of a
common interface, they have difficulty when transferring data us-
ing multiple protocols. This is because end-to-end flow control in a
multi-hop data transfer is difficult to perform in scripts. They have
to use an intermediate node and carefully manage the space on that
node. At times, the destination may have a failure and even when
the destination recovers from the failure, the script may end up hav-
ing other failures because of full-disks at intermediate nodes or end
up having sub-optimal performance.

3. METHODOLOGY
To handle failures, we make data placement a full-fledged job.

Data placement encompasses data transfer, staging, replication, data
positioning, space allocation and de-allocation. We queue, sched-
ule and manage data placement jobs just like computational jobs.
To accomplish this, we have developed Stork data placement sched-
uler [13].

Making data placement as a full-fledged job considerably im-
proves failure handling. We can build on job-level failure recovery
techniques developed for computation. For instance, we can pro-
vide alternate job failure-recovery where we execute an alternate
job on encountering a failure. For data transfer, the alternate job
may determine the correctly transferred parts of the file and resume
the transfer from previous saved state.
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Figure 2: Prototype Model. A DAG specification file consisting
of both computational and data placement jobs is submitted to
DAGMan. DAGMan then submits computational jobs to Con-
dor, and data placement jobs to Stork.

We have added alternate protocol support to Stork for improving
failure recovery. Here users can specify an ordered list of protocols.
On encountering a failure, Stork switches to the next protocol in
the list. This is also useful when there are new fast protocols that
have not yet stabilized. With alternate protocol support, Stork uses
the new protocol when it works and switches to the slower more
reliable protocol on failure. Users can benefit from newer protocols
without having to worry about manual failure recovery.

To handle data transfer with multiple protocols, we have added a
stork module that can perform protocol translation using in-memory
buffer or disk buffer. Figure 1 shows this. While using disk buffer,
we allocate and de-allocate space to prevent over-committing disk
and to avoid the resultant failures.

Performing checksum requires more flexibility, especially since
the storage server may not support checksum. To handle this, we
let users execute a direct acyclic graph of computational and data
placement jobs. Thus, users can transfer data from source to desti-
nation via an intermediate node for protocol translation and if the
destination server does not support checksum, copy the data to a lo-
cal node and compute the checksum there. Permitting users to run
arbitrary computation enables users use sophisticated techniques
like network encoding [15] whereby they can reconstruct the data
from certain set of blocks .

We use Condor [17]/Condor-G [10] as the computational sched-
uler. Condor-G uses the Globus [9] toolkit functionality to sub-
mit computation jobs to any grid-enabled scheduling system. To
perform the management of the DAGs, we employed the Directed
Acyclic Graph Manager (DAGMan) [4, 23], which is a service for
executing multiple jobs with dependencies between them. DAG-
Man accepts a declaration that specifies the jobs to be executed and
the order of their execution. It logs the execution of the DAG to
persistent storage, allowing it to resume a DAG where it left off,
even in the face of crashes and other failures. We have enhanced
DAGMan with data placement support and our DAGMan submits
the data placement job to Condor and the data placement job to
Stork. Figure 2 shows this process.

Due to the storage limitations of intermediate nodes in a data-
pipeline, we need to remove the files from intermediate nodes after
they have reached the next stage of the pipeline. The DAG model
is flexible enough to accommodate that.

Some transfers may just hang for a long time due to problems
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Figure 3: All steps in the pipeline are represented as full-
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sented as directed arcs.

in the system, or bugs in the underlying protocol implementation.
To handle this, the system should let users specify timeouts. If
a transfer takes longer than a certain amount of time, the system
should terminate and restart them. In our scheme, either DAGMan
or the scheduler can implement this ”kill-and-restart” mechanism.
We implemented the kill-and-restart mechanism in Stork. Users
can specify the time-out statically by assuming a certain minimum
transfer rate or an agent can specify it dynamically taking into ac-
count the performance of previous transfers.

Figure 3 shows the steps involved in transferring a single file
from node A to node C using an intermediate nodes B for staging
and protocol translation. All of the steps including data transfer,
space allocation and de-allocation, removal of temporary files and
checksum computations are full-fledged jobs. Depending on the
characteristics of the jobs, DAGMan submits to either a computa-
tional or a data placement scheduler. Directed arcs represent depen-
dencies between jobs. For the transfer of multiple files, we merge
these DAGs into a giant DAG with dependencies to limit number
of files transferred concurrently and to prevent over-committing the
disk space on the staging nodes.

4. EVALUATION
National Center for Supercomputing Applications (NCSA) sci-

entists wanted to replicate the Digital Palomar Sky Survey (DPOSS)
[5] image data residing on SRB mass storage system at San Diego
Supercomputing Center (SDSC) in California to UniTree mass-
storage system at NCSA, Illinois to enable them to perform later
processing. The total data size was around three terabytes (2611
files of 1.1 GB each). Since there was no direct interface between
SRB and UniTree at the time of the experiment, the only way to
perform the data transfer between these two storage systems was to
use an intermediate node to perform protocol translation. Hoping
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Figure 4: The topology of the network used in the transfers,
with the bottleneck bandwidth and latency between each node.
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Figure 5: Building a data-pipeline with one intermediate node
may be sufficient for data transfer between two heterogeneous
storage systems.

to avoid hiring an operator, NCSA astronomers decided to try our
data pipelines. For this purpose, we designed three different data
pipelines to transfer the data and to evaluate our system.

We had access to two cache nodes: one at SDSC (slic04.sdsc.edu)
and other at NCSA (quest2.ncsa.uiuc.edu). The SRB, UniTree servers
and SRB cache node had gigabit Ethernet(1000 Mb/s) interface and
the NCSA cache node had a fast Ethernet(100 Mb/s) interface. The
local area network at SRB was a gigabit and the wide-area network
was 622 Mbps ATM shared among all users. The bottleneck link
was the fast Ethernet interface card on the NCSA cache node. Fig-
ure 4 shows the topology of the network, bottleneck bandwidth and
latencies.

4.1 First Data Pipeline Configuration
In the first data pipeline, we used the NCSA cache node,

quest2.ncsa.uiuc.edu, to perform protocol translation. We trans-
ferred the DPOSS data from the SRB server to the NCSA cache
node using the underlying SRB protocol and from the NCSA cache
node to UniTree server using UniTree mssftp protocol. Figure 5
shows this pipeline configuration.

The NCSA cache node had only 12 GB of local disk space for
our use and we could store only 10 image files in that space. This
required careful space management and we had to remove a file
immediately after transferring it to UniTree to create space for the
transfer of next file.

We got an end-to-end transfer rate of 40Mb/s from the SRB
server to the UniTree server. We calculated the end-to-end trans-
fer rate by dividing the data transferred over a two-day period by
the total time taken (2 days) and repeating the process three times
interleaved with other pipeline configuration in random order and



Figure 6: Throughput and concurrency of the transfers be-
tween SDSC and NCSA using the first pipeline configuration.
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Figure 7: Building a data-pipeline with two intermediate nodes,
one close to the source and one close to the destination, may
provide additional functionality and increase performance.

averaging. We also applied statistical methods and verified that
day effect was statistically insignificant at 90-percentage level. We
observed that the bottleneck was the transfers between the SRB
server and the NCSA cache node. As SRB protocol did not allow
us to tune TCP windows size forcing us to increase concurrency to
achieve a similar affect, we decided to add another cache node at
the SDSC site to regulate the wide area transfers.

Figure 6 is a snapshot showing the throughput and concurrency
level of the system over time. There was a six-hour UniTree main-
tenance period during which the transfers stopped and than re-
sumed. At some point, the SRB server started refusing new con-
nections. The pipeline reduced the concurrency level automatically
to decrease the load on the SRB server.

4.2 Second Data Pipeline Configuration
In the second pipeline configuration, we used both SDSC and

NCSA cache nodes. We transfer the data from the SRB server to
the SDSC cache node using the SRB protocol, then from the SDSC
cache node to the NCSA cache node using third-party GridFTP
transfers, and finally from the NCSA cache node to the UniTree
server using UniTree mssftp protocol. Figure 7 shows this pipeline
configuration. SDSC cache node also had space limitations requir-
ing careful cleanup of transferred files at both cache nodes.

While this step may seem like an additional copy, we did not
have source checksum. By transferring data to a local node, we

Figure 8: Throughput and concurrency of the transfers be-
tween SDSC and NCSA using the second pipeline configura-
tion.

Figure 9: Throughput and concurrency of the transfers be-
tween SDSC and NCSA using the third pipeline configuration

were able to calculate the checksum and verify it at the destination.
Using this configuration, we got an end-to-end transfer rate of 25.6
Mb/s, and the link between the SDSC cache node and the NCSA
cache node was the bottleneck.

Figure 8 shows the throughput and concurrency level of the sys-
tem over time. For optimal performance, we wanted a concurrency
level of ten and the system maintained it. The fluctuations in the
throughput are due to changing network conditions and GridFTP
not aggressively utilizing the full bandwidth.

4.3 Third Data Pipeline Configuration
The third data pipeline configuration was almost the same as the

second one, except that we replaced third-party GridFTP transfers
between the SDSC cache node and the NCSA cache node, which
were the bottleneck, with third-party DiskRouter [11] transfers.

This time we got an end-to-end throughput of 47.6 Mb/s. Disk-
Router works best with a single transfer and it effectively utilizes
the available bandwidth with a single transfer. Figure 9 shows two
failures that occurred during the transfers. The first one was a Uni-
Tree server problem, and the second one was reconfiguration of
DiskRouter that improved its performance. The system recovered
automatically in both cases.
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Figure 10: Shows automated failure recovery in third pipeline
configuration.

4.4 Comparison of Pipeline Configurations
Comparison of performance of pipeline 1 and pipeline 2 shows

the penalty associated with adding a node to the pipeline. Third
pipeline configuration, which is similar to the second with GridFTP
replaced by DiskRouter, performs better than first and second be-
cause DiskRouter dynamically tunes the socket-buffer size and the
number of sockets according to the network conditions and it uses
buffering at Starlight network access point to aid in the data trans-
fers.

Carefully tuning the I/O and socket buffer sizes in GridFTP would
substantially improve its performance and we can integrate an agent
that can do it dynamically into the data-pipeline. This also shows
that running wide-area optimized protocols between cache nodes
can improve performance enough to offset the penalty of an addi-
tional node.

Adding extra nodes can result in increased flexibility. For in-
stance, with pipeline 2 and 3, we can compute source checksum
and verify it at the destination. If the source checksum does not ex-
ist, as is the case with the DPOSS data, we need to compute it on a
local node on the source network. To verify that this node is not cor-
rupting the data, we can apply statistical techniques, transfer some
data to other local nodes, and verify that the checksums generated
on those nodes match with those generated on the stage node. Fi-
nally, if the destination also does not support checksum, as is the
case with UniTree, we need to download the data to some other
local node on the destination network and compute the checksum
there and verify it with the source checksum. We can accomplish
this easily using the DAG.

The pipelines mentioned here are just highlights of what is pos-
sible with data pipelines. The pipelines are inherently flexible and
we have been able to build a distribution network to distribute the
DPOSS dataset to compute nodes at NCSA, Starlight and UW-
Madison.

4.5 Automated Failure Recovery
The most difficult part in operating data-pipelines is handling

failures in an automated manner. During the course of the three
Terabytes data movement, we had a wide variety of failures.

At times, either the source or the destination mass-storage sys-
tems stopped accepting new transfers. Such outages lasted about
an hour on the average. In addition, we had windows of sched-
uled maintenance activity. We also had wide-area network outages,
some lasting a couple of minutes and others lasting longer. While
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Figure 11: Shows automated failure and flow control in the sec-
ond pipeline configuration

the pipeline was in operation, we had software upgrades. We also
found a need to insert a timeout on the data transfers.

Occasionally we found that a data transfer command would hang.
Most of the time, the problem occurred with third-party wide-area
transfers. Occasionally, a third-party GridFTP transfer would hang.
In the case of DiskRouter, we found that the actual transfer com-
pleted but DiskRouter did not notify us of the completion. Because
of these problems, we set a timeout for the transfers. If any transfer
does not complete within the timeout, Stork terminates it, performs
the necessary cleanup and restarts the transfer.

Figure 10 shows how the third data pipeline configuration au-
tomatically recovers from two sets of failures. At around 15-17
hours, SRB transfers almost hung. They look a long time, around
one hour and 40 minutes, but lesser than the two-hour time-out for
a transfer. This could have been due to some maintenance or some
other higher priority job using all the tape drives at the mass stor-
age. The transfers did not fail but completed after that period, so it
does not appear as failure. Around 30 hours, there was short wide-
area network outage. This resulted in DiskRouter failures. Another
wide-area network outage at around 50 hours resulted in the second
set of failures. The data pipeline recovered automatically from all
these failures.

Figure 11 shows how the pipeline adapts the flow control on the
fly. Around 4 hours, GridFTP encounters some wide-area failures
and the pipeline lowers the number of concurrent transfers to seven.
Close to 20 hours, SRB refuses new connection and the pipeline re-
sponds by trying to maintain a single connection. This affects the
next hop and the number of concurrent GridFTP transfers drops
to six. After that, UniTree accepts more connections and then
slows down and this causes GridFTP to drop the number of con-
current transfers to five because of space limitations at the NCSA
cache node. The next UniTree failure, at close to 100 hours, makes
GridFTP drop the number of concurrent connections to four. The
system was working through all these and users did not notice any
failures. The end-to-end transfer rate observed by seeing the num-



ber of UniTree put transfers that completed show how well behaved
the system is. Even though different flow control issues take place,
the system is quite effective at maintaining the throughput.

5. RELATED WORK
Allcock et al. [1] introduce the GridFTP protocol and Replica

Catalog and discuss how they enable secure and efficient data trans-
fer and data replication. Reliable File Transfer Service (RFT) [18]
transfers byte streams reliably. It handles a wide variety of prob-
lems like dropped connections, machine reboots, and temporary
network outages automatically via retrying. Kangaroo [22] pro-
vides high throughput wide-area data movement for remotely exe-
cuting jobs by overlapping CPU and I/O. Kangaroo also has a cer-
tain degree of fault tolerance to cope with failures that occur in the
wide-area. GridFTP, RFT and Kangaroo are tools that can move
data between systems supporting their interface, but they cannot
move data between heterogeneous storage systems lacking a com-
mon interface. All of them support only point-to-point transfers
whereas data pipelines automatically manage multi-hop transfers.

Feng [6] mentions a case where visualization scientists at Los
Alamos National Lab dump data to tapes and send them to Sandia
National Laboratory via Federal Express as it is faster than elec-
tronically transmitting them via TCP over the 155 Mbps(OC-3)
WAN backbone.

Lightweight Data Replicator (LDR) [12] can replicate data sets
to the member sites of a Virtual Organization or Data Grid. Ko-
randa et al. developed it using Globus tools for replicating LIGO [16]
data. In its present form, LDR expects the use of a single data trans-
port protocol (GridFTP). Our work is more general in nature and in
addition to being able to manage point-to-point transfers like LDR,
it can manage multi-hop data transfers between systems that do not
support a common data transport protocol.

6. CONCLUSION
In this paper, we have proposed data-pipelines, an automated

system for managing multi-hop data transfers. The system is flex-
ible and allows running computation on the data as well. It is re-
silient to failures and can recover automatically from a variety of
network, storage system, software and hardware failures. Through
a real-life data transfer involving thousands of large files, we have
shown that data pipeline works and is able to handle failures effec-
tively. We present data pipelines as a viable alternative to dumping
data to tapes and fedexing them or writing scripts and baby-sitting
the scripts to deal with failures. We have shown that adding addi-
tional nodes does not necessarily decrease the end-to-end perfor-
mance of the system and may in fact increase flexibility and im-
prove performance if done properly.

We are planning to build automatic tuning capability into the sys-
tem. Specifically we would like to add a feature to dynamically
determine the optimal concurrency level for the different protocols.
We are also considering building functionality into the system to
dynamically choose the optimal pipeline configuration. We are
planning on a network-monitoring infrastructure which would al-
low us to choose where to place the DiskRouter nodes and how
many to place so that we get the best performance.
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