
NeST: Network Storage Technologies
DRAFT White Paper ∗

John Bent, Venkateshwaran V
Department of Computer Science, University of Wisconsin

July 2001

∗Please see www.nestproject.com for more information.

1



Abstract

Current storage appliances have been traditionally de-
signed to meet either the storage demands of a local or
a wide area network. The grid is unique in that it es-
capes this limitation and allows users to share resources
both within and between local area networks. However,
this freedom creates many new challenges to storage ap-
pliances that would be used on the grid.

NeST is a user-level software-only storage appliance
that is being specifically designed to meet the unique stor-
age needs of grid computation. A virtual protocol layer
allows arbitrary data transfer and authentication proto-
cols to be used. An abstract storage interface allows a
wide range of physical storage devices to be optimally uti-
lized. Multiple concurrency architectures provide the flex
needed to achieve high levels of throughput across mul-
tiple host platforms. Flexible mechanisms allow storage
within NeST to be reserved and there is support for dif-
ferentiated levels of service as well. Finally, a policy lan-
guage such as Condor ClassAds can be used to advertise
the NeST and allow discovery of both the physical storage
and of the data contained thereon.

1 Introduction

An appliance is any tool that performs one function well.
The general definition of an appliance is well-understood
and has already been thoroughly discussed [5]. Users ex-
pect that appliances are easy to use and are both robust
and reliable.

Storage appliances, more specifically, have tradition-
ally been thought of as the tools used to store and re-
trieve objects from storage1. The need for reliable, scal-
able, manageable, and high performing network storage
has led to a proliferation of commercial storage appliances
by vendors such as NetApp [6] and EMC. [3]

However, there are several limitations with the current
storage systems offered today. Not all current storage sys-
tems suffer from all of these limitations but there are none
that adequately address all. In short, current storage so-
lutions were designed either for wide area or local area
storage; none of their designs seem guided by practical
considerations of the nature of the grid.

2 Grid storage challenges

Current storage appliances have been traditionally de-
signed to meet either the storage demands of a local or

1Although computational storage is generally thought of as disks, it
can be more generally defined as any physical capacity for storing and
retrieving data.

a wide area network. The grid [4] is unique in that it es-
capes this limitation and allows users to share resources
both within and between local area networks. However,
this freedom creates many new challenges to storage ap-
pliances that would be used on the grid.

2.1 ”No-futz” commodity storage

Grid storage does have some of the same storage require-
ments as other systems. Ease of integration and mainte-
nance is one of these requirements. Grid users, like all
users, need appliance-like storage that allows true ”no-
futz” computing. Many of the current vendor-offered stor-
age appliances are easily installed and maintained.

However, these appliances bundle together proprietary
hardware and software and are sold at prices well above
the commodity curve. Although all users would prefer
cheaper appliances, grid systems in particular need the
ability to turn commodity machines into storage appli-
ances on demand. Software based storage appliances can
return storage to the commodity curve and enable grid
systems to quickly react to storage needs through the im-
mediate acquisition of storage appliances.

2.2 Multiple administrative domains

One of the more unique features of grid computing is
that grid users migrate across multiple administrative do-
mains. This migration presents three rather unique chal-
lenges to grid storage. The first is that each of these ad-
ministrative domains may use a different set of commu-
nication and security protocols. This migration creates
an additional challenge in that grid storage must provide
efficient methods of access for both local and wide area
storage transfers. Finally, providing storage across admin-
istrative domains requires deploying storage appliances
within each domain. System administrators are justifi-
ably wary of allowing arbitrary code super-user privilege
within their domains. Any proposed storage appliance
must therefore be able to run without special privilege in
order to be politically acceptable on the grid.

2.3 User Management and Reservations

A storage appliance must manage both its users and their
groups. The grid introduces a new type of migratory
users, who use storage as a hopping board rather as a long-
term store. Support for migratory users and their storage
demands should be efficiently provided by the storage ap-
pliance.

Reservation guarantees and different qualities of ser-
vice are storage requirements that are perhaps felt more

1



strongly on the grid than elsewhere. Users will be unwill-
ing to migrate to a different domain unless the storage ap-
pliance in that domain can guarantee to support the user’s
I/O demands. Storage appliances must therefore provide
mechanisms by which users can reserve storage space for
their I/O requirements. Beyond just reservations, the stor-
age appliance should also be ”cost-aware”, and able to
differentiate beyond valuable and worthless data when ex-
pired reservations are selected for removal.

2.4 Policy language support

For a storage appliance to be appropriate for grid comput-
ing, it must provide flexible mechanisms to advertise its
capacity, its availability and its contents. Administrators
will want additional mechanisms to allow them to specify
who will use their storage appliances, how much storage
users will be allowed and for how long will they be al-
lowed to use it.

The Condor scheduling system [8] has the ability to
matchmake [10] resources and consumers using admin-
istrative policies defined in the ClassAd policy language.
Condor’s wide-spread deployment on the grid stands as
a testimony to the necessity for flexibly policy language
support in storage appliances.

3 A unique solution: NeST

NeST is a user-level software-only storage appliance that
is being specifically designed to meet the unique stor-
age needs of grid computation. A virtual protocol layer
allows arbitrary data transfer and authentication proto-
cols to be used. An abstract storage interface allows a
wide range of physical storage devices to be optimally
utilized. Multiple concurrency architectures provide the
flex needed to achieve high levels of throughput across
multiple host platforms. Flexible mechanisms allow stor-
age within NeST to be reserved and there is support for
differentiated levels of service as well. Finally, a policy
language is used to advertise the NeST and allow discov-
ery of both the physical storage and of the data contained
thereon.

3.1 From commodity to appliance

To break the false dependence imposed by current ven-
dors between hardware and software, NeST is a software
only storage appliance. The advantage of this is twofold:
cost and convenience. By decoupling the appliance from
the hardware, NeST is able to return the cost of storage
to the commodity curve. In addition to being inexpen-
sive, commodity machines are typically easily available,

thereby making the acquistion of a NeST storage appli-
ance particularly easy. From the start, our goal has been
the ”no-futz” conversion of a commodity machine into a
storage appliance.

However, attempting to provide appliance-like behav-
ior across a wide range of commodity systems (both hard-
ware and software) does create new challenges. The ap-
pliance must be able to adapt to the particulars of the host
commodity machine. Storage appliances such as those
provided by NetApp and EMC avoid these challenges by
building integrated appliances in which the storage must
interface with only one operating system and one physi-
cal storage interface. To meet these challenges and realize
our goal of allowing users to create appliances from com-
modities, NeST has an abstract storage interface and uses
multiple concurrency architectures.

3.1.1 Abstract storage interface

There is a wide range of physical storage devices found
in current commodity systems. For example, a machine
might have a hardware RAID system, IDE or SCSI disks,
or perhaps even a tape drive. In addition, the file systems
provided by different commodity operating systems may
have radically different performance on the same hard-
ware. For this reason, NeST is designed such that all in-
teraction with the local filesystem is directed through an
abstract storage interface.

This allows NeST to transparently adapt to the partic-
ulars of the physical storage and file system of the host
machine. For example, NeST should use the local file sys-
tem when run on operating systems with a good local file
system and should manage directly the raw disk when run
on operating systems without. The abstract storage inter-
face can allow this by providing multiple virtual storage
implementations and intelligently, perhaps even dynami-
cally, choosing between them.

This abstract storage layer would even permit a storage
appliance to be created from a diskless workstation. This
memory only storage appliance would expose a filesystem
interface to remote memory. This could then be used in a
variety of ways. One example is as high speed buffers by
wide area data movement systems such as Kangaroo. [13]

3.1.2 Multiple concurrency architectures

Another difficulty of creating storage appliances from
commodity machines is that models to achieve high con-
currency are not consistent across different operating sys-
tems. [9] For example, using threads to multiplex be-
tween multiple clients may work well on some systems
but poorly on others.

To address this, NeST is currently implemented with
three different, swappable, concurrency architectues.

2



These is an architecture which dispatches client requests
to a pre-allocated pool of processes, an architecture
which dispatches client requests to a pre-allocated pool
of threads and a single process non-blocking architecture
based on the select system call. For each host system,
NeST can therefore use the architecture with the highest
level of performance on that particular system.

3.2 Virtual protocol layer

To meet the challenges of providing storage for multiple
administrative domains, NeST exports a virtual protocol
layer. Multiple administrative domains will use different
protocols for wide area file transfers, for local area ac-
cesses and will often need to use their own proprietary
protocols as well. In addition to using different protocols
for file transfers, various adminstrative domains will often
require different protocols for security and authentication
as well. For example, grid users who need to transfer data
between two administrative domains require storage ap-
pliances that support all protocols necessary to authenti-
cate and communicate with both domains.

However, to build a storage appliance that supports all
necessary protocols for all administrative domains ipso
facto is unrealistic. On the other hand, a storage appli-
ance that is capable of using arbitrary protocols is both
feasible and necessary for grid computing.

A virtual protocol layer allows NeST to communicate
using multiple protocols simultaneously and new proto-
cols are easily added in the same way that new file systems
can be added in a virtual file system (VFS) [7]. Sim-
ilarly, multiple authentication mechanisms can be used
by adding them to the connection routines of the virtual
protocols. The VFS analogy is particularly relevant be-
cause, by adding a virtual protocol to NeST, the effect is
that of creating a pluggable file system on the storage ap-
pliance. For example, to efficiently allow both wide and
local storage accesses, NeST could be configured with a
virtual grid-FTP protocol for the wide area accesses and a
virtual NFS protocol for the local.

3.2.1 Chirp

The difficulty that we anticipated in creating a virtual pro-
tocol layer was defining the minimum subset of generic
storage requests such that any and all network protocols
can cleanly mesh with the interface. Although we have
implemented only a small number of protocols to date,
we have found that the minimum subset defined so far is
somewhat lacking. Common to the protocols which we
have examined are the obvious file access requests such
as get, put, list and remove. What is lacking however are
the meta-management requests of the storage appliance

itself, such as requests to add users, set caching policy, re-
quest statistics and more flexible mechanisms to allow the
expression of administrative policies as well.

For this reason, we have begun designing a new net-
work protocol, Chirp, that contains the minimum compre-
hensive set of file access requests as listed above as well
as the meta-management requests. Clients who are unable
to rebuild their applications to take advantage of the spe-
cific Chirp commands can still of course use the protocol
of their choice. However, clients who can rebuild their
applications can use the managerial features in Chirp to
attempt to optimize their use of the appliance.

Our expectation is that scheduling systems like Condor
will be the primary users of the Chirp protocol. For ex-
ample, using Chirp, Condor could create an account for
a grid user in a local Condor pool, create a reservation
for the user’s output files, ensure that the input files have
been staged and then schedule the job. The job meanwhile
does not need to be Chirp aware, or even NeST aware, and
can transparently access its data through an interposition
agent like Bypass. [14]

3.3 User Management and Reservations

As mentioned in section 2.3, users will only be willing to
migrate data files across wide areas if they can be assured
a priori of reliable storage allocation. For this reason, we
have defined and added the necessary set of Chirp requests
to the abstract storage interface.

3.3.1 Reservations and guarantees

A storage appliance designed to be shared by multiple
users must allow the storage space available to a user to
be restricted. NeST allows this by accepting storage space
reservation requests. Currently, only the Chirp protocol is
capable of sending these requests, but any protocol which
supports reservations could plug into the virtual protocol
layer and take advantage of this functionality. All stor-
age space reservation requests in NeST consist of three
parameters - storage size, the time duration for which the
reservation is required and the reproduction-cost estimate
of the data to be stored in the reservation. The time and
cost parameters in reservation requests can be correctly
manipulated to accommodate migratory users.

Different levels of service are provided via the cost pa-
rameter associated with each reservation. Reservations
(and their associated data) are removed lazily when a new
reservation request can be fulfilled only by removing al-
ready expired reservations. The victim selection process
is a function of the cost parameter and the time since ex-
piration.

The reservation system is intricately linked with the
storage system and as such is implemented within the ab-

3



stract storage layer. Currently the abstract storage layer
has been defined but not yet well fleshed out and con-
tains only one implementation, that which uses the local
filesystem. In this case, the native quota system provided
by the filesystem seems to be the natural choice for en-
forcing these reservations. The advantages in using the
filesystem’s quota management are introducing very little
overhead on system’s performance, its ability to operate
on the granularity of blocks/inodes per device, and does
not require any kernel changes for using it.

On the other hand, the filesystem’s quotas can be ma-
nipulated only by the super-user. When run without super-
user privilege, NeST cannot protect the storage device
from other users and therefore must treats reservation re-
quests as hints rather than guarantees. Additionally, the
filesystem provided quota system is not device-size aware;
in other words, the quota system can not by itself guar-
entee that the sum of all quotas given to users in a partic-
ular device is less than or equal to the size of the device.
Therefore, it is the responsibility of the NeST to ensure
that storage is not overbooked.

We decided to use the quota system as the enforcement
mechanism as we could not find any other effective mech-
anism that satisfies our needs. Logical Volume Manager
(LVM) [11] could be used as the enforcement mechanism,
but the operating costs involved are very high. The cost
of creating a new logical volume for every new user and
the cost of changing the size of a logical volume every
time the user’s reservation needs to be updated are very
high compared to the filesystem’s quota updates. LVM
also allows only the super-user to change or reconfigure
the logical volumes.

3.3.2 User and group management

In addition to reservation requests, NeST provides a set
of requests to manage users and groups. These requests
are analogous with similar requests in the Unix operating
system. Their implementation within NeST is dependent
on the abstract storage interface as well as whether NeST
is run with super-user privilege. In the filesystem imple-
mentation, NeST can use the system’s user (/etc/passwd)
and group (/etc/group) management files to manage its
users/groups. When run without super-user privileges,
NeST can manage its own user and group files. In this
case, all files appear to the operating system to be actually
owned by NeST.

3.4 Policy language support

It is clear that policy languages are becoming an integral
feature of the grid. Languages such as ClassAds [10] al-
low the expression of arbitrary policies. Given the diffi-
culties created by multiple administrative domains, flexi-

ble policy languages are necessary to allow system admin-
istrators the freedom to deploy and use storage appliances
within the constraints of their own particular policies.

NeST’s virtual protocol layer allows arbitrary policy
languages to act as an interface or a broker to the stor-
age appliance. Such flexible mechanisms make it difficult
to predict the range of policies which might be applied to
a storage appliance. As a exploratory step in this direc-
tion, we are adding a few simple policies to Chirp using
ClassAds and the Condor matchmaking system.

3.4.1 Administrative management

An important storage feature is the ability needed by ad-
ministrators to set and enforce the policies of their ad-
ministrative domain. Examples of these administrative
decrees are time leased allocations, economic based allo-
cations and mechanisms to define both how and to whom
the resource is advertised.

These advertisements can then be used to guide the re-
source selection of both individual users and of schedul-
ing systems. For example, the Chirp protocol currently
allows users to name logical collections of data stored on
a NeST. The NeST then advertises the logical collections
it contains to the Condor matchmaker, which can then
place jobs needing those collections in close proximity to
the NeST. Other information is also currently included in
these advertisements such as the total available space on
the NeST as well as a list of supported protocols and the
ports on which they are being monitored.

4 A case study

To demonstrate the utility of using NeST for grid com-
putations, we have, jointly with other researchers here at
UW, explored the creation of grid communities. [12] The
motivation for this work is the large datasets accessed by
many high-energy physics applications. [1] In this work,
we propose creating grid communities around replicated
datasets. Previous work had emphasized either moving
jobs to the data or moving the data to the job.

Clearly both approaches have their limitations. By us-
ing the scheduling and matchmaking features of Con-
dor, the transparent interpositioning of Bypass and stor-
age provided by NeST, we were able to combine these
approaches. Using the high-throughput provided by the
GridFTP [2] virtual protocol, we first replicated the data
to remotely distributed NeSTs. Around each NeST, an
I/O community was thereby formed as shown in Figure 1.
Scheduled jobs then used Bypass and Chirp to perform
partial file accesses. This approach combines the benefits
of both job moving and data moving and allows scaling,

4



Storage Device

Compute Device

Admin Domain

I/O Community

Distributed Repository

Figure 1: I/O Communities. A dataset is replicated
from the distributed repository and staged in remotely dis-
tributed NeSTs. Around each NeST, an I/O community
is formed and Condor can then schedule jobs within the
newly created community. Bypass allows the scheduled
jobs to transparently use Chirp to access the data from
the NeST. This approach allows scaling, sharing and low-
latency data accesses.

sharing and low-latency data accesses. Experimental re-
sults using remotely distributed NeSTs have not yet been
collected, but local experiments suggest that the expected
speedup is significant.

5 Future work

This is a wide-open area. Clearly there is a storage void
currently in the grid. NeST is positioned to fill that void.
As we’ve argued, NeST has been designed for the grid
and is the only known storage appliance that can satisfy
the diverse and challenging set of requirements created
by grid computing.

But much work needs to be done before NeST is a pro-
duction quality system. Better scheduling and control of
multiple concurrent transfers is one area which needs to be
examined. Grid schedulers need storage which can pro-
vide at least approximate schedule guarantees. To enable
such scheduling, we will need to add bandwidth reserva-
tion to our current reservation mechanism which allows
storage reservations only.

Storage bandwidth reservations would have two com-
ponents, the network bandwidth and the disk bandwidth;

the bandwidth realized by the user would be the minimum
of the two. Allocating desired network bandwidth to mul-
tiple users is not overly difficult and could be implemented
using prioritized time division multiplexing. Disk band-
width allocations however are more involved as they in-
volve an additional seek time. Mere multiplexing of disk
accesses could result in multiple seeks and reduce avail-
able throughput. Additionally, scheduling disk accesses is
not straightforward as the device controller may reorder
disk access requests.

The virtual protocol layer could use some more prod-
ding to attempt to better define the comprehensive subset
of storage requests necessary to allow arbitrary communi-
cation protocols to be easily added. The abstract storage
interface is designed but needs to be fleshed out. Currently
it supports only one storage implementation: a flat names-
pace on the local file system. Flexible mechanisms for
guaranteeing different levels of storage bandwidth need
to be designed and implemented.

Finally, NeST should eventually be able to automati-
cally configure its own concurrency architecture and stor-
age interface either at installation time or dynamically.

6 Conclusion

The grid presents many new and as of yet unmet chal-
lenges to storage appliances. The NeST storage appliance
recognizes the unique nature of grid computing and is de-
signed specifically for the grid.

By building software-only appliances, NeST returns
storage to the commodity curve and facilitates on demand
creation of storage appliances. An abstract storage inter-
face and multiple concurrency architectures are designed
to provide consistent levels of performance across multi-
ple commodity systems. Flexible mechanisms to reserve
storage space and provide different levels of service are
present as well.

Grid applications especially can benefit from NeST’s
virtual protocol layer which allows arbitrary communica-
tion and authentication protocols to access the appliance.
This virtual protocol layer also allows administrators to
express and enforce adminsistrative policies.

It has also been shown that NeST can be effectively
manipulated by scheduling systems to allow efficient re-
source usage across widely distributed grids. In this way,
NeST storage appliances can be both easily deployed and
easily discovered.

References

[1] William Allcock, Ann Chervenak, Ian Foster, Carl
Kesselman, Charles Salisbury, and Steve Tuecke.

5



The data grid: Towards an architecture for the dis-
tributed management and analysis of large scientific
datasets. to appear in the Journal of Network and
Computer Applications, 2001.

[2] Ann Chervenak, Ian Foster, Carl Kesselman, and
Steve Tuecke. Protocols and services for distributed
data-intensive science. to appear in Proceedings of
ACAT2000, 2000.

[3] EMC Corporation. http://www.emc.com.

[4] Ian Foster, Carl Kesselman, and Steve Tuecke. The
anatomy of the grid: Enabling scalable virtual or-
ganizations. to appear in International Journal of
Supercomputer Applications, 2001.

[5] D. Hitz. A storage networking appliance. Technical
Report TR3001, Network Appliance, Inc., 2000.

[6] Network Appliance Inc. http://www.netapp.com.

[7] S. R. Kleiman. Vnodes: An architecture for multiple
file system types in Sun Unix. In Proc. Summer 1986
USENIX Conf., pages 238–247, Atlanta, GA (USA),
1986.

[8] M. J. Litzkow, M. Livny, and M. W. Mutka. Condor -
A hunter of idle workstations. In Proceedings of the
8th International Conference on Distributed Com-
puting Systems (ICDCS), pages 104–111, Washing-
ton, DC, 1988. IEEE Computer Society.

[9] V. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
efficient and portable web server. In Proceedings of
the Usenix Technical Conference, 1999.

[10] Rajesh Raman, Miron Livny, and Marvin Solomon.
Matchmaking: Distributed resource management
for high throughput computing. In Proceedings of
the Seventh IEEE International Symposium on High
Performance Distributed Computing, July 1998.

[11] David Teigland and Heinz Mauelshagen. Volume
managers in linux. In Proceedings of the 2001
USENIX Annual TechnicalConference, 2001.

[12] Doug Thain, John Bent, Andrea Arpaci-Dusseau,
Remzi Arpaci-Dusseau, and Miron Livny. Gather-
ing at the well: Creating communities for grid i/o.
submitted to SuperComputing, 2001.

[13] Douglas Thain, Jim Basney, Se-Chang Son, and
Miron Livny. The kangaroo approach to data move-
ment on the grid. In Proceedings of the Tenth IEEE
Symposium on High Performance Distributed Com-
puting, San Francisco, California, August 2001.

[14] Douglas Thain and Miron Livny. Multiple bypass:
Interposition agents for distributed computing. Jour-
nal of Cluster Computing, 4:39–47, 2001.

6


