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Abstract
We present the design and implementation of a migra-
tory file service (MFS) for scientific applications on the
Grid. An MFS is both easy to use and delivers high per-
formance: two important properties that traditional Grid-
based storage solutions are lacking. The key responsi-
bility of an MFS is to dynamically create the user’s ex-
pected file system environment on a remote cluster where
the user’s jobs are running.

We explore these concepts in a prototype MFS called
the Hawk File Service. HFS transparently redirects appli-
cation I/O to a set of migratory proxies that are located
near the user’s jobs; thus, the jobs can execute as if in
their home environment. HFS also intelligently manages
the set of proxies to account for the working-set size and
failure characteristics of the cluster; thus, the jobs execute
with faster access to their files and the overall through-
put of the system is improved. Through a series of mi-
crobenchmarks and an application study, we demonstrate
the effectiveness of the migratory file service paradigm.

1 Introduction
The Grid is a term used to describe a distributed com-
puting infrastructure for advanced scientific and en-
gineering researchers [9]. By exploiting Grid-based
technologies, users can harness the power of large
numbers of remote computational resources to solve
what otherwise may be intractable problems [13].
Although originally targeted for a limited range of
scientific applications, the Grid has evolved over the
years, and recently has generated interest in the com-
mercial sector [20].

Of central importance to a growing number of
Grid applications is data storage. Commonly-used
data sets are growing in size [1], and thus applica-
tion throughput will increasingly be determined by
the performance of the storage service they receive;
if data throughput is insufficient, then application

throughput (the true metric of success) suffers. Fur-
ther, as more applications are developed within the
Grid environment, ease-of-use of the storage system
is of great importance; if users must expend a great
deal of energy to manage their data sets manually,
then the number of users is likely to be reduced.

Unfortunately, in today’s Grid systems, storage is
often treated as a second-class citizen. For example,
many systems simply redirect all I/O operations from
remotely-executing jobs to a “home” node, which is
likely to be located across a wide-area link [19, 10].
Although easy to use, because the application en-
counters the same file system remotely that it does
when running at “home”, performance is sacrificed.
To use local storage resources (and thus improve per-
formance), users must instead manually load data
onto the systems where they wish to run jobs [3].
In this scenario, the opposite problem arises: perfor-
mance is gained, but ease-of-use is forfeited.

To obtain the best of both worlds and provide ease-
of-use to users while delivering high-performance to
applications, a new file service paradigm is required.
Such a service dynamically recreates a users’ stor-
age environment in a remote cluster, enabling appli-
cations to run remotely with little or no human in-
tervention. Such a service also provides excellent
storage-system performance, exploiting local storage
resources where possible. We term a system that cre-
ates such an environment for Grid applications a mi-
gratory file service (MFS), since it moves a user’s file
system environment to the site where the user’s jobs
are run.

To achieve this end, an MFS builds upon three
key technologies. The first is common to all batch
scheduling systems, namely, the core mechanism of
remote execution; the MFS uses the batch system to
initiate one or more migratory proxies on the distant
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cluster. The second technology is that of interpo-
sition [14, 16, 25]; once the proxies are active, the
migratory service must then interpose on job request
streams, redirecting client I/O requests to the prox-
ies. The third technology is multi-lingualism; the
proxies must be able to read data from and write data
to the “home” file server, whether user data is stored
on an AFS, NFS, HTTP, GridFTP, or other file server.

In building a migratory file service, we find that
two important issues must be addressed. The first is-
sue is of performance management. Specifically, the
service must automatically tailor proxy performance
to the workload’s demands. In such a dynamic envi-
ronment, there is no system manager to ensure things
are working “well”; thus “no futz” system techniques
must be developed [23]. The second issue of fail-
ure management arises because the migratory prox-
ies are run as jobs in a batch-scheduling system. In
such a system, nodes may be reclaimed at any time,
as idle resources are reclaimed or as other jobs of
higher priority enter the system. Thus, the set of
migratory proxies must handle failure as a common-
case scenario and not as a rare occurrence.

In this paper, we introduce a prototype migratory
file service known as the Hawk File Service (HFS).
HFS is built in the Condor batch-scheduling sys-
tem [19], exploiting its job scheduling characteris-
tics to run proxies and a remote file-service monitor
on remote clusters. HFS utilizes Bypass [25], a low-
overhead interposition agent, to redirect client I/O
streams to the proxies. To converse with the home
file service, HFS employs the NeST multi-protocol
engine, thus embedding within HFS the ability to
generate requests in a variety of common file-service
protocols.

Built into HFS are two enabling features. First,
HFS automatically adjusts the size of the proxy pool
to reduce unnecessary file traffic between proxies
and the home file server; the size of this active pool
is dynamically based upon the working set of the
user’s applications. Second, HFS automatically in-
cludes excess servers in a “backup” pool to handle
the frequent occurrence of node “failure”; the size
of the backup pool is based on historical information
for the average failure rate and recovery time of the
cluster of interest. Crucial to sizing both the active
and backup pools is the ability to monitor and subse-
quently adapt. Thus, HFS instantiates a file-service

monitor on the remote site, which is responsible for
both tracking the required performance and failure
statistics and adjusting the size of the proxy pools.

We evaluate HFS through a series of microbench-
marks, demonstrating the behavior of the system un-
der performance and failure scenarios. Overall, we
find that the monitoring and adaptation mechanisms
of HFS are effective. We also show that HFS can be
used effectively by a real application through a case
study of the BLAST DNA database searching pro-
gram [2].

The rest of this paper is structured as follows. We
give an overview of HFS in Section 2. In Sections 3
and 4 we describe two key pieces of functionality in
HFS: the ability to size the active pool for perfor-
mance the backup pool for availability, respectively.
We then present application experience in Section 5,
discuss related work in section 6, and conclude in
Section 7.

2 Overview
In this section, we present an overview of our en-
vironment. We begin by describing a typical usage
scenario for HFS. We then present our assumptions
about the types of applications that will likely use
HFS. Finally, we summarize each of the components
in our system: user applications, remote data servers,
a global scheduling system, proxies, and a local mon-
itor that controls proxy behavior.

2.1 Example Scenario
The following is a typical usage scenario for migra-
tory file services. A user has developed a particu-
lar application on their home system, and after de-
bugging is complete, wishes to move to production
mode. In this mode, the job will be run many thou-
sands of times, likely over the same input data set,
but while varying certain command line parameters.
Through the Grid infrastructure, the user has access
to one or more remote clusters of computers, and
wishes to run the jobs at these sites (for simplicity,
we will assume a single remote cluster is the tar-
get). Further, the potentially large input data set lies
on the user’s home file server. The difficulty occurs
when the compute cluster and the data server are not
in close proximity to each other. Although the user
can submit the jobs using a Grid scheduling system
and have each job access the data remotely (poten-
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Figure 1: Migratory File Service: An Overview
The diagram shows the relationships between the home
file server, the monitor, a single proxy, and two user jobs.
Each application has its I/O calls redirected by an inter-
position agent to the local proxy, which then either serves
the data from its local disk cache, or fetches the needed
data from the home file server across the wide area. The
monitor observes load and failure characteristics within
the remote cluster, in order to determine how many prox-
ies to instantiate to deliver high throughput.

tially across the wide area), doing so greatly reduces
throughput of the workload.

HFS is designed to eliminate this unnecessary la-
tency by dynamically instantiating and managing a
pool of proxies, which run on the remote cluster and
interpose on I/O requests from the user’s jobs. The
proxies have the role of caching data near the user
jobs such that latency is reduced for subsequent ac-
cesses to the data by this user. Proxies are submitted
to the cluster in the same manner as the user’s job;
thus, to the Grid scheduling system, they appear as
if they are normal user jobs. HFS also instantiates a
Hawk monitor process, which controls the size of the
proxy pool in order to maximize performance given
current workload and failure characteristics.

This relationship across components is illustrated
in Figure 1. A home file server is located in a remote
location from the target compute cluster. Each of the
four nodes in the available compute cluster is used
for running either a user’s job or a proxy; clearly,
the more nodes that are used for running proxies, the
fewer nodes are available for running user jobs. HFS
also runs a monitoring process that observes the be-
havior of each proxy to determine if proxies should
be added (or removed) from the system to improve

throughput.

2.2 Typical Workloads
Many of the data-intensive workloads that are suit-
able for running on the Grid have similar character-
istics. In particular, we assume the following, based
on the findings reported by Foster and Avery [7].

• Many related jobs are often submitted by a
given user at a particular time.

• Related jobs are likely to read the same in-
put files, though the offsets within those files
may differ. Total input file size may be from a
few MB to on the order of many GB in size.

• There is little write sharing across files; that is,
each job produces its own output file. Output
files are often not as large as input files; output
files on the order of a few KB are not atypical.

• Most jobs do not both read and write the same
file. Rather, many workloads are set up in a
pipeline, where the output of one phase forms
the input of the next phase.

2.3 System Components
We now describe each of the components of HFS in
more detail.

2.3.1 The Home File Server
The home file server can be any file server capable
of running in a distributed setting (e.g., NFS, AFS,
FTP). Thus, the proxies in the system must be able
to communicate with the home server in the required
protocol.

2.3.2 User Jobs
It is important that the presence of proxies in the sys-
tem is transparent to the end user (except for a im-
provement in performance). Subsequently, the user
jobs submitted to the cluster must not require modi-
fication to leverage the proxies. Therefore, we rely
upon an interposition agent to redirect I/O opera-
tions performed by the application to the appropriate
proxy.

For an interposition agent, we use the Pluggable
File System (PFS), which is built within the Bypass
interposition system [25]. PFS adapts legacy appli-
cations to new storage systems by interposing on I/O-
related system calls via hooks available within many
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dynamically-loaded library subsystems. In HFS, we
utilize PFS to build a application agent that redirects
relevant I/O calls to the proxies. The application
agent also has other responsibilities, which we de-
scribe in later sections.

When the user’s job first requests a file, the ap-
plication agent opens a connection to the monitor
and fetches the current list of proxies. The agent
then uses the requested file path to determine the
target proxy and opens a connection to it to ser-
vice the request. These connections are persistent
and subsequent mappings to the same proxy use the
pre-existing connection. Whenever the contents of
a proxy directory change, the monitor pushes the
change to each connected agent. Before each read,
the agent checks whether it has received any revised
directories. Additionally, whenever an agent’s re-
quest fails due to a lost proxy connection, the agent
waits until it receives a revised directory.

2.3.3 Global Scheduling
A global scheduling system is required to find avail-
able resources in the compute cluster and to execute
both the user jobs and the proxies within the clus-
ter. A variety of batch scheduling systems exist to
fulfill these purposes (e.g., Globus [8], PBS [26],
and LSF [29]). In our prototype, however, to sched-
ule and execute jobs, we use the Condor [19] batch
scheduling system.

2.3.4 Proxies
The migratory proxy is one of the major new pieces
of software within HFS. Because no administration
or human intervention can be expected, each proxy
must be run on the compute cluster using the exist-
ing mechanisms in the global scheduling system. In
Condor, this implies that the proxies are run as user-
level jobs with no special privileges. The primary
differences between a proxy and a typical file server
or proxy are that each proxy only services a single
user, does not have guaranteed storage space, and
may be killed at any time. We briefly discuss the
implications of these differences.
Private per user: Each proxy services only a sin-
gle user; therefore, each proxy can be treated as an
extension of the user’s job. Specifically, the home
file server trusts the proxy to the same extent as the
user job. This implies that all authorization is the re-
sponsibility of the home server, and not the proxy.

In our implementation, each proxy merely authen-
ticates the identity of the user and forwards the re-
quest to the home server, which checks for appro-
priate access permissions; all authentication is per-
formed with Grid Security Infrastructure (GSI) cer-
tificates [11]. This division of responsibility means
that proxies cache not only files, but also the access
permissions; a potential drawback of this approach
is that changing the permissions at the remote server
does not invalidate any copies currently stored by
proxies.
No guaranteed storage: Because each proxy does
not have guaranteed storage, the proxy serves only as
a cache for file data. The other components of HFS
make no assumptions about the size of this cache. In
order to have a large local cache, we assume that the
proxy is able to read and write from local disks on the
compute node; however, in the worst case, proxies
can use memory as their only cache.

In our current implementation, each proxy is re-
sponsible for caching data from files. Requests by
user jobs for in-cache data are satisfied using the lo-
cal copy; if the target proxy does not have the re-
quested data, it asks the home file server for the nec-
essary data. Space is managed in simple LRU fash-
ion.

Finally, HFS does not guarantee file consistency
across different proxies. Given that the applications
in our target workload have no write sharing, we be-
lieve this is a reasonable simplification.
Non-dedicated resources: Because proxies and
user jobs may run on non-dedicated resources, both
proxies and user jobs may be terminated at any time.
As stated before, an important goal is that this ter-
mination should be transparent to the user process.
Condor does provide some support for this case: jobs
that are terminated can be automatically resubmitted.
This simplifies the responsibility of the monitor since
it does not need to resubmit additional proxies if one
fails. However, two complications still exist.

The first complication is that the user jobs inter-
acting with this proxy must be notified of this fail-
ure. In this case, the user job must be redirected to
a new proxy which will be responsible for caching
these files. Given the functionality of the applica-
tion agent, the complexity of this notification is eas-
ily hidden from the actual user application.

The second complication is that a proxy may be
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terminated when it contains the only copy of data
written by a user application. In this case, HFS must
maintain an important property: After an application
exits, its output files are guaranteed to reside on the
home storage node. This property is consistent with
the rest of Condor in that user jobs may be killed
and restarted without side-effects before completion,
but once the job has successfully terminated, all out-
put must exist (e.g., this is assumed by higher-level
schedulers on Condor such as DAGman [4]).

One option for dealing with potentially lost data is
to kill the user application as well. This requires that
the user job waits on exit for all of its file data to
be flushed from the proxies to the home node. Al-
though this approach is simple to implement within
the our current framework and maintains the desired
property, it has the severe drawback that a signifi-
cant amount of work may be wasted if the job was
running for a long time before the proxy terminated;
additionally, the chances of success decrease as the
number of proxies (and therefore the number of de-
pendencies) increases.

An alternative option exists if a proxy is notified
that it will soon be terminated and given time to evac-
uate its data. In this case, the terminated proxy can
write its data either to the home node or to a backup
node on the local cluster. If termination occurs be-
fore the proxy has written all of its data, this case
reverts to the previous one. Although Condor in-
cludes functionality to notify upon termination, in-
dividual clusters may not be configured with this op-
tion. Therefore, we do not yet investigate this ap-
proach in our system.

A final option is for the proxy to always write
through data back to the home node; the proxy waits
until it has been notified that the write has succeeded
on the home server before returning control to the
user application. This approach has the disadvan-
tage of potentially incurring more traffic on the home
node and causing delays to the user applications;
however, given that read traffic dominates write traf-
fic in many of the scientific applications we are tar-
geting, delaying writes may be acceptable [7]. Our
current implementation takes this straight-forward
approach.

2.3.5 The Proxy Monitor
The proxy monitor is the second major piece of soft-
ware created for HFS. Because the proxy monitor
interacts frequently with the proxies, the monitor
should be located near the proxy cluster for the best
performance. However, our current implementation
assumes that the proxy monitor is reliable and, there-
fore, it should not be run on non-dedicated resources;
this assumption implies that the proxy monitor may
not always be able to be placed near the cluster con-
taining the proxies or user jobs. In the future, though,
we believe this restriction could be relaxed; because
the monitor only consists of soft-state [12], it should
be possible to tolerate its failure.

The proxy monitor has two primary responsibil-
ities. First, the monitor must inform each agent of
the address of each proxy and a small index used to
map file blocks to proxies. Second, the monitor must
determine the number of proxies that should be allo-
cated to each user in each cluster. For simplicity, we
divide the number of proxies into two components.
First, some of the proxies are part of the active pool:
this number is calculated such that the active proxies
contain the working file set of the user. Second, some
proxies are part of the backup pool: this number is set
such that the size of the active pool is maintained on
average, despite the unexpected termination of prox-
ies. The mechanisms and policies required to support
the active pool are described in Section 3, whereas
those for the backup pool are in Section 4.

3 Performance Management:
Sizing the Active Pool

The data set required by a single user job or a set of
user jobs may be much larger than that which fits in
the cache of a single proxy. In this case, the proxy
will thrash, since it must evict local copies that will
be accessed again in the near future. It is the respon-
sibility of the Hawk monitor to manage the “active”
set of proxies such that the current working set fits
across the proxies. In this section, we describe the
mechanisms and policies for this functionality and
demonstrate the performance benefits of an active
pool within HFS.

3.1 Mechanisms
Three basic mechanisms are required by the Hawk
monitor in order to manage the active set of prox-
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ies. First, the Hawk monitor informs each applica-
tion agent of the set of proxies in the active set and an
index which can be used to determine which proxy
is responsible for a particular file block. Second, the
Hawk monitor determines the current performance
level of each proxy; that is, whether or not the jobs
working set fits in the current proxy caches. Third,
the Hawk monitor adds (and removes) new proxies
to the pool as needed for performance. We briefly
describe these three mechanisms.

3.1.1 Informing Jobs Of The Active Set
The Hawk monitor is responsible for managing the
list of proxies in the active set and notifying the
client-side agent of the location of the proxies. When
a user submits a new set of jobs to the cluster, a Hawk
monitor is created as well and the user jobs are ini-
tially aware of only the location of the Hawk monitor.

The Hawk monitor has the task of starting each
of the proxies in the active pool. The Hawk mon-
itor maintains a persistent connection with each of
the proxies, so that it knows immediately when a
proxy fails. The Hawk monitor informs each of the
client-side agents whenever a proxy enters or leaves
the system. In the current implementation of HFS,
the Hawk monitor is also responsible for determin-
ing which proxy is responsible for which user data.
This mapping is performed in a centralized place
since all user jobs should contact the same proxy for
the same data to avoid duplicating data across prox-
ies and wasting cache space. We describe our map-
ping function and how it changes as proxies enter and
leave the system in more detail as a policy decision.

3.1.2 Obtaining Proxy Performance
The Hawk monitor is responsible for determining the
correct number of proxies; this requires obtaining
information from each proxy regarding their perfor-
mance. In HFS, each proxy is responsible for record-
ing this information about its performance and the
Hawk monitor periodically queries each proxy to ob-
tain this information.

3.1.3 Adding a New Proxy
After the Hawk monitor has determined that a new
proxy should be added to the working set, the Hawk
monitor asks Condor to start a new proxy on one of
the nodes in the cluster. There is one piece of func-
tionality that would be useful to add to Condor to

support this requirement: preempting a lower prior-
ity job (i.e., the user’s job) in preference for a higher
priority job (i.e., the proxy).

When there are more proxies and user jobs submit-
ted to the system than there are available resources,
HFS would like proxies to have a higher priority than
user jobs. Condor does contain mechanisms to allo-
cate idle resources to high priority jobs, but it does
not allow high priority jobs to preempt low priority
jobs.1 Thus, in the initial phase when proxies and
user jobs are submitted at the same time, the proxies
start execution first, as desired. However, if the mon-
itor later determines that more proxies are needed to
improve performance, Condor does not have a sim-
ple way to preempt the lower-priority user jobs for
these proxies. Thus, Condor would wait until one of
the user jobs finishes before starting the proxy. To
remedy this, our monitor watches for this situation
and explicitly asks Condor to suspend enough user
jobs to allow the proxies to run; the monitor first va-
cates jobs with the shortest current running time so
as to minimize the amount of lost work caused by
these removals.

3.2 Policies
We now describe how HFS leverages these basic
mechanisms for managing the active pool; specifi-
cally, we describe the HFS policy for mapping data
across proxy caches and determining when a proxy
should be added to the active pool (or removed) for
improved performance.

3.2.1 Mapping Files to Proxies
The major challenge in designing a function for map-
ping files across proxy caches is adapting the map
when proxies enter or exit the system. We have three
goals in designing an algorithm. First, the map-
ping should balance the load of file requests across
proxies. Second, the addition or removal of proxies
should not radically alter the mapping since remap-
ping data incurs a cost; that is, the remapped data
must either be explicitly moved between proxies or
the newly responsible proxy must incur a cache miss
on the first request. Third, a newly added proxy
should take over the load for those proxies that were
the most overloaded.

1To be exact, in its current implementation, Condor will
sometimes perform priority-based preemption, but only to run
a higher-priority job of a different user.
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To meet these goals, HFS uses an algorithm de-
rived from extendible hashing [6], which is designed
for graceful growth and reduction of the table size.
The number of entries in the hash table is a power
of two and is greater than or equal to the number of
proxies in the active pool.

The hash table entry for a given file is calculated
using the B least significant bits of its hash number.
If a proxy corresponds to that hash entry, then the
request is sent directly to that proxy. Conversely, if
the hash entry is empty, then the B − 1 least signif-
icant bits are examined; this process continues until
the responsible proxy is located.

Thus, when the Hawk monitor detects that an ex-
isting proxy is thrashing, a new proxy is added that
splits the workload of the previous proxy. Assuming
the previous proxy was in hash position X , the previ-
ous proxy will continue to handle position 0X while
the new proxy will handle 1X . Note that the number
of hash table entries is doubled if the new proxy is
added beyond the current size of the table.

This mapping structure automatically adjusts to
proxies being removed, whether because the re-
sources were revoked by the scheduling system or
because the working set decreased. In either case, the
load is automatically redirected to the parent node,
just as if the removed node never existed. Note that
this mapping assumes that the root of the hash table
(i.e., B = 0) contains a valid proxy.

Extendible hashing meets our goals as follows.
First, the hashing function naturally balances load
across the proxies. Second, the responsibility of no
other files are migrated to a different server. Files
which hash to an empty slot are remapped to the
same proxy that served it in the previous mapping.
Notice further that should a proxy fail, its requests
are remapped to the parent proxy who may still have
copies of those files. Finally, using this scheme, the
monitor can add new proxies exactly where they are
needed. This also allows for fast growth of the table
as in the case when multiple proxies are detected to
be thrashing, the monitor can submit multiple prox-
ies and map each new proxy to help each thrashing
one.

3.2.2 Sizing the Active Pool
To determine whether a new proxy should be added
to the active pool, the Hawk monitor must know

whether each current proxy is able to handle the load
directed to it.

In our current implementation, each proxy uses a
modified approach to determine the relationship be-
tween the working set and the cache size; each proxy
signals whether it is thrashing by reporting the num-
ber of capacity cache misses it observes (as opposed
to cold-start misses) within an interval. When the
number of capacity misses exceeds a threshold for
some number of intervals, the Hawk monitor deter-
mines that a new proxy should be added to the active
pool. The drawback of this implementation is that
HFS cannot easily determine when a proxy can be
removed from the active pool. However, in our envi-
ronment with transient failures of proxies, this is not
as large of an issue; when a proxy fails, HFS does
not resume the proxy if it is no longer needed.

In the near future, we plan to implement signals
from the proxy that correspond directly to the rela-
tive size of its working set. Specifically, the Hawk
monitor will know the relationship between the size
of each proxy cache and the working set that it is try-
ing to handle. If the Hawk monitor observes that the
working set directed toward a proxy is much greater
than its cache size, then the Hawk monitor knows
that either a new proxy should be added or part of
its working set should be directed to another proxy.
Conversely, if the Hawk monitor observes that the
working set of a proxy is much less than its cache
size, then the Hawk monitor may be able to remove
a proxy and redirect its working set to this one.

3.3 Experiments
To demonstrate the effectiveness of these basic
mechanisms and policies, we present the results of
the following experiment. The synthetic workload
that we consider here and in the following sections
consists of 400 jobs, each of which accesses a ran-
domly chosen 1 MB file 500 times (each job has ac-
cess to 40 1-MB files, and thus there is likely to be
some re-use). The user jobs and the proxy nodes are
run on a Condor pool with 40 machines, and each
node makes 10 MB of local disk cache available if
a proxy is running upon it; to ensure we are run-
ning in a controlled environment, we do not allow
other users to submit jobs to this pool. In this test,
we also assume that the Hawk monitor is run near
the proxy nodes. A home file server that contains
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Figure 2: Sizing For Performance. This experiment reveals the importance of correctly sizing the proxy
pool in relation to the size of the clients’ working set. The graph on the left measures the client bandwidth
over time under the synthetic workload. As more and more of the working set fits in proxy caches, perfor-
mance improves until all proxies have stopped thrashing. The graph on the rights verifies that the algorithm
has correctly identified the size of the working set as the cumulative traffic sent by the home server slows
and then stops.

the inputs files lives on a machine in a remote clus-
ter. Within the cluster, a switch-based 100 Mbit/s
network connects the machines; in addition, we con-
trol the performance of the link between the proxies
and the home server, setting the emulated wide-area
bandwidth to 0.5 MB/s and the wide-area delay to
100 ms. Note that this set-up is not meant to em-
ulate any specific application; rather, it is primarily
intended to bring forth the performance characteris-
tics of our system.

The graphs in Figure 2 show that the bandwidth
delivered to the clients increases as the Hawk moni-
tor adds more proxies to the active set. Specifically,
the graph on the left presents total client bandwidth
as the number of proxies are increased. As one can
see from the graph, as the system reaches 6 total
proxies, the working set of the synthetic workload
fits into the sum of the proxy caches. This conclusion
can also be confirmed from the graph on the right,
which plots the total traffic to the home file server;
after 6 proxies are in the system, no more traffic to
the home node is generated.

4 Failure Management:
Sizing the Backup Pool

The number of nodes available to each user in the
cluster can change quite rapidly, due to the arrival of
jobs from a competing user, the reclamation of idle

machines by their owners, or actual machine failures.
Such “resource failures” may be quite common in the
Grid, occurring much more frequently than the tradi-
tional rate of machine failures. Thus, determining
the number of proxies in the system based on per-
formance metrics alone is not sufficient – resource
failures must be anticipated in order to maintain job
throughput, particularly when the cost of starting a
new proxy is high. In this section, we describe how
HFS embellishes the “active” set of proxies with ad-
ditional proxies in a “backup” pool such that high
throughput is delivered to the user’s jobs under the
expected number of resource failures.

4.1 Mechanisms

We now discuss the mechanisms required to manage
the backup pool of proxies. First, the Hawk moni-
tor must have the ability to monitor how frequently
nodes are failing (i.e., determine the mean-time-
to-resource-failure, or MTTRF). Second, the Hawk
monitor must determine how long it takes to start
a proxy (i.e., determine the mean-time-to-resource-
repair, or MTTRR). Finally, the Hawk monitor must
have the ability to spawn proxies into the backup
pool so as to anticipate future failures; since this
mechanism is identical to the spawning mechanism
presented in the last section, we do not repeat that
discussion here.
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4.1.1 Calculating MTTRF
To calculate the MTTRF of a cluster, the Hawk mon-
itor observes failure rates of proxies and calculates
a historical average. Observing a failure is simple
due to the persistent connection the Hawk monitor
maintains with each proxy; when the proxy under-
goes a resource failure, the Hawk monitor notices
almost immediately. By tracking when each proxy
was launched and when it failed, the MTTRF can be
readily calculated.

We note that the observed MTTRF may be sensi-
tive to several variables; we consider two examples.
First, the MTTRF is likely to be a function of the
current time of day (e.g., machines are less likely to
be revoked during the night) and even the day of the
week (e.g., machines are less likely to be revoked
on weekends and holidays). Thus, if the MTTRF is
recorded and averaged over a long period of time,
the phased behavior of the system must be taken
into account. Second, the MTTRF is likely to dif-
fer across clusters (e.g., some clusters may consist of
desktop machines which will be revoked frequently
by owners whereas others clusters may consist of re-
sources dedicated to Grid computing). Thus, the MT-
TRF should be tracked separately for each cluster to
which the user submits jobs.

Our current implementation does not perform so-
phisticated historical tracking. Instead, the MTTRF
is obtained in one of two ways. First, the Hawk mon-
itor can be configured at startup with an expected
MTTRF for the target clusters; this approach is rea-
sonable given that Condor collects similar statistics,
but has the disadvantage that some manual interven-
tion is required. Second, the Hawk monitor can track
the MTTRF over its current lifetime; this approach
is reasonably accurate given that users are likely to
submit many jobs at once and thus each instance of
the Hawk monitor observes the behavior of the clus-
ter over a significant period of time.

4.1.2 Calculating MTTRR
To make an intelligent decision for the size of the
backup pool, the Hawk monitor must also know
the MTTRR. Defining MTTRR is not completely
straight-forward since the time to recovery can be
defined in one of two ways: the time from which
the Hawk monitor submits a new proxy to either the
point when the proxy begins execution or to the point

when the cache state of the new proxy matches that
of the failed proxy. Since the cache state of the new
proxy may never match that of the failed proxy (e.g.,
the working set changes or different traffic is directed
to this proxy), for simplicity we consider only the
former definition.

Using this definition, the MTTRR is easy for the
Hawk monitor to monitor. Whenever the Hawk mon-
itor submits a new proxy, it records the time of sub-
mission; when the proxy later begins execution it
will contact the Hawk monitor to establish a persis-
tent connection. The Hawk monitor calculates the
MTTRR as the difference between these two times.

The Hawk monitor must average multiple obser-
vations of MTTRR in order to obtain a reasonable
estimate, due to the fact that the time to launch a job
may vary widely. For example, in Condor, a process
known as “match making” [21] is employed to de-
cide where to run which jobs. Jobs and machines are
matched to one another based on the desires of the
jobs (e.g., a job needs a machine running Linux 2.2
or greater with 200 MB of memory) and the abilities
of the machines (e.g., a machine is running Linux 2.4
and has 1 GB of memory). This process of “negotia-
tion” takes place at periodic intervals (perhaps every
10 minutes) and requires more time as more jobs are
submitted to the system. Thus, if a job is submit-
ted just after a negotiation has occurred, the job must
wait the full cycle time to enter the system.

Although our experience lies primarily with the
Condor system, the method in which the Hawk mon-
itor obtains MTTRR is generic and should work
across a range of systems. As mentioned above
for MTTRF, maintaining historical information in a
more sophisticated manner may be worth pursuing in
future work.

4.2 Policies

By obtaining the MTTRF and MTTRR, the Hawk
monitor can calculate how many proxies to launch
so as to deal gracefully with anticipated failures.
We now describe the policies used in handling re-
source failures within the cluster. Specifically, we
describe the process of sizing the backup pool based
on current resource-failure information, and how the
backup pool is used when there are no failures.
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4.2.1 Sizing The Backup Pool
To size the backup pool, the monitor considers the
MTTRF and MTTRR to ensure that sufficient prox-
ies exist when failures occur at the expected rate and
recovery takes the expected amount of time. Intu-
itively, to keep the number of proxies in the pool
constant, the rate at which proxies exit the system
(i.e., fail) must be equal to the rate at which proxies
enter the system (i.e., recover). Thus, the number of
proxies in the backup pool must be equal to the ratio
of the MTTRR to the MTTRF of any proxy. Given
MTTRFSingle proxy, then the expected MTTRF

of some proxy in the system is MTTRFSingle proxy

Number of proxies
. In

summary, the backup size is calculated by the moni-
tor as follows.

SizePool =
MTTRR · (Number of proxies)

MTTRFSingle proxy

(1)
This calculation does make a number of assump-

tions; namely that failures, as well as recoveries, are
independent and identically distributed across prox-
ies. Unfortunately, these assumptions are not likely
to be true in our environment. First, it is likely that
failures will be correlated; for example, at the begin-
ning of the work day, it is likely that multiple ma-
chines will be revoked by returning owners. Second,
and more dramatically, the time at which proxies re-
cover is also likely to be correlated; given the peri-
odic interval at which Condor runs the match mak-
ing service, multiple proxies may be started nearly
simultaneously. Despite these caveats, we feel that
calculating the size of the backup pool using this ap-
proximation is an acceptable approach for a first step.

4.2.2 Backup Pool Behavior
The other policy question we must answer is how the
proxies in the backup pool are utilized before a fail-
ure occurs. One option is for the backup proxies to
not participate in any HFS service, and to instead run
user jobs until they are needed to serve data. How-
ever, this option is difficult to implement, since many
batch-scheduling systems do not allow more than a
single job to run on a uniprocessor-based machine at
a time (Condor included).

Thus, we instead take the approach of treating
the proxies in the backup pool as part of the active
pool. In our implementation, the backup proxies fill

in empty slots in the extendible hash table described
previously (or extend the size of the has table as
needed); ideally, the backup proxies divide the work
of those active nodes that are the most loaded (but
not yet overloaded enough to require the addition of
a new active node). Thus, this approach has the ben-
efit of potentially increasing proxy performance with
little effort.

We note that if a backup proxy fails, then no sub-
sequent action is needed. The natural behavior of
the extendible hashing algorithm will redirect traffic
to the closest parent node. Conversely, if an active
proxy fails, then one of the backup proxies must take
over its data set; ideally, the backup proxy that is the
least loaded should be picked for this change.

One drawback of treating backup proxies as part
of the active pool is that this somewhat compli-
cates the sizing of the active pool. With a backup
proxy in place, the Hawk monitor cannot easily ob-
serve whether the active proxy (with which the load
is split), would be overloaded without the backup
proxy. To compensate for this sharing, the Hawk
monitor must determine if the sum of the working
sets being handled by these two proxies would cause
the active proxy to thrash. If so, the Hawk monitor
increments the size of the active pool and requests
that another proxy be created. Note that in this case,
the backup proxy is simply reclassified as an active
proxy and a new backup proxy is added to the sys-
tem; thus, no data is reallocated across proxies, as
desired.

4.3 Experiments
4.3.1 Behavior Over Time
In the experiments shown in Figure 3, we investigate
the behavior of the system with and without proxies
in the backup pool. In both cases, we induce resource
failures at random points throughout the run; the ex-
act times at which a failure occurs can be seen by
noticing a drop in the number of proxies as a func-
tion of the time shown along the x-axis.

In the leftmost graph, we observe performance
when there are no proxies in the backup pool. As one
can see, due to the high MTTRF of Condor, when the
number of proxies drops to below a certain threshold,
performance suffers immensely. At these points, the
working set of the workload no longer fits into the
proxy caches, and thus the proxies begin to thrash,
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Figure 3: Sizing For Failure. In this experiment, we introduced a high rate of proxy failure to show
the effect that maintaining excess capacity can have on throughput. The graph on the left shows the case
in which the monitor does not maintain excess capacity. In this case, proxy failures result in a drop in
client read bandwidth until the monitor detects the resulting thrashing and returns the needed proxies to
the system. With excess capacity as shown on the right, proxy failures have no such negative consequences.
Notice the improvement of total runtime when excess capacity is maintained.

virtually halting all progress. The end result is that
the workload runs for almost 12,000 seconds (i.e.,
over 3 hours).

In the rightmost graph of Figure 3, we show per-
formance when HFS uses its backup-pool strategy.
In this case, spare proxies are employed, and when
a resource failure is induced, there are enough proxy
resources to contain the working set of the workload.
Thus, performance is maintained throughout the run,
and the overall run-time of the set of jobs is approxi-
mately 6,000 seconds, or roughly half the time of the
system without any backup proxies.

4.3.2 Varying MTTRF
In our second failure experiment, we explore sensi-
tivity to the accuracy of the MTTRF estimate; specif-
ically, we vary the MTTRF that is induced on the
cluster as well as the monitor’s estimate of MTTRF.
The results of this experiment are shown in Table 1.

From the results in the table, we draw two con-
clusions. First, having no backups performs substan-
tially worse than a system with some backups, even
if the number of backups is smaller than the formula
above estimates. Second, having extra nodes in the
backup pool (i.e., more that our formula estimates)
is often a good idea, given that this affords a margin
of safety (especially with correlated failures and re-
coveries). A corollary benefit of extra proxies in the
backup pool occurs because our algorithm for siz-

50% 50%
MTTRF None under Exact over

300 27717 3919 3770 3440
500 10219 5926 3373 2417
600 15482 4652 3976 3626

Table 1: Performance Under Varied MTTRF.
The performance of the backup-pool mechanism is
shown under differing MTTRF values. In each ex-
periment, the true MTTRF is set to a particular
value (shown in seconds), and the monitor’s esti-
mate of MTTRF, instead of being measured dynami-
cally, is set to a particular value, which we then vary
across the columns of the table. The column labeled
“None” shows the performance when there are no
backups in the pool; the column labeled “50% un-
der” shows the performance when the backup pool
is half the size it should be; the column labeled “Ex-
act” shows performance when the pool is exactly the
size that the formula estimates; finally, the column
labeled “50% over” shows performance when there
are 50% more servers in the backup pool than the
formula demands. Performance is reported in the to-
tal number of seconds to complete the workload, and
the MTTRR for all experiments is set to 200 seconds.
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Figure 4: blastp Performance. The figure shows
the performance of 100 blastp jobs running on a re-
mote cluster over time.

ing the active pool is conservative, and thus in some
cases the extra proxies increase performance notice-
ably.

5 Application Experience
Finally, we discuss our initial application experience.
We focus on BLAST, a suite of programs used to
search protein and DNA databases for sequence sim-
ilarities [2]. For our measurements, we focus on
the blastp program which compares specific protein
queries to protein databases. This application reads
a small input file (typically fewer than 200 bytes in
size) which contains the targeted protein sequence.
It then searches for similarities within a large protein
database; an example of the type of search performed
is shown in Figure 5. Although blastp uses index-
ing to direct its search, the program will often scan
through the entirety of the flat-file database. This
database is over 300 MB; together with the index
files the blastp program will typically read approxi-
mately 350 MB of data during this phase. Following
the scan, blastp produces about 16 KB of possible
matches.

In the following experiment, we run 100 blastp ap-
plications, each searching for a different protein se-
quence within the shared database. The applications
are run upon the same cluster configuration as de-
scribed earlier. The performance over time is shown
in Figure 4.

From the figure, we can make two observations.
First, there are two distinct periods of proxy growth.

In the first phase of growth (at around 1000 sec-
onds into the experiment), all of the applications are
reading the index of the main protein database, and
thus the monitor quickly grows the proxy pool to
match this demand. The second phase of growth oc-
curs when the first jobs begin to complete; as new
jobs then enter the system, re-scanning the protein
database, the monitor realizes the value of caching
this database, and grows the proxy pool in response.

The second observation we can make relates to
the total run-time; the entire workload completes in
roughly 6300 seconds. For a comparison, we ran the
same workload against a single well-connected net-
work file server, a configuration that is commonly
used when manually configuring a cluster to run such
a workload. The “local” version ran in roughly 6500
seconds, just a few percent slower than our remotely
executing version. The benefits of dynamically siz-
ing the proxy pool are clear – if the working set of
the application can be captured and spread across a
large number of proxies, performance can be better
than what one would expect from running in a more
standard environment where data is fetched from a
single file server.

6 Related Work
A migratory file service shares many of the same
goals and challenges of more general systems that
support mobile users. One of the primary goals in
supporting mobile users is to provide consistent com-
puting services in an ever-changing environment, all
transparently to the end user [18]. We share the
same goal of transparency. One major difference
is that mobile computing tends to focus on wire-
less environments, a broad range of devices (includ-
ing sensors and PDAs), and interactive applications,
whereas we concentrate on well-connected clusters
of workstations running throughput-oriented batch
workloads. Thus, our problem is somewhat simpler,
since only applications (and not devices) are mobile,
the metrics for success are more straightforward (job
throughput vs. user satisfaction), and the range of
network performance is smaller (no wireless com-
munication). In the future, it may be beneficial to
explore where mobile technology for resource dis-
covery could be utilized within our environment.

Our work also shares general issues with that in
ubiquitous computing [28]. In the ubiquitous setting,
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Leghemoglobin 91 IHIQKGVLDP-HFVVVKEALLKTIKEASGDKWSEELSAAWEVAYDGLATAI 140
+H K +DP +F ++ L+ + G ++ EL A+++ G+A A+

Beta globin 91 LHCDKLHVDPENFRLLGNVLVVVLARHPGKDFTPELQASYQKVVAGVANAL 141

Figure 5: blastp Example. blastp finds a possible match between broad bean leghemoglobin and horse beta
globin.

most applications assume that its will not change
much over time [24]. While this statement was
originally made in the context of GUI-based inter-
active applications, it clearly applies to file servers
as well, which traditionally run in highly-managed,
relatively-static locales. Thus, one of the main chal-
lenges we face in building a migratory file service
is to avoid thee static assumptions that are built into
most file servers. Schilit et al.’s solution is to intro-
duce the concept of a “dynamic” environment vari-
able, which applications use to learn about the char-
acteristics of the current system; such a utility would
be useful in our environment as well.

Within the domain of file systems, the Coda
project was an early effort in mobile computing that
bears similarity to our work [17]. In Coda, users
specify in a hoard profile the files they believe are
needed for disconnected operation; the system then
attempts to balance the demands of the current work-
ing set with the users hoard priorities to ensure
smooth operation under disconnection. In HFS a mi-
gratory proxy could serve a similar role, caching data
so as to avoid difficulty when the wide-area link to
the home node fails.

Another possible solution to the problem ad-
dressed in this paper is to use a wide-area file sys-
tem or peer-to-peer storage system at each cluster
where one wishes to run jobs [15, 27, 22, 5]. Un-
fortunately, such an approach is often not practical
within a Grid, since each participating site must re-
tain autonomy over its own local resources, includ-
ing the software that is installed. Thus, mandating
that all sites run a certain wide-area file system is
likely to result in many fewer parties contributing to
the global resource pool.

Finally, perhaps the most closely related work to
ours is Condor-G, a system that is to Grid compu-
tation what a migratory file service is to Grid stor-
age [13]. One of the main mechanisms in Condor-
G is the “GlideIn”, which enables a “meta” job in
a different batch scheduling system to be submitted

to the Condor batch scheduling system [19]. Thus,
Condor-G allows the user to construct a remote Con-
dor pool to run their jobs, even if the remote site does
not have Condor installed. Thus, Condor-G is com-
plementary to HFS. However, Condor-G does not ad-
dress the problem of data storage or movement be-
yond the mechanisms built into Condor, which redi-
rect all I/O system calls back to a home node.

7 Conclusions
Storage services are of increasing importance in the
Grid environment. In this paper, we present HFS,
an instance of a migratory file service, which we be-
lieve is a key technology in achieving ease-of-use
and high-performance for Grid-based applications.
The key to an MFS is the use of migratory proxies
and interposition; by redirecting I/O traffic from ap-
plications to the proxies, high performance can be
delivered; by doing so in a manner that is transparent
to applications, ease-of-use is maintained.

Crucial to the success of an MFS is the manage-
ment of the pool of proxies in the system. HFS man-
ages this pool via a monitor, which observes perfor-
mance and failure characteristics to dynamically size
the pool for maximized performance. Through a se-
ries of microbenchmarks and a real application study,
we demonstrate the effectiveness of the core HFS
mechanisms, showing that they can adapt as desired.

In the future, we plan to better understand the util-
ity of HFS through two specific avenues of research.
First, we plan to undertake additional application
case studies. Second, we plan to implement our mi-
gratory environment within other batch-scheduling
systems. The former should assist us in fine-tuning
HFS policies, whereas the latter will likely lead us
to generalize HFS mechanisms. It is our hope that
this combined path will result in a more general and
useful migratory file service.
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