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ABSTRACT
Grid applications have demanding I/O needs. Schedulers must
bring jobs and data in close proximity in order to satisfy through-
put, scalability, and policy requirements. Most systems accom-
plish this by making either jobs or data mobile. We propose
a system that allows jobs and data to meet by binding exe-
cution and storage sites together into I/O communitieswhich
then participate in the wide-area system. The relationships
between participants in a community may be expressed by the
ClassAd framework. Extensions to the framework allow com-
munity members to express indirect relations. We demonstrate
our implementation of I/O communities by improving the per-
formance of a key high-energy physics simulation on an inter-
national distributed system.

1. INTRODUCTION
Grid applicationshave demandingI/O needs[3]. Applica-

tionsin fieldssuchashigh-energyphysicsneedhigh-throughput
accessto a wide selectionof datafiles chosenfrom reposito-
riesmeasuredin petabytes.Dueto thelargenumberof users,
thesizeof thedata,andthedistancesinvolved,onlineaccess
to datarepositoriesis neitherscalablenor efficient for large
numbersof jobs.

I/O systemsthat solve this problemshave generallyfallen
into two camps:thosethatmove thedatato thejob, andthose
thatmove the job to the data. Neitherof theseapproachesis
universallyapplicable,andbothsuffer from ascalabilityprob-
lem. Network andstoragecapacitieslimits boththenumberof
replicasthatmaybe madeaswell asthenumberof jobs that
mayuseeachreplica.

We proposea balance,shown in Figure1. In thelocalarea,
executionsitesbandtogetherinto I/O communities thatshare
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Figure 1: I/O Communities

datawithin locally-determinedphysicallimits. EachI/O com-
munity thenhostsa storageapplianceto serve that databoth
locally andwithin theexistingwide-areareplicationsystem.

A schedulermaythenmake a numberof informedchoices.
Jobsrequestingparticulardatamaybemovedto communities
whereit is alreadystaged.Or, datamaybestagedto thecom-
munity in which a job hasalreadybeenplaced. Of course,
the balancepoint betweenthe two is not fixed. The ratio of
supportablejobs to replicasdependson propertiesof the ap-
plication,thedata,thestoragedevices,andthenetworks.

In ordertostructuresuchcommunities,theparticipantsmust
beableto expressrelationshipsbetweenthemselves.Someof
theserelationsaredirect– a job mayrequirea machinewith
a particularCPU. Othersare indirect – a job may requirea
machineassociatedwith astoragedevicecontainingaparticu-
lar dataset.Wewill demonstratehow theClassAdframework,
[25] with someadditionsfor indirection,canbe usedto ex-
presstheserelationships.

Communitiesaretraditionallyconstructedusingdistributed
filesystemswhich usuallyrequirespecialprivilegesto deploy
andconfigure.Wewill presentbuilding blocksthatpermitthe
constructionof I/O communitiesfrom unprivileged,user-level
software.Thesebuilding blockscommunicatetheirstateto the
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Figure 2: Model

Condor[20] distributedbatchsystem,which thenplacesjobs
appropriately.

We will not addressthematterof selectingpoliciesfor I/O
communities.Policiesmay govern the sizeof communities,
the contentsof storagedevices,andthe decisionsto relocate
jobsfromoneplacetoanother. Appropriatepoliciesarewholly
dependentupontheparticularsof individualapplications,phys-
ical network capacity, numberof availableCPUs,andthelike.
We hopethat our work on mechanismswill enablea further
studyof appropriatepolicies.

Thatsaid,we will demonstratethefeasibility of this model
by applyingit to a key high-energy physicssimulationrun on
an internationalgrid. By constructingcommunitieswith sen-
sible policies– given our knowledgeof the application– we
demonstratea markedimprovementin simulationcapacity.

2. I/O COMMUNITIES

2.1 Building Communities
An I/O communityconsistsof severalCPUsthatgatheraround

a storagedevice. Programsexecutingat suchCPUsareen-
couraged(or perhapsrequired)to usethecommunityI/O de-
vice for storing and retrieving data. By sharingthe device,
similar applicationsmay reducetheir consumptionof wide-
arearesources.

I/O communitiesmayreflectbothphysicalandadministra-
tive boundaries.Thenumberof CPUsthatmaybeeffectively
servedby onestoragedevice is limited by theconnectingnet-
work and the load offered by running programs. The users
admittedto a communitymay dependon membershipin so-
cial structures.

Themostfamiliar form of anI/O communityis adistributed
file systemsharedamongmembersof a workgroup.This sort
of communityis semi-permanent– it mayrequirespecialpriv-
ilegesandcoordinatedsoftwarechangesbetweenall the par-
ticipants.

In contrast,servicesofferedon the grid areintendedto be
flexible. As users,applications,andloadschange,communi-
tiesmustbesetup,reconfigured,andtorndown.

Topermitagiledeploymentof suchcommunities,they should
beconstructedfrombuildingblocksthatcanbeappliedbynor-
mal userswithout specialprivileges. To accomplishthis, we
employ storageappliancesandinterpositionagents,asshown
in Figure2.

A storage appliance servesasthemeetingplacefor anI/O
community. A storageapplianceis frequentlyconceived as

a specializedhardware device. However, a general-purpose
computerequippedwith theright softwaremayserve equally
well asa storageappliance.

Theapplianceis mostusefulif it speaksa numberof proto-
cols.Thisallowsmembersof thecommunitytoselectthemost
appropriateprotocolfor thesituation.Forexample,anapplica-
tion selectingelementsof adatabaseshoulduseafine-grained
block-accessprotocol. Conversely, anapplicationprocessing
large amountsof sequentialdatashouldchoosea streaming
protocol.

However, standardapplicationsrarelyspeaksuchprotocols.
Althoughcertainbrave usersmaybewilling to rewrite appli-
cationsto work with new systems,thereexistsa largebodyof
programsthatcannotor will notberewritten.

This problemis solvedby interposition agents. An agentis
asmallpieceof softwarethatinsertsitself betweenanapplica-
tion andthenative operatingsystem.Theagentis responsible
for converting a program’s standardI/O operationsinto suit-
ableactionson the I/O community. With an agentin place,
unmodifiedapplicationscanrun in a grid environment.

2.2 Discovering Communities
In a computationalgrid, community resourcescome, go,

and changewithout warning. In suchan environment,pro-
gramsmust have rich methodsfor finding communitiesthat
meettheir needs. Onceplaced,they must be able to deter-
mine their membershipin a community. During execution,
they may needto find resourcesoutsideof the communityin
orderto bring theminside.

Eachof thesethreeactionsis a different form of discov-
ery. We refer to them as CPU discovery, device discovery,
and replica discovery. Figure 2 shows whereeachform of
discovery fits into anI/O community. Beforeexecution,CPU
discovery mustbe performedto find a CPU with the proper
architecture,operatingsystem,andso on. During execution,
devicediscoverymustbeperformedto find one’s membership
in acommunity. Also duringexecution,replicadiscoverymay
beperformedto locateitemsoutsideof ajob’simmediatecom-
munity.

Replicadiscovery hasbeenan importantareaof research
in recentgrid efforts. [34, 28] Device discovery is closely
related,but subtlydifferent.It is frequentlyemployedby self-
configuringsystemssuchas Jini [36] that locatestorageor
human-interface devices for mobile software and hardware.
Wewould like to briefly commentuponthedifference.

Replicadiscovery answersthis question:If my data is not
in local storage, where can I get it? Replicamanagementsys-
temstrack the variouscopiesof datasetsare they arespread
to storagedevicesarounda grid. Whena datasetmustbe re-
trieved,a replicamanagementsystemfindsa suitableremote
copy for therequestor.

Device discovery answersthis question: Where is my lo-
cal storage device? Onceexecuting, jobs needto discover
what device is willing to offer bandwidthandstoragespace
for inputs,outputs,andtemporaryfiles. If a replicadiscovery
systemis usedto locateremotedata,thedevicediscoverysys-
tem must locatea placeto put the incomingdataso that the
callerandothermembersof thecommunitymayfind it.

Devicediscoverysystemsneednotbecomplex to beuseful.
Below, wewill defineI/O communitiessimplyby giving every



executionsiteaNearestStorage properythatpointsto astorage
appliance.This approachis simpleandeffective.

However, morecomplex systemsmaybeimagined.An exe-
cutionsitemaybeassociatedwith severalstorageappliances,
eachwith its own policy restrictions. For example,a device
mayonly allow accessto membersof anadministrativegroup.
In thiscase,thedevicediscoverysystemmustquerytheavail-
abledevicesandreturnthenearestdevice thatacceptsthejob.

Indirectionis a critical featureof any discovery system.In
additionto queryingdirectpropertiesof devices,a usermight
requesta chainof relations.For example,a usermayrequest
to useany CPU associatedwith a storagedevice containing
dataset
 . It is notenoughfor theuserto first look up all stor-
agedevices containing 
 , and then requestthe set of CPUs
associatedwith any in theset– thesituationmaychangewith-
out theuser’s knowledge. The usermustbe ableto submita
requestexpressingthechainof indirection.

A languageis neededto expressall of thesedifferent re-
lations. Schedulingandpolicy managementsystemsneeda
concreteway to representall of the properties,requirements,
andpreferencesinvolved in anI/O community. TheClassAd
languageis uniquelysuitedto this task.

3. EXPRESSING COMMUNITIES
WITH CLASSADS

ClassAdsare currently usedwithin the Condorsystemto
describeproperties,requirements,andpreferencesof partici-
pantsin a distributedcomputingsystem.ClassAdsarenamed
aftertheclassifiedadvertisementsfoundin newspapers,where
multiplepartiespublishrequestsfor serviceandoffersto serve
in a well-known place.

A singleClassAdis a list of (attribute,value)pairs.Theval-
uesmay be simpleatomssuchasstringsor integers,or they
maybecomplex expressionsreferringto potentialmatches.

Figures4 and 5 shows how an examplejob andmachine
might be representedin this language. Eachdescribescer-
tain simple properties– the machinementionsits CPU and
operatingsystem,while the job mentionsthenameof theex-
ecutableand owner. Both have requirementson a potential
match.Themachinewill only acceptjobsownedby a partic-
ular user, while thejob will only acceptmachinesrunningthe
correctoperatingsystem.

Unlike the newspaper, Condor provides a central match-
makingservicethatpairsofferswith requests.Whenasuitable
matchis found,thetwo partiesareinformedandthenbecome
individually responsiblefor contactingeachotherandaccom-
plishingwork. Thisprocessis known asbi-lateral matchmak-
ing andis describedextensively by Ramanet. al. [25]

To build I/O communities,we mustadda third participant
to thematch– thestorageappliance.As shown in Figure3, an
incomingjob requestsaCPU,but placesindirectrequirements
on theassociatedstorage.TheClassAdrepresentingtheCPU
decideswhatstorageis to bereferenced.

Figure4 shows how the job specifiesan indirect reference.
In theRequirements field, it statesthatit will only accepta job
suchthat NearestStorage.HasCMSData is true. NearestStor-
age is evaluatedin thecontext of eachpotentialCPU.

TheCPUcannotsimply point to theneareststoragedevice
by wayof anaddressor auniquename.ClassAdsareschema-
free,soa singleaddoesnot have a distinctname.Insteadthe

�
��
�
����������

�������������! #"$ #������%����
���'&#������(�)��* +�

����,�-�. �/��01��(2 +�
3 ����4�-�51�'6

718'9;:�<>=?8�@�A�B

C�D�EF�G>H I�9JG>B+8�K>A

"$ #�����
�
�

=?8'9;:�<

Figure 3: Matchmaking with References

Type = ”job”
TargetType = ”machine”

Cmd = ”sim.exe”
Owner = ”thain”

Requirements = (OpSys==”linux”)
&& NearestStorage.HasCMSData

Figure 4: Example Job ClassAd

Type = ”machine”
TargetType = ”job”

Name = ”raven”
OpSys = ”linux”

Requirements = (Owner==”thain”)
NearestStorage = (Name==”turkey”)

&& (Type==”storage”)

Figure 5: Example Machine ClassAd

Type = ”storage”
Name = ”turkey”

HasCMSData = True
CMSDataPath = ”/cmsdata”

Figure 6: Example Storage ClassAd



NearestStorage propertygivesasetof constraintsthatidentify
a uniquestorageClassAd,shown in Figure6.

Therestof thereferenceexpressionmaythenbeevaluated
in the context of the referred-toClassAd.So,eachreference
containedin thejob adevaluatesasfollows:

NearestStorage.HasCMSData = True
NearestStorage.CMSPath = "/cmsdata"
NearestStorage.Name = "turkey"

As the contentsof the storageappliancechange,it simply
sendsupdatedstateto thematchmaker. If adatasetis addedto
a device, jobsthatrequireit will matchto thecommunity. If a
datasetis removed,jobswill no longermatch.

Of course,information from the matchmaker is necessar-
ily stale. The stateof either a CPU or a storageappliance
may changeafter a matchhasbeenmade. Both sideshave
theresponsibilityof verifying that their requirementsarestill
satisfied.This is doneduringa claimingprotocolfollowing a
successfulmatch.

3.1 Example Policies
By addinga level of indirection betweenthe job and the

storage,theuseris freedfrom specifyingwhere jobsmustrun.
Theusermustsimply statewhat is needed in orderto execute
their jobs. As the stateof storagedeviceschanges,jobs will
runaccordingto theuser’s policy.

Suchpoliciesareexpressedat submit time in the ClassAd
language. Eachjob hasa booleanRequirements expression
that determineswhich machinesaresuitableexecutionsites.
If it evaluatesto True, thentheexecutionsiteis accepted,oth-
erwiseit is rejected.An integerexpressionRank givesavalue
to all potentialmatches. Given several machinesfor which
Requirements evaluatesto True, themachinewith thehighest
Rank will bechosen.With theseexpressions,we maycontrol
whetherjobsmove to dataor wait for it to arrive.

For example,if theuseris willing to let thejob move to any
sitethatalreadyhasa particulardataset,thenshemayexpress
this:

Requirements =
(NearestStorage.HasCMSData)

On the otherhand,if the userknows that moving the job
is an expensive operation,then shemay requireit stay in a
particularcommunity:

Requirements =
(NearestStorage.Name
== "turkey.cs.wisc.edu")

If shesimplyprefers to runin thelocalcommunity, but does
notrequireit, sheRanksthelocalcommunityat ten,andothers
at zero.

Requirements =
(NearestStorage.HasCMSData)

Rank =
(NearestStorage.Name
== "turkey.cs.wisc.edu")

? 10 : 0

Execution
Site

Job
System

PFSMatchmaking

AttributeAttribute

Chirp

NeST
Nearest

"HasCMSData""NearestStorage"

ClassAd

Figure 7: Implementation

Of course,somemachinesarebetterthanno machines.If
the useris willing to executeanywhere,anduseremoteI/O
whena local copy is not available,thenshemayeliminatethe
Requirements statementabove.

Morecomplicatedinformationmaybeincludedin eitherex-
pressionto setthepolicy underwhich migrationis permitted.
For example,thejob mayberequiredto executein aparticular
I/O communityexceptduring thenight, whennetwork traffic
maybelower:

Requirements =
(NearestStorage.Name==
"turkey.cs.wisc.edu")

|| (ClockHour<7) || (ClockHour>18)

4. IMPLEMENTATION
Wehavebuilt aprototypeof theseconceptswithin theCon-

dor distributedbatchsystem.Condoritself providestheCPU
schedulingsystemandtheClassAdframework. An interposi-
tion agent,thePluggableFile System,is usedto attachjobsto
thelocal storageappliance,implementedwith softwarecalled
NeST. Eachof thesedevicesaresufficiently generalpurpose
thatthey canbeputto useindividually or togetherwithin other
systems.

NeST [7] is software for creatinggeneral-purposestorage
appliancesoncommoditycomputerswithoutspecialprivileges.
Externally, it supportsa variety of network protocols,allow-
ing applicationsto choosethemostappropriatewayto interact
with storage.Wehavemadeuseof two in particular, GridFTP
[2] andChirp. Theformerprovidesstrongauthenticationand
high-throughputtransfersusinga variety of techniquessuch
asmultiple TCP streams.The latter is the native NeSTpro-
tocol, and provides simple RPC-like partial-file accesson a
single TCP connection. We have usedGridFTP as the lin-
gua franca for communicatingwith othergrid servicesover
long-haul connections. We have usedChirp for short-haul
partial-fileaccess,asit doesnot requiretheoverheadof anew
TCPconnectionfor everydataoperation.

PFS[31] is an interpositionagentconstructedwith Bypass
[32, 33]. PFSadaptslegacy applicationsto new storagesys-
temsby ’mounting’ themin theapplication’s view of thefile
system.No specialprivilegesor kernel-level changesarere-
quired. A numberof standardnetwork protocols,including
GridFTP and Chirp, are supported. For example,with PFS
loaded,unmodifiedUNIX programsmay be usedto interact
with a NeSTrunningonturkey.cs.wisc.edu:



% vi /chirp/turkey.cs.wisc.edu/my_file

The systemneedsa way of gettingthe CPU’s selectionof
an I/O device into theparametersof theapplication.Condor
allows a ClassAdpropertyof a job or executionsite to be in-
sertedinto a program’s environmentvariablesor argumentsat
run time by macro-expandingexpressionsbeginningwith two
dollar signs.For example:

Arguments =
"/chirp/$$(NearestStorage.Name)/input.data"

Condorcurrentlyunderstandsanexecutableto consistof a
singlefile. To submita PFS-enabledapplicationto Condor,
we mustresortto a little trick of submittinga self-extracting
archive containingtheapplication,PFS,anda scriptto invoke
the two properly. We may take this level of indirectionone
stepfurtherby omitting theapplicationfrom thearchive, and
modifying thescriptto fetchtheexecutablefrom theI/O com-
munityusingPFS.Wewill usethistechniquebelow to retrieve
a commonexecutablefrom thelocalappliance.

Finally, wehavenotedabovethatusersof ClassAdsmustbe
preparedto handlea stalematch.Supposethatstaleinforma-
tion causesa job to matchto a communitythatno longerhas
theneededdataset.PFSwill discover a ”file not found” error
asit performsI/O to thenearestNeST. Simply passingtheer-
ror to theapplicationis incorrect– thiswouldlikely causeit to
exit normallywith anerrormessage,forcing theuserto man-
ually understandthe error andresubmitthe job. The correct
actiontaken by PFSis to causetheapplicationto exit abnor-
mally with the ”kill process”signal. Condorinterpretsthis
signalto mean”executionaborted,” andwill re-queuethejob
for anotherexecutionattempt.

5. PERFORMANCE
To demonstrateour implementation,we have chosento ex-

aminethesimulationcomponentof theCMSexperimentto be
performedat CERN. The large I/O needsof this experiment
have beenwell documented[3]. Usersin Italy andtheUnited
Statesmake heavy useof this applicationin Condorpoolsat
theIstituto Nazionaledi FisicaNucleare(INFN) andtheUni-
versityof Wisconsin(UW.)

We beganby assumingthe role of a scientistat INFN that
wishesto executea large numberof instancesof the simula-
tion. AlthoughtheINFN pool is equippedwith a fair number
of CPUs,competitionbetweenusersof the pool limits us to
theuseof aboutthirty at once.How cantheadditionalCPUs
atUW beleveraged?Weexploredthedeploymentof I/O com-
munitiesin orderto solve this problem.

5.1 Application
Viewed from the perspective of the system,the CMS sim-

ulationworksasfollows. It readsan input file of severalKB,
andfollowing its instructions,readsa variety of files from a
’database’directory. The databaseis provided with the ap-
plication and consistsof a mixture of input files, datafiles,
libraries,andsourcefiles.

Althougha usermight conceivably determinetheexactset
of databasefiles neededby a particularrun of this simulation,
ourexperienceis thatfew careto, citing thecostof analysisas
moreexpensive thandealingwith the data. The files needed

arenot trivially predictablefrom theinput. For thesakeof this
application,we assumethatanarbitrarysimulationrun needs
accessto theentiredirectory.

Wetrimmedthelibrariesandsourcefromthedatabase,yield-
ing a directoryof 303MB, containing54 directories,33 sym-
bolic links, and432files. 1

We chosea samplerun of thesimulationthatusesa 2.5KB
input file, readsa total of 1.5MB of input from 20 files in the
databasedirectory, andgenerates.97 MB of output in three
files. Theexecutableis 17 MB, but compressesto 5.4MB for
network transfer. On a 600 MIPS machineusingonly local
storage,thesamplerunsfor 160seconds.

Thesimulationexecutablewasnotdirectlysubmittedto the
system.Instead,a 1.2 MB self-extractingarchive containing
PFSanda script weresubmitted. At the executionsite, the
script downloadedthe simulationexecutablefrom the appro-
priate storageapplianceand invoked it with the appropriate
arguments.

The samplerun is not entirely representative of the real
CMS needs– it hasa higher I/O to CPUratio thana realrun.
Typically, asimulationrunsseveralhours,notseveralminutes.
Wehavechosenthisshorterrunfor two reasons.Primarily, we
wantto pushtheenvelopeof theI/O system,andopentheuse
of Condorapplicationswith ever greaterI/O demands.Sec-
ondarily, we did not want to consumeexcessive amountsof
resourcesthatwould otherwisebeallocatedtowardrealsimu-
lationscurrentlyin progress.

5.2 Environment
Two Condorpools,oneat INFN andoneat UW, wereem-

ployedin runningsimulations.Eachpool wasconfiguredasa
distinctI/O community.

The INFN Condorpool consistedof 236 CPUs,of which
about30 were available to us at any time. The processing
power of thevariousCPUsrangedfrom 100-1200MIPS,and
the available memory rangedfrom 60-500 MB. The CPUs
werephysicallyspreadaroundthe countryat the variousde-
partmentsof theinstitution.A workstationproviding 750MIPS
and 378 MB of memorywas establishedin Bolognaas the
storageappliancefor the INFN community. A varietyof net-
worksrangingfrom 10Mb/sto 100Mb/sconnectedtheexecu-
tion sitesto thestorageappliance.

TheUW Condorpoolconsistedof 911CPUs,of which100
werereservedfor ouruse.Eachof thereservedCPUsprovided
600MIPSand512MB of memory. An identicalmachinewas
establishedas the storageappliancefor the UW community.
Thereservedmachineswereconnectedwith theappliancevia
adedicated100Mb/s ethernetswitch.

The two communitieswereconnectedvia thepublic Inter-
net.Thebandwidthavailableon thepathbetweenvariedfrom
0.2MB/s to 1.0MB/s with a latency of 150ms.

5.3 Measurements
We beganby assumingthat the necessaryexecutablesand

datafiles arestoredon a workstationat INFN. On this work-
station,weinstalledaninstanceof Condorfor submittingjobs,
andaninstanceof NeSTto serveinputdataandprovideoutput
space.L
Whenmoving thecollectionfrom siteto site,reproducingthe

symboliclinks is important,otherwise,thearchive sizeswells
to 543MB.
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Figure 12: Ninety-Five Percent Completion Time: This graph
shows the 95 percentcompletiontime for 300 simulations in each
configuration. Lower valuesindicate a better responsetime from
theuser’s perspective.
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Figure 13: Average CPU Consumption: This graph shows the
averageCPU time consumedby jobs in each configuration. Lower
valuesindicate a more efficient useof resourcesfrom the system’s
perspective.

To benchmarkthecapacityof theINFN pool,wesubmitted
300 simulationjobs. They completedasshown in Figure8.
Throughouttherun, thenumberof availablemachinesfluctu-
ates.This is aninevitablepropertyof a distributedsystemin-
volving hundredsof userswith changingmindsandmachines.
Nevertheless,wemake steadyprogress,roughlyonejob every
10seconds.

Next, we explored the feasibility of usingthe many avail-
ableCPUsat UW. With 100 CPUsreserved for our use,we
submitted300jobsto theUW pool in threedifferentconfigu-
rations.Theresultsareshown in Figure9.

In thecaselabelled’UW remote’,the jobsperformedtheir
I/O againstthe applianceat INFN. Despitethe much larger
numberof CPUs,therun wasno faster, asthejobswerecon-
strainedby thevery smallavailablebandwidth.

To addressthis situation,we deployed a NeSTat the UW
pool on the sameswitch as the reserved CPUs. The CPUs
werethenupdatedto advertisethemselvesasmembersof the
samecommunity, and300 jobsweresubmittedwith thecon-
straintthat they run at UW, andonly wherethe CMS datais
available. Of course,no machinesimmediatelysatisfiedthis
requirement. To satisfy them, we manuallystagedthe nec-
essarydatato the applianceand instructedit to advertiseits
contents. This proceduretook roughly 1300 seconds,after
which jobs wereable to run andcompletedasshown in the
’UW stage’case.

Accountingfor thetimenecessaryto transfer, the’UW stage’
casewasonly marginally fasterthan’UW remote’case.How-
ever, futureexecutionswould beableto take advantageof the
already-transferreddata. Sucha run is shown in the ’UW lo-
cal’ case.

A fourth configurationwasalsomeasuredbut is not shown
in Figure 9. In this configuration,we combinedthe ’UW
stage’andthe’UW remote’models,andperformedthestage
of the databasewhile concurrentlyallowing jobs to execute
via remoteI/O. Our ideawasthatwhenthestagingoperation
would complete,thenthe jobscouldaccesstheir datalocally.
However, thebandwidthto theremoteserver wasthenshared
betweenthe stageoperationand the jobs andall of the jobs
finishedbeforethestagecompleted.Additionally, dueto this
bandwidthcontention,thejobsfinishedevenmoreslowly than
in the’UW remote’configuration.

We shouldnotethat not all of the I/O wasdonein the lo-
cal community. Although the executableand databasefiles
were fetchedfrom the local storageappliance,the process-
specificinputfilesweresyncronoulsyfetchedfrom thestorage
applianceat thesubmissionsiteandtheoutputfiles werealso
deliveredthere.

Finally, we madeuseof the two communitiesin concert.
Theseresultsareshown in Figure10.

In the’INFN local,UW remote’case,jobswererun in both
communitieswhile performingI/O againsttheapplianceatthe
submittinghost. Although the numberof CPUsin usewas
high,bandwidthconstraintslimited performance.

In the ’INFN local, UW stage’case,jobs wererun in the
INFN communitywhile datawasstagedto UW asdescribed
above. The stagecompletednearthe endof the run, where-
opona largenumberof UW CPUsfinishedoff theremaining
jobs,yieldinga brief increasein performance.



Finally, with thedataavailablein eithercommunity, a third
run of 300 jobs would beableto matchin eithercommunity,
asshown in the’INFN local,UW local’ case.

5.4 Evaluation
Wemayevaluatethevariousconfigurationsfrom two points

of view. Usersaregenerallyconcernedwith theoverall com-
pletiontimeof any workload,while systemoperatorsaregen-
erallyconcernedwith theefficientuseof resourcesconsumed.

The user’s perspective is summarizedin Figure 11. This
graphshows thecompletiontimeof the300thjob in eachcon-
figuration. In general,applying more CPUsto a run yields
fasterresults. However, the larger numbersof CPUsavail-
able at UW only provide marginal improvementwhen used
remotely. LocalizedI/O yieldsfasterresults.

Figures8, 9, and10show thateachconfigurationcompletes
a large fraction of jobs quickly. The overall completionof
somearedelayedby a small numberof jobs at the very end
of execution. We may comparethe configurationswhile dis-
regardingthe contributionsof the long tail by examiningthe
completiontime of ninety-five percentof the jobs, shown in
Figure12.

We examinedjobs in theselong tails anddiscoveredthree
distinct sourcesof delay. In a few cases,jobs were starved
for I/O in the input phaseanddid not enterthe computation
phaseuntil I/O competitiondecreased.In others,jobs late in
therun wereevictedfrom executionsitesby ownersreturning
to their workstations.A few jobssimplyhadlongerexecution
timesdueto competitionwith local usersfor CPU, memory,
andnetwork capacity.

Theproblemof starvationsuggeststheneedfor anexami-
nationof fairnessin thestorageappliance.However, thelatter
two problemsare more difficult to address. Although they
couldbe eliminatedin a tightly-controlledenvironment,they
areanever-presentfeaturein large-scalegrid computing.Any
largecomputationperformedusingresourcesthatarepartially
sharedis likely to receive interferencein performancefrom
other users. The long tail might be preventedby executing
multiple copiesof jobs whenthe numberoutstandingis less
thanthenumberof CPUsavailable.

Theoperator’sperspective is summarizedin Figure13. This
graphshows the averageCPU consumptionper job in each
configuration. Eachfigure wasarrived at by dividing the al-
locatedCPU time by the numberof jobs in eachrun. The
mostefficient configurationsinvolve localizedI/O. Although
remoteI/O provides someimprovementin completiontime,
it holdsCPUsidle while waiting for I/O, yielding a pooreffi-
ciency.

Of course,the performanceof eachconfigurationchanges
with theparametersof theruns.For example,the’stage’cases
onlyprovideanimprovementwhenthetimenecessaryto trans-
fer the datasetsis less than the execution time of the jobs
performingremoteI/O.

A few detailsof theexecutionweresurprising.
In Figures9 and10, the ’remote’ casesincur several dra-

maticdelayswhenthefrequency of jobcompletiondropsdras-
tically. Theseare reflectedby correspondingdropsin CPU
allocation.Thesecasesoccurredwhenlargenumbersof jobs,
previously contendingfor I/O, completedat once. An exam-
ination of the submitter’s logfile shows that Condorwasnot
ableto startnew jobsasquickly asold onescompleted.This

is due to the overheadof re-transferringthe self-extracting
archive for every newly startedjob. Althoughit couldbealle-
viatedby acacheat theexecutionsite,it doesnotappearto be
amajorobstacleto throughputfor this application.

6. RELATED WORK
Many simpledistributedI/O systemsmake useof a central-

izedserver to connectjobswith data.Thecanonicalexample
is of coursethe Network File System(NFS) [29]. An ana-
logue in grid computingis the Condor [20] remotesystem
call [19] facility, in which eachrunningjob performsremote
procedurecalls [9] backto the orginatingcomputer. Both of
thesecentral-server modelshave limited scalability, because
the numberof clients is limited by the aggregatebandwidth
providedby thecentralserver. Theperformanceof individual
clientsmayalsobelimited by thebandwidthor thelatency of
thenetwork. Thereliability of thewholesystemdecreasesas
thenumberof networksandparticipantsincreases.

Several systemsaddressthesedifficulties by copying data
to thesiteof job execution.In sodoing,theAndrew File Sys-
tem (AFS) [15] is able to scaleto a larger client/server ratio
thanthatof NFS.An analoguein grid computingis theGlobus
GASSsystem[8], in which whole files arefetchedfrom dis-
tributedrepositoriesat first referenceandstoredlocally until
they areno longerreferenced.Hierarchicaldatagrids [3] ex-
pandthis ideainto treesof serversthat replicatedatafrom a
productionsite.

Whetherjobsor dataaremoved is orthogonalto theques-
tion of how thedatais located.We shouldnotethatalthough
we have describeda systemwhich matchesdataandjobsthat
datais just a typeof resource.Many applicationswill require
not just thediscovery of databut alsoof morearbitrarytypes
of resourcesaswell.

A replica managementsystem[34] can keep track of all
of the dataand their locations. The StorageResourceBro-
ker (SRB)[5] pullsmany of thesepiecestogetherto provide a
coherentview of multiple replicationsites. Our arrangement
of I/O communitiesis alsoverysimilar to thatof asharedweb
proxy cache[37]. However, webclientsarefixed to a partic-
ular location,anddo not have theoptionof choosingthebest
proxybehindwhich to run.

Thereis a largebodyof researchabout,andavailablesoft-
warefor generalresourcediscovery. Someof theseprojectsin-
cludeJINI [36], replicacatalogs[34], LDAP[39], SNMP[10],
andevensomeof themorerecentpeer-to-peerfile sharingpro-
tocolssuchasNapster[21] andGnutella[13]. Theadvantage
of theClassAdframework [20,25,26,24] within Condoris its
uniqueability to integrateresourcediscoverywith scheduling.

ClassAdshave beenusedfor resourcediscovery in several
contexts.

Vazhkudaiet. al. [35] describehow ClassAdsmaybeused
to matchjobs with storagedevices. In this model,a replica
manageris first consultedto discoverthelist of availablerepli-
cas,andthenmatchmakingis performedto find whichthebest
storagedevice. Thejob is thensubmittedfor executionwhile
boundto thediscovereddevice. It is assumedchangesin the
distributionof replicaswill not changeafterthelookup.

Basney et. al. describethe useof ClassAdsin execution
domains [6]. In this model,executionsitesbind themselves
to checkpointservers. Jobswrite checkpointsto the nearest



availableserver, andthenexpressa policy controllinghow far
they arewilling to migratefrom thelastcheckpointimage.

Our contribution to ClassAdsis to introduceindirection.In
ourmodel,jobsexpressconstraintsonstoragedevices,but al-
low eachexecutionsite to declareits binding to storage.The
storageadis referredto, but doesnotbecomeamemberof the
match– it is notpromisedexclusively to therequestingjob.

In contrast,gang-matching of ClassAds,alsodescribedby
Raman,et al., [26] allows multiple entitiesto be exclusively
promisedto eachother. An exampleof this is anarrangement
in which an organizationhasa limited numberof licensesto
run someproprietarysoftware. In sucha case,gangmatching
could matchlicenses,machinesand jobs andtherebyensure
thatlicensingagreementsarenotviolated.

A varietyof researchventuresareexploringstoragedevices
undervariousnames,suchasNASD [12], Active Disks [27],
Flash[22], IBP [23] andbuffer servers[4]. Somecommercial
vendorssuchasNetApp [17] andEMC [11] alsooffer stor-
ageserversasahardwarepackage[14]. Wearemakinguseof
NeST[7], becauseit is aneasilydeployablesoftwareonly ap-
pliancethatspeaksprotocolssuitablefor grid computingand
canrun without specialprivilege.

A wide variety of mechanismsfor building interposition
agentshave beenproposed,including systemcall intercep-
tion [1, 18], staticrelinking [19], binaryrewriting [40, 16] and
emulationthroughan existing interface[38]. We aremaking
useof Bypass[32, 33] dueto its low overheadandability to
beusedwithout specialprivileges.

7. CONCLUSION
Communitiesarenaturalstructuresfor localizing applica-

tion I/O on the grid. By binding CPUsandstoragetogether
into organizationsthat reflectthephysicalreality, we mayin-
creasethe performanceof applicationsand the utilization of
systems.

Usersneedthe ability to expressrelationsbetweenpartic-
ipantsin a community. In particular, indirect relationsallow
theuserto expressrequirementsonthestorageassociatedwith
a CPU. The ClassAdframework, with someextensionsfor
indirection, is well-suitedfor describingandmanagingsuch
communities.

By employing severalgeneral-purposebuildingblocks–Con-
dor, NeST, and PFS – we have demonstratedthe easyde-
ploymentof I/O communitieswithout specialprivileges. By
deploying a reasonableconfiguration,we have improved the
throughputof ahigh-energy physicssimulation.

Weseeseveralavenuesfor futurework.
Currently, theconfigurationof communitiesis left to a hu-

man.However, theappropriateratioof CPUsto storageappli-
ancedependson offeredloadsaswell asphysicalconstraints.
We envision thathigher-level softwaremayreconfigurecom-
munitiesby deploying or removing storageappliancesasload
changes.

Givena staticsetof communities,theusermayalsofind it
difficult to chooseanappropriatepolicy. Shouldjobsmove to
data,or vice versa?Our mechanismsadmitbothpossibilities,
but donotselector triggersuchmoves.

Ourcurrentstagingmechanismallowsonly completetrans-
fer of thenecessarydatafiles. In the futurewe would like to
investigatedifferentcachingpoliciesthatmight allow a finer

granularityof datatransfer. For instance,files in the dataset
could be demandfetchedandcachedat the local storageap-
pliance.This is similar to theconfigurationwetestedin which
jobsexecuteremotelyduringthecompletestageof thedataset.
In that case,we found the performanceto be very low due
to the bandwidthcontentionbetweenthe executingjobs and
the stageoperation. However, if the level of file sharingis
sufficiently high then demandcachingmay well outperform
stagingthedata.

Finally, wehaveconcentratedontheproblemsof delivering
inputdata.Otherefforts in theCondorresearchgroup,suchas
Kangaroo[30], addresstheproblemsof reliably moving out-
put datato a distantdestination.This datamovementis done
asyncronouslyandallows remotelyexecutingjobs to vacate
their executemachinesmorequickly. A combinationof Kan-
garoowith I/O communitieswould beableto addresstheI/O
needsof grid applicationsfrom beginningto end.
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