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ABSTRACT

Grid applications have demanding I/O needs. Schedulers must
bring jobsand datain close proximity in order to satisfy through-
put, scalability, and policy requirements. Most systems accom-
plish this by making either jobs or data mobile. \We propose
a system that allows jobs and data to meet by binding exe-
cution and storage sites together into /O communitieswhich
then participate in the wide-area system. The relationships
between participants in a community may be expressed by the
ClassAd framework. Extensions to the framework allow com-
munity members to express indirect relations. e demonstrate
our implementation of 1/0 communities by improving the per-
formance of a key high-energy physics simulation on an inter-
national distributed system.

1. INTRODUCTION
Grid applicationshave demandindg/O needd3]. Applica-

tionsin fieldssuchashigh-enegy physicsneechigh-throughput

accesgo a wide selectionof datafiles chosenfrom reposito-
riesmeasuredn petabytesDueto thelarge numberof users,
the sizeof the data,andthe distancesnvolved, online access
to datarepositoriess neitherscalablenor efficient for large
numbersof jobs.

I/O systemghat solwve this problemshave generallyfallen
into two camps:thosethatmove the datato thejob, andthose
that move the job to the data. Neitherof theseapproachess
universallyapplicable andbothsuffer from a scalabilityprob-
lem. Network andstoragecapacitiesimits boththe numberof
replicasthat may be madeaswell asthe numberof jobsthat
may useeachreplica.

We proposea balanceshawvn in Figurel. In thelocal area,
executionsitesbandtogetherinto 1/0O communities thatshare

*This researchwas supportedn partby the NSF undercon-
tracts ITR-0086044and EIA-9870684and by NASA ARC
undercontractNCC 2-5323.

T N
/ \
SR
// / \
\ I
/ @ vy |
! \ \DDI'
Oomo,
! S~ -
/ INFN

/

' |
\
\

\
N\

,0oEm
| Dogo
N=l=la]s
goEm

uw

Figure 1: 1/0 Communities

datawithin locally-determinegbhysicallimits. Eachl/O com-
munity thenhostsa storageapplianceto sene that databoth
locally andwithin the existing wide-areareplicationsystem.

A schedulemaythenmalke a numberof informedchoices.
Jobsrequestingparticulardatamay be movedto communities
whereit is alreadystaged Or, datamay be stagedo thecom-
munity in which a job hasalreadybeenplaced. Of course,
the balancepoint betweenthe two is not fixed. The ratio of
supportablgobs to replicasdependson propertiesof the ap-
plication,thedata,the storagedevices,andthe networks.

In orderto structuresuchcommunitiestheparticipantanust
be ableto expressrelationshipsetweerthemseles. Someof
theserelationsaredirect— a job may requirea machinewith
a particular CPU. Othersareindirect — a job may requirea
machineassociatedvith astoragedevice containingaparticu-
lar datasetWe will demonstratéow the ClassAdframenwork,
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andconfigure.We will presentuilding blocksthatpermitthe
constructiorof I/0 communitiefrom unprivileged,usetlevel
software. Thesebuilding blockscommunicateheir stateto the
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Figure2: Model

Condor[20] distributedbatchsystemwhich thenplacesjobs
appropriately

We will not addresshe matterof selectingpoliciesfor 1/0
communities. Policiesmay govern the size of communities,
the contentsof storagedevices, andthe decisionsto relocate
jobsfrom oneplaceto another Appropriatepoliciesarewholly
dependentipontheparticularsof individual applicationsphys-
ical network capacity numberof availableCPUs,andthelike.
We hopethat our work on mechanismswvill enablea further
studyof appropriatepolicies.

Thatsaid,we will demonstrat¢hefeasibility of this model
by applyingit to a key high-enegy physicssimulationrun on
aninternationalgrid. By constructingcommunitieswith sen-
sible policies— given our knowledgeof the application— we
demonstrata markedimprovementin simulationcapacity

2. /O COMMUNITIES

2.1 Building Communities

An 1/0 communityconsistof several CPUsthatgatheraround
a storagedevice. Programsexecutingat suchCPUsare en-
couragedor perhapsequired)to usethe communityl/O de-
vice for storing and retrieving data. By sharingthe device,
similar applicationsmay reducetheir consumptionof wide-
arearesources.

I/0 communitiesmay reflectboth physicalandadministra-
tive boundariesThe numberof CPUsthatmay be effectively
senedby onestoragedevice is limited by the connectingnet-
work and the load offered by running programs. The users
admittedto a communitymay dependon membershign so-
cial structures.

Themostfamiliarform of anl/O communityis adistributed
file systemsharedamongmembersof a workgroup. This sort
of communityis semi-permanent it mayrequirespecialpriv-
ilegesandcoordinatedsoftware changesetweenall the par
ticipants.

In contrast,servicesoffered on the grid areintendedto be
flexible. As usersapplicationsandloadschange communi-
tiesmustbe setup, reconfiguredandtorn down.

To permitagiledeploymentof suchcommunitiesthey should
beconstructedrom building blocksthatcanbeappliedby nor
mal userswithout specialprivileges. To accomplishthis, we
emplg storageappliancesandinterpositionagentsasshavn
in Figure2.

A storage appliance senesasthe meetingplacefor anl/O
community A storageapplianceis frequently conceved as

a specializedhardware device. However, a general-purpose
computerequippedwith the right softwaremay sere equally
well asa storageappliance.

Theapplianceas mostusefulif it speaksa numberof proto-
cols. Thisallows member®f thecommunityto selecthemost
appropriatgrotocolfor thesituation.For example anapplica-
tion selectingelementf adatabasshouldusea fine-grained
block-accesgrotocol. Conversely an applicationprocessing
large amountsof sequentialdatashould choosea streaming
protocol.

However, standardapplicationgarelyspeaksuchprotocols.
Although certainbrave usersmay be willing to rewrite appli-
cationsto work with new systemsthereexistsa large body of
programghatcannotor will notberewritten.

This problemis solved by interposition agents. An agentis
asmallpieceof softwarethatinsertsitself betweeranapplica-
tion andthe native operatingsystem.The agentis responsible
for converting a programs standard/O operationsinto suit-
able actionson the I/O community With an agentin place,
unmodifiedapplicationscanrunin agrid environment.

2.2 Discovering Communities

In a computationalgrid, community resourcesome, go,
and changewithout warning. In suchan environment, pro-
gramsmust have rich methodsfor finding communitiesthat
meettheir needs. Onceplaced,they mustbe ableto deter
mine their membershign a community During execution,
they may needto find resource®utsideof the communityin
orderto bringtheminside.

Eachof thesethreeactionsis a differentform of discov-
ery. We refer to them as CPU discovery, device discovery,
andreplicadiscoery. Figure 2 shavs whereeachform of
discovery fits into an1/O community Beforeexecution,CPU
discovery mustbe performedto find a CPU with the proper
architecture pperatingsystem,andso on. During execution,
device discorery mustbe performedo find ones membership
in acommunity Also duringexecution replicadiscorery may
beperformedo locateitemsoutsideof ajob’simmediatecom-
munity.

Replicadiscorery hasbeenan importantareaof research
in recentgrid efforts. [34, 28] Device discovery is closely
related but subtly different. It is frequentlyemployed by self-
configuring systemssuchas Jini [36] that locate storageor
human-interéice devices for mobile software and hardware.
We would lik e to briefly commentuponthe difference.

Replicadiscorery answerghis question:If my data is not
inlocal storage, where can | get it? Replicamanagementys-
temstrack the variouscopiesof datasetsarethey are spread
to storagedevicesarounda grid. Whena datasemustbere-
trieved, a replicamanagemensystemfinds a suitableremote
copy for therequestar

Device discovery answersthis question: Where is my lo-
cal storage device? Once executing, jobs needto discover
what device is willing to offer bandwidthand storagespace
for inputs,outputs,andtemporaryfiles. If areplicadiscorery
systemis usedto locateremotedata,thedevice discovery sys-
tem mustlocatea placeto put the incomingdataso that the
callerandothermemberof the communitymayfind it.

Device discovery systemsieednotbecomplex to beuseful.
Below, wewill definel/O communitiesimply by giving every



executionsitea NearestSorage properythatpointsto astorage
appliance This approachs simpleandeffective.

However, morecomplex systemsnaybeimagined.An exe- Matchmaker
cution site may be associateavith several storageappliances, - -—-—
eachwith its own policy restrictions. For example,a device -7 .
mayonly allow accesso membersf anadministratve group. .-~ reference to lookup by .
In this casethedevice discovery systemmustquerythe avail- .7 "NearestStorage" requirements N
abledevicesandreturnthe nearestlevice thatacceptghejob. / el RN

Indirectionis a critical featureof ary discovery system.In ! RN RN
additionto queryingdirect propertiesof devices,a usermight !
requesia chainof relations. For example,a usermay request \ Job CPU Store /
to useary CPU associatedvith a storagedevice containing AN Ad ~ | Ad Ad S
datasetr. It is notenoughfor the userto first look up all stor N A % .
agedevices containingz, andthen requestthe setof CPUs ~ : -
associategvith ary in theset—thesituationmay changewith- P : -
out the users knowledge. The usermustbe ableto submita 3 3
requesexpressinghe chainof indirection.

A languageis neededto expressall of thesedifferentre-

lations. Schedulingand policy managemensystemsneeda

concreteway to representll of the propertiesrequirements, Job CPU Storage
andpreferenceénvolvedin anl/O community The ClassAd
languagés uniquelysuitedto this task. Figure 3: Matchmaking with References

3. EXPRESSING COMMUNITIES
WITH CLASSADS

ClassAdsare currently usedwithin the Condorsystemto

describepropertiesrequirementsand preference®f partici- Type f :jOb" hine”

pantsin a distributedcomputingsystem.ClassAdsarenamed TargetTyps _ ,,”.‘ac |n?

aftertheclassifiedadvertisement$oundin newvspaperswhere Cmd = ,,S'm.'ef(e
Owner = "thain

multiple partiespublishrequestsor serviceandoffersto sene
in awell-known place.

A singleClassAdis alist of (attribute,\alue)pairs. Theval-
uesmay be simpleatomssuchasstringsor integers,or they
maybe complex expressionseferringto potentialmatches.

Figures4 and5 shavs how an examplejob and machine
might be representedn this language. Eachdescribescer
tain simple properties— the machinementionsits CPU and
operatingsystemwhile the job mentionsthe nameof the ex-

Requirements (OpSys=="linux")

&& NearestStorage.HasCMSData

Figure 4: Example Job ClassAd

ecutableand owner. Both have requirementson a potential Type = "machine”
match. The machinewill only acceptobs ownedby a partic- TamgetType = "job"

ular user while thejob will only acceptmachinesunningthe Name = ‘raven”
correctoperatingsystem. OpSys = ’linux’

Unlike the newspaper Condor provides a central match- Requirements = (Owner=="thain")
makingservicethatpairsofferswith requestsWhenasuitable NearestStorage = (Name=="turley")
matchis found,thetwo partiesareinformedandthenbecome && (Type=="storage”)
individually responsibldor contactingeachotherandaccom-
plishingwork. This processs known asbi-lateral matchmak- Figure5: Example Machine ClassAd

ing andis describedxtensiely by Ramaret. al. [25]

To build /O communitieswe mustadda third participant
to thematch—thestorageappliance As shawvn in Figure3, an
incomingjob requests CPU,but placesindirectrequirements
ontheassociatedtorage. The ClassAdrepresentinghe CPU

decidesvhatstoragds to bereferenced. Type = "storage”
Figure4 shavs how the job specifiesanindirectreference. Name = "turkey”
In the Requirements field, it stateghatit will only acceptajob HasCMSData = True
suchthat NearestStorage.HasCMSData is true. NearestStor- CMSDataRth = "/cmsdata”
age is evaluatedn the context of eachpotentialCPU. )
The CPU cannotsimply point to the nearesstoragedevice Figure6: Example Storage ClassAd

by way of anaddres®r auniquename.ClassAdsareschema-
free,soasinglead doesnot have a distinctname.Insteadthe



NearestStorage propertygivesasetof constraintghatidentify
auniquestorageClassAd,shavn in Figure6.

Therestof thereferenceexpressiormay thenbe evaluated
in the contet of the referred-toClassAd. So, eachreference
containedn thejob adevaluatesasfollows:

Near est St or age. HasCvsDat a = True
Near est St or age. CMSPat h = "/ cnsdat a"
Near est St or age. Name = "turkey"

As the contentsof the storageappliancechangeit simply
sendaupdatedstateto thematchmakr. If adatasets addedo
adevice, jobsthatrequireit will matchto thecommunity If a
datasets remaoved,jobswill nolongermatch.

Of course,information from the matchmakr is necessar
ily stale. The stateof eithera CPU or a storageappliance
may changeafter a matchhasbeenmade. Both sideshave
the responsibilityof verifying thattheir requirementsrestill
satisfied.This is doneduring a claiming protocolfollowing a
successfumatch.

3.1 ExamplePolicies

By addinga level of indirection betweenthe job and the
storagetheuseris freedfrom specifyingwhere jobsmustrun.
Theusermustsimply statewhat is needed in orderto execute
their jobs. As the stateof storagedevices changesjobs will
runaccordingto the users policy.

Suchpoliciesare expressedat submittime in the ClassAd
language. Eachjob hasa booleanRequirements expression
that determineswvhich machinesare suitableexecutionsites.
If it evaluatego True, thenthe executionsiteis acceptedoth-
erwiseit is rejected An integerexpressiorRank givesavalue
to all potentialmatches. Given several machinesfor which
Requirements evaluatesto True, the machinewith the highest
Rank will be chosen With theseexpressionsywe may control
whetherjobs move to dataor wait for it to arrive.

For example,if theuseris willing to let thejob move to ary
sitethatalreadyhasa particulardatasetthenshemay express
this:

Requi renents =
(Near est St or age. HasCVSDat a)

On the otherhand, if the userknows that moving the job
is an expensve operation,then she may requireit stayin a
particularcommunity:

Requi renents =
(Near est St or age. Nane
== "turkey.cs.w sc. edu")

If shesimply prefersto runin thelocal community but does
notrequireit, sheRanksthelocal communityatten,andothers
atzero.

Requi renents =

(Near est St or age. HasCVSDat a)
Rank =

(Near est St or age. Nane

== "turkey.cs.w sc. edu")
?10: 0

Execution Nearest
Site NeST
ClassAd o Chirp
- Matchmaking :— >
:System ;

"HasCMSData"
Attribute

"NearestStorage”
Attribute

Figure7: Implementation

Of course,somemachinesare betterthanno machines.If
the useris willing to executearywhere,and useremotel/O
whenalocal copy is not available, thenshemay eliminatethe
Requirements statemenabove.

More complicatednformationmaybeincludedin eitherex-
pressiorto setthe policy underwhich migrationis permitted.
For example thejob mayberequiredto executein aparticular
1/0 communityexceptduring the night, whennetwork traffic
maybelower:

Requi renents =

(Near est St or age. Nane==
"turkey.cs.w sc. edu")

|| (dockHour<7) || (O ockHour>18)

4. IMPLEMENTATION

We have built aprototypeof theseconceptwithin the Con-
dor distributedbatchsystem.Condoritself providesthe CPU
schedulingsystemandthe ClassAdframewnork. An interposi-
tion agentthePluggableFile Systemjs usedto attachjobsto
thelocal storageappliancejmplementedvith softwarecalled
NeST Eachof thesedevicesare suficiently generalpurpose
thatthey canbeputto useindividually or togethemithin other
systems.

NeST[7] is software for creatinggeneral-purposstorage
appliance®ncommoditycomputersvithoutspeciabprivileges.
Externally it supportsa variety of network protocols,allow-
ing applicationgo choosehemostappropriatavayto interact
with storage We have madeuseof two in particular GridFTP
[2] andChirp. Theformer providesstrongauthenticatiorand
high-throughputransfersusing a variety of techniquessuch
asmultiple TCP streams.The latter is the natve NeST pro-
tocol, and provides simple RPC-like partial-file accesson a
single TCP connection. We have usedGridFTP asthe lin-
gua franca for communicatingwith othergrid servicesover
long-haul connections. We have usedChirp for short-haul
partial-fileaccessasit doesnotrequirethe overheadf anew
TCPconnectiorfor every dataoperation.

PFS[31] is aninterpositionagentconstructedvith Bypass
[32, 33]. PFSadaptdegag applicationsto new storagesys-
temsby 'mounting’ themin the application$ view of the file
system.No specialprivilegesor kernel-level changesarere-
quired. A numberof standardnetwork protocols,including
GridFTP and Chirp, are supported. For example,with PFS
loaded,unmodifiedUNIX programsmay be usedto interact
with aNeSTrunningont ur key. cs. wi sc. edu:



% vi /chirp/turkey.cs.wisc.edu/nmy file

The systemneedsa way of gettingthe CPU’s selectionof
an|/O device into the parametersf the application. Condor
allows a ClassAdpropertyof a job or executionsiteto bein-
sertednto a programs ervironmentvariablesor agumentsat
run time by macro-&pandingexpression$eginningwith two
dollar signs.For example:

Arguments =
"/ chirp/ $$( Near est St or age. Nane) / i nput . dat a"

Condorcurrentlyunderstandan executableto consistof a
singlefile. To submita PFS-enabledpplicationto Condor
we mustresortto alittle trick of submittinga self-extracting
archie containingthe application,PFS,andascriptto invoke
the two properly We may take this level of indirectionone
stepfurther by omitting the applicationfrom the archive, and
modifying the scriptto fetchthe executable€from the l/O com-
munity usingPFS.Wewill usethistechniquebelow to retrieve
acommonexecutablerom thelocal appliance.

Finally, we have notedabove thatusersof ClassAdanustbe
preparedo handlea stalematch. Supposehat staleinforma-
tion causes job to matchto a communitythatno longerhas
the neededdataset PFSwill discover a™file notfound” error
asit performsl/O to thenearestNeST Simply passingheer-
ror to theapplicationis incorrect-thiswouldlik ely causét to
exit normallywith anerror messageforcing the userto man-
ually understandhe error and resubmitthe job. The correct
actiontaken by PFSis to causethe applicationto exit abnor
mally with the "kill process”signal. Condorinterpretsthis
signalto mean”executionaborted, andwill re-queughejob
for anotherexecutionattempt.

5. PERFORMANCE

To demonstrat®ur implementationyve have choserto ex-
aminethe simulationcomponenbf the CMS experimentto be
performedat CERN. The large /O needsof this experiment
have beenwell documented3]. Usersin Italy andthe United
Statesmale heary useof this applicationin Condorpoolsat
thelIstituto Nazionaledi FisicaNucleare(INFN) andthe Uni-
versity of Wisconsin(UW.)

We beganby assuminghe role of a scientistat INFN that
wishesto executea large numberof instancesf the simula-
tion. AlthoughtheINFN pool is equippedwith a fair number
of CPUs,competitionbetweenusersof the pool limits usto
the useof aboutthirty atonce.How canthe additionalCPUs
atUW beleveraged Ve exploredthedeploymentof /O com-
munitiesin orderto solwe this problem.

5.1 Application

Viewed from the perspectie of the system the CMS sim-
ulationworks asfollows. It readsaninputfile of several KB,
andfollowing its instructions,readsa variety of files from a
'databasedirectory The databaseés provided with the ap-
plication and consistsof a mixture of input files, datafiles,
libraries,andsourcefiles.

Although a usermight concevably determinethe exactset
of databaséiles neededy a particularrun of this simulation,
our experiencds thatfew careto, citing the costof analysisas
more expensve thandealingwith the data. The files needed

arenottrivially predictablérom theinput. For thesale of this
application,we assumehatan arbitrarysimulationrun needs
accessgo theentiredirectory

Wetrimmedthelibrariesandsourcerom thedatabaseyield-
ing adirectoryof 303MB, containing54 directories 33 sym-
bolic links, and432files. *

We chosea samplerun of the simulationthatusesa 2.5 KB
inputfile, readsatotal of 1.5MB of inputfrom 20filesin the
databasalirectory and generates97 MB of outputin three
files. Theexecutablds 17 MB, but compresse® 5.4 MB for
network transfer On a 600 MIPS machineusingonly local
storagethe samplerunsfor 160seconds.

Thesimulationexecutablenvasnot directly submittedto the
system.Instead,a 1.2 MB self-extracting archive containing
PFSand a script were submitted. At the executionsite, the
scriptdowvnloadedthe simulationexecutablefrom the appro-
priate storageapplianceand invoked it with the appropriate
arguments.

The samplerun is not entirely representatie of the real
CMS needs- it hasahigher /O to CPUratio thanarealrun.
Typically, asimulationrunsseveralhours,notseveralminutes.
We have choserthis shorterrun for two reasonsPrimarily, we
wantto pushtheenvelopeof thel/O systemandopentheuse
of Condorapplicationswith ever greaterl/O demands.Sec-
ondarily, we did not want to consumeexcessie amountsof
resourceshatwould otherwisebeallocatedtowardreal simu-
lationscurrentlyin progress.

5.2 Environment

Two Condorpools,oneat INFN andoneat UW, wereem-
ployedin runningsimulations.Eachpool wasconfiguredasa
distinctl/O community

The INFN Condorpool consistedof 236 CPUs, of which
about30 were available to us at ary time. The processing
power of the variousCPUsrangedfrom 100-1200MIPS, and
the available memoryrangedfrom 60-500 MB. The CPUs
were physically spreadaroundthe country at the variousde-
partment®f theinstitution. A workstationproviding 750MIPS
and 378 MB of memorywas establishedn Bolognaas the
storageappliancefor the INFN community A variety of net-
worksrangingfrom 10Mb/sto 100Mb/sconnectedhe execu-
tion sitesto the storageappliance.

TheUW Condorpool consistedf 911 CPUs,of which 100
wereresenedfor ouruse.Eachof theresered CPUsprovided
600MIPS and512MB of memory An identicalmachinewas
establishedasthe storageappliancefor the UW community
Thereseredmachinesvereconnectedvith the appliancevia
adedicatedl00Mb/s etherneswitch.

The two communitieswvere connectedria the public Inter-
net. Thebandwidthavailableon the pathbetweervariedfrom
0.2MB/sto 1.0 MB/s with alateng of 150ms.

5.3 Measurements

We begganby assuminghat the necessargxecutablesand
datafiles arestoredon a workstationat INFN. On this work-
station,weinstalledaninstanceof Condorfor submittingjobs,
andaninstanceof NeSTto seneinputdataandprovide output
space.

lwhenmoving thecollectionfrom siteto site,reproducinghe
symboliclinks is important,otherwise the archive sizeswells
to 543MB.
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Figure11: Overall Completion Time: This graphshowstheover-
all executiontime for 300simulationsin ead configuration. Lower
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Figure 12: Ninety-Five Percent Completion Time:  This graph
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configuration. Lower valuesindicate a better responsetime from
the user’s perspectie.
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Figure 13: Average CPU Consumption: This graph shows the
awerageCPU time consumedby jobsin ead configuration. Lower
valuesindicate a more efficient use of resourcesfrom the systens
perspectie.

To benchmarkhe capacityof theINFN pool, we submitted
300 simulationjobs. They completedas shavn in Figure 8.
Throughoutherun, the numberof availablemachinedluctu-
ates.This is aninevitable propertyof a distributedsystemin-
volving hundredof userswith changingnindsandmachines.
Neverthelesswe malke steadyprogressroughlyonejob every
10seconds.

Next, we exploredthe feasibility of usingthe mary avail-
able CPUsat UW. With 100 CPUsresened for our use,we
submitted300 jobsto the UW poolin threedifferentconfigu-
rations.Theresultsareshavn in Figure9.

In the caselabelled’UW remote’,the jobs performedtheir
1/0 againstthe applianceat INFN. Despitethe much larger
numberof CPUs,therun wasno faster asthejobswerecon-
strainedby the very smallavailablebandwidth.

To addresghis situation,we deplg/ed a NeST at the UW
pool on the sameswitch as the resened CPUs. The CPUs
werethenupdatedo adwertisethemselesasmembersf the
samecommunity and 300 jobs were submittedwith the con-
straintthatthey run at UW, andonly wherethe CMS datais
available. Of course,no machinesmmediatelysatisfiedthis
requirement. To satisfy them, we manually stagedthe nec-
essarydatato the applianceand instructedit to ad\ertiseits
contents. This proceduretook roughly 1300 seconds after
which jobs were able to run and completedas shavn in the
'UW stage’case.

Accountingfor thetime necessaro transferthe’UW stage’
casewasonly maginally fasterthan’UW remote’case.How-
ever, future executionswould be ableto take advantageof the
already-transferredata. Sucharun is shavn in the'UW lo-
cal’ case.

A fourth configuratiorwasalsomeasuredbut is not shavn
in Figure 9. In this configuration,we combinedthe 'UW
stage’andthe’UW remote’models,andperformedthe stage
of the databasevhile concurrentlyallowing jobs to execute
via remotel/O. Our ideawasthatwhenthe stagingoperation
would complete thenthe jobs could accesgheir datalocally.
However, the bandwidthto the remotesener wasthenshared
betweenthe stageoperationandthe jobs and all of the jobs
finishedbeforethe stagecompleted.Additionally, dueto this
bandwidthcontentionthejobsfinishedevenmoreslowly than
in the’UW remote’configuration.

We shouldnotethat not all of the I/O wasdonein the lo-
cal community Although the executableand databasdiles
were fetchedfrom the local storageappliance,the process-
specificinputfilesweresyncronoulsyetchedfrom thestorage
applianceat the submissiorsite andthe outputfiles werealso
deliveredthere.

Finally, we madeuseof the two communitiesin concert.
Theseresultsareshavn in Figure10.

In the’INFN local, UW remote’casejobswererunin both
communitiesvhile performingl/O againstheapplianceatthe
submittinghost. Although the numberof CPUsin usewas
high, bandwidthconstraintdimited performance.

In the 'INFN local, UW stage’case,jobs wererun in the
INFN communitywhile datawas stagedto UW asdescribed
abore. The stagecompletednearthe endof the run, where-
opona large numberof UW CPUsfinishedoff the remaining
jobs,yielding abrief increasen performance.



Finally, with the dataavailablein eithercommunity a third
run of 300jobswould be ableto matchin eithercommunity
asshawvn in the’INFN local, UW local’ case.

5.4 Evaluation

We mayevaluatethevariousconfigurationgrom two points
of view. Usersaregenerallyconcernedvith the overall com-
pletiontime of ary workload,while systemoperatorsaregen-
erally concernedvith theefficientuseof resourcegonsumed.

The users perspectie is summarizedn Figure 11. This
graphshavs thecompletiontime of the 300thjob in eachcon-
figuration. In general,applying more CPUsto a run yields
fasterresults. However, the larger numbersof CPUs avail-
able at UW only provide mamginal improvementwhen used
remotely Localizedl/O yieldsfastemresults.

Figuress, 9, and10 shav thateachconfigurationcompletes
a large fraction of jobs quickly. The overall completionof
someare delayedby a small numberof jobs at the very end
of execution. We may comparethe configurationswhile dis-
regardingthe contributions of the long tail by examiningthe
completiontime of ninety-five percentof the jobs, shavn in
Figurel2.

We examinedjobsin theselong tails and discoreredthree
distinct sourcesof delay In a few cases,jobs were staned
for 1/0 in the input phaseand did not enterthe computation
phaseuntil I/O competitiondecreasedIn others,jobslatein
therun wereevicted from executionsitesby ownersreturning
to their workstations A few jobs simply hadlongerexecution
timesdueto competitionwith local usersfor CPU, memory
andnetwork capacity

The problemof stanation suggestshe needfor an exami-
nationof fairnesdn the storageappliance However, thelatter
two problemsare more difficult to address. Although they
could be eliminatedin a tightly-controlledervironment,they
areanever-presenfeaturein large-scalegrid computing.Any
largecomputatiorperformedusingresourceshatarepartially
sharedis likely to receve interferencein performancefrom
other users. The long tail might be preventedby executing
multiple copiesof jobs whenthe numberoutstandings less
thanthe numberof CPUsavailable.

Theoperators perspectie is summarizedn Figurel3. This
graphshavs the averageCPU consumptionper job in each
configuration. Eachfigure was arrived at by dividing the al-
locatedCPU time by the numberof jobsin eachrun. The
mostefficient configurationsnvolve localizedl/O. Although
remotel/O provides someimprovementin completiontime,
it holdsCPUsidle while waiting for 1/0, yielding a poor effi-
cieng.

Of course,the performanceof eachconfigurationchanges
with theparametersf theruns.For example the’stage’cases
only provide animprovementwhenthetime necessaryo trans-
fer the datasetss lessthan the executiontime of the jobs
performingremotel/O.

A few detailsof the executionweresurprising.

In Figures9 and 10, the 'remote’ casesincur several dra-
maticdelayswvhenthefrequeng of job completiondropsdras-
tically. Theseare reflectedby correspondingdropsin CPU
allocation. Thesecasesccurredwhenlarge numbersof jobs,
previously contendingfor 1/0, completedat once. An exam-
ination of the submitters logfile shavs that Condorwas not
ableto startnew jobsasquickly asold onescompleted.This

is due to the overheadof re-transferringthe self-extracting
archie for every newly startedob. Althoughit couldbealle-
viatedby a cacheattheexecutionsite,it doesnotappeato be
amajorobstacleo throughpufor this application.

6. RELATED WORK

Marny simpledistributedl/O systemsnmale useof a central-
ized sener to connectjobswith data. The canonicalexample
is of coursethe Network File System(NFS) [29]. An ana-
loguein grid computingis the Condor[20] remotesystem
call [19] facility, in which eachrunningjob performsremote
procedurecalls [9] backto the orginatingcomputer Both of
thesecentral-serer modelshave limited scalability because
the numberof clientsis limited by the aggrgate bandwidth
provided by the centralsener. The performancef individual
clientsmayalsobelimited by the bandwidthor the lateng of
the network. Thereliability of the whole systemdecreaseas
thenumberof networks andparticipantsincreases.

Several systemsaddresghesedifficulties by copying data
to thessite of job execution.In sodoing,the Andrew File Sys-
tem (AFS) [15] is ableto scaleto a larger client/serer ratio
thanthatof NFS.An analoguen grid computingis the Globus
GASSsystem[8], in which whole files arefetchedfrom dis-
tributedrepositoriesat first referenceand storedlocally until
they areno longerreferenced Hierarchicaldatagrids [3] ex-
pandthis ideainto treesof senersthat replicatedatafrom a
productionsite.

Whetherjobs or dataaremoved is orthogonalto the ques-
tion of how the datais located. We shouldnotethatalthough
we have describeda systemwhich matcheslataandjobsthat
datais just atype of resource Mary applicationawill require
not just the discovery of databut alsoof morearbitrarytypes
of resourcegaswell.

A replica managemensystem[34] can keeptrack of all
of the dataandtheir locations. The StorageResourceBro-
ker (SRB)[5] pulls mary of thesepiecestogetherto provide a
coherentview of multiple replicationsites. Our arrangement
of I/O communitieds alsovery similarto thatof asharedveb
proxy cache[37]. However, web clientsarefixedto a partic-
ular location,anddo not have the option of choosingthe best
proxy behindwhichto run.

Thereis alarge body of researctabout,andavailable soft-
warefor generafresourcaliscovery. Someof theseprojectsin-
cludeJINI [36], replicacatalogg34], LDAP [39], SNMP[10],
andevensomeof themorerecentpeerto-peeffile sharingpro-
tocolssuchasNapster{21] andGnutella[13]. The advantage
of theClassAdframework [20, 25, 26, 24] within Condoris its
uniqueability to integrateresourcediscovery with scheduling.

ClassAdshave beenusedfor resourcediscovery in several
contexts.

Vazhkudaiet. al. [35] describehowv ClassAdsmay be used
to matchjobs with storagedevices. In this model, a replica
manageis first consultedo discoverthelist of availablerepli-
cas,andthenmatchmakings performedo find whichthebest
storagedevice. Thejob is thensubmittedfor executionwhile
boundto the discorereddevice. It is assumedthangesn the
distribution of replicaswill notchangeafterthelookup.

Basng et. al. describethe useof ClassAdsin execution
domains [6]. In this model, executionsitesbind themseles
to checkpointseners. Jobswrite checkpointgto the nearest



availablesener, andthenexpressa policy controllinghow far
they arewilling to migratefrom thelastcheckpoinimage.

Our contritution to ClassAdss to introduceindirection. In
our model,jobsexpressconstrainton storagedevices,but al-
low eachexecutionsite to declareits bindingto storage.The
storageadis referredto, but doesnotbecomea memberof the
match— it is not promisedexclusively to therequestingob.

In contrast,gang-matching of ClassAdsalsodescribedoy
Raman.et al., [26] allows multiple entitiesto be exclusively
promisedto eachother An exampleof thisis anarrangement
in which an organizationhasa limited numberof licensesto
run someproprietarysoftware. In sucha case gangmatching
could matchlicenses machinesand jobs and therebyensure
thatlicensingagreementarenotviolated.

A variety of researclventuresareexploring storagedevices
undervariousnamessuchasNASD [12], Active Disks[27],
Flash[22], IBP [23] andbuffer seners[4]. Somecommercial
vendorssuchas NetApp [17] and EMC [11] also offer stor
agesenersasahardvarepackagg14]. We aremakinguseof
NeST[7], becausét is aneasilydeplg/ablesoftwareonly ap-
pliancethat speakgrotocolssuitablefor grid computingand
canrun without specialprivilege.

A wide variety of mechanismdor building interposition
agentshave beenproposed,including systemcall intercep-
tion [1, 18], staticrelinking [19], binaryrewriting [40, 16] and
emulationthroughan existing interface[38]. We aremaking
useof Bypasg[32, 33] dueto its low overheadandability to
be usedwithout specialprivileges.

7. CONCLUSION

Communitiesare naturalstructuresfor localizing applica-
tion 1/0 on thegrid. By binding CPUsand storagetogether
into organizationghatreflectthe physicalreality, we mayin-
creasethe performanceof applicationsandthe utilization of
systems.

Usersneedthe ability to expressrelationsbetweenpartic-
ipantsin a community In particular indirect relationsallow
theuserto expressequirementsnthestorageassociatetvith
a CPU. The ClassAdframework, with someextensionsfor
indirection, is well-suitedfor describingand managingsuch
communities.

By employing severalgeneral-purposkuilding blocks— Con-
dor, NeST, and PFS— we have demonstratedhe easyde-
ploymentof I/0O communitieswithout specialprivileges. By
deploying a reasonableonfiguration,we have improved the
throughputof a high-enegy physicssimulation.

We seeseveralavenuedor futurework.

Currently the configurationof communitiess left to a hu-
man.However, theappropriategatio of CPUsto storageappli-
ancedepend®n offeredloadsaswell asphysicalconstraints.
We ervision that higherlevel software may reconfigurecom-
munitiesby deplg/ing or remaving storageappliancessload
changes.

Givena staticsetof communitiesthe usermay alsofind it
difficult to chooseanappropriatepolicy. Shouldjobs move to
data,or vice versa?0Our mechanismadmitboth possibilities,
but do not selector triggersuchmoves.

Our currentstagingmechanisnallows only completetrans-
fer of the necessarylatafiles. In the future we would like to
investigatedifferentcachingpoliciesthat might allow a finer

granularityof datatransfer For instancefiles in the dataset
could be demandfetchedand cachedat the local storageap-

pliance.Thisis similarto theconfigurationwve testedn which

jobsexecuteremotelyduringthecompletestageof thedataset.
In that case,we found the performanceto be very low due

to the bandwidthcontentionbetweenthe executingjobs and

the stageoperation. However, if the level of file sharingis

sufficiently high thendemandcachingmay well outperform
stagingthe data.

Finally, we have concentratedn the problemsof delivering
inputdata.Othereffortsin the Condorresearchgroup,suchas
Kangaroo[30], addresghe problemsof reliably moving out-
put datato a distantdestination.This datamovementis done
asyncronoushand allows remotely executingjobs to vacate
their executemachinesmorequickly. A combinationof Kan-
garoowith 1/0 communitiesvould be ableto addresghe /O
needf grid applicationdrom beginningto end.
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