
MWMotivation
MWDesign

MWSuccesses
MWFuture

MW : Master-Worker Middleware for Grids

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

NSF Shared Cyberinfrastructure (SCI) Division
Principal Investigators Meeting

February 19, 2004

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MWCollaborators

I Jean-Pierre Goux
I Northwestern University and Argonne National Lab

I Wen-Han Goh, Sanjeev Kulkarni, Miron Livny, Steve Wright,
Mike Yoder

I University of Wisconsin-Madison

I Jerry Shen
I Lehigh University

I Bill Hart
I Sandia National Lab

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Outline

I MWMotivation (Why MW?)
I MWHistory
I Properties of Numerical Optimization Algorithms

I MWDesign (How MW?)
I The MW API
I The MW IPI (Infrastructure Programming Interface)

I MWSuccesses (What MW?)
I The quadratic assignment problem—Solving nug30.

I MWFuture (When MW?)
I Enhancements
I New Applications

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Outline

I MWMotivation (Why MW?)
I MWHistory
I Properties of Numerical Optimization Algorithms

I MWDesign (How MW?)
I The MW API
I The MW IPI (Infrastructure Programming Interface)

I MWSuccesses (What MW?)
I The quadratic assignment problem—Solving nug30.

I MWFuture (When MW?)
I Enhancements
I New Applications

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Outline

I MWMotivation (Why MW?)
I MWHistory
I Properties of Numerical Optimization Algorithms

I MWDesign (How MW?)
I The MW API
I The MW IPI (Infrastructure Programming Interface)

I MWSuccesses (What MW?)
I The quadratic assignment problem—Solving nug30.

I MWFuture (When MW?)
I Enhancements
I New Applications

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Outline

I MWMotivation (Why MW?)
I MWHistory
I Properties of Numerical Optimization Algorithms

I MWDesign (How MW?)
I The MW API
I The MW IPI (Infrastructure Programming Interface)

I MWSuccesses (What MW?)
I The quadratic assignment problem—Solving nug30.

I MWFuture (When MW?)
I Enhancements
I New Applications

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Outline

I MWMotivation (Why MW?)
I MWHistory
I Properties of Numerical Optimization Algorithms

I MWDesign (How MW?)
I The MW API
I The MW IPI (Infrastructure Programming Interface)

I MWSuccesses (What MW?)
I The quadratic assignment problem—Solving nug30.

I MWFuture (When MW?)
I Enhancements
I New Applications

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Outline

I MWMotivation (Why MW?)
I MWHistory
I Properties of Numerical Optimization Algorithms

I MWDesign (How MW?)
I The MW API
I The MW IPI (Infrastructure Programming Interface)

I MWSuccesses (What MW?)
I The quadratic assignment problem—Solving nug30.

I MWFuture (When MW?)
I Enhancements
I New Applications

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Outline

I MWMotivation (Why MW?)
I MWHistory
I Properties of Numerical Optimization Algorithms

I MWDesign (How MW?)
I The MW API
I The MW IPI (Infrastructure Programming Interface)

I MWSuccesses (What MW?)
I The quadratic assignment problem—Solving nug30.

I MWFuture (When MW?)
I Enhancements
I New Applications

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

MWMotivation

I 1998, metaNEOS—Metacomputing Environments for
Optimization.

I NSF Grant to explore solving large scale numerical optimization
problems on metacomputing (Grid computing) platforms

I Question:
I Will existing (at that time) grid toolkits allow users to easily

build grid-enabled optimization solvers?

I Answer:
I To understand the tool requirements, we must understand the

characteristics of optimization algorithms.

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

MWMotivation

I 1998, metaNEOS—Metacomputing Environments for
Optimization.

I NSF Grant to explore solving large scale numerical optimization
problems on metacomputing (Grid computing) platforms

I Question:
I Will existing (at that time) grid toolkits allow users to easily

build grid-enabled optimization solvers?

I Answer:
I To understand the tool requirements, we must understand the

characteristics of optimization algorithms.

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

MWMotivation

I 1998, metaNEOS—Metacomputing Environments for
Optimization.

I NSF Grant to explore solving large scale numerical optimization
problems on metacomputing (Grid computing) platforms

I Question:
I Will existing (at that time) grid toolkits allow users to easily

build grid-enabled optimization solvers?

I Answer:
I To understand the tool requirements, we must understand the

characteristics of optimization algorithms.

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

MWMotivation

I 1998, metaNEOS—Metacomputing Environments for
Optimization.

I NSF Grant to explore solving large scale numerical optimization
problems on metacomputing (Grid computing) platforms

I Question:
I Will existing (at that time) grid toolkits allow users to easily

build grid-enabled optimization solvers?

I Answer:
I To understand the tool requirements, we must understand the

characteristics of optimization algorithms.

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

MWMotivation

I 1998, metaNEOS—Metacomputing Environments for
Optimization.

I NSF Grant to explore solving large scale numerical optimization
problems on metacomputing (Grid computing) platforms

I Question:
I Will existing (at that time) grid toolkits allow users to easily

build grid-enabled optimization solvers?

I Answer:
I To understand the tool requirements, we must understand the

characteristics of optimization algorithms.

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

Broad Generalizations...

Optimization algorithms...
I Are iterative

I Generally not “pleasantly parallel”

I Use data
I Incrementally
I “Optionally” (Potentially computed instead of shared)

I Are weakly synchronous
I Can have their sychronization requirements reduced at a

modest performance penalty

I Have a dynamic grain size
I The computation can “easily” be broken into pieces

of variable size.

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

Broad Generalizations...

Optimization algorithms...
I Are iterative

I Generally not “pleasantly parallel”

I Use data
I Incrementally
I “Optionally” (Potentially computed instead of shared)

I Are weakly synchronous
I Can have their sychronization requirements reduced at a

modest performance penalty

I Have a dynamic grain size
I The computation can “easily” be broken into pieces

of variable size.

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

Broad Generalizations...

Optimization algorithms...
I Are iterative

I Generally not “pleasantly parallel”

I Use data
I Incrementally
I “Optionally” (Potentially computed instead of shared)

I Are weakly synchronous
I Can have their sychronization requirements reduced at a

modest performance penalty

I Have a dynamic grain size
I The computation can “easily” be broken into pieces

of variable size.

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

Broad Generalizations...

Optimization algorithms...
I Are iterative

I Generally not “pleasantly parallel”

I Use data
I Incrementally
I “Optionally” (Potentially computed instead of shared)

I Are weakly synchronous
I Can have their sychronization requirements reduced at a

modest performance penalty

I Have a dynamic grain size
I The computation can “easily” be broken into pieces

of variable size.

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

Broad Generalizations...

Optimization algorithms...
I Are iterative

I Generally not “pleasantly parallel”

I Use data
I Incrementally
I “Optionally” (Potentially computed instead of shared)

I Are weakly synchronous
I Can have their sychronization requirements reduced at a

modest performance penalty

I Have a dynamic grain size
I The computation can “easily” be broken into pieces

of variable size.

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

Grid Toolkits. What did we want?

As numerical optimization researchers, we wanted a tool that
would...

1. Be simple to use

2. Leverage a powerful platform

I Like a Condor-provided computational grid.

3. Be dynamic

I Use resources as they became available

4. Be Fault-tolerant

I Still compute the correct answer when machines fail

5. Be reusable for a large number of our algorithms!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

Grid Toolkits. What did we want?

As numerical optimization researchers, we wanted a tool that
would...

1. Be simple to use

2. Leverage a powerful platform

I Like a Condor-provided computational grid.

3. Be dynamic

I Use resources as they became available

4. Be Fault-tolerant

I Still compute the correct answer when machines fail

5. Be reusable for a large number of our algorithms!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

Grid Toolkits. What did we want?

As numerical optimization researchers, we wanted a tool that
would...

1. Be simple to use

2. Leverage a powerful platform

I Like a Condor-provided computational grid.

3. Be dynamic

I Use resources as they became available

4. Be Fault-tolerant

I Still compute the correct answer when machines fail

5. Be reusable for a large number of our algorithms!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

Grid Toolkits. What did we want?

As numerical optimization researchers, we wanted a tool that
would...

1. Be simple to use

2. Leverage a powerful platform

I Like a Condor-provided computational grid.

3. Be dynamic

I Use resources as they became available

4. Be Fault-tolerant

I Still compute the correct answer when machines fail

5. Be reusable for a large number of our algorithms!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

Grid Toolkits. What did we want?

As numerical optimization researchers, we wanted a tool that
would...

1. Be simple to use

2. Leverage a powerful platform

I Like a Condor-provided computational grid.

3. Be dynamic

I Use resources as they became available

4. Be Fault-tolerant

I Still compute the correct answer when machines fail

5. Be reusable for a large number of our algorithms!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

Grid Toolkits. What did we want?

As numerical optimization researchers, we wanted a tool that
would...

1. Be simple to use

2. Leverage a powerful platform

I Like a Condor-provided computational grid.

3. Be dynamic

I Use resources as they became available

4. Be Fault-tolerant

I Still compute the correct answer when machines fail

5. Be reusable for a large number of our algorithms!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

Master-Worker!

I Master assigns tasks to the
workers

I Workers perform tasks, and
report results back to master

I Workers do not communicate
(except through the master)

I Simple!

I Dynamic/Fault-tolerant

I Reusable(!?)

Master-Worker

F
ee

d
M

e!
O
K
!

T
utor

M
e!

O
K
!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

Master-Worker!

I Master assigns tasks to the
workers

I Workers perform tasks, and
report results back to master

I Workers do not communicate
(except through the master)

I Simple!

I Dynamic/Fault-tolerant

I Reusable(!?)

Master-Worker

F
ee

d
M

e!
O
K
!

T
utor

M
e!

O
K
!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

Master-Worker!

I Master assigns tasks to the
workers

I Workers perform tasks, and
report results back to master

I Workers do not communicate
(except through the master)

I Simple!

I Dynamic/Fault-tolerant

I Reusable(!?)

Master-Worker

F
ee

d
M

e!
O
K
!

T
utor

M
e!

O
K
!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

History
Optimization Algorithms
Master-Worker

Master-Worker!

I Master assigns tasks to the
workers

I Workers perform tasks, and
report results back to master

I Workers do not communicate
(except through the master)

I Simple!

I Dynamic/Fault-tolerant

I Reusable(!?)

Master-Worker

F
ee

d
M

e!
O
K
!

T
utor

M
e!

O
K
!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Explanation
MW API
MW IPI

MW : A Master-Worker Grid Toolkit

I There are three abstraction in the master-worker paradigm:
Master, Worker, and Task.

I MW is a software package that encapsulates these
abstractions

I API : C++ abstract classes
I User writes 10 methods
I The MWized code will transparently adapt to the dynamic and

heterogeneous computing environment

I MW also has abstract layer to resource management and
communications packages (an Infrastructure Programming
Interface).

I Condor/PVM
I Condor/Files
I Static/MPI
I Single processor

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Explanation
MW API
MW IPI

MW : A Master-Worker Grid Toolkit

I There are three abstraction in the master-worker paradigm:
Master, Worker, and Task.

I MW is a software package that encapsulates these
abstractions

I API : C++ abstract classes
I User writes 10 methods
I The MWized code will transparently adapt to the dynamic and

heterogeneous computing environment

I MW also has abstract layer to resource management and
communications packages (an Infrastructure Programming
Interface).

I Condor/PVM
I Condor/Files
I Static/MPI
I Single processor

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Explanation
MW API
MW IPI

MW : A Master-Worker Grid Toolkit

I There are three abstraction in the master-worker paradigm:
Master, Worker, and Task.

I MW is a software package that encapsulates these
abstractions

I API : C++ abstract classes
I User writes 10 methods
I The MWized code will transparently adapt to the dynamic and

heterogeneous computing environment

I MW also has abstract layer to resource management and
communications packages (an Infrastructure Programming
Interface).

I Condor/PVM
I Condor/Files
I Static/MPI
I Single processor

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Explanation
MW API
MW IPI

MW API

I MWMaster
I get userinfo()
I setup initial tasks()
I pack worker init data()
I act on completed task()

I MWTask
I pack work(), unpack work()
I pack result(), unpack result()

I MWWorker
I unpack worker init data()
I execute task()

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Explanation
MW API
MW IPI

MW API

I MWMaster
I get userinfo()
I setup initial tasks()
I pack worker init data()
I act on completed task()

I MWTask
I pack work(), unpack work()
I pack result(), unpack result()

I MWWorker
I unpack worker init data()
I execute task()

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Explanation
MW API
MW IPI

MW API

I MWMaster
I get userinfo()
I setup initial tasks()
I pack worker init data()
I act on completed task()

I MWTask
I pack work(), unpack work()
I pack result(), unpack result()

I MWWorker
I unpack worker init data()
I execute task()

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Explanation
MW API
MW IPI

But wait there’s more!

I User-defined checkpointing of master

I (Rudimentary) Task Scheduling
I MW assigns first task to first idle worker
I Lists of tasks and workers can be arbitrarily ordered and

reordered
I User can set task rescheduling policies

I User-defined benchmarking
I A (user defined) task is sent to each worker upon initialization
I By accumulating normalized task CPU time, MW computes a

performance statistic that is comparable between runs.

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Explanation
MW API
MW IPI

But wait there’s more!

I User-defined checkpointing of master

I (Rudimentary) Task Scheduling
I MW assigns first task to first idle worker
I Lists of tasks and workers can be arbitrarily ordered and

reordered
I User can set task rescheduling policies

I User-defined benchmarking
I A (user defined) task is sent to each worker upon initialization
I By accumulating normalized task CPU time, MW computes a

performance statistic that is comparable between runs.

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Explanation
MW API
MW IPI

But wait there’s more!

I User-defined checkpointing of master

I (Rudimentary) Task Scheduling
I MW assigns first task to first idle worker
I Lists of tasks and workers can be arbitrarily ordered and

reordered
I User can set task rescheduling policies

I User-defined benchmarking
I A (user defined) task is sent to each worker upon initialization
I By accumulating normalized task CPU time, MW computes a

performance statistic that is comparable between runs.

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Explanation
MW API
MW IPI

MW IPI

I Communication
I pack(), unpack(), send(), recv()
I Message buffer management routines
I Changes in machine state are passed to master as tagged

messages (hostadd, hostdelete, etc.)

I Resource Management
I set target num workers(int num workers)
I get worker info(MWWorkerID *) : MWWorkerID class has

members such as architecture, operating system, machine
speed, etc.

I start worker(MWWorkerID *)

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

MW Applications

I MWFATCOP (Chen, Ferris, Linderoth) – A branch and cut
code for linear integer programming

I MWMINLP (Goux, Leyffer, Nocedal) – A branch and bound
code for nonlinear integer programming

I MWATR (Linderoth, Shapiro, Wright) – A
trust-region-enhanced cutting plane code for linear stochastic
programming and statistical verification of solution quality.

I MWQAP (Anstreicher, Brixius, Goux, Linderoth) – A branch
and bound code for solving the quadratic assignment problem

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

The Quadratic Assignment Problem

I Assign facilities to locations

I QAP is NP-Hard
I No known algorithm is

“significantly better” than
complete enumeration

I Examining 109 configurations
per second, for n = 30 would
take 8,411,113,007,743,213
years, or ≈ 420, 555 Universe
Lifetimes.

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

How Patient are You?

I If 8,411,113,007,743,213 years is a bit long to wait, you might
try Branch and Bound.

I Feasible solution ⇒ upper bound
I Relaxed problem ⇒ lower bound

A detailed algorithmic description of branch and bound

1. Is solution to relaxed problem feasible?
Yes? YAHOO!
No? Break problem into smaller pieces. Goto 1.

I Conceptually, the there is a search tree than must be explored

I Different nodes are different independent searches

I Grid computing to the rescue!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

How Patient are You?

I If 8,411,113,007,743,213 years is a bit long to wait, you might
try Branch and Bound.

I Feasible solution ⇒ upper bound
I Relaxed problem ⇒ lower bound

A detailed algorithmic description of branch and bound

1. Is solution to relaxed problem feasible?
Yes? YAHOO!
No? Break problem into smaller pieces. Goto 1.

I Conceptually, the there is a search tree than must be explored

I Different nodes are different independent searches

I Grid computing to the rescue!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

How Patient are You?

I If 8,411,113,007,743,213 years is a bit long to wait, you might
try Branch and Bound.

I Feasible solution ⇒ upper bound
I Relaxed problem ⇒ lower bound

A detailed algorithmic description of branch and bound

1. Is solution to relaxed problem feasible?
Yes? YAHOO!
No? Break problem into smaller pieces. Goto 1.

I Conceptually, the there is a search tree than must be explored

I Different nodes are different independent searches

I Grid computing to the rescue!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

How Patient are You?

I If 8,411,113,007,743,213 years is a bit long to wait, you might
try Branch and Bound.

I Feasible solution ⇒ upper bound
I Relaxed problem ⇒ lower bound

A detailed algorithmic description of branch and bound

1. Is solution to relaxed problem feasible?
Yes? YAHOO!
No? Break problem into smaller pieces. Goto 1.

I Conceptually, the there is a search tree than must be explored

I Different nodes are different independent searches

I Grid computing to the rescue!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

How Patient are You?

I If 8,411,113,007,743,213 years is a bit long to wait, you might
try Branch and Bound.

I Feasible solution ⇒ upper bound
I Relaxed problem ⇒ lower bound

A detailed algorithmic description of branch and bound

1. Is solution to relaxed problem feasible?
Yes? YAHOO!
No? Break problem into smaller pieces. Goto 1.

I Conceptually, the there is a search tree than must be explored

I Different nodes are different independent searches

I Grid computing to the rescue!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

How Patient are You?

I If 8,411,113,007,743,213 years is a bit long to wait, you might
try Branch and Bound.

I Feasible solution ⇒ upper bound
I Relaxed problem ⇒ lower bound

A detailed algorithmic description of branch and bound

1. Is solution to relaxed problem feasible?
Yes? YAHOO!
No? Break problem into smaller pieces. Goto 1.

I Conceptually, the there is a search tree than must be explored

I Different nodes are different independent searches

I Grid computing to the rescue!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

The Devil In The Details

I Fitting the B & B algorithm into the master-worker paradigm
is not groundbreaking research

I We must avoid contention at the master

I Reduce arrival rate : Have machines work on a task for a
sufficiently long time (Dynamic Grain Size)

I Increase service rate : Do not have workers pass back many
nodes. Keep master’s list of tasks small.

I Balancing efficiency considerations with search considerations
was very important!

I We contend that with appropriate tuning, many algorithms
can be shoehorned into the master-worker paradigm!

I MW can be a grid computing workhorse!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

The Devil In The Details

I Fitting the B & B algorithm into the master-worker paradigm
is not groundbreaking research

I We must avoid contention at the master

I Reduce arrival rate : Have machines work on a task for a
sufficiently long time (Dynamic Grain Size)

I Increase service rate : Do not have workers pass back many
nodes. Keep master’s list of tasks small.

I Balancing efficiency considerations with search considerations
was very important!

I We contend that with appropriate tuning, many algorithms
can be shoehorned into the master-worker paradigm!

I MW can be a grid computing workhorse!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

The Devil In The Details

I Fitting the B & B algorithm into the master-worker paradigm
is not groundbreaking research

I We must avoid contention at the master

I Reduce arrival rate : Have machines work on a task for a
sufficiently long time (Dynamic Grain Size)

I Increase service rate : Do not have workers pass back many
nodes. Keep master’s list of tasks small.

I Balancing efficiency considerations with search considerations
was very important!

I We contend that with appropriate tuning, many algorithms
can be shoehorned into the master-worker paradigm!

I MW can be a grid computing workhorse!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

The Devil In The Details

I Fitting the B & B algorithm into the master-worker paradigm
is not groundbreaking research

I We must avoid contention at the master

I Reduce arrival rate : Have machines work on a task for a
sufficiently long time (Dynamic Grain Size)

I Increase service rate : Do not have workers pass back many
nodes. Keep master’s list of tasks small.

I Balancing efficiency considerations with search considerations
was very important!

I We contend that with appropriate tuning, many algorithms
can be shoehorned into the master-worker paradigm!

I MW can be a grid computing workhorse!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

The Devil In The Details

I Fitting the B & B algorithm into the master-worker paradigm
is not groundbreaking research

I We must avoid contention at the master

I Reduce arrival rate : Have machines work on a task for a
sufficiently long time (Dynamic Grain Size)

I Increase service rate : Do not have workers pass back many
nodes. Keep master’s list of tasks small.

I Balancing efficiency considerations with search considerations
was very important!

I We contend that with appropriate tuning, many algorithms
can be shoehorned into the master-worker paradigm!

I MW can be a grid computing workhorse!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

The Devil In The Details

I Fitting the B & B algorithm into the master-worker paradigm
is not groundbreaking research

I We must avoid contention at the master

I Reduce arrival rate : Have machines work on a task for a
sufficiently long time (Dynamic Grain Size)

I Increase service rate : Do not have workers pass back many
nodes. Keep master’s list of tasks small.

I Balancing efficiency considerations with search considerations
was very important!

I We contend that with appropriate tuning, many algorithms
can be shoehorned into the master-worker paradigm!

I MW can be a grid computing workhorse!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

The Devil In The Details

I Fitting the B & B algorithm into the master-worker paradigm
is not groundbreaking research

I We must avoid contention at the master

I Reduce arrival rate : Have machines work on a task for a
sufficiently long time (Dynamic Grain Size)

I Increase service rate : Do not have workers pass back many
nodes. Keep master’s list of tasks small.

I Balancing efficiency considerations with search considerations
was very important!

I We contend that with appropriate tuning, many algorithms
can be shoehorned into the master-worker paradigm!

I MW can be a grid computing workhorse!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

The Holy Grail

I nug30 (a QAP instance of size 30) had been the “holy grail”
of computational QAP research for > 30 years

I In 2000, we set out to solve this problem

I Using a mathematically sophisticated and well-engineered
algorithm, we still estimated that we would require 11 CPU
years to solve the problem.

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

The nug30 Computational Grid

Number Type Location How
96 SGI/Irix Argonne Glide-in (Condor-G)
414 Intel/Linux Argonne Hobble-in
1024 SGI/Irix NCSA Glide-in (Condor-G)
16 Intel/Linux NCSA Flocked
45 SGI/Irix NCSA Flocked
246 Intel/Linux Wisconsin Flocked
146 Intel/Solaris Wisconsin Flocked
133 Sun/Solaris Wisconsin Flocked
190 Intel/Linux Georgia Tech Flocked
96 Intel/Solaris Georgia Tech Flocked
54 Intel/Linux Italy (INFN) Flocked
25 Intel/Linux New Mexico Flocked
12 Sun/Solaris Northwestern Flocked
5 Intel/Linux Columbia U. Flocked
10 Sun/Solaris Columbia U. Flocked

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

NUG30 is solved!

14, 5, 28, 24, 1, 3, 16, 15, 10, 9, 21, 2, 4, 29, 25, 22, 13, 26, 17, 30, 6, 20, 19,

8, 18, 7, 27, 12, 11, 23

Wall Clock Time: 6:22:04:31
Avg. # Machines: 653

CPU Time: ≈ 11 years
Nodes: 11,892,208,412
LAPs: 574,254,156,532

Parallel Efficiency: 92%

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

NUG30 is solved!

14, 5, 28, 24, 1, 3, 16, 15, 10, 9, 21, 2, 4, 29, 25, 22, 13, 26, 17, 30, 6, 20, 19,

8, 18, 7, 27, 12, 11, 23

Wall Clock Time: 6:22:04:31
Avg. # Machines: 653

CPU Time: ≈ 11 years
Nodes: 11,892,208,412
LAPs: 574,254,156,532

Parallel Efficiency: 92%

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

Workers

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

MW Applications
QAP

KLAPS

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Rollout
Applications
Enhancements

MWRollout

I MW has been available from the Condor web page for some
time.

I Web: http://www.cs.wisc.edu/condor/mw
I Mailing List: email majordomo@cs.wisc.edu with email

body: subscribe mw

I A major focus of this proposal is to deploy MW as part of the
nmi.

I Improve robustness, documentation, and ease of use
I Broaden and strengthen user base

Jeff Linderoth MW: Master-Worker Middleware for Grids

http://www.cs.wisc.edu/condor/mw

MWMotivation
MWDesign

MWSuccesses
MWFuture

Rollout
Applications
Enhancements

MWRollout

I MW has been available from the Condor web page for some
time.

I Web: http://www.cs.wisc.edu/condor/mw
I Mailing List: email majordomo@cs.wisc.edu with email

body: subscribe mw

I A major focus of this proposal is to deploy MW as part of the
nmi.

I Improve robustness, documentation, and ease of use
I Broaden and strengthen user base

Jeff Linderoth MW: Master-Worker Middleware for Grids

http://www.cs.wisc.edu/condor/mw

MWMotivation
MWDesign

MWSuccesses
MWFuture

Rollout
Applications
Enhancements

New MWApplications

I Protein structure comparison (Sandia)

I Molecular Docking (UCSD/UW-Madison)

I Statistics: multicategory support vector machines
(UW-Madison)

I Optimization: Multistage stochastic linear programming,
nonconvex quadratic programming, mixed integer linear
programming (Lehigh)

I Metaheuristics for combinatorial optimization (Polytech’Lille,
France)

I Your application here!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Rollout
Applications
Enhancements

New MWApplications

I Protein structure comparison (Sandia)

I Molecular Docking (UCSD/UW-Madison)

I Statistics: multicategory support vector machines
(UW-Madison)

I Optimization: Multistage stochastic linear programming,
nonconvex quadratic programming, mixed integer linear
programming (Lehigh)

I Metaheuristics for combinatorial optimization (Polytech’Lille,
France)

I Your application here!

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Rollout
Applications
Enhancements

MWEnhancements

I “Data Streaming”
I Some master-worker type algorithms would benefit greatly

from being able to keep a (low-bandwidth) data channel open
between master and worker during execution of a task

I Will be used in advanced distributed numerical optimization
algorithms

I We want the enhancements to MW to be driven by its
community of users!

I Improved or dynamic load balancing?
I Better interfaces (A Gui to steer/monitor?)
I More RMComm implementations?
I Other ideas???

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Rollout
Applications
Enhancements

MWEnhancements

I “Data Streaming”
I Some master-worker type algorithms would benefit greatly

from being able to keep a (low-bandwidth) data channel open
between master and worker during execution of a task

I Will be used in advanced distributed numerical optimization
algorithms

I We want the enhancements to MW to be driven by its
community of users!

I Improved or dynamic load balancing?
I Better interfaces (A Gui to steer/monitor?)
I More RMComm implementations?
I Other ideas???

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Rollout
Applications
Enhancements

Conclusions

I The master-worker paradigm can be effectively used to
distribute many parallel scientific applications

I Maybe yours too!

I The master-worker paradigm is nicely suited to a Grid
implementation

I We really believe that master-worker is the “right” paradigm
for distributed computing on the Grid

I MW can make implementing master-worker algorithms for the
Grid easier

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Rollout
Applications
Enhancements

Conclusions

I The master-worker paradigm can be effectively used to
distribute many parallel scientific applications

I Maybe yours too!

I The master-worker paradigm is nicely suited to a Grid
implementation

I We really believe that master-worker is the “right” paradigm
for distributed computing on the Grid

I MW can make implementing master-worker algorithms for the
Grid easier

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Rollout
Applications
Enhancements

Conclusions

I The master-worker paradigm can be effectively used to
distribute many parallel scientific applications

I Maybe yours too!

I The master-worker paradigm is nicely suited to a Grid
implementation

I We really believe that master-worker is the “right” paradigm
for distributed computing on the Grid

I MW can make implementing master-worker algorithms for the
Grid easier

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Rollout
Applications
Enhancements

Conclusions

I The master-worker paradigm can be effectively used to
distribute many parallel scientific applications

I Maybe yours too!

I The master-worker paradigm is nicely suited to a Grid
implementation

I We really believe that master-worker is the “right” paradigm
for distributed computing on the Grid

I MW can make implementing master-worker algorithms for the
Grid easier

Jeff Linderoth MW: Master-Worker Middleware for Grids

MWMotivation
MWDesign

MWSuccesses
MWFuture

Rollout
Applications
Enhancements

The End!

We want YOU to join the MW community of users

http://www.cs.wisc.edu/condor/mw
http://www.mcs.anl.gov/metaneos/nug30

Jeff Linderoth MW: Master-Worker Middleware for Grids

	MWMotivation
	History
	Optimization Algorithms
	Master-Worker

	MWDesign
	Explanation
	MW API
	MW IPI

	MWSuccesses
	MW Applications
	QAP

	MWFuture
	Rollout
	Applications
	Enhancements

