MW : Master-Worker Middleware for Grids

Jeff Linderoth

Department of Industrial and Systems Engineering
Lehigh University

Eleventh SIAM Conference on Parallel Processing for Scientific

Computing (PP04)
February 25, 2004

M
W

Jeff Linderoth : Master-Worker Middleware for Grids

MW(Collaborators

» Jean-Pierre Goux
> Northwestern University and Argonne National Lab

» Wen-Han Goh, Sanjeev Kulkarni, Miron Livny, Steve Wright,
Mike Yoder

> University of Wisconsin-Madison
» Jerry Shen

> Lehigh University
» Bill Hart

» Sandia National Lab

Jeff Linderoth : Master-Worker Middleware for Grids

Outline

» MWNMotivation

» MWHistory
» Properties of Numerical Optimization Algorithms

» MWNDesign

» The MW API
» The MW IPI (Infrastructure Programming Interface)

» MWSuccesses
» The quadratic assignment problem—Solving nug30.

Jeff Linderoth : Master-Worker Middleware for Grids

MWMotivation History
Optimization Algorithms
Master-Worker

Motivation

» 1998, metaNEOS—Metacomputing Environments for
Optimization.
» NSF Grant to explore solving large scale numerical optimization
problems on metacomputing (Grid computing) platforms
» Question:

» Will existing (at that time) grid toolkits allow users to easily
build grid-enabled optimization solvers?

» Answer:

» To understand the tool requirements, we must understand the
characteristics of optimization algorithms.

M
W

Jeff Linderoth : Master-Worker Middleware for Grids

MWMotivation History
Optimization Algorithms
Master-Worker

Broad Generalizations...

Optimization algorithms...

> Are iterative
» Generally not “pleasantly parallel”
» Use data

> Incrementally
» “Optionally” (Potentially computed instead of shared)

> Are weakly synchronous

» Can have their sychronization requirements reduced at a
modest performance penalty

» Have a dynamic grain size

» The computation can “easily” be broken into pieces
of variable size.

==

Jeff Linderoth : Master-Worker Middleware for Grids

MWMotivation History
Optimization Algorithms
Master-Worker

Grid Toolkits. What did we want?

As numerical optimization researchers, we wanted a tool that
would...

1. Be simple to use
2. Leverage a powerful platform
» Like a Condor-provided computational grid.
3. Be dynamic
» Use resources as they became available
4. Be Fault-tolerant
> Still compute the correct answer when machines fail

5. Be reusable for a large number of our algorithms!

==

Jeff Linderoth : Master-Worker Middleware for Grids

Master-Worker!

MWMotivation

History
Optimization Algorithms
Master-Worker

Master assigns tasks to the
workers

Workers perform tasks, and
report results back to master

Workers do not communicate
(except through the master)

» Simple!

» Dynamic/Fault-tolerant

v

Reusable(!?)

M
W

Jeff Linderoth

: Master-Worker Middleware for Grids

Explanation
MWDesign MW API
MW IPI

- A Master-Worker Grid Toolkit

» There are three abstraction in the master-worker paradigm:
Master, Worker, and Task.

» MW is a software package that encapsulates these
abstractions

» API : C++ abstract classes

» User writes 10 methods

» The MWized code will transparently adapt to the dynamic and
heterogeneous computing environment

» MW also has abstract layer to resource management and
communications packages (an Infrastructure Programming
Interface).

Condor/PVM

Condor/Files M

Static/MPI W

Single processor

v

vy vy

Jeff Linderoth : Master-Worker Middleware for Grids

Explanation
MWDesign MW API

MW IPI

» MWNMaster
» get_userinfo()
> setup_initial_tasks()
» pack_worker_init_data()
» act_on_completed_task()

» MWTask

» pack work(), unpack work ()
» pack result (), unpack result ()

» MWWorker

» unpack_worker_init_data()
> execute_task()

==

Jeff Linderoth : Master-Worker Middleware for Grids

Explanation
MWDesign MW API
MW IPI

But wait there's more!

» User-defined checkpointing of master
» (Rudimentary) Task Scheduling

» MW assigns first task to first idle worker

> Lists of tasks and workers can be arbitrarily ordered and
reordered

> User can set task rescheduling policies

» User-defined benchmarking

> A (user defined) task is sent to each worker upon initialization
» By accumulating normalized task CPU time, MW computes a
performance statistic that is comparable between runs.

M
W

Jeff Linderoth : Master-Worker Middleware for Grids

Explanation
MWDesign MW API
MW IPI

» Communication
» pack(), unpack(), send(), recv()
» Message buffer management routines
» Changes in machine state are passed to master as tagged
messages (HOSTADD, HOSTDELETE, €tc.)

» Resource Management
> set_target num workers(int num workers)
» get_worker_info(MWWorkerID *) : MWWorkerID class has
members such as architecture, operating system, machine
speed, etc.

» start_worker (MWWorkerID *) W

MW Applications

MWSuccesses QY

MW Applications

» MWFATCOP (Chen, Ferris, Linderoth) — A branch and cut
code for linear integer programming

» MWMINLP (Goux, Leyffer, Nocedal) — A branch and bound
code for nonlinear integer programming

» MWATR (Linderoth, Shapiro, Wright) — A
trust-region-enhanced cutting plane code for linear stochastic
programming and statistical verification of solution quality.

» MWQAP (Anstreicher, Brixius, Goux, Linderoth) — A branch
and bound code for solving the quadratic assignment problem

W

Jeff Linderoth : Master-Worker Middleware for Grids

MW Applications

MWSuccesses QAP

The Quadratic Assignment Problem

» Assign facilities to locations
» QAP is NP-Hard

> No known algorithm is
“significantly better” than
complete enumeration
e » Examining 10° configurations
Fac3 o per second, for n = 30 would
take 8,411,113,007,743,213
years, or =~ 420,555 Universe
Lifetimes.

Locl

Fac2 Loc?2
Facl
Loc4

M
W

Jeff Linderoth : Master-Worker Middleware for Grids

MW Applications

MWSuccesses QAP

How Patient are You?

» If 8,411,113,007,743,213 years is a bit long to wait, you might
try Branch and Bound.
> Feasible solution = upper bound
» Relaxed problem = lower bound

A detailed algorithmic description of branch and bound

1. Is solution to relaxed problem feasible?
Yes? YAHOO!
No? Break problem into smaller pieces. Goto 1.

» Conceptually, the there is a search tree than must be eproredM
» Different nodes are different independent searches W
» Grid computing to the rescue!

Jeff Linderoth : Master-Worker Middleware for Grids

MW Applications

MWSuccesses QAP

The Devil In The Details

» Fitting the B & B algorithm into the master-worker paradigm
is not groundbreaking research

» We must avoid contention at the master

» Reduce arrival rate : Have machines work on a task for a
sufficiently long time (Dynamic Grain Size)

» Increase service rate : Do not have workers pass back many
nodes. Keep master’s list of tasks small.

» Balancing efficiency considerations with search considerations
was very important!

» We contend that with appropriate tuning, many algorithms
can be shoehorned into the master-worker paradigm!

» MW can be a grid computing workhorse! W

Jeff Linderoth : Master-Worker Middleware for Grids

MW Applications

MWSuccesses QAP

The Holy Grail

» nug30 (a QAP instance of size 30) had been the “holy grail”
of computational QAP research for > 30 years

» In 2000, we set out to solve this problem

» Using a mathematically sophisticated and well-engineered
algorithm, we still estimated that we would require 11 CPU M

years to solve the problem. W

Jeff Linderoth : Master-Worker Middleware for Grids

MWSuccesses

MW Applications

QAP

The nug30 Computational Grid

Number Type Location How

96 SGl/Irix Argonne Glide-in (Condor-G)
414 Intel/Linux Argonne Hobble-in
1024 SGI/lrix NCSA Glide-in (Condor-G)
16 Intel/Linux NCSA Flocked

45 SGI/lrix NCSA Flocked

246 Intel /Linux Wisconsin Flocked

146 Intel /Solaris Wisconsin Flocked

133 Sun/Solaris Wisconsin Flocked

190 Intel/Linux | Georgia Tech Flocked

96 Intel /Solaris | Georgia Tech Flocked

54 Intel /Linux Italy (INFN) Flocked

25 Intel /Linux New Mexico Flocked

12 Sun/Solaris | Northwestern Flocked

5 Intel/Linux Columbia U. Flocked

10 Sun/Solaris Columbia U. Flocked

==

Jeff Linderoth

: Master-Worker Middleware for Grids

MW Applications

MWSuccesses QAP

NUG30 is solved!

14,5, 28, 24, 1, 3, 16, 15, 10, 9, 21, 2, 4, 29, 25, 22, 13, 26, 17, 30, 6, 20, 19,
8,18, 7, 27,12, 11, 23

Wall Clock Time: 6:22:04:31
Avg. # Machines: 653
CPU Time: ~ 11 years
Nodes: 11,892,208,412
LAPs: 574,254,156,532 M
Parallel Efficiency: 92% W

Jeff Linderoth : Master-Worker Middleware for Grids

Workers

Horkers

1888

800

488

280

MWSuccesses

MwW
QAP

Applications

6/9

6718

6/11

6/12

Tine

6/13

6714 6/15

: Master-Worker Middleware for Grids

M
W

KLAPS

1880

1688

1488

1200

1080

400

200

MW Applications
QAP

MWSuccesses

6/9

6718 6711 6/12 6/13

Tine

6714 6/15

: Master-Worker Middleware for Grids

M
W

MW Applications

MWSuccesses QAP

Conclusions

» The master-worker paradigm can be effectively used to
distribute many parallel scientific applications

» Maybe yours too!

» The master-worker paradigm is nicely suited to a Grid
implementation

> We really believe that master-worker is the “right” paradigm
for distributed computing on the Grid

» MW can make implementing master-worker algorithms for the
Grid easier

M
W

Jeff Linderoth : Master-Worker Middleware for Grids

MW Applications
QAP

MWSuccesses

We want YOU to join the MW community of users

http://www.cs.wisc.edu/condor/mw
http://www.mcs.anl.gov/metaneos/nug30

mailto:jt13@lehigh.edu W

Jeff Linderoth : Master-Worker Middleware for Grids

	MWMotivation
	History
	Optimization Algorithms
	Master-Worker

	MWDesign
	Explanation
	MW API
	MW IPI

	MWSuccesses
	MW Applications
	QAP

